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Abstract

We give the first perfectly rerandomizable, Replayable-CCA (RCCA) secure encryption
scheme, positively answering an open problem of Canetti et al. (CRYPTO 2003). Our encryp-
tion scheme, which we call the Double-strand Cramer-Shoup scheme, is a non-trivial extension of
the popular Cramer-Shoup encryption. Its security is based on the standard DDH assumption.
To justify our definitions, we define a powerful “Replayable Message Posting” functionality in
the Universally Composable (UC) framework, and show that any encryption scheme that sat-
isfies our definitions of rerandomizability and RCCA security is a UC-secure implementation of
this functionality. Finally, we enhance the notion of rerandomizable RCCA security by adding a
receiver-anonymity (or key-privacy) requirement, and show that it results in a correspondingly
enhanced UC functionality. We leave open the problem of constructing a scheme achieving this
enhancement.

∗An extended abstract of this work appears in the proceedings of CRYPTO 2007, published by Springer. This full
version is available from http://eprint.iacr.org/2007/119, and includes improvements over the extended abstract,
and over the previous (April 2007) full version.
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1 Introduction

Non-malleability and rerandomizability are opposing requirements to place on an encryption scheme.
Non-malleability insists that an adversary should not be able to use one ciphertext to produce an-
other one which decrypts to a related value. Rerandomizability on the other hand requires that
anyone can alter a ciphertext into another ciphertext in an unlinkable way, such that both will
decrypt to the same value. Achieving this delicate tradeoff was proposed as an open problem by
Canetti et al. [7].

We present the first (perfectly) rerandomizable, RCCA-secure public-key encryption scheme.
Because our scheme is a non-trivial variant of the Cramer-Shoup scheme, we call it the Double-
strand Cramer-Shoup encryption. Like the original Cramer-Shoup scheme, the security of our
scheme is based on the Decisional Diffie Hellman (DDH) assumption. Additionally, our method of
using ciphertext components from two related groups may be of independent interest.

Going further, we give a combined security definition in the Universally-Composable (UC) se-
curity framework by defining a “Replayable Message Posting” functionality Frmp. As a justification
of the original definitions of rerandomizability and RCCA security, we show that any scheme which
satisfies these definitions is also a UC-secure realization of the functionality Frmp. (Here we restrict
ourselves to static adversaries, as opposed to adversaries who corrupt the parties adaptively.) As
an additional contribution on the definitional front, in Section 9.1, we introduce a notion of receiver
anonymity for RCCA encryptions, and a corresponding UC functionality.
Frmp is perhaps the most sophisticated functionality that has been UC-securely realized in the

standard model, i.e., without super-polynomial simulation, global setups, or an honest majority
assumption.

Once we achieve this UC-secure functionality, simple modifications can be made to add extra
functionality to our scheme, such as authentication and replay-testability (the ability for a cipher-
text’s recipient to check whether it was obtained via rerandomization of another ciphertext, or was
encrypted independently).

Related work. Replayable-CCA security was proposed by Canetti et al. [7] as a relaxation of
standard CCA security. They also raised the question of whether a scheme could be simultaneously
rerandomizable and RCCA secure. Gröth [18] presented a rerandomizable scheme that achieved a
weaker form of RCCA security, and another with full RCCA security in the generic groups model.
Our work improves on [18], in that our scheme is more efficient, and we achieve full RCCA security
in a standard model.

Rerandomizable encryption schemes also appear using the term universal re-encryption schemes
(universal refers to the fact that the rerandomization/re-encryption routine does not require the
public key), introduced by Golle et al. [17]. Their CPA-secure construction is based on El Gamal,
and our construction can be viewed as a non-trivial extension of their approach, applied to the
Cramer-Shoup construction.

The notion of receiver-anonymity (key-privacy) that we consider in Section 9.1 is an extension
to the RCCA setting, of a notion due to Bellare et al. [3] (who introduced it for the simpler CPA
and CCA settings).

As mentioned before, our encryption scheme is based on the Cramer-Shoup scheme [9, 10],
which in turn is modeled after El Gamal encryption [14]. The security of these schemes and our
own is based on the DDH assumption (see, e.g. [4]). Cramer and Shoup [10] later showed a wide
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range of encryption schemes based on various assumptions which provide CCA security, under a
framework subsuming their original scheme [9]. We believe that much of their generalization can
be adapted to our current work as well, though we do not investigate this in detail here (see the
remark in the concluding section).

Shoup [25] and An et al. [1] introduced a variant of RCCA security, called benignly malleable,
or gCCA2, security. It is similar to RCCA security, but uses an arbitrary equivalence relation over
ciphertexts to define the notion of replaying. However, these definitions preclude rerandomizability
by requiring that the equivalence relation be efficiently computable publicly. A simple extension of
our scheme achieves a modified definition of RCCA security, where the replay-equivalence relation
is computable only by the ciphertext’s designated recipient. Such a functionality also precludes
perfect rerandomization, though our modification does achieve a computational relaxation of the
rerandomization requirement.

Motivating applications. Golle et al. [17] propose a CPA-secure rerandomizable encryption
scheme for use in mixnets [8] with applications to RFID tag anonymization. Implementing a re-
encryption mixnet using a rerandomizable encryption scheme provides a significant simplification
over previous implementations, which require distributed key management. Golle et al. call such
networks universal mixnets. Some attempts have been made to strengthen their scheme against a
näıve chosen-ciphertext attack, including by Klonowski et al. [19], who augment the scheme with
a rerandomizable RSA signature. However, these modifications still do not prevent all practical
chosen-ciphertext attacks, as demonstrated by Danezis [11].

We anticipate that by achieving full RCCA security, our construction will be an important step
towards universal mixnets that do not suffer from active chosen-ciphertext attacks. However, mix-
net applications tend to also require a “receiver-anonymity” property (see Section 9.1) from the
underlying encryption scheme. In fact, the utility of rerandomizable RCCA encryption is greatly
enhanced by this anonymity property. We do not have a scheme which achieves this. However,
our current result is motivated in part by the power of such a scheme. We illustrate its potential
with another example application (adapted from a private communication [20]). Consider a (peer-
to-peer) network routing scenario, with the following requirements: (1) each packet should carry a
path object which encodes its entire path to the destination; (2) each node in the network should not
get any information from a path object other than the length of the path and the next hop in the
path; and (3) there should be a mechanism to broadcast link-failure information so that any node
holding a path object can check if the failed link occurs in that path, without gaining any additional
information. This problem is somewhat similar to “Onion Routing” [5, 12, 16, 21]. However,
adding requirement (3) makes the above problem fundamentally different. Using an anonymous,
rerandomizable, RCCA-secure encryption scheme one can achieve this selective revealing property
as well as anonymity. We defer a more formal treatment of this scenario to future work.

2 Definitions

We call a function ν negligible in n if it asymptotically approaches zero faster than any inverse
polynomial in n; that is, ν(n) = n−ω(1). We call a function noticeable if it is non-negligible. A
probability is overwhelming if it is negligibly close to 1 (negligible in an implicit security parameter).
In all the encryption schemes we consider, the security parameter is the number of bits needed to
represent an element from the underlying cyclic group.
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2.1 Encryption and Security Definitions

In this section we give the syntax of a perfectly rerandomizable encryption scheme, and then state
our security requirements, which are formulated as indistinguishability experiments. Later, we
justify these indistinguishability-based definitions by showing that any scheme which satisfies them
is a secure realization of a powerful functionality in the UC security model, which we define in
Section 5.

Syntax and correctness of a perfectly rerandomizable encryption scheme. A perfectly
rerandomizable encryption scheme consists of four polynomial-time algorithms (polynomial in the
implicit security parameter):

1. KeyGen: a randomized algorithm which outputs a public key PK and a corresponding private
key SK.

2. Enc: a randomized encryption algorithm which takes a plaintext (from a plaintext space) and
a public key, and outputs a ciphertext.

3. Rerand: a randomized algorithm which takes a ciphertext and outputs another ciphertext.

4. Dec: a deterministic decryption algorithm which takes a private key and a ciphertext, and
outputs either a plaintext or an error indicator ⊥.

We emphasize that the Rerand procedure takes only a ciphertext as input, and in particular, no
public key.

We require the scheme to satisfy the following correctness properties for all key pairs (PK,SK)←
KeyGen:

• For every plaintext msg and every (honestly generated) ciphertext ζ ← EncPK(msg), we must
have DecSK(ζ) = msg.

• For every independently chosen (PK ′, SK ′)← KeyGen, the sets of honestly generated cipher-
texts under PK and PK ′ are disjoint, with overwhelming probability over the randomness
of KeyGen.

• For every plaintext msg and every (honestly generated) ciphertext ζ ← EncPK(msg), the
distribution of Rerand(ζ) is identical to that of EncPK(msg).

• For every (purported) ciphertext ζ and every ζ ′ ← Rerand(ζ), we must have DecSK(ζ ′) =
DecSK(ζ).

In other words, decryption is the inverse of encryption, and ciphertexts can be labeled “honestly
generated” for at most one honestly generated key pair. We require that rerandomizing an hon-
estly generated ciphertext induces the same distribution as an independent encryption of the same
message, while the only guarantee for an adversarially generated ciphertext is that rerandomization
preserves the value of its decryption (under all private keys).
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Perfect vs. computational rerandomization. For simplicity, we only consider statistically
perfect rerandomization. However, for most purposes (including our UC functionality), a computa-
tional relaxation suffices. Computational rerandomization can be formulated as an indistinguisha-
bility experiment against an adversary; given two ciphertexts (of a chosen plaintext), no adversary
can have a significant advantage in determining whether they are independent encryptions or if
one is a rerandomization of the other. As in our other security experiments, the adversary is given
access to a decryption oracle.

Replayable-CCA (RCCA) security. We use the definition from Canetti et al. [7]. An encryp-
tion scheme is said to be RCCA secure if the advantage of any PPT adversary A in the following
experiment is negligible:

1. Setup: Pick (PK,SK)← KeyGen. A is given PK.

2. Phase I: A gets access to the decryption oracle DecSK(·).

3. Challenge: A outputs a pair of plaintexts (msg0,msg1). Pick b ← {0, 1} and let ζ∗ ←
EncPK(msgb). A is given ζ∗.

4. Phase II: A gets access to a guarded decryption oracle GDec
(msg0,msg1)
SK which on input ζ, first

checks if DecSK(ζ) ∈ {msg0,msg1}. If so, it returns replay; otherwise it returns DecSK(ζ).

5. Guess: A outputs a bit b′ ∈ {0, 1}. The advantage of A in this experiment is Pr[b′ = b]− 1
2 .

Tightness of decryption. An encryption scheme is said to have tight decryption if the success
probability of any PPT adversary A in the following experiment is negligible:

1. Pick (PK,SK)← KeyGen and give PK to A.

2. A gets access to the decryption oracle DecSK(·).

3. A outputs a ciphertext ζ. A is said to succeed if DecSK(ζ) = msg 6= ⊥ for some msg, yet ζ is
not in the range of EncPK(msg).

Observe that when combined with correctness property (2), this implies that an adversary cannot
generate a ciphertext which successfully decrypts under more than one honestly generated key.
Such a property is useful in achieving a more robust definition of our UC functionality Frmp in
Section 5 (without it, a slightly weaker yet still meaningful definition is achievable).

2.2 Decisional Diffie-Hellman (DDH) Assumption

Let G be a (multiplicative) cyclic group of prime order p. The Decisional Diffie-Hellman (DDH)
assumption in G is that the following two distributions are computationally indistinguishable:

{(g, ga, gb, gab)}g←G;a,b←Zp and {(g, ga, gb, gc)}g←G;a,b,c←Zp .

Here, x← X denotes that x is drawn uniformly at random from a set X.
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Cunningham chains. Our construction requires two (multiplicative) cyclic groups with a specific
relationship: G of prime1 order p, and Ĝ of prime order q, where Ĝ is a subgroup of Z∗p. We require
the DDH assumption to hold in both groups (with respect to the same security parameter).

As a concrete example, the DDH assumption is believed to hold in QR∗p, the group of quadratic
residues modulo p, where p and p−1

2 are prime (i.e, p is a safe prime). Given a sequence of
primes (q, 2q + 1, 4q + 3), the two groups Ĝ = QR∗2q+1 and G = QR∗4q+3 satisfy the needs of our
construction. A sequence of primes of this form is called a Cunningham chain (of the first kind) of
length 3 (see [2]). Such Cunningham chains are known to exist having q as large as 20,000 bits. It
is conjectured that there are infinitely many such chains.

3 Motivating the Double-strand Construction

Conceptually, the crucial enabling idea in our construction is that of using two “strands” of cipher-
texts which can be recombined with each other for rerandomization without changing the encrypted
value. To motivate this idea, we sketch the rerandomizable scheme of Golle et al. [17], which is
based on the El Gamal scheme and secure against chosen plaintext attacks.

Recall that in an El Gamal encryption scheme over a group G of order p, the private key is
a ∈ Zp and the corresponding public key is A = ga. A message µ ∈ G is encrypted into the pair
(gv, µAv) for a random v ∈ Zp.

To encrypt a message µ ∈ G in a “Double-strand El Gamal” scheme, we generate two (indepen-
dent) El Gamal ciphertexts: one of µ (say, C0) and one of the identity element in G (say, C1). Such
a double-strand ciphertext (C0, C1) can be rerandomized by computing (C ′0, C

′
1) = (C0C

r
1 , Cs

1) for
random r, s← Zp (where the operations on C0 and C1 are component-wise).

Our construction adapts this paradigm of rerandomization for Cramer-Shoup ciphertexts, and
when chosen ciphertext attacks are considered. The main technical difficulty is in ensuring that the
prescribed rerandomization procedure is the only way in which “strands” can be used to generate
a valid ciphertexts.

Cramer-Shoup encryption. The Cramer-Shoup scheme [9] uses a group G of prime order p in
which the DDH assumption is believed to hold. The private key is b1, b2, c1, c2, d1, d2 ∈ Zp and the
public key is g1, g2 ∈ G, B =

∏2
i=1 gbi

i , C =
∏2

i=1 gci
i , and D =

∏2
i=1 gdi

i .
To encrypt a message msg, first pick x ∈ Zp. and for i = 1, 2 let and Xi = gx

i . Encode msg into
an element µ in G. The ciphertext is (X1, X2, µBx, (CDm)x) where m = H(X1, X2, µBx) and H is
a collision-resistant hash function.

In our scheme the ciphertext will contain two “strands,” each one similar to a Cramer-Shoup
ciphertext, allowing rerandomization as in the example above. However, instead of pairs we require
5-tuples of gi, bi, ci, di (i.e., for i = 1, . . . , 5). To allow for rerandomization, we use a direct encoding
of the message for the exponent m (instead of a hash of part of the ciphertext). Finally, we thwart
attacks which splice together strands from different encryptions by correlating the two strands with
shared random masks.

Our security analysis is more complicated than the ones in [3, 9, 18]. However all these analyses
as well as the current one follow the basic idea that if an encryption were to be carried out using

1It is likely that our security analysis can be extended to groups of orders with large prime factors, as is done in
[10]. For simplicity, we do not consider this here.
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the secret key in a “bad” way, the result will remain indistinguishable from an actual encryption
(by the DDH assumption), but will also become statistically independent of the message and the
public key.

4 Our Construction

In this section we describe our main construction, the Double-strand Cramer-Shoup (DSCS) en-
cryption scheme. First, we introduce a simpler encryption scheme that is used as a component of
the main scheme.

4.1 Double-strand Malleable Encryption Scheme

We now define a rerandomizable encryption scheme which we call the “Double-strand malleable
encryption” (DSME). As its name suggests, it is malleable, so it does not achieve our notions of
RCCA security. However, it introduces the double-strand paradigm for rerandomization which we
will use in our main construction. We will also use our DSME scheme as a component in our main
construction, where its malleability will actually be a vital feature.

System parameters. A cyclic multiplicative group Ĝ of prime order q. Ĝ also acts as the
message space for this scheme.

Key generation. Pick random generators ĝ1, ĝ2, ĝ3 from Ĝ, and random a = (a1, a2, a3) from
(Zq)3. The private key is a. The public key consists of ĝ1, ĝ2, ĝ3, and A =

∏3
j=1 ĝ

aj

j .

Encryption: MEncMPK(u ∈ Ĝ):

• Pick random v, w ∈ Zq. For j = 1, 2, 3: let Vj = ĝv
j and Wj = ĝw

j .

• Output (V, uAv,W, Aw), where V = (V1, V2, V3) and W = (W1,W2,W3).

Decryption: MDecMSK(U = (V, AV ,W, AW )):

• Check ciphertext integrity: Check if AW
?=

∏3
j=1 W

aj

j . If not, output ⊥.

• Derive plaintext: Output AV /
∏3

j=1 V
aj

j .

Rerandomization: MRerand(U = (V, AV ,W, AW )): The only randomness used in MEnc is the
choice of v and w in Ĝ. We can rerandomize both of these quantities by choosing random s, t ∈ Zq

and outputting the following ciphertext:

U ′ = (VWs, AV ·As
W ,Wt, At

W ).

Here VWs and Wt denote component-wise operations. It is not hard to see that if U is in the
range of MEncMPK(u) (with random choices v and w), then U ′ is in the range of MEncMPK(u)
with corresponding random choices v′ = v + sw and w′ = tw.

6



Homomorphic operation (multiplication by known value): Let u′ ∈ Ĝ and let U =
(V, AV ,W, AW ) be a DSME ciphertext. We define the following operation:

u′ ⊗ U
def= (V, u′ ·AV ,W, AW ).

It is not hard to see that for all private keys MSK, if MDecMSK(U) 6= ⊥ then MDecMSK(u′⊗U) =
u′ ·MDecMSK(U), and if MDecMSK(U) = ⊥ then MDecMSK(U ′) = ⊥ as well.

Observe that this scheme is malleable under more than just multiplication by a known quantity.
For instance, given r ∈ Zq and an encryption of u, one can derive an encryption of ur. As it turns
out, the way we use DSME in the main construction ensures that we achieve our final security
despite such additional malleabilities.

4.2 Double-strand Cramer-Shoup Encryption Scheme

Now we give our main construction: a rerandomizable, RCCA-secure encryption scheme called
the “Double-strand Cramer-Shoup” (DSCS) scheme. At the high level, it has two Cramer-Shoup
encryption strands, one carrying the message, and the other to help rerandomize it. But unlike in
the Cramer-Shoup scheme, we need to allow rerandomization, and so we do not use a prefix of the
ciphertext itself in ensuring consistency; instead we use a direct encoding of the plaintext.

Further, we must prevent the possibility of mixing together strands from two different encryp-
tions of the same message (say, in the manner in which rerandomizability allows two strands to
be mixed together) to obtain a ciphertext which successfully decrypts, which would yield a suc-
cessful adversarial strategy in our security experiments. For this, we correlate the two strands
of a ciphertext with shared random masks. These masks are random exponents which are sepa-
rately encrypted using the malleable DSME scheme described above (so that they may be hidden
from everyone but the designated recipient, but also be rerandomized via the DSME scheme’s
homomorphic operation).

Finally, we must restrict the ways in which a ciphertext’s two strands can be recombined, so that
essentially the only way in which the two strands can be used to generate a ciphertext that decrypts
successfully is to combine the two strands in the manner prescribed in the Rerand algorithm. To
accomplish this, we perturb the exponents of the message-carrying strand by an additional (fixed)
vector. Intuitively, this additive perturbance must remain present in the message-carrying strand
of a ciphertext, which restricts the ways in which that strand can be combined with things. As
a side-effect, our construction requires longer strands (i.e., more components) than in the original
Cramer-Shoup scheme.

System parameters. A cyclic multiplicative group G of prime order p. A space of messages. An
injective encoding encodeG of messages into G. An injective mapping encodeZp of messages into Zp

(or into Z∗p, without any significant difference). These functions should be efficiently computable
in both directions.

We also require a secure DSME scheme over a group Ĝ of prime order q, where Ĝ is also a
subgroup of Z∗p. This relationship is crucial, as the homomorphic operation ⊗ of the DSME scheme
must coincide with multiplication in the exponent in G.

Finally, we require a fixed vector z = (z1, . . . , z5) ∈ (Zp)5 with a certain degenerate property.
For our purposes, z = (0, 0, 0, 1, 1) is sufficient.
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Key generation. Generate 5 keypairs for the DSME scheme in Ĝ. Call them Ai,ai for i =
1, . . . , 5.

Pick random generators g1, . . . , g5 ∈ G, and random b = (b1, . . . , b5), c = (c1, . . . , c5),d =
(d1, . . . , d5) from (Zp)5. The private key consists of b, c,d and the 5 private keys for the DSME
scheme. The public key consists of (g1, . . . g5), the 5 public keys for the DSME scheme, and the
following values:

B =
∏5

i=1 gbi
i , C =

∏5
i=1 gci

i , D =
∏5

i=1 gdi
i .

Encryption: EncPK(msg):

• Pick random x, y ∈ Z∗p and random u1, . . . , u5 ∈ Ĝ.

• For i = 1, . . . , 5: let Xi = g
(x+zi)ui

i ; Yi = gyui
i ; and Ui = MEncAi(ui).

• Let µ = encodeG(msg), and m = encodeZp(msg).

• Output:
(X, µBx, (CDm)x,Y, By, (CDm)y,U),

where U = (U1, . . . , U5),X = (X1, . . . , X5),Y = (Y1, . . . , Y5).

Decryption: DecSK(ζ = (X, BX , PX ,Y, BY , PY ,U)):

• Decrypt Ui’s: For i = 1, . . . , 5: set ui = MDecai(Ui). If any ui = ⊥, immediately output ⊥.

• Strip ui’s and zi’s: For i = 1, . . . , 5: set Xi = X
1/ui

i g−zi
i and Y i = Y

1/ui

i .

• Derive purported plaintext: Set µ = BX/
∏5

i=1 X
bi

i , msg = encode−1
G (µ), and m =

encodeZp(msg).

• Check ciphertext integrity: Check the following conditions:

BY
?=

∏5
i=1 Y

bi

i ; PX
?=

∏5
i=1 X

ci+dim
i ; PY

?=
∏5

i=1 Y
ci+dim
i .

If any checks fail, output ⊥. Otherwise output msg.

Rerandomization: Rerand(ζ = (X, BX , PX ,Y, BY , PY ,U)): The only randomness used in Enc
is the choice of x, y, u = (u1, . . . , u5), and the randomness used in each instance of MEnc. We can
rerandomize each of these quantities by choosing random r1, . . . , r5 ∈ Ĝ, random s, t ∈ Z∗p, and con-
structing a ciphertext which corresponds to an encryption of the same message, with corresponding
random choices u′i = uiri, x′ = x + ys, and y′ = yt:

• For i = 1, . . . , 5, set U ′i = MRerand(ri ⊗ Ui); X ′i = (XiY
s
i )ri ; and Y ′i = Y rit

i .

• B′X = BXBs
Y and P ′X = PXP s

Y .

• B′Y = Bt
Y and P ′Y = P t

Y .

The rerandomized ciphertext is ζ ′ = (X′, B′X , P ′X ,Y′, B′Y , P ′Y ,U′).
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4.3 Complexity

The complexities of the DSCS scheme are summarized in Table 1 and Table 2.2 Clearly our scheme

Table 1: Number of elements

Ĝ Zq G Zp

Public key 20 - 8 -
Private key - 15 - 15
Ciphertext 40 - 14 -

Table 2: Group operations performed
exp. mult. inv.

Ĝ G Z∗p G Z∗p G
Enc 40 16 15 3 0 0
Dec (worst case) 30 35 40 22 10 1
Rerand 36 19 40 7 0 0

is much less efficient than the Cramer-Shoup encryption scheme. On the other hand, it is much
more efficient than the only previously proposed rerandomizable (weak) RCCA-secure scheme [18],
which used O(k) group elements to encode a k-bit message (or in other words, to be able to use the
group itself as the message space, it used O(log p) group elements). In fact, if we restrict ourselves
to weak RCCA security (as defined in [18]) and a computational version of rerandomizability,
our construction can be simplified to have only 10 group elements (we omit the details of that
construction in this paper).

Rerandomizable RCCA security is a significantly harder problem by our current state of knowl-
edge. Despite the inefficiency, we believe that by providing the first complete solution (i.e., not in
the generic group model) we have not only solved the problem from a theoretical perspective, but
also opened up the possibility of efficient and practical constructions.

5 Replayable Message Posting

We define the “Replayable Message Posting” functionality Frmp in the Universally Composable
(UC) security framework [6, 22], also variously known as environmental security [15, 24] and
network-aware security [23] framework.

This functionality concisely presents the security achieved by a rerandomizable, RCCA-secure
encryption scheme. The functionality allows parties to publicly post messages which are represented
by abstract handles, arbitrary strings provided by the adversary. The adversary is not told the
actual message (unless, of course, the recipient is corrupted by the adversary). Only the designated
receiver is allowed to obtain the corresponding message from the functionality.

Additionally, Frmp provides a reposting functionality: any party can “repost” (i.e., make a copy
of) any existing handle. Requesting a repost does not reveal the message. To the other parties
(including the adversary and the original message’s recipient), the repost appears exactly like a
normal message posting; i.e, the functionality’s external behavior is no different for a repost versus
a normal post.

A similar functionality Frpke was defined by Canetti et. al [7] to capture (not necessarily
rerandomizable) RCCA security. Frpke is itself a modification of the Fpke functionality of [6],
which modeled CCA security. Both of these functionalities similarly represent messages via ab-
stract handles. However, the most important distinction between these two functionalities is that

2Multiplication and inversion operations in Z∗p include operations in the subgroup bG. We assume that for bgi

elements of the public key, bg−1
i can be precomputed.
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Frmp provides the ability to repost handles as a feature; thus, it does not include the notion of
“decrypting” handles which are not previously known to the functionality.

We now formally define the behavior of Frmp. It accepts the following four kinds of requests
from parties:

Registration: On receiving a message register from a party sender, the functionality sends (id-req, sender)
to the adversary, and expects in response an identifier string id.3 If the string received in response
has been already used, ignore the request. Otherwise respond to sender with the string id, and also
send a message (id-announce, id) to all other parties.

Additionally, we reserve a special identifier id⊥ for the adversary. The adversary need not
explicitly register to use this identifier, nor is it announced to the other parties. We also insist that
only corrupted parties are allowed to post messages for id⊥ (though honest parties may repost the
resulting handles).4

Message posting: On receiving a request (post, id,msg) from a party sender, the functionality
behaves as follows:5 If id is not registered, ignore the request.

If id is registered to an uncorrupted party, send (handle-req, sender, id) to the adversary;
otherwise send (handle-req, sender, id,msg) to the adversary. In both cases, expect a string
handle in return. If handle has been previously used, ignore this request. Otherwise, record
(handle, sender, id,msg) internally and publish (handle-announce, handle, id) to all registered par-
ties.

Note that if the recipient of a message is corrupted, it is reasonable for the functionality to
reveal msg to the adversary when requesting the handle.

Message reposting: On receiving a message (repost, handle) from a party sender, the function-
ality behaves as follows: If handle is not recorded internally, ignore the request.

Otherwise, suppose (handle, sender′, id,msg) is recorded internally. If id is registered to an uncor-
rupted party, send (handle-req, sender, id) to the adversary; otherwise send (handle-req, sender, id,msg)
to the adversary. In both cases, expect a string handle′ in return. If handle′ has been previ-
ously used, ignore this request. Otherwise, record (handle′, sender, id,msg) internally and publish
(handle-announce, handle′, id) to all registered parties.

As above, if the message’s recipient is corrupted, the functionality can legitimately reveal msg
to the adversary when requesting the handle.

Message reading: On receiving a message (get, handle) from a party, if a record (handle, sender, id,msg)
is recorded internally, and id is registered to this party, then return (id,msg) to it. Otherwise ignore
this request.

3This can be modified to have the functionality itself pick an id from a predetermined distribution specified as part
of the functionality. In this case the functionality will also provide the adversary with some auxiliary information
about id (e.g., the randomness used in sampling id). For simplicity we do not use such a stronger formulation.

4id⊥ models the fact that an adversary may generate key pairs without announcing them, and broadcast encryp-
tions under those keys.

5We assume that msg is from a predetermined message space, with size superpolynomial in the security parameter;
otherwise the request is ignored.

10



6 Results

We present two main results below. The first is that the DSCS encryption scheme presented in
Section 4 achieves the security definitions defined in Section 2.1. The second result is that any
construction which meets these guarantees is a secure realization of the Frmp functionality defined
in Section 5. The complete proofs appear in Section 7 and Section 8.

Theorem 1 The DSCS scheme (Section 4) is a perfectly rerandomizable encryption scheme which
satisfies the definitions of RCCA security and tight decryption under the DDH assumption in G
and Ĝ.

Proof overview: Here we sketch an outline of the proof of RCCA security.
It is convenient to formulate our proof in terms of alternate encryption and decryption pro-

cedures. We remark that this outline is similar to that used in previous proofs related to the
Cramer-Shoup construction [3, 9, 10, 13]. However, the implementation is significantly more in-
volved in our case.

Alternate encryption. First, we would like to argue that the ciphertexts hide the message and
the public key used in the encryption. For this we describe an alternate encryption procedure
AltEnc. AltEnc actually uses the private key to generate ciphertexts. In short, instead of using
{Xi = gx

i } and {Yi = gy
i }, AltEnc picks random group elements for these ciphertext components,

then uses the private key to generate the other components according to the quantities which are
computed by Dec.

When AltEnc is used to generate the challenge ciphertext in the RCCA security experiment, it
follows from the DDH assumption in G and Ĝ that for any adversary the experiment’s outcome
does not change significantly. Additionally, the ciphertexts produced by AltEnc are information-
theoretically independent of the message.

Alternate decryption. An adversary may be able to get information about the message used in
the encryption not only from the challenge ciphertext, but also from the answers to the decryption
queries that it makes. Indeed, since the decryption oracle uses the private key there is a danger that
information about the private key is leaked, especially when the oracle answers maliciously crafted
ciphertexts. To show that our scheme does leak information in this way, we describe an alternate
decryption procedure AltDec to be used in the security experiments, which can be implemented
using only the public key(s) and challenge ciphertext (quantities which are already known to the
adversary). AltDec will be computationally unbounded, but since it is accessed as an oracle, this
does not affect the analysis. More importantly, its functionality is statistically indistinguishable
from the honest decryption procedure (even when the adversary is given a ciphertext generated by
AltEnc).

By computing discrete logarithms of some components of its input and comparing with the
public key and challenge ciphertext, the alternate decryption procedure can check whether its
input is “looks like” an honest encryption or a rerandomization of the challenge ciphertext, and
give the correct response in these cases. To establish the correctness of this approach, we show that
ciphertexts which are rejected by AltDec would be rejected by the normal decryption algorithm
with overwhelming probability as well. The u and z components of our construction are vital in
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preventing all other ways of combining the challenge strands and the public key. This is the most
delicate part of our proof.

We conclude that with these two modifications – alternate challenge ciphertext and the alternate
decryption procedure – the adversary’s view in the RCCA security experiment is independent of the
secret bit b, and so the adversary’s advantage is zero. Furthermore, the outcome of this modified
experiment is only negligibly different from the outcome of the original experiment, so the security
claim follow. C

Theorem 2 Every rerandomizable encryption scheme which is RCCA-secure, and has tight de-
cryption6 is a secure realization of Frmp in the standard UC model.

Proof overview: For simplicity we consider all communications to use a broadcast channel.
The scheme yields a protocol for Frmp in the following natural way: public keys correspond to
identifiers and ciphertexts correspond to handles. To register oneself, one generates a key pair and
broadcasts the public key. To post a message to a party, one simply encrypts the message under
his public key. To repost a handle, one simply applies the rerandomization procedure. To retrieve
a message in a handle, one simply decrypts it using one’s private key.

To prove the security of this protocol, we demonstrate a simulator S for each adversary A. The
simulator S internally runs A and behaves as follows:

When Frmp receives a registration request from an honest party, it requests an identifier from
S. S generates a key pair, sends the public key as the identifier string, and simulates to A that an
honest party broadcasted this public key.

When Frmp receives a post request addressed to an honest party (or a repost request for such
a handle), it requests a new handle from S, without revealing the message. The ith time this
happens, S generates the handle handleH

i by picking a random message msgH
i and encrypting it

under the given identity (say, public key PKi). In its simulation, S uses this ciphertext as the one
broadcast by the sender. The correctness of this simulated ciphertext follows from the scheme’s
RCCA security property.

When A broadcasts a public key, S registers it as an identifier in Frmp. When A broadcasts a
ciphertext ζ, S behaves as follows:

1. If for some i, DecSKi(ζ) = msgH
i (the ith random message chosen to simulate a ciphertext

between honest parties), then S instructs Frmp to repost handleH
i .

2. If DecSK(ζ) = msg 6= ⊥ for any of the private keys SK that it picked while registering honest
parties, then S instructs Frmp to post msg, addressed to the corresponding honest party.

3. Otherwise, ζ does not successfully decrypt under any of these private keys. The jth time this
happens, S picks a random message msgA

j and instructs Frmp to post msgA
j to id⊥. It also

remembers handleA
j = ζ.

In all the above cases, S sends ζ to Frmp as the handle for this new message. Tight decryption
ensures that at most one of the above decryptions succeeds. Further, if one does succeed, the

6By relaxing the requirement that the scheme have tight decryption (and also the correctness requirement that
ciphertexts are not honest ciphertexts for more than one honest key pair), we can still realize a weaker variant of
Frmp. In this variant, handles may be re-used, and the adversary is notified any time an honest party reposts any
handle which the adversary posted/reposted. We omit the details here.
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ciphertext must be in the support of honest encryptions, so the perfect rerandomization condition
holds for it.

When Frmp receives a post request addressed to a corrupted party (or a repost request for such a
handle), it sends the corresponding message msg and identifier id to S, and requests a new handle.

1. If id = id⊥ and msg = msgA
j (the jth random message chosen to simulate an adversarial

ciphertext to Frmp), then S generates a handle by rerandomizing the corresponding handleA
j .

2. Otherwise, S generates a handle by encrypting the message under the appropriate public key.

In its simulation, S uses this ciphertext as the one broadcast by the sender. C

7 Proof of Theorem 1

We first show that the DSCS scheme satisfies the correctness requirements of a perfectly reran-
domizable encryption scheme. Then, as mentioned in Section 6, we focus on the proofs of RCCA
security. To do this, we will demonstrate alternate encryption and decryption procedures. The
alternate encryption procedure AltEnc is described in Section 7.5 and the alternate decryption pro-
cedure AltDec is described in Section 7.6. The lemmas in the rest of this section carry out the proof
outlined in Section 6. Finally, we observe that the tight decryption property of our construction is
a direct consequence of Lemma 6.

7.1 Correctness Properties

The correctness properties of decryption are straight-forward to verify. The first correctness prop-
erty of Rerand (i.e, that a rerandomization of an honestly generated ciphertext is distributed as a
fresh re-encryption) is also straight-forward to verify. We now prove the final correctness property
(i.e, that a rerandomization of an adversarially generated ciphertext decrypts to the same value,
under any secret key) for both the DSME and DSCS schemes.

Lemma 1 For all key pairs (MPK,MSK), all (purported) ciphertexts U , and all U ′ ← MRerand(U),
we must have MDecMSK(U ′) = MDecMSK(U).

Proof: Let MSK = (a1, a2, a3) be a private key, and U = (V, AV ,W, AW ) be a ciphertext such
that MDecMSK(U) = u 6= ⊥. It is easy to see that this happens if and only if the following two
conditions hold:

AV /u =
∏3

j=1 V ai
i ; AW =

∏3
j=1 W ai

i

Now let U ′ = (V′, A′V ,W′, A′W ) = MRerand(U). Suppose the randomness used in MRerand is
s, t ∈ Zq. Then, substituting according to the two above constraints and the computations in
MRerand, we have:

A′V /u = (AV As
W )/u =

[∏3
j=1 V ai

i

] [∏3
j=1 W ai

i

]s
=

∏3
j=1(ViW

s
i )ai =

∏3
j=1(V

′
i )ai

A′W = At
W =

[∏3
j=1 W ai

i

]s
=

∏3
j=1(W

s
i )ai =

∏3
j=1(W

′
i )

ai

Thus MDecMSK(U ′) = u as well.
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Likewise, MDecMSK(U) = ⊥ if and only if AW 6=
∏3

j=1 W ai
i . When this is the case, the

corresponding constraint on A′W does not hold, as can be seen by a similar argument. Thus
MDecMSK(U ′) = ⊥ as well. �

Lemma 2 For all key pairs (PK,SK), all (purported) ciphertexts ζ, and all ζ ′ ← Rerand(ζ), we
must have DecSK(ζ ′) = DecSK(ζ).

Proof: Fix a private key SK and let ζ = (X, BX , PX ,Y, BY , PY ,U) be a (purported) ciphertext
such that DecSK(ζ) 6= ⊥. Suppose each Ui decrypts to ui under the ith DSME private key contained
in SK. Let ζ ′ = (X′, B′X , P ′X ,Y′, B′Y , P ′Y ,U′), where:

X ′i = (XiY
s
i )ri ; Y ′i = Y rit

i ; B′X = BXBs
Y ; P ′X = PXP s

Y ; B′Y = Bt
Y ; P ′Y = P t

Y

By the correctness properties of the DSME scheme, each U ′i of the rerandomized ciphertext decrypts
to riui under the ith DSME private key contained in SK.

When decrypting ζ, the decryption procedure will strip the ui’s (and zi’s) to obtain: Xi =
X

1/ui

i g−zi
i and Y i = Y

1/ui

i . However, when decrypting the rerandomization ζ ′, the computed
values will be:

X
′
i = (X ′i)

1/u′ig−zi
i = (XiY

s
i )ri/(riui)g−zi

i = XiY
s
i

Y
′
i = (Y ′i )1/u′i = Y

rit/riui

i = Y
t
i

Next, the decryption procedure computes the purported message of ζ ′ by the following computation
(substituting according to the identities above and the fact that the check on BY succeeds while
decrypting ζ):

µ =
B′X∏5

i=1(X
′
i)

bi
=

BX∏5
i=1 X

bi

i

Bs
Y∏5

i=1(Y
s
i )

bi
=

BX∏5
i=1 X

bi

i

· 1

In other words, the same purported message is computed as in the decryption of ζ. In the same
way, the integrity checks also succeed while decrypting ζ ′, and the decryption procedure indeed
returns the same message.

On the other hand, if DecSK(ζ) = ⊥, then DecSK(ζ ′) will output ⊥ at the same point in
the algorithm; either while decrypting a certain Ui or while performing an integrity check on the
ciphertext (though the purported ciphertexts may be different). �

7.2 Replay Interactions

Instead of arguing about the RCCA security experiment, we define a generic “experiment” called
a replay interaction.

Replay interaction. Consider the following interaction against an adversary A.

1. Honestly generate a keypair (PK,SK)← KeyGen, and give PK to A.

2. (Phase I) Let A access the decryption oracle DecSK(·).
3. A gives a message msg∗. Give ζ∗ = EncPK(msg∗) to A.
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4. (Phase II) Let A access a special guarded decryption oracle with the following
restrictions:

• On input ζ, if DecSK(ζ) = msg∗, the oracle’s response must be either msg∗ or
replay (possibly arbitrarily).

• Otherwise, the oracle’s response must match DecSK(ζ).

5. A outputs a bit.

An alternate decryption procedure is said to faithfully implement the oracle in Phases I & II if
for all adversaries A, the procedure’s answers to the adversary’s queries queries satisfy the given
restrictions, except with negligible probability (over the randomness in KeyGen and ciphertext
generation).

Claim 1 There is an alternate encryption procedure AltEnc which uses the private key SK instead
of the public key PK, and whose output is indistinguishable from the honest encryption procedure.
However, even though it uses the private key, its output is independent of the plaintext message
given the public key (conditioned on a negligible-probability event not happening).

Claim 2 There is an alternate decryption procedure AltDec that can be implemented using only
ζ∗ and the public key PK, and which faithfully implements the decryption oracles of the replay
interaction, even when ζ∗ was generated by AltEnc.

Note that AltDec does not have access to SK or msg∗, yet must (in part) emulate GDecmsg∗

SK (·).
Later, we describe AltEnc and AltDec, and prove the above claims.

Proving RCCA security given Claim 1 and Claim 2. First, we show that the RCCA security
experiment can be implemented by playing as the adversary in a replay interaction.

To implement the RCCA security experiment against A, we participate as an adversary in a
replay interaction, and receive a public-key PK, which we pass on to A. The decryption oracle of
Phase I is implemented using access to the replay interaction’s decryption oracle. In the challenge
phase, when A gives a pair of messages msg0,msg1, we flip a coin b and pass msg∗ = msgb to the
replay interaction. On obtaining ζ∗ from the replay interaction, we return it to the adversary. In
Phase II, when A wants to query GDec

(msg0,msg1)
SK (ζ), we use the special guarded decryption oracle

from the replay interaction. If it returns replay or one of msg0,msg1, we return replay; otherwise we
return its result. From the condition on the special guarded decryption oracle, it follows that this
is a perfect implementation of the RCCA security experiment. Finally, we output 1 if A correctly
guesses b.

By Claim 1, generating the encryptions using AltEnc instead of Enc does not noticeably affect
the outcome of the replay interaction. Then, by Claim 2, further replacing the decryption oracle
with AltDec also does not noticeably affect the outcome of the replay interaction. Call such an
interaction which uses both AltEnc and AltDec an alternate replay interaction.

It suffices to show that when implementing the RCCA security experiment in terms of alternate
replay interactions, the adversary has no advantage in guessing b. In such an implementation, the
adversary’s view includes only the following quantities:

• The public key, clearly distributed independently of b.
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• Answers to decryption queries in Phase I. By Claim 2, these can be computed using only the
public key, which the adversary already knows.

• The challenge ciphertext ζ∗. Here, the bit b was used to choose the plaintext message.
However, by Claim 1, this ciphertext is distributed independently of this choice, given the
public key (i.e, independent of b).

• Answers to decryption queries in Phase II. By Claim 2, these can be computed using only
the public key and ζ∗, both of which the adversary knows.

Thus in the security experiment (when implemented in terms of alternate replay interactions),
the adversary’s view is independent of b, and hence has zero advantage.

7.3 Decisional Diffie-Hellman Assumption

We now describe a more intricate indistinguishability assumption, which is implied by the standard
DDH assumption in G and Ĝ.

First, consider the following two distributions:

• DDH(G, n) distribution. Pick random elements g1, . . . , gn ∈ G, and pick a random v ∈ Zp,
where |G| = p. Output (g1, . . . , gn, gv

1 , . . . , gv
n).

• Rand(G, n) distribution. Pick random elements g1, . . . , gn ∈ G, and pick random v1, . . . , vn ∈
Zp, where |G| = p. Output (g1, . . . , gn, gv1

1 , . . . , gvn
n ).

We will require distributions of this form with n = 3 and n = 5, in different groups. Note that for
fixed n, the standard DDH assumption in G (which is the special case of n = 2) implies that the
above distributions are indistinguishable. To see this, consider a hybrid distribution in which the
first k exponents are randomly chosen, and the remaining n− k are all equal. The standard DDH
assumption is easily seen to imply that the kth hybrid distribution is indistinguishable from the
(k + 1)st.

Now consider the following two “double-strand” distributions:

• DS-DDH(G, n) distribution. Pick random elements g1, . . . , gn ∈ G, and pick random v, w ∈
Zp, where |G| = p. Output (g1, . . . , gn, gv

1 , . . . , gv
n, gw

1 , . . . , gw
n ).

• DS-Rand(G, n) distribution. Pick random elements g1, . . . , gn ∈ G, and pick random
v1, . . . , vn, w1, . . . , wn ∈ Zp, where |G| = p. Output (g1, . . . , gn, gv1

1 , . . . , gvn
n , gw1

1 , . . . , gwn
n ).

Again, a simple hybrid argument shows that if the DDH(G, n) and Rand(G, n) distributions are
indistinguishable, then so are DS-DDH(G, n) and DS-Rand(G, n). We call elements in the support
of these distributions double-strand tuples of length n.

Finally, our security proofs rely on the indistinguishability of the following two distributions:

• Pick K0 from DS-DDH(G, 5), and pick K1, . . . ,K5 from DS-DDH(Ĝ, 3). Output (K0, . . . ,K5).

• Pick K0 from DS-Rand(G, 5), and pick K1, . . . ,K5 from DS-Rand(Ĝ, 3). Output (K0, . . . ,K5).

A final hybrid argument shows that if DS-DDH(G, 5) and DS-Rand(G, 5) are indistinguishable, and
DS-DDH(Ĝ, 3) and DS-Rand(Ĝ, 3) are also indistinguishable, then the above two distributions are
indistinguishable.
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7.4 Encryption and Decryption as Linear Algebra

Before describing the alternate encryption and decryption procedures, we give a characterization
of our construction using linear algebra.

Definition 1 Let U = (V, AV ,W, AW ) be a DSME ciphertext. The two DSME strands of U with
respect to a public key (ĝ1, ĝ2, ĝ3, A) are:

v = (v1, v2, v3), where vj = logbgj
Vj

w = (w1, w2, w3), where wj = logbgj
Wj

Observe that rerandomizing U gives a ciphertext whose two strands are of the form v + rw and
sw, for random r, s ∈ Zq. In ciphertexts generated by MEnc, both strands are scalar multiples of
the all-ones vector.

For simplicity later on, we call the all-ones vector the public key’s strand.

For DSCS ciphertexts, we define a similar notion of strands. However, in a DSCS ciphertext,
the first strand is “masked” by ui’s and zi’s, and the second strand is masked by ui’s. We separately
consider “masked” and “unmasked” definitions of strands.

Definition 2 Let ζ = (X, BX , PX ,Y, BY , PY ,U) be a DSCS ciphertext. The masked DSCS
strands of ζ with respect to a public key (g1, . . . , g5, B, C, D) are:

x = (x1, . . . , x5), where xi = loggi
Xi

y = (y1, . . . , y5), where yi = loggi
Yi

The unmasked DSCS strands of ζ with respect to a public key (g1, . . . , g5, B, C, D) and u =
(u1, . . . , u5) are:

x =
(

x1

u1
− z1, . . . ,

x5

u5
− z5

)
, y =

(
y1

u1
, . . . ,

y5

u5

)
As with DSME ciphertexts, rerandomizing ζ gives a ciphertext whose two (unmasked) strands are
of the form x + ry and sy, for r, s ∈ Zp. In ciphertexts generated by Enc, both unmasked strands
are scalar multiples of the all-ones vector.

For simplicity later on, we call the all-ones vector the public key’s (unmasked) strand.

Adversary’s view in a replay interaction. In a replay interaction, the view of the adversary
is a linear function of the private key in the following way:

For each DSME private key a = (a1, a2, a3), the adversary sees only the corresponding public
key A and, as part of the challenge ciphertext, a DSME ciphertext U∗ = (V∗, A∗V ,W∗, A∗W ) which
decrypts to some u∗. Of these quantities, only A, A∗V , and A∗W are dependent on the private key.
Let w∗ and v∗ be the strands of U∗ with respect to ĝ1, ĝ2, ĝ3 of the public key. The following
constraints must hold: 1 1 1

w∗1 w∗2 w∗3
v∗1 v∗2 v∗3

log ĝ1 0 0
0 log ĝ2 0
0 0 log ĝ3

a1

a2

a3

 =

 log A
log A∗W

log(A∗V /u∗)

 (1)
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The logarithm is with respect to any fixed generator of Ĝ. In Phase I of the replay interaction,
only the first row constraint is relevant.

Similarly, let B,C,D be the corresponding parts of the DSCS public key, and let ζ∗ = (X∗, B∗X , P ∗X ,Y∗, P ∗Y ,U∗)
denote the challenge ciphertext. Let x∗ and y∗ denote the unmasked DSCS strands of ζ∗, with
respect to the decryptions of each U∗i , and the generators g1, . . . , g5 in the DSCS public key. The
following constraints must hold:

1 0 0
0 1 0
0 0 1
x∗ 0 0
y∗ 0 0
0 x∗ mx∗

0 y∗ my∗


G 0 0

0 G 0
0 0 G

bT

cT

dT

 =



log B
log C
log D

log(B∗X/µ)
log B∗Y
log P ∗X
log P ∗Y


, where G =

log g1 · · · 0
...

. . .
...

0 · · · log g5

 (2)

Again, the logarithm is with respect to any fixed generator of G. In Phase I of the replay interaction,
only the first three row constraints are relevant.

In the analysis that follows, we consider the adversary’s behavior over the remaining (indepen-
dent) randomness of the key generation.

7.5 The Alternate Encryption Procedure

We now describe the alternate encryption procedure AltEnc needed for Claim 1. As a component,
it uses AltMEnc, an alternate encryption procedure for the DSME scheme.

DSME alternate encryption: AltMEnca(u).

• Pick random v1, v2, v3, w1, w2, w3 ∈ Zq. For j = 1, 2, 3 let Vj = ĝ
vj

j and Wj = ĝ
wj

j

(alternatively, in the analysis below we also consider Vi,Wi as inputs instead).
• Output (V, AV ,W, AW ), where

AV = u ·
∏3

j=1 V
aj

j V = (V1, V2, V3)

AW =
∏3

j=1 W
aj

j W = (W1,W2,W3)

DSCS alternate encryption: AltEncSK(msg).

• Pick random x1, . . . , x5, y1, . . . , y5 ∈ Z∗p. For i = 1, . . . , 5, set Xi = gxi
i and Y i = gyi

i ,
(alternatively, in the analysis below we also consider Xi, Y i as inputs instead).

• Pick random u1, . . . , u5 ∈ Ĝ and for i = 1, . . . , 5, set Xi = (Xig
zi
i )ui , Yi = Y

ui

i , and
Ui = AltMEncai(ui).

• Let µ = encodeG(msg), and m = encodeZp(msg).
• Output (X, BX , PX ,Y, BY , PY ,U), where

BX = µ ·
∏5

i=1 X
bi

i U = (U1, . . . , U5)

PX =
∏5

i=1 X
ci+dim
i X = (X1, . . . , X5)

BY =
∏5

i=1 Y
bi

i Y = (Y1, . . . , Y5)

PY =
∏5

i=1 Y
ci+dim
i
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Observe that both of these alternate encryption procedures generate ciphertexts whose two
(unmasked) strands are random vectors. The remainder of the ciphertext is constructed using the
private key to ensure that it (and any of its malleations or rerandomizations) will decrypt properly.

The following two lemmas complete the proof of Claim 1:

Lemma 3 In a replay interaction where ciphertexts are generated with AltEnc, the challenge ci-
phertext is distributed independently of the choice of message, except with negligible probability over
the randomness in AltEnc.

Proof: The parts of the adversary’s view that depend on the key are given in the linear con-
straints of Equation 1 and Equation 2.

Consider the ith DSME component U∗i of the challenge ciphertext. When AltMEnc is used to
generate U∗i , its two strands are random vectors. Therefore, the matrix in Equation 1 is nonsingular
with overwhelming probability. Conditioned on this event, there are an equal number of private
keys consistent with each choice of right-hand side values in the equation. The right-hand side
includes the choice of message u∗i , thus the view of the adversary is independent of these choices.

Similarly, when AltEnc is used to generate the rest of the challenge ciphertext, its unmasked
strands are also random vectors (with respect to any choice of u∗). Thus the first matrix in equation
Equation 2 is nonsingular with overwhelming probability, for all values of m (this happens when
{1,x∗,y∗} are linearly independent). By the same reasoning as above, the adversary’s view is
independent of the choice of message. �

Lemma 4 For any adversary in a replay interaction, its advantage when the challenge ciphertext
is generated using AltEnc is negligibly close to its advantage in the original interaction (when the
ciphertext is generated using Enc), if the DDH assumption holds in G and Ĝ.

Proof: If the DDH assumption holds for Ĝ and G, then two the distributions described in
Section 7.3 are computationally indistinguishable. Elements in the support of these distributions
consist of 1 double-strand tuple of length 5 from G, and 5 double-strand tuples of length 3 from Ĝ.

Now consider a simulation of a replay interaction, where the input is from one of the above
distributions. For each i = 1, . . . , 5, let (ĝ1, ĝ2, ĝ3, V1, V2, V3,W1,W2,W3) be the ith double-strand
tuple from Ĝ. Set (ĝ1, ĝ2, ĝ3) as the corresponding part of the ith DSME public key, and generate
the remainder of the ith keypair honestly. To simulate the encryption of u∗i from the challenge
ciphertext with this keypair, use AltMEnc with the input values V1, V2, V3,W1,W2,W3.

Similarly, let (g1, . . . , g5, X1, . . . , X5, Y 1, . . . , Y 5) be the double-strand tuple from G. Set (g1, . . . , g5)
as the corresponding part of the DSCS public key and generate the remainder of the DSCS keypair
honestly. To simulate the encryption of the challenge ciphertext, use AltEnc with the input values
X1, . . . , X5, Y 1, . . . , Y 5.

It is easy to see that when the input is sampled from the first distribution (i.e, each tuple comes
from the appropriate DS-DDH distribution), the ciphertext is distributed as an honest encryption
with Enc (and MEnc). If the input is sampled from the second distribution (i.e, each tuple comes
from the appropriate DS-Rand distribution), then the ciphertext is distributed as an encryption
with AltEnc (and AltMEnc).

The rest of this simulation of the replay interaction can be implemented in polynomial time.
Thus, the outcomes of the two simulations must not differ by more than a negligible amount. �
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7.6 The Alternate Decryption Procedure

We now describe alternate decryption procedures for the DSME and DSCS schemes. They are
computationally unbounded, as they computes the strands of ciphertexts (i.e, they compute discrete
logarithms in Ĝ and G). Depending on whether they are being called in Phase I or Phase II of a
replay interaction, they have access to the challenge ciphertext ζ∗.

DSME alternate decryption (AltMDecU∗
MPK(U)). Let U∗ = (V∗, A∗V ,W∗, A∗W ) denote the chal-

lenge ciphertext that was created with AltMEnc using the corresponding private key (if called
in Phase II of the interaction). Let U = (V, AV ,W, AW ) denote the ciphertext query given
as input.

First, compute the strands v and w of U , and the strands v∗ and w∗ of U∗ (if given), both
with respect to the given public key. If in Phase I, consider the known strands to be 1 (the
public key strand). If in Phase II, consider the known strands to be {1,v∗,w∗}. Hereafter, we
somewhat abuse notation and talk about linear combinations of {1,v∗,w∗} and components
of U∗i , both of which are misleading in Phase I. However, it should be understood that when
U∗ is not given, the coefficients of v∗ and w∗ in a linear combination are zero, and in those
cases, the components of U∗ in fact cancel out from the expressions we use.

We now check that v,w are both linear combinations of the known strands. If not, then
output ⊥. Otherwise, let w = αv∗ + βw∗ + γ1. If α 6= 0, then output ⊥. Otherwise check
that

AW
?= (A∗W )βAγ

where A comes from the public key. If the check fails, output ⊥.

Now let v = πv∗ + βw∗ + γ1. Output the pair:(
δ =

AV

(A∗V )π(A∗W )βAγ
, π

)
Below, we prove that these values (δ, π) are such that MDecMSK(U) = δMDecMSK(U∗)π,
where MSK is the private key used to generate U∗. If U∗ has not been given yet, observe
that π and β must be zero, and in fact δ is the correct decryption of U .

The following lemma establishes the correctness of the output of AltMDec when it is used in
the context of a replay interaction.

Lemma 5 Fix a DSME key pair (MPK,MSK). Let U∗ be a DSME ciphertext generated by
AltMEncMSK . If AltMDecU∗

MPK(U) outputs (δ, π), then MDecMSK(U) = δMDecMSK(U∗)π.

Proof: Let v,w be the strands of U , and let v∗,w∗ be the strands of U∗. If we can write
v = πv∗ + βw∗ + γ1 for some π, β, γ, then each Vj = (V ∗j )π(W ∗

j )β ĝγ
j .

If MSK = (a1, a2, a3) was the private key used to generate U∗ and A, we have:

MDecMSK(U) =
AV∏3

j=1 V
aj

j

=
AV(∏

j(V
∗
j )aj

)π (∏
j(W

∗
j )aj

)β (∏
j ĝ

aj

j

)γ
=

AV(
A∗

V
MDecMSK(U∗)

)π
(A∗W )βAγ

=
[

AV

(A∗V )π(A∗W )βAγ

]
MDecMSK(U∗)π

�
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We now describe the DSCS alternate decryption procedure AltDec.

DSCS alternate decryption (AltDecζ∗

PK(ζ)). Let ζ∗ = (X∗, B∗X , P ∗X ,Y∗, B∗Y , P ∗Y ,U∗) denote the
challenge ciphertext that was created with AltEnc (if called in Phase II of the interaction).
Let ζ = (X, BX , PX ,Y, BY , PY ,U) denote the ciphertext query given as input.

The first step in the honest decryption procedure is to decrypt each Ui, a DSME ciphertext.
We try to simulate the behavior of this step in the first part of the alternate decryption
procedure.

• For i = 1, . . . , 5: Call AltMDec
U∗

i
MPKi

(Ui), where MPKi is the ith DSME public key
contained in PK (omitting U∗i if called in Phase I). If it returns ⊥, immediately return
⊥. Otherwise, store the pair (δi, πi) that it returned.

Next, we simulate how the honest decryption procedure strips the ui and zi terms from the
exponents of each Xi and Yi. To do this, we compute the masked strands x∗ and y∗ of ζ∗ (if
given), and compute the masked strands x and y of ζ (both with respect to the public key).

• Case 1: (∀i : πi = 0 or yi = xi = 0). In this case, we can unmask each component of x
and y as follows:

– If πi = 0, then the honest DSME decryption procedure would have decrypted Ui to
ui = δi. We can unmask this component with respect to this ui.

– If yi = xi = 0, then regardless of how the honest decryption procedure would have
decrypted Ui, xi unmasks to −zi and yi unmasks to 0.

After computing these unmasked strands of ζ (call them x and y), we check that both
are scalar multiples of 1. If not, we return ⊥. Otherwise, let x = x1 and y = y1.
Set µ = BX/Bx, msg = encode−1

G (µ), and m = encodeZp(msg). We perform the following
checks:

PX
?= (CDm)x; BY

?= By; PY
?= (CDm)y

If any check fails, return ⊥. Otherwise return msg.

If we are called in Phase I, output ⊥ at this point, as the following case requires the challenge
ciphertext ζ∗.

• Case 2: (∀i : πi = 1 or yi = xi = 0). In this case, we try to determine if the corre-
sponding unmasked strands x∗,y∗,x,y are linear combinations of the following form:

x = x∗ + βy∗, y = γy∗

We cannot determine this directly, as we cannot decrypt the Ui’s and U∗i ’s to unmask
these strands. However, suppose we did have the correct DSME private keys and pro-
ceeded to decrypt ui = MDecai(Ui) and u∗i = MDecai(U

∗
i ), for each i. Then we have:(

x1

u1
− z1, . . . ,

x5

u5
− z5

)
=

(
x∗1
u∗1
− z1, . . . ,

x∗5
u∗5
− z5

)
+ β

(
y∗1
u∗1

, . . . ,
y∗5
u∗5

)
⇐⇒

(
x1

u1
, . . . ,

x5

u5

)
=

(
x∗1
u∗1

, . . . ,
x∗5
u∗5

)
+ β

(
y∗1
u∗1

, . . . ,
y∗5
u∗5

)
⇐⇒

(
x1

u∗1
u1

, . . . , x5
u∗5
u5

)
= (x∗1, . . . , x

∗
5) + β(y∗1, . . . , y

∗
5)
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and likewise(
y1

u1
, . . . ,

y5

u5

)
= γ

(
y∗1
u∗1

, . . . ,
y∗5
u∗5

)
⇐⇒

(
y1

u∗1
u1

, . . . , y5
u∗5
u5

)
= γ(y∗1, . . . , y

∗
5)

If πi = 1, we know that the ratio ui/u∗i = δi. Otherwise, if xi = 0, then the product
xi

u∗i
ui

= 0, independent of u∗i and ui. In either case, we know every component of the
vectors in these final two equalities, without having to explicitly decrypt the Ui’s and
U∗i ’s. Thus we can decide whether the unmasked strands are linear combinations of the
appropriate form, without actually unmasking them. If they are not of this form, we
return ⊥. Otherwise, we perform the following checks:

BX
?= B∗X(B∗Y )β; PX

?= P ∗X(P ∗Y )β; BY
?= (B∗Y )γ ; PY

?= (P ∗Y )γ

If any check fails, return ⊥, otherwise return replay.

• Case 3: If the previous two cases do not hold, return ⊥.

The following lemmas establish the correctness of some of the cases where AltDec outputs ⊥:

Lemma 6 In Phase I of a replay interaction, call a query ζ to the decryption oracle “bad” if one
of the following holds:

1. One of its component DSME ciphertexts has a strand that is linearly independent of 1; or,

2. All of its component DSME ciphertexts decrypt successfully, but one of its unmasked DSCS
strands (with respect to these values) is linearly independent of 1.

Then with overwhelming probability over the remaining randomness in KeyGen, Dec would return
⊥ for all such “bad” queries.

Proof: Consider the first such “bad” ciphertext submitted by the adversary. We seperately
consider the two cases above:

1. Suppose one of the component DSME ciphertexts Ui has a strand that is linearly indepen-
dent of 1. Let A and a = (a1, a2, a3) be the corresponding DSME public and private key,
respectively. In Phase I so far, the part of the adversary’s view that depends on this keypair
is: [

1 1 1
] log ĝ1 0 0

0 log ĝ2 0
0 0 log ĝ3

a1

a2

a3

 =
[
log A

]
Let v,w be the two strands of the DSME ciphertext Ui. It successfully decrypts to ui if and
only if: [

v1 v2 v3

w1 w2 w3

]log ĝ1 0 0
0 log ĝ2 0
0 0 log ĝ3

a1

a2

a3

 =
[
log(AV /ui)

log AW

]
If the second strand is independent of 1, then the “correct” value of AW is distributed
uniformly in Ĝ, and independently of the adversary’s view. Thus, this ciphertext can decrypt
successfully with probability at most 1/q.
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Likewise, if the first strand is independent of 1, then if the ciphertext decrypts at all, it
decrypts to a value ui that is distributed uniformly and independently of the adversary’s
view. As a result, with respect to this ui, the unmasked DSCS strands will be independent of
1 with overwhelming probability. Thus, according to the following argument, Dec will return
⊥ with overwhelming probability.

2. Suppose an unmasked DSCS strand of ζ is linearly independent of 1. By a linear algebra
argument analagous to the one above, the “correct” value of the PX or PY component of ζ is
distributed uniformly in G, and independently of the adversary’s view. Thus, the ciphertext
can decrypt successfully with probabilitiy at most 1/p.

When a ciphertext is rejected by Dec, the adversary learns that some consistency check failed.
This (information-theoretically) leaks some information about the space of possible private keys.
However, at most a 1/q or 1/p fraction of consistent private keys are excluded by learning that
some constraint did not hold, depending on which group the constraint was in. By a union bound,
if the adversary makes N such bad queries, one of them will be accepted with probability at most
N/(q −N). Since N is polynomial in the security parameter, this quantity remains negligible. �

Tightness of decryption. Observe that the experiment in the definition of tight decryption
(Section 2.1) is essentially Phase I of a replay interaction. A ciphertext ζ is “honestly generated”
if its strands are all scalar multiples of 1 (and its consistency-check components are all correct).
Clearly a ciphertext whose strands are all multiples of 1, but whose consistency-check components
are incorrect will be unconditionally rejected by Dec. Additionally, by Lemma 6, all other non-
honestly-generated ciphertexts will be rejected with overwhelming probability. This establishes the
decryption tightness property for our construction.

Lemma 7 In Phase II of a replay interaction, where the challenge ciphertext ζ∗ was generated by
AltEnc, call a query ζ to the decryption oracle “bad” if one of the following holds:

1. One of its component DSME ciphertexts Ui has a second strand that is linearly dependent on
the first strand of the corresponding U∗i ;7 or,

2. All of its component DSME ciphertexts decrypt successfully, but one of its unmasked DSCS
strands (with respect to these values) is linearly independent of 1 and the unmasked strands
of ζ∗.

Then with overwhelming probability over the remaining randomness in KeyGen, Dec would return
⊥ for all such “bad” queries.

Proof: As above, consider the first such “bad” ciphertext submitted by the adversary. In Phase
II, the view of the adversary now includes the strands contained in ζ∗.

• Suppose a component DSME ciphertext Ui has a second strand that is linearly dependent
on the first strand of the corresponding U∗i . Recall that by Lemma 3, the decrypted value
of U∗i is distributed independently of the adversary’s view. Thus the value A∗V /MDec(U∗i ) =

7Note that the strands of U∗
i along with 1 span the space of possible strands with overwhelming probability, so

we do not consider the case where the strands of Ui are independent of these strands.
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∏3
i=1(V

∗
i )ai is also distributed independently. As the first strand of Ui depends linearly on

the first strand of U∗i , the decryption procedure will computed the purported plaintext ui

using a nontrivial factor of
∏3

i=1(V
∗
i )ai . Thus, as above, the decryption of Ui is distributed

independently of the adversary’s view, and the unmasked DSCS strand is independent of the
adversary’s view with overwhelming probability.

• Suppose an unmasked DSCS strand of ζ is linearly independent of the known strands (1,
and the two unmasked strands of ζ∗). Then as above, the “correct” value of the PX or PY

component of ζ is distributed independently of the adversary’s view. Thus, the ciphertext
can decrypt successfully with probabilitiy at most 1/p.

Similar to above, a union bound shows that all such bad ciphertexts are rejected with overwhelming
probability. �

The previous two lemmas establish the validity of AltDec rejecting its input when its DSCS
strands are linearly independent of the adversary’s view. However, it also rejects its input if the
DSCS strands are linearly dependent but not of the form given by the Rerand procedure. The
following lemma shows that this case happens only negligibly often.

Lemma 8 Let x∗,y∗ be the unmasked strands of the challenge ciphertext ζ∗, which was generated
by AltEnc. Suppose the adversary gives a decryption query to the honest decryption oracle whose
DSME components decrypt successfully, and whose unmasked strands x and y are linearly dependent
on {x∗,y∗,1}. Then, except with negligible probability (over the randomness in AltEnc), one of the
following cases must hold:

• (∀i : πi = 0 or xi = yi = 0); x = x1; and y = y1 (for some x, y).

• (∀i : π1 = 1 or xi = yi = 0); x = x∗ + βy∗; and y = γy∗ (for some β, γ).

Proof: We view this linear dependence condition as a game:

• We give an encryption from AltEnc, and its masked strands x∗ and y∗ are fixed. However,
from Lemma 3, the u∗ values in this ciphertext are distributed independently, and we may
choose them later.

• The adversary submits a ciphertext to the decryption oracle. This fixes its masked strands
x and y. From Lemma 5, this also fixes a relationship between u∗ and u (i.e, δi, πi such that
ui = δi(u∗i )

πi).

• The decryption procedure will proceed to decrypt the Ui values to unmask the strands. At
this point, we can now randomly choose u∗, which determines u according to the relationship
in the previous step. Given these values, the corresponding unmasked strands x∗,y∗,x,y are
fixed. The adversary succeeds if x and y are linearly dependent on {x∗,y∗,1}.

We assume that the adversary has a strategy whereby he succeeds with noticeable probability over
the choices of x∗, y∗, and u∗. We will show that the only cases that do not lead to a contradiction
are the two cases given in the statement of the lemma.
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The strand x is linearly dependent on {x∗,y∗,1} if there exist α, β, γ such that:

x = αx∗ + βy∗ + γ1

⇐⇒
(

x1

u1
− z1, . . . ,

x5

u5
− z5

)
= α

(
x∗1
u∗1
− z1, . . . ,

x∗5
u∗5
− z5

)
+ β

(
y∗1
u∗1

, . . . ,
y∗5
u∗5

)
+ γ1

⇐⇒
(

x1

δ1(u∗1)π1
, . . . ,

x5

δ5(u∗5)π5

)
= α

[(
x∗1
u∗1

, . . . ,
x∗5
u∗5

)
− z

]
+ β

(
y∗1
u∗1

, . . . ,
y∗5
u∗5

)
+ γ1 + z (3)

Multiplying the ith row on both sides by (u∗i )
πi yields the following equation:x1/δ1

...
x5/δ5

 =

(u∗1)
π1−1 · · · 0
...

. . .
...

0 · · · (u∗5)
π5−1


x∗1 − z1u

∗
1 y∗1 u∗1

...
...

...
x∗5 − z5u

∗
5 y∗5 u∗5


α

β
γ

 +

z1(u∗1)
π1

...
z1(u∗5)

π5


In each case, we use the following similar argument. We will show that with overwhelming

probability, the first 3 choices of u∗ determine the coefficients of the linear combination. The
adversary succeeds only if the constraint holds in the other components with noticeable probability
over the choices of the remaining 2 values of u∗. Recall that u∗i is distributed randomly in Ĝ, which
is an order-q subgroup of Z∗p. In particular, (u∗i )

π is also distributed randomly unless π = 0 mod q.
Substituting our choice of z = (0, 0, 0, 1, 1) makes the following analysis simpler. We write the

first 3 rows as above:

x1/δ1

x2/δ2

x3/δ3

 =

1︷ ︸︸ ︷(u∗1)
π1−1 0 0
0 (u∗2)

π2−1 0
0 0 (u∗3)

π3−1


2︷ ︸︸ ︷x∗1 y∗1 u∗1

x∗2 y∗2 u∗2
x∗3 y∗3 u∗3

α
β
γ


=

x∗1(u
∗
1)

π1−1 y∗1(u
∗
1)

π1−1 (u∗1)
π1

x∗2(u
∗
2)

π2−1 y∗2(u
∗
2)

π2−1 (u∗2)
π2

x∗3(u
∗
3)

π3−1 y∗3(u
∗
3)

π3−1 (u∗3)
π3

α
β
γ

 (4)

With overwhelming probability, (x∗1, x
∗
2, y
∗
3) and (y∗1, y

∗
2, y
∗
3) are independent, as are (x∗4, x

∗
5) and

(y∗4, y
∗
5). Matrix 1 is always nonsingular, as u∗i 6= 0. With overwhelming probability, matrix 2 is

nonsingular, and thus α, β, γ are fixed by the first 3 choices of u∗, as desired.
We now write the remaining two constraints in the following form:[

x4/δ4

x5/δ5

]
=

[
(u∗4)

π4−1 0
0 (u∗5)

π5−1

]
︸ ︷︷ ︸

3

[
x∗4 y∗4
x∗5 y∗5

] [
α
β

]
︸ ︷︷ ︸

4

+
[
(u∗4)

π4 0
0 (u∗5)

π5

]
︸ ︷︷ ︸

5

[
1 1
1 1

] [
γ

1− α

]
︸ ︷︷ ︸

6

(5)

We fix the left hand side of this equation and matrices 4 and 6, and assume the equation holds
with noticeable probability over the choice of u∗4, u

∗
5. We consider two cases:

• For some i ∈ {1, 2, 3}, we have πi = 1. Without loss of generality, let i = 1. Then applying
Cramer’s rule to solve for γ in matrices 1 and 2, we see that γ = ∆/(θu∗1 + ρ), where ∆ is the
determinant of the following matrix: x∗1 y∗1 x1/δ1

x∗2(u
∗
2)

π2−1 y∗2(u
∗
2)

π2−1 x2/δ2

x∗3(u
∗
3)

π3−1 y∗3(u
∗
3)

π3−1 x3/δ3


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and θ, ρ are independent of u∗1. Also, θ 6= 0 except with negligible probability.

Suppose ∆ 6= 0. Then γ varies in a one-to-one fashion as u∗1 varies. the fourth constraint has
the following form:

x4/δ4 = (u∗4)
π4−1

[
αx∗4 + βy∗4

]
+ (u∗4)

π4

[
γ + 1− α

]
and for any fixed u∗4, the right-hand side varies as u∗1 varies. This constraint only holds with
negligible probability. We conclude that γ = ∆ = 0.

We can only have ∆ = 0 with noticeable probability when either:

– π2 = π3 = 1 and xi/δi = αx∗i + βy∗i , or
– x1 = x2 = x3 = 0

We now consider two subcases:

– If α = 1, the second term in Equation 5 vanishes. We must have either πi = 1 or xi = 0,
for i = 4, 5 (because if πi 6= 1 and xi 6= 0, then the ith constraint varies with the choice
of u∗i ).
In this cases we get the required property that (∀i : xi = 0 or πi = 1), and α = 1 and
γ = 0.

– If α 6= 1, we must have π4 = π5 = 0, since otherwise the second term of Equation 5
varies with u∗4, u

∗
5. However if π4 = π5 = 0, matrix 4 must contain all zeroes, which

implies α = β = 0.
Now, α = β = γ = 0. Substituting into Equation 4, we see that x1 = x2 = x3 = 0. In
this case we get the property that (∀i : xi = 0 or πi = 0) and α = β = 0.

• For all i ∈ {1, 2, 3}, we have πi = 0. Note that the first two columns in the matrix of
Equation 4 are randomized by (u∗i )

−1 in each row, but the last column is all ones. Again we
consider 2 subcases:

– If x1/δ1 = x2/δ2 = x3/δ3, then in the Equation 4, we see that we must have α = β = 0.
If γ = −1, then we get x4 = x5 = 0. Otherwise we require π4 = π5 = 0 for the conditions
in Equation 5 to hold as u∗i varies.

– If x1/δ1, x2/δ2, x3/δ3 are not all equal, then consider solving the Equation 4 for α, β, γ.
Over the choice of u∗1, u

∗
2, u
∗
3, it is only with negligible probability that we can obtain

γ = 0 or γ = α−1. To see this, note that if γ were to obey either of these two equations,
then u∗3 could be uniquely solved in terms of the other variables (by first substituting γ
and then solving α and β from the first two rows of the system of equations, and then
solving (u∗3)

−1). So for Equation 5 to hold, it must be the case that π4 = π5 = 0. But
then, as before, we require that matrix 4 contain all zeroes. This implies α = β = 0.

In either case, we get the property that (∀i : xi = 0 or πi = 0) and α = β = 0.

The arguments concerning linear combinations of the y strand are very similar, and omitted
here for brevity. When substituting y for x, we lose the final z term in Equation 3. This accounts
for the difference in the possible linear combinations for y compared to x. �

Lemma 9 AltDec faithfully implements the decryption oracle in the replay interaction described in
Section 7.2, even when the encryptions are generated using AltEnc.
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Proof: Consider a query ζ = (X, BX , PX ,Y, BY , PY ,U) made to AltDec.
If any of the cases given in Lemma 6 and Lemma 7 hold, AltDec rejects its input (either

directly, or by AltMDec rejecting). As proven in these lemmas, this is what Dec would do as well,
with overwhelming probability.

Whenever AltMDec performs an integrity check, it is easy to see that it corresponds to the same
integrity check that the MDec procedure would perform. So if AltMDec outputs ⊥ due to a failed
integrity check, so would have MDec.

Otherwise, if AltMDec(Ui) returns (δi, πi), then by Lemma 5, these values are such that MDec(Ui) =
δiMDec(U∗i )πi for any consistent private key.

Given the correctness of the (δi, πi) values that are computed, the AltDec procedure does check
for the correct linear combinations of the ciphertext’s strands (correct with respect to the u that
the honest decryption procedure would compute).

AltDec also rejects its input if its unmasked DSCS strands are linearly dependent on the ad-
versary’s view, but not of the form of an honest ciphertext or a rerandomization of the challenge
ciphertext. By Lemma 8, this event happens only with negligible probability.

If Case 1 of the alternate decryption algorithm holds, the honest decryption would compute
values of Xi = gx

i and Y i = gy
i . It then computes:

µ =
BX∏5

i=1 X
bi

i

=
BX(∏5

i=1 gbi
i

)x = BX/Bx

which is exactly what the alternate decryption procedure computes. Similarly, the alternate de-
cryption procedure performs the following checks:

PX
?= (CDm)x; BY

?= By; PY
?= (CDm)y

which are easily verified to coincide with the honest decryption procedure’s checks in this case.
If Case 2 of the alternate decryption algorithm holds, the honest decryption procedure would

compute values of Xi = X
∗
i (Y

∗
i )

β and Y i = (Y ∗i )
γ . Recall that msg∗ is the message used to generate

the challenge ciphertext ζ∗. The alternate decryption procedure’s first check is BX
?= B∗X(B∗Y )β.

If this check does not succeed, then the honest decryption procedure would compute a purported
message msg′ different than msg∗. Then the additional constraints[

0 x m′x
0 y m′y

]G 0 0
0 G 0
0 0 G

bT

cT

dT

 =
[
log PX

]
, where G =

log g1 · · · 0
...

. . .
...

0 · · · log g5


are linearly independent of the constraints in Equation 2, because m′ 6= m∗. By the same logic
as in the proofs of Lemma 6 and Lemma 7, the honest decryption procedure would reject with
overwhelming probability, which is what AltDec does as well.

Otherwise, the purported message that is computed while decrypting ζ is msg∗. Again, it can
easily be checked that the alternate decryption procedure’s checks:

PX
?= P ∗X(P ∗Y )β; BY

?= (B∗Y )γ ; PY
?= (P ∗Y )γ

coincide with the checks performed by the honest decryption procedure. If these checks succeed,
the honest decryption procedure would return msg∗, whereas AltDec returns replay. This response
is still considered acceptable for a replay interaction, thus we faithfully implement the guarded
decryption for the replay interaction. �
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8 Proof of Theorem 2

Let Π = (KeyGen,Enc,Dec,Rerand) be a rerandomizable RCCA-secure encryption scheme with
tight decryption. To prove Theorem 2, for any real-world adversary A, we must demonstrate an
ideal-world adversary (simulator) S, so that for all PPT environments Z, realΠ

A,Z ≈ idealFrmp
S,Z .

We build S in stages, starting from the real-world interactions and altering it step by step to
get an ideal-world adversary, at every stage ensuring that the behaviours within any environment
remain indistinguishable. We describe these stages below, and highlight what property of the en-
cryption scheme is used to establish indistinguishability in that stage. All the simulators below exist
in the ideal world, but are also given (progressively less) information about the inputs to the honest
parties. We conveniently model this access to extra information using modified functionalities.

S0 and F0 (Correctness): F0 behaves exactly like Frmp except that in its handle-req in-
teractions with the adversary, it reveals the message, recipient, and whether the handle is being
requested for a repost. Thus S0 effectively learns all the honest parties’ inputs to F0. S0 internally
simulates the encryption scheme algorithms for all honest parties, and lets the adversary A interact
with these simulated parties and directly with the environment, as follows:

1. When an honest party sends a register command to F0, the functionality sends (id-req, sender)
to S0 and expects an identity. S0 generates a key pair (PK id, SK id)← KeyGen and uses PK id

as the identity string. It also internally simulates to A that sender broadcast the public key.

2. When an honest party sender sends a command (post, id,msg) to F0, the functionality sends
(handle-req, sender, id,msg) to S0 and expects a handle. S0 computes handle← EncPK id

(msg)
and uses it as the handle. It also internally simulates to A that sender broadcast handle.

3. When an honest party sender sends a command (repost, handle) to F0, and handle is internally
recorded, the functionality sends (handle-req, sender, repost, handle) to S0 and expects a
handle. S0 computes handle′ ← Rerand(handle) and uses it as the handle. It also internally
simulates to A that sender broadcast handle′.

4. When the adversary broadcasts a ciphertext ζ, S0 does the following:

• For each honest party’s private key SK id, S0 checks if DecSK id
(ζ) = msg 6= ⊥. If so,

then S0 sends (post, id,msg) to the functionality on behalf of A. It sends ζ as the
corresponding handle.

• If none of the above decryptions succeed, then S0 picks a random message; say, msgA
j

the jth time this happens. It sends (post, id⊥,msgA
j ) to the functionality and sends

handleA
j = ζ as the corresponding handle.

We denote the output of an environment Z when interacting with S0 and honest parties who
interact with F0 by idealF0

S0,Z .

Claim 3 For any given PPT adversary, let F0 and S0 be as described above. Then for all PPT
environments Z, realΠ

A,Z ≈ idealF0
S0,Z .
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Proof: This follows from the correctness properties of encryption scheme Π. Note that S0 exactly
emulates the real world actions of the honest parties and A, the only exception being the negligible-
probability event that there is a collision among the msgA

j ’s. We also observe that by the tight
decryption property of the scheme, at most one of the decryptions in step 4 succeeds. This ensures
that the message sent to the functionality has a unique recipient. �

S1 and F1 (Rerandomizability): F1 is identical to F0 except that it does not tell the adversary
whether a handle-req was the result of a post or repost command. The corresponding simulator
S1 differs from S0 only in its servicing of handle reqeusts. The exact differences are as follows:

1. When an honest party sender sends a command (repost, handle) to F1, and (handle, sender′, id,msg)
is internally recorded, the functionality now sends (handle-req, sender, id,msg) to S1 and
expects a handle (note that this is precisely what is sent when sender sends a (post, id,msg)
command).

2. When S1 receives a (handle-req, sender, id,msg) request corresponding to a post/repost
request from an honest party, it first checks whether id = id⊥ and msg = msgA

j for some j. If
so, it generates the handle via handle′ ← Rerand(handleA

j ). Otherwise, it generates the handle
via handle′ ← EncPK id

(msg) (as S0 does).

Claim 4 For any given PPT adversary A, let S0, F0, S1 and F1 be as described above. Then for
all PPT environments Z, idealF0

S0,Z = idealF1
S1,Z .

Proof: This follows from the perfect rerandomizability of the replayable encryption scheme.
The only manner in which the two executions differ is in whether a ciphertext is generated
via rerandomization (as S0 does on receiving a (handle-req, sender, repost, handle) command)
or as a fresh encryption of the same message under the same key (as S1 does on receiving a
(handle-req, sender, id,msg) command). We note that S1 only behaves differently when id 6= id⊥,
which is the identity used for adversarial ciphertexts that do not decrypt under any honest party’s
private key. Thus the handle being rerandomized was either honestly generated by the simulator,
or it successfully decrypted under an honest party’s private key. By the tight decryption property
of the scheme, such a ciphertext is in the support of honestly generated encryptions and the perfect
rerandomization property holds. Thus S1 generates ciphertexts according to the same distribution
as S0, and we have idealF0

S0,Z = idealF1
S1,Z . �

S2 and F2 (RCCA security): F2 is identical to F1 except that it does not tell the adversary the
contents of the posted messages when the receiver is not corrupted. S2 differs from S1 accordingly.
The exact differences are as follows:

1. Whenever F1 would send a send (handle-req, sender, id,msg) to the simulator (i.e, when a
party posts or reposts a message), F2 first checks if id is registered to a corrupt party. If so, it
continues as F1; otherwise, it sends (handle-req, sender, id) instead (i.e, it does not include
msg).

2. When S2 receives the ith request of the form (handle-req, sender, id) from F2, it picks a
random message msgH

i and uses handleH
i ← EncPK id

(msgH
i ) as the handle. It internally keeps

track of (handleH
i ,msgH

i , SK id) for later use.
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3. When the adversary broadcasts a ciphertext ζ, S2 does the following: For each (handleH
i ,msgH

i , SK id)
recorded above, S2 checks if DecSK id

(ζ) = msgH
i . If so, S2 sends (repost, handleH

i ) to F2 and
uses ζ as the handle. If none of these decryptions succeed, then S2 proceeds just as S1.

Claim 5 For any given PPT adversary A, let S1, F1, S2 and F2 be as described above. Then for
all PPT environments Z, idealF1

S1,Z ≈ idealF2
S2,Z .

Proof: This follows from the RCCA security of the scheme. Intuitively, the only way the two
executions differ is in whether the simulator provides encryptions of the actual message (as S1 does)
or of a random message (as S2 does).

To apply the RCCA security guarantee, we must reduce to to the case of a single encryption,
using a series of hybrid experiments.

We define a sequence of hybrid simulators Ŝk,i
1 which interact with F1 (and hence receive the

message in handle requests from the functionality) to be exactly like S1, but with the following
differences:

• When Ŝk,i
1 receives a request (handle-req, sender, id,msg), it does the following: First, it

chooses a new random message msgH
i . If id is among the first k′ identities registered to an

honest party, and this request is among the first i′ handle requests for this identity for some
(k′, i′) ≤ (k, i), then Ŝk,i

1 generates the handle by encrypting msgH
i (as S2 would do); otherwise,

it encrypts the given msg (as S1 would do). It internally records (handle,msgH
i ,msg, SK id);

note that it internally records both msg and msgH
i , as opposed to S2, which stores only the

plaintext used to generate handle.

• When the adversary broadcasts a ciphertext ζ, Ŝk,i
1 checks if DecSK(ζ) ∈ {msg,msg′} for each

(handle,msg,msg′, SK) recorded above. If so, it sends (repost, handle) to the functionality,
using ζ as the handle for this repost.

Let M be a polynomial bound on the number of identies registered to honest parties, and let N
be a polynomial bound on the number of messages sent by honest parties to honest identities. The
only difference between ŜM,N

1 and S2 is that when the adversary outputs a ciphertext that decrypts
to an actual msg that was previously sent between honest parties, ŜM,N

1 will repost the correspond-
ing handle, while S2 will post that message (as it was never told the actual msg). However, both
commands put the functionality in an identical state, so ŜM,N

1 and S2 behave identically.
We also have that Ŝk,N

1 behaves identically to Ŝk+1,0
1 . However, Ŝ0,0

1 and S1 differ slightly, in
that if the adversary outputs a ciphertext ζ which decrypts to some msgH

i under the appropriate
private key, then Ŝ0,0

1 replaces msgH
i by some other msg. However this can happen only with

negligible probability as the adversary’s view is independent of msgH
i in the interaction up to that

point. So we do have idealF1
S1,Z ≈ idealF1

Ŝ0,0
1 ,Z

.

Finally, it suffices to show that idealF1

Ŝk,i
1 ,Z

≈ idealF1

Ŝk,i+1
1 ,Z

. This follows directly from the

RCCA security of the scheme. The only difference between Ŝk,i
1 and Ŝk,i+1

1 is whether the actual
message or a random message is encrypted. To implement the simulator in terms of the RCCA
security experiment, it suffices to be told whenever subsequent ciphertexts decrypt to either of
these two plaintexts. Thus, Ŝk,i

1 and Ŝk,i+1
1 can be seen as carrying out the RCCA experiment with

b = 0 and b = 1 respectively. �
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Concluding the proof. Combining the above claims we get that for all adversaries A, there
exists a simulator S2 such that realΠ

A,Z ≈ idealF2
S2,Z for all environments Z. Note that F2 is in

fact identical to Frmp. So letting S = S2 completes the proof.

9 Extensions

Once our construction is made available as a UC-secure realization of Frmp, it is easier to extend in
a modular fashion. We describe a few extensions which are easily achieved, yet can be very useful.

Replay-test. In some applications, it is convenient for the recipient of a ciphertext to be able
to check whether it is a rerandomization of another ciphertext, or an independent encryption of
the same plaintext. We call such a feature a replay-test feature. A replay-test precludes having
perfect or even statistical rerandomization, and so we must settle for a computational definition of
rerandomization.

We point out that redefining RCCA security and rerandomizability for schemes which include
a replay-test feature is a non-trivial extension of our current definitions. In particular, note that in
a chosen ciphertext attack, the adversary should be allowed to access a replay-test oracle as well
as a decryption oracle, while responses from the decryption oracle should be guarded based on the
replay-test instead of a check of the plaintext.

However, instead of modifying our security definitions based on standalone experiments, we can
directly formulate a new UC functionality. The functionality is identical to Frmp, but it provides
an additional test command: a party can give two handles, and if it is the designated receiver of
both the handles, then the functionality tells it whether the two handles were derived as reposts of
the same original post. To do this, the functionality maintains some extra book-keeping internally.
This functionality can be easily achieved starting from Frmp: each message is posted with a random
nonce appended. To implement test, the receiver retrieves the messages of the two handles and
compares their nonces.

Authentication. As should be intuitive, authentication can be achieved by signing the messages
using a public-key signature scheme, before posting them. In terms of the functionality, a separate
register feature is provided which allows senders to register themselves (this corresponds to publish-
ing the signature verification key). Then the functionality’s get command is augmented to provide
not only the message in the handle, but also who originally posted the handle. The identifiers for
receiving messages and sending messages are separate, but they can be tied together (by signing
the encryption scheme’s public key and publishing it), so that only the signature verification keys
need to be considered as identifiers in the system.

Variable-length plaintexts. In our presentation of our encryption scheme, there is a hard limit
on the message length, because the message must be encoded as an element in a group of fixed size.
However, Frmp can easily be extended to allow messages of variable lengths: for this the longer
message is split into smaller pieces; a serial number and a common random nonce are appended
to each piece; the first piece also carries the total number of pieces. Then each piece is posted
using the fixed-length Frmp functionality. The decryption procedure performs the obvious simple
integrity checks on a set of ciphertexts and discards them if they are not all consistent and complete.
Note that the resulting modification to the Frmp functionality tells the adversary the length of the
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message (i.e., number of pieces) while posting or reposting a handle. It is straight-forward to
construct a simulator (on receiving a handle and a length, the simulator creates the appropriate
number of handles and reports to the adversary; when the adversary reposts handles, the simulator
will not make a repost to the functionality unless all handles it generated for one variable-length
handle are reposted together). We note that these extensions can be applied one after the other.

9.1 Anonymity

Bellare et al. [3] introduced the notion of anonymity (or key-privacy) for encryption schemes.
In a system with multiple users (including in particular possible applications of rerandomizable
encryption in mix-nets), it is unlikely that rerandomizability by itself would be useful. For instance,
while rerandomizability allows unlinkability of multiple encryptions in terms of their contents,
without anonymity they could all be linked as going to the same receiver. Adding anonymity
brings out the power of rerandomizability and yields a potent cryptographic primitive. We note
that our scheme does not achieve this definition of anonymity, and leave it as an interesting open
problem.

RCCA receiver-anonymity. Our receiver-anonymity definition is similar to that of Bellare et
al [3], but modified for the RCCA paradigm. An encryption scheme is said to be RCCA receiver-
anonymous (or simply receiver-anonymous) if the advantage of any PPT adversary A in the fol-
lowing experiment is negligible:

1. Setup: Pick (PK0, SK0)← KeyGen and (PK1, SK1)← KeyGen. A is given (PK0, PK1)

2. Phase I: A gets access to the decryption oracles DecSK0(·) and DecSK1(·).

3. Challenge: A outputs a plaintext msg. Pick b ← {0, 1} and let ζ∗ ← EncPKb
(msg). A is

given ζ∗.

4. Phase II: A gets access to a guarded decryption oracle GDecmsg
SK0,SK1

(·), which on input ζ,
first checks if msg ∈ {DecSK0(ζ),DecSK1(ζ)}. If so, it returns replay; otherwise it returns the
pair (DecSK0(ζ),DecSK1(ζ)).

5. Guess: A outputs a bit b′ ∈ {0, 1}. The advantage of A in this experiment is Pr[b′ = b]− 1
2 .

Modifications to Frmp. If a rerandomizable, RCCA-secure encryption scheme additionally meets
this definition of RCCA anonymity, the scheme can be used to implement an “anonymous” vari-
ant of Frmp. In this variant, the functionality does not broadcast the handle’s recipient in a
handle-announce announcement, nor in the handle-req messages it sends to the adversary
(unless the handle’s recipient is corrupted).

The only change in the simulator for this modified functionality is that it uses a privately-held
“dummy key” to generate simulated ciphertexts addressed to honest recipients.

10 Conclusions and Future Directions

This work leads to several interesting questions. First, can the efficiency of our scheme be improved?
Public-key encryption schemes like Cramer-Shoup are much less efficient than private-key schemes.
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To exploit the best of both worlds, one can use a hybrid encryption scheme which uses a public-
key encryption scheme to share a private key, and then encrypt the actual voluminous data with
the private-key encryption. It is interesting to ask if such a hybrid scheme can be devised in a
rerandomizable manner. Consider using a stream cipher (pseudorandom generator) as the private-
key encryption scheme: here the output of the PRG would be used like a one-time pad on the data,
and the PRG’s seed would be encrypted using the public-key encryption scheme. One approach
for making such a scheme rerandomizable would be to build some sort of a homomorphic PRG
and a corresponding homomorphic public-key encryption scheme which would allow anyone to
rerandomize an encryption of the input for the PRG in such a way that the output of the PRG is
rerandomized in a predictable way.

Second, can CCA-like security definitions be defined for encryption schemes with more so-
phisticated homomorphic features (viewing rerandomization as homomorphism under the identity
function)? Note that a homomorphism feature necessitates malleability, while CCA security de-
mands the opposite. A meaningful definition that combines the two should allow the specific form
of malleability needed for the desired homomorphism, but prohibit all other forms.

Finally, we based our schemes on the DDH assumption. However, as mentioned before, it is
likely that the extensions of Cramer and Shoup [10] can be adapted for our problem too. But
we point out that our requirements on the “Universal Hash Proofs” would be more demanding
than what they require. In particular, when using the double-strand approach, we seem to require
5-universality instead of 2-universality, corresponding to our use of five bases g1, . . . , g5 instead of
just two.
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