
Breaking 104 bit WEP in less than 60 seconds

Erik Tews, Ralf-Philipp Weinmann, and Andrei Pyshkin
<e tews,weinmann,pyshkin@cdc.informatik.tu-darmstadt.de>

Technische Darmstadt Universität Darmstadt,
Fachbereich Informatik

Hochschulstrasse 10
D-64289 Darmstadt

Abstract. We demonstrate an active attack on the WEP protocol that is able to recover a
104-bit WEP key using less than 40.000 frames with a success probability of 50%. In order to
succeed in 95% of all cases, 85.000 packets are needed. The IV of these packets can be randomly
chosen. This is an improvement in the number of required frames by more than an order of
magnitude over the best known key-recovery attacks for WEP. On a IEEE 802.11g network, the
number of frames required can be obtained by re-injection in less than a minute. The required
computational effort is approximately 220 RC4 key setups, which on current desktop and laptop
CPUs is neglegible.

1 Introduction

Wired Equivalent Privacy (WEP) is a protocol for encrypting wirelessly transmitted packets
on IEEE 802.11 networks. Although it is known to be insecure and has been superseded by
Wi-Fi Protected Access (WPA) [8], it still is in widespread use. In a WEP-protected network,
radio stations share a common key, the root key Rk. A successful recovery of this key gives
an attacker full access to the network. The packet data transmitted is protected by an ICV
(Integrity Check Value) computed to protect against manipulation1. For each packet, a 24-bit
IV (initialization vector) is chosen. A per packet key K = IV||Rk key is used to encrypt the
packet and the ICV using the RC4 stream cipher. This encrypted data then is transmitted
prepended with the IV. Figure 1 shows a 802.11 frame in detail.

Fig. 1. A 802.11 frame encrypted using WEP

802.11 Header

BSS ID Initialization vector (IV) Destination address

Logical Link Control

Data

Integrity Check Value

Encrypted using
RC4(IV || RK)

Plaintext

Subnetwork Access Protocol Header

The packet length as well as the link layer source and destination addresses are not masked
by the protocol. The protocol defines no measures against replay attacks.
1 the ICV being a CRC32 checksum, it does not provide integrity in the cryptographical sense. The ICV

rather is another layer of protection against accidental data corruption.

RC4 is a widely used stream cipher that was invented by Ron Rivest of RSA Security
in 1987. It was a trade secret until 1994 when the algorithm was published anonymously
on the Internet. RC4’s internal internal state consists of a 256-byte array S that defines a
permutation as well as two integers 0 ≤ i, j ≤ 255 acting as pointers into the array.

The RC4 key setup initializes the internal state using a key K of arbitrary length up
to 256 bytes. By exchanging elements of the state in each step, it incrementally transforms
the identity permutation into a ”random” permutation. The quality of randomness of the
permutation after the key setup will be further analyzed in Section 3.

The RC4 key stream generation algorithm updates the RC4 internal state and generates
one byte of key stream. The key stream is XORed to the plaintext to generate the ciphertext.

In 2001, Fluhrer, Mantin and Shamir presented a related-key ciphertext-only attack against
RC4 [3]. In order for this attack to work, the IVs need to fulfill a so-called ”resolved con-
dition”. This attack was suspected to be applicable to WEP, which was later demonstrated
by Stubblefield et. al [7]. The number of frames with different IVs that are needed to fully
determine the complete key in this attack scenario is estimated to be approximately 4 million.

More recently, Klein [5] showed an improved way of attacking RC4 that does not need the
”resolved condition” on the IVs and gets by with a significantly reduced number of frames.

Listing 1.1. RC4 key setup
1 for i ← 0 to 255 do
2 S[i] ← i
3 end
4 j ← 0
5 for i ← 0 to 255 do
6 j ← j+S[i]+K[i mod len(K)] mod 256
7 swap(S, i , j)
8 end
9 i ← 0

10 j ← 0

Listing 1.2. RC4 key stream generation
1 i ← i + 1 mod n
2 j ← j + S[i] mod n
3 swap(S, i , j)
4 return S[S[i] + S[j] mod n]

Table 1 shows a statistic of employed encryption methods in a sample of 490 networks,
found somewhere in the middle of Germany in March 2007. Another survey of more than
15.000 networks was performed in a larger German city in September 2006 [2]. Both data
sets demonstrate that WEP is still the most popular method for securing wireless networks.
Similar observations have been made by Bittau, Handley and Lackey [1]. Their article also
give an excellent history of WEP attacks and describes a real-time decryption attack based
on packet fragmentation that does not recover the key.

The structure of the paper is as follows: In Section 2 we introduce the notation that is
used throughout the rest of this paper, in Section 3 we present a summary of Klein’s attack
on RC4, in Section 4 we specialize Klein’s Attack to WEP, Section 5 describes how sufficient
amounts of key stream can be obtained for the attack, Section 6 describes extensions of the
attack such as key ranking techniques in detail and Section 7 gives experimental results.

Table 1. Methods used for securing wireless networks

Time No Encryption WEP WPA1 WPA2

March 2007 21.8% 46.3% 19.6% 7.3%
Middle of 2006 23.3% 59.4% 14.5% 3.3%

2 Notation

For arrays or vectors we use the [·] notation, as used in many programing languages like in
C or Java. All indices start at 0. For permutations P we use P−1 for the inverse permutation
meaning P[i] = j ⇔ P−1[j] = i. We will use x ≈n y as a short form for x ≈ y mod n.

We have a closer look at the RC4 key setup algorithm described in listing 1.1, especially
at the values for S, i and j. After line 4, S is the identity permutation and j has the value
0. We will use Sk and jk for the values of S and j after k loops starting in line 5 have been
completed. For example, if the key CA FE BA BE is used, S0 is the identity permutation and
j0 = 0. After the first key byte has been processed, j1 = 202 and S1[0] = 202, S1[202] = 0,
and S1[x] = S0[x] = x for 0 6= x 6= 202.

Rk is the WEP or root key and IV is the initialization vector for a packet. K = Rk||IV is
the session or per packet key. X is a key stream generated using K. We will refer to a key
stream X with the corresponding initialization vector IV as a session.

3 Klein’s attack on RC4

Suppose w key streams were generated by RC4 using packet keys with a fixed root key and
different initialization vectors. Denote by Ku = (Ku[0], . . . ,Ku[m]) = (IVu‖Rk) the uth packet
key and by Xu = (Xu[0], . . . ,Xu[m − 1]) the first m bytes of the uth key stream, where
1 ≤ u ≤ w. Assume that an attacker knows the pairs (IVu,Xu) – we shall refer to them as
samples – and tries to find Rk.

In [5], Klein showed that there is a map Fi : (Z/nZ)i → Z/nZ with 1 ≤ i ≤ m such that

Fi(K[0], . . . ,K[i− 1],X[i− 1]) =

{
K[i], with Prob ≈ 1.36

n

a 6= K[i], with Prob < 1
n for all a

If the first i bytes of a packet key are known, then the internal permutation Si−1 and the
index j at the (i− 1)th step of the RC4 key setup algorithm can be found. We have

Fi(K[0], . . . ,K[i− 1],X[i− 1]) = S−1
i−1[i− X[i− 1]]− (ji−1 + Si−1[i]) mod n

The attack is based on the following properties of permutations.

Theorem 1 For a random permutation P, and random number j ∈ {0, . . . , n− 1}, we have

Prob(P[j] + P[P[i] + P[j] mod n] = i mod n) =
2
n

Prob(P[j] + P[P[i] + P[j] mod n] = c mod n) =
n− 2

n(n− 1)

where i, c ∈ {0, . . . , n− 1} are fixed, and c 6= i.

Proof. see [5].

In the case of n = 256, the first probability is equal to 2−7 ≈ 0.00781, and the second one
is approximately equal to 0.00389.

From Theorem 1 it follows that for RC4 there is a correlation between i, Si+n[Si+n[i] +
Si+n[j] mod n], and Si+n[j] = Si+n−1[i].

Next, the equality Si[i] = Si+n−1[i] holds with high probability. The theoretical explana-
tion of this is the following. If we replace the line 6 of the RC4 key setup, and the line 2 of
the RC4 key stream generator by j ← RND(n), 2 then

Prob(Si[i] = Si+n−1[i]) =
(

1− 1
n

)n−2

≈ e−1

Moreover, we have Si[i] = Si−1[ji] = Si−1[ji−1 + Si−1[i] + K[i] mod n].
Combining this with Theorem 1, we get the probability that K[i] = S−1

i−1[i−Si+n−1[Si+n−1[i]+
Si+n−1[j] mod n] mod n]− (ji−1 + Si−1[i]) is approximately equal to(

1− 1
n

)n−2 2
n

+

(
1−

(
1− 1

n

)n−2
)

n− 2
n(n− 1)

≈ 1.36
n

4 Extension to multiple key bytes

With Klein’s attack, it is possible to iteratively compute all secret key bytes if enough samples
are available. This iterative approach has a significant disadvantage: In this case the key
streams and IVs need to be saved and processed for every key byte. Additionally correcting
falsely guessed key byte is expensive, because the computations for all key bytes following
K[i] needs to be repeated if K[i] was incorrect.

We extend the attack such that is it possible to compute key bytes independently of each
other and thus make efficient use of the attack possible by using key ranking techniques.
Klein’s attack is based on the the fact that

K[i] ≈n S−1
i [i− X[i− 1]]− (Si[i] + ji) (1)

K[i + 1] ≈n S−1
i+1[(i + 1)− X[(i + 1)− 1]]− (Si+1[i + 1] + ji+1) (2)

We may write ji+1 as ji + Si[i] + K[i]. By replacing ji+1 in equation 2, we get an approxi-
mation for K[i] + K[i + 1]:

K[i + 1] ≈n S−1
i+1[(i + 1)− X[(i + 1)− 1]]− (Si+1[i + 1] + ji + Si[i] + K[i]) (3)

K[i] + K[i + 1] ≈n S−1
i+1[(i + 1)− X[(i + 1)− 1]]− (Si+1[i + 1] + ji + Si[i]) (4)

By repeatedly replacing ji+k, we get an approximation for
∑i+k

l=i K[l]. Because we are
mostly interested in

∑3+i
l=3 K[l] =

∑i
l=0 Rk[l] in a WEP scenario, we will use the symbol σi for

this sum.
2 Some publications approximate

`
1− 1

n

´n−2
by 1

e
. We will use

`
1− 1

n

´n−2
for the rest of this paper.

σi ≈n S−1
3+i[(3 + i)− X[2 + i]]−

(
j3 +

i+3∑
l=3

Sl[l]

)
= Ãi (5)

The right side of equation 5 still depends on the key bytes K[3] to K[i− 1], because they
are needed to compute Sl and S−1

i . By replacing them with S3, we get another approximation
Ai for σi, which only depends on K[0] to K[2].

σi ≈n S−1
3 [(3 + i)− X[2 + i]]−

(
j3 +

i+3∑
l=3

S3[l]

)
= Ai (6)

Under idealized conditions, Klein derives the following probability for the event Ãi = σi:

Prob
(
σi = Ãi

)
≈
(

1− 1
n

)n−2

· 2
n

+

(
1−

(
1− 1

n

)n−2
)
· n− 2
n(n− 1)

(7)

The first part of sum represents the probability that S[i + 3] remains unchanged until
X[2+ i] is generated, the second part represents the probability that S[i+3] is changed during
key scheduling or key stream generation with Ai still taking the correct value. By replacing
Sl and Si+3 with their previous values, we have reduced that probability slightly.

Sk+3[k + 3] differs from S3[k + 3] only if one of the values of j3 to jk+2 has been k + 3. All
values of Sl[l] will be correct, if for all jz with 3 ≤ z ≤ 3 + i the condition jz /∈ {z, . . . , 3 + i}
holds. Assuming j changes randomly, this happens with probability

∏i
k=1

(
1− k

n

)
. Addition-

aly S3+i[ji+3] should not be changed between iteration 3 and 3 + i. This is true if j does not
take the value of ji+3 in a previous round, which happens with probability ≈

(
1− 1

n

)i and
i does not take the value of ji+3, which happens with probability ≈

(
1− i

n

)
. To summarize,

the probability that replacing all occurrences of S in Ãi with S3 did not change anything is:

qi =
(

1− 1
n

)i

·
(

1− i

n

)
·

i∏
k=1

(
1− k

n

)
(8)

This results in the following probability of Ai taking the correct value for σi.

Prob (σi = Ai) ≈ qi ·
(

1− 1
n

)n−2

· 2
n

+

(
1− qi ·

(
1− 1

n

)n−2
)
· n− 2
n(n− 1)

= pcorrecti (9)

Experimental results using more than 50,000,000,000 simulations with 104 bit WEP keys
show, that this approximations differs less than 0.2% from values determined from these
simulations.

5 Obtaining sufficient amounts of key stream

The Internet Protocol (IP) is the most widely deployed network protocol. For our attack to
work, we assume that version 4 (IPv4) of this protocol is used on the wireless networks we
attack.

If host A wants to send an IP datagram to host B, A needs the physical address of host
B or the gateway through which B can be reached. To resolve IP addresses of hosts to their
physical address, the Address Resolution Protocol (ARP) [6] is used. This works as follows:
Host A sends an ARP request to the link layer broadcast address. This request announces
that A is looking for the physical address of host B. Host B responds with an ARP reply
containing his own physical address to host A. Since the Address Resolution Protocol a link
layer protocol it is typically not restricted by any kind of packet filters or rate limiting rules.

ARP requests and ARP replies are of fixed size. Because the size of a packet is not masked
by WEP, they can usually be easily distinguished from other traffic. The first 16 bytes of
cleartext of an ARP packet are made up of a 8 byte long 802.11 Logical Link Control (LLC)
header followed by the first 8 bytes of the ARP packet itself. The LLC header is fixed for
every ARP packet (AA AA 03 00 00 00 08 06). The first 8 bytes of an ARP request are also
fixed. Their value is 00 01 08 00 06 04 00 01. For an ARP response, the last byte changes
to 02, the rest of the bytes are identical to an ARP request. An ARP request is always sent
to the broadcast address, while an ARP response is sent to a unicast address. Because the
physical addresses are not encrypted by WEP, it is easy to distinguish between an encrypted
ARP request and response.

Fig. 2. Cleartext of ARP request and response packets

XXAA AA 03 00 00 00 08 06 00 01 08 00 06 04 00 01

LLC/SNAP Header ARP Header

Opcode = Request

arp who-has 192.168.1.2 tell 192.168.1.3

arp reply 192.168.1.2 is-at 00:01:02:03:04:05

XXAA AA 03 00 00 00 08 06 00 01 08 00 06 04 00 02

LLC/SNAP Header ARP Header

Opcode = Response

By XORing a captured ARP packet with these fixed patterns, we can recover the first 16
bytes of the key stream. The corresponding IV is transmitted in clear with the packet.

To speed up key stream recovery, it is possible to re-inject a sniffed ARP request again
into the network. The destination answers the request with a new response packet that we
can add to our list of key streams. If the initiator and the destination of the original request
have been both wireless stations, every reinjected packet will generate 3 new packets, because
the transmission will be relayed by the access point. Because ARP replies expire quickly, it
usually takes only a few seconds or minutes until an attacker can capture an ARP request
and start reinjecting it. The first public implementation of a practical re-injection attack was
in the BSD-Airtools package [4].

It is even possible to speed up the time it takes to capture the first ARP request. A de-
authenticate message can be sent to a client in the network, telling him, he has lost contact
with the base station. In some configurations we saw clients rejoining the network automati-
cally at the same time flushing their ARP cache. The next IP packet sent by this client will
cause an ARP request to look up the Ethernet address of the destination.

6 Our attack on WEP

The basic attack is straightforward. We use the methods described in Section 5 to generate a
sufficient amount of key stream under different IVs. Initially we assume that a 104 bit WEP
key was used. For every σi from σ0 to σ12, and every recovered key stream, we calculate Ai as
described in equation 6 and call the result a vote for σi having the value Ai. We keep track
track of those votes in separate tables for each σi.

Having processed all available key streams, we assume that the correct value for every σi

is the one with the most votes received. The correct key is simply Rk[0] = σ0 for the first key
byte and Rk[i] = σi − σi−1 for all other key bytes. If the correct key was a 40 bit key instead
of a 104 bit key, the correct key is just calculated from σ0 to σ4.

6.1 Key ranking

If only a low number of samples is available, the correct value for σi is not always the most
voted one in the table but tends to be one of the most voted. Figure 3 contains an example in
which the correct value has the second most votes after 35.000 sessions. Instead of collecting
more samples, we use another method for finding the correct key. Checking if a key is the
correct key is simple, because we have collected a lot of key streams with their corresponding
IV. We can just generate a key stream using an IV and a guessed key, and compare it with
the collected one. If the method used for key stream recovery did not always guess the key
stream right, the correct value just needs to match a certain fraction of some key streams.

For every key byte K[i], we define a set Mi of possible values σi might have. At the
beginning, Mi is only initialized with the top voted value for σi from the table. Until the
correct key is found, we look for an entry σ̃i /∈ Mi in all tables having a minimum distance
to the top voted entry in table i. We then add σ̃i to Mi and test all keys which can now be
constructed from the sets M that have not been tested previously.

6.2 Handling strong keys

For equation 6 we assumed S3 to be a approximation of S3+i. This assumption is wrong for
a fraction of the keyspace. We call these keys strong keys. For these keys, the value for ji+3

is most times taken by j in a iteration before i + 3 and after 3. This results in S[ji+3] being
swapped with an unknown value, depending on the previous key bytes and the IV. In iteration
i + 3, this value instead of S3[ji+3] is now swapped with S[i].

More formally, let Rk be a key and Rk[i] a key byte of Rk. Rk[i] is a strong key byte, if
there is an integer l ∈ {1, . . . , i} where

i∑
k=l

(Rk[k] + 3 + k) ≡n 0 (10)

A key Rk is a strong key, if at least one of its key bytes is a strong key byte. On the contrary,
key bytes that are not strong key bytes are called normal key bytes and keys in which not a
single strong key byte occurs are called normal keys.

Assuming that S is still the identity permutation, the value 0 will be added to jl+3 from
iteration l + 3 to i + 3, making ji+3 taking his previous value jl+3. This results in the value
qi from equation 8 being close to 0 and Prob(σi = Ai) is very close to 1

n .
Figure 3 shows the distribution of votes for a strong and a non strong key byte after

35.000 and 300.000 samples. It is easy to see that the correct value for strong key byte has
not received the most votes of all key bytes any longer. An alternative way must be used to
determine the correct value for this key byte. Our approach can be divided into two steps:

1. Find out which key bytes are strong key bytes
If a key byte Rk[i] is a normal key byte, the correct value for σi should appear with
probability ≈ pcorrecti (see equation 9). We assume that all other values are equidistributed

with probability pwrongi
= (1−pcorrecti)

n−1 . If Rk[i] is a strong key byte we assume that all values
are equidistributed with probability pequal = 1

n .
Let Nib the fraction of votes for which σi = b holds. We calculate

errstrongi
=

n∑
j=0

(
Nij − pequal

)2 (11)

errnormali =
(

max
b

(Nib)− pcorrecti

)2

+
n∑

j=0,j 6=argmaxb(Nib
)

(
Nij − pwrongi

)2 (12)

If enough samples are available, this can be used as a test, if errstrongi
is smaller than

errnormali , it is highly likely that key byte Rk[i] is a strong key byte. If only a small
number of samples are available, errstrongi

− errnormali can be used as an indicator, how
likely it is, that key byte Rk[i] is a strong key byte.

2. Find the correct values for these key bytes
Assuming that Rk[i] is a strong key byte and all values for Rk[0] . . .Rk[i − 1] are known,
we can use equation 10 and get the following equation for Rk[i]:

Rk[i] ≡n −3− i−
i−1∑
j=l

(Rk[j] + 3 + j) (13)

Because there at most i possible values for l, we can try every possible value for l and
restrict Rk[i] to at most i possible values (12 if Rk[i] is the last key byte for a 104 bit
key). This method can be combined with the simple error correction method as described
in Section 6.1. Instead of taking possible values for σi from the top voted value in the
table for key byte i, we ignore the table and use the values calculated with equation 13
for Rk[i] and assume that σi−1 + Rk[i] was top voted in the table. Possible values for σi

for all assumed to be normal key bytes are still taken from the top voted values in their
tables.

Fig. 3. Distribution of votes for a strong and a normal key byte

 0.003

 0.004

 0.005

 0.006

fr
ac

tio
n

of
 a

ll
vo

te
s

Weak key byte after 35000

wrong value
correct value

 0.003

 0.004

 0.005

 0.006

fr
ac

tio
n

of
 a

ll
vo

te
s

Normal key byte after 35000

wrong value
correct value

 0.003

 0.004

 0.005

 0.006

fr
ac

tio
n

of
 a

ll
vo

te
s

Weak key byte after 300000

wrong value
correct value

 0.003

 0.004

 0.005

 0.006

fr
ac

tio
n

of
 a

ll
vo

te
s

Normal key byte after 300000

wrong value
correct value

7 Experimental Results

We wrote an implementation using the parallelized computation as described in Section 4
and the error correction methods described in Section 6.1 and 6.2. At the beginning an upper
bound on the number of keys to be tested is fixed (key limit). A limit of 1,000,000 keys seems
a reasonable choice for a modern PC or laptop. Three different scenarios of attacks cover the
most likely keys:

scenario 1 tests 70% of the limit and uses the simple error correction as described in Section
6.1. As long as the set of possible keys does not exceed 70% of the key limit, a new value
v /∈ Mi is added to a set Mi. The value v is chosen to have minimal distance to the top
voted entry.

scenario 2 tests 20% of the limit and uses the simple error correction method in combination
with strong byte detection. We use the difference errstrongi

− errnormali to determine which
key byte is the most likely to be strong. We then use equation 13 to get possible values
for this key byte. As long as the number of possible keys does not exceed 20% of the key
limit all other key bytes are determined as in class 1.

scenario 3 tests 10% of the limit and works like class 2, with the exception that 2 key bytes
are assumed to be strong.

To verify a possible key Rk for correctness, 10 sessions (IVi, Xi) are chosen at random. If
the key stream generated using IVi||Rk is identical to Xi in the first 6 bytes for all sessions, we
assume the key to be correct. If all three scenarios where unsuccessful, the attack is retried
using just 10% of the key limit, this time under the assumption that the root key is a 40 bit
key instead of a 104 bit one.

Figure 4 shows the result from a simulation, showing that a 50% success rate is possible
using just 40,000 packets.

Fig. 4. Success rate

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000 75000 80000 85000

pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

number of keystreams collected

keylimit 1,000,000
5% randomized keylimit 1,000,000

keylimit 5,000
linux iv keylimit 1,000,000

To test whether this attack works in a real world scenario we used the aircrack-ng tool
suite. aircrack-ng contains aireplay-ng, a tool which is able to capture and replay 802.11
frames; for example, frames containing ARP requests or other kinds of packets that cause
traffic on the target network. Additionally, airodump-ng can be used to capture and save the
generated traffic including all needed IEEE 802.11 headers.

On a mixed IEEE 802.11 b/g network, consisting of cards with chipsets from Atheros,
Broadcom, Intersil and Intel, we achieved a rate of 764 different captured packets per second,
using aireplay-ng and a network card with a PrismGT chipset for injecting and an Atheros
based card for capturing. This number might vary, depending on the chipsets and the quality
of the signal. This allowed us to recover 40,492 key streams in 53 seconds. Additional 2
seconds can be added for deauthenticating one or all clients forcing them to send out new ARP
requests. The final cryptographic computation requires 1 to 3 seconds of CPU-time, depending
on the CPU being used. For a 104 bit key we were able to consistently and successfully recover
keys from a packet capture in less than 3 seconds on a Thinkpad T41p (1.7 GHz Pentium-M
CPU) – this includes reading and parsing the dump file, recovering key streams and performing
the actual attack. On more recent multi-core CPUs we expect this figure can be brought down
to less than a second with a parallelized key space search. This results in 54 to 58 seconds to
crack a 104 bit WEP key, with probability 50%.

Main memory requirements for an efficient implementation are quite low. Our implemen-
tation needs less than 3 MB of main memory for data structures. Most of the memory is
consumed by a bit field for finding duplicate IVs, this is 2MB in size. CPU-time scales almost
linearly with the number of keys tested. By reducing the number of keys tested to 5,000,
this attack is suiteable for PDA or embedded system usage too, by only reducing its success
probability a little bit. The successrate with this reduced key limit is included in figure 4 with
label keylimit 5,000.

7.1 Robustness of the attack

The key stream recovery method we used might not be always correct. For example, any
kind of short packet (TCP, UDP, ICMP) might be identified as an ARP reply resulting in
an incorrect key stream. To find out how our attack works with some incorrect values in key
streams, we ran a simulation with 5% of all key streams replaced with random values. The

result is included in Figure 4, labeled ”5% randomized key limit 1,000,000”. Depending on the
number of packets collected, the success rate is slightly reduced by less than 10%. If enough
packets are available, there is no visible difference.

In all previous simulations, we assumed that IVs are generated independently, using any
kind of pseudo random function. Some drivers in fact do use an PRNG to generate the IV
value for each packet, however others use a counter with some modifications. For example the
802.11 stack in the Linux 2.6.20 kernel uses an counter, which additionally skips IVs which
where used for an earlier attack on RC4 by Fuller, Mantin and Shamir which became known
as FMS-weak-IVs. Using this modified IV generation scheme, the success rate of our attack
(label linux iv keylimit 1,000,000) was slightly reduced by less than 5%, depending on the
number of packets available. As before, there are no noticeable differences, if a high number
of packets are available.

8 Further work

8.1 Better strong byte handling

Our current method for handling strong key bytes is not optimal. We are currently investigat-
ing some better methods for strong byte detection and strong byte correction. Because strong
key bytes are relatively seldom in a randomly chosen key, this only had a minor priority for
us. One possibility would be to additionally implement the unparalleled version of the Klein
attack, which uses more CPU time when doing error correction, but is able to handle strong
key bytes without problems.

8.2 Passive attack

Our current attack is a fast, but active one, and could thereby be detected by an Intrusion
Detection System (IDS). A passive version would be interesting making the attack unde-
tectable by any kind of network monitoring system. Such a passive version would require a
more advanced key stream recovery method, because the first 16 bytes of an captured packet
are not a fixed value, but contain some regular patterns. The cryptanalysis in a passive at-
tack scenario is helped by the fact that Klein’s method is robust to a small percentage of
incorrectly guessed key streams, as we have shown in Section 7.1.

9 Conclusion

We have extended Klein’s attack on RC4 and have applied it to the WEP protocol. Our
extension consists in showing how to determine key bytes independently of each other and
allows us to dramatically decrease the time complexity of a brute force attack on the remaining
key bytes. We have carefully analyzed cases in which a straightforward extension of Klein’s
attack will fail and have shown how to deal with these situations.

The number of packets needed for our attack is so low that opportunistic attacks on this
security protocol will be most probable. Although it has been known to be insecure and has
been broken by a key-recovery attack for almost 6 years, WEP is still seeing widespread use
at the time of writing this paper. While arguably still providing a weak deterrent against
casual attackers in the past, the attack presented in this paper greatly improves the ease with
which the security measure can be broken and will likely define a watershed moment in the
arena of practical attacks on wireless networks.

References

1. Andrea Bittau, Mark Handley, and Joshua Lackey. The final nail in WEP’s coffin. In IEEE Symposium on
Security and Privacy, pages 386–400. IEEE Computer Society, 2006.

2. Stefan Dörhöfer. Empirische Untersuchungen zur WLAN-Sicherheit mittels Wardriving. Diplomarbeit,
RWTH Aachen, September 2006. (in German).

3. Scott R. Fluhrer, Itsik Mantin, and Adi Shamir. Weaknesses in the key scheduling algorithm of RC4. In
Serge Vaudenay and Amr M. Youssef, editors, Selected Areas in Cryptography 2001, volume 2259 of Lecture
Notes in Computer Science, pages 1–24. Springer, 2001.

4. David Hulton (h1kari). bsd-airtools. http://www.dachb0den.com/projects/bsd-airtools.html.
5. Andreas Klein. Attacks on the RC4 stream cipher. submitted to Designs, Codes and Cryptography, 2007.
6. D. C. Plummer. RFC 826: Ethernet Address Resolution Protocol: Or converting network protocol addresses

to 48.bit Ethernet address for transmission on Ethernet hardware, November 1982.
7. Adam Stubblefield, John Ioannidis, and Aviel D. Rubin. A key recovery attack on the 802.11b wired

equivalent privacy protocol (WEP). ACM Transactions on Information and System Security, 7(2):319–332,
May 2004.

8. Wi-Fi Alliance. Wi-Fi Protected Acccess (WPA). http://www.wi-fi.org.

