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1 Introduction

Certificateless public key cryptography (CL-PKC), as proposed by Al-Riyami and Paterson
[1], represents an interesting and potentially useful balance between identity-based cryptogra-
phy and public key cryptography based on certificates. It eliminates the key escrow associated
with identity-based cryptography without requiring the introduction of certificates, which pose
many operational difficulties in PKIs. The main idea of CL-PKC is that a user Alice com-
bines two key components to form her private key: one component (the partial private key,
PPK) is generated by a Key Generation Centre (KGC) using a master secret, and another
component (the secret value) is generated by the user herself. The user also publishes a public
key derived from her secret value; a party who wishes to encrypt to Alice only needs to have
Alice’s identity and public key along with the KGC’s public parameters. One novel aspect of
CL-PKC is the modelling of adversaries who are capable of replacing the public keys of users
with keys of their choice. This is necessary because there are no certificates to authenticate
users’ public keys in CL-PKC.

The topic of certificateless cryptography has undergone quite rapid development, with
many schemes being proposed for encryption (CLE) [1, 3, 5, 8, 20] and signatures (CLS) [1, 16,
18, 27, 29]. One notable feature has been the development of a number of alternative security
models for CLE that are substantially weaker than the original model of [1]. These different
models are summarised by Dent [10]. In the model of [1], the attacker is of one of two types.
The Type I attacker models an “outsider” adversary, who can replace the public keys of users,
obtain PPKs and private keys, and make decryption queries. The Type II attacker models
an “honest-but-curious” KGC who is given the master secret (and can therefore generate any
PPK), can obtain private keys and make decryption queries, but is trusted not to replace any
public keys.

In their original security model, Al-Riyami and Paterson chose to make the Type I adver-
sary as strong as possible, insisting in their model that a challenger should correctly respond
to decryption queries even if the public key of a user had been replaced. This is called a
Strong Type I attacker in [10]. Currently, the only published CLE schemes that have been
proven secure against strong Type I adversaries [1, 20] make use of the random oracle model
[4]. Notably, Libert and Quisquater [20] provide a generic construction which converts a CLE
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scheme secure against passive adversaries (who do not have access to a decryption oracle) into
a scheme secure against strong adversaries, using a Fujisaki-Okamoto-style conversion [13].
This conversion allows decryption queries to be handled using a form of knowledge extraction,
but does require the use of random oracles.

While there has been some debate about what is the “right” model of security for CLE,
it is arguable that many of the weaker models have been introduced because researchers
have found it rather challenging to prove security for concrete schemes with strong Type I
adversaries, even in the random oracle model. There has also been discussion [8] about whether
the construction of a CLE scheme that is secure against strong adversaries is possible at all
in the standard model (i.e. without using random oracles). The inability of the community
to achieve this makes the construction of such a scheme an interesting theoretical challenge.

From a more practical perspective, the use of strong security models, if they can be
efficiently realised, gives a “margin of error” for schemes fitting those models. The security
models considered in this paper are undoubtedly very strong, and have been criticised for
perhaps giving the attacker capabilities not available to an attacker in practice. We note
that almost all models give an attacker more capabilities than are available in practice (for
example, it is very rare for an attacker to have access to a perfect decryption oracle). A
security model should cover all possible attack types and yet still allow for the construction
of efficient protocols. This paper demonstrates that the strong model of security fulfils these
two requirements by demonstrating that efficient schemes can be produced that are secure in
the strong security model without requiring the use of the random oracle model.

1.1 Related Work

In 2003, Gentry [15] introduced a different but related concept named certificate based encryp-
tion (CBE). This approach is closer to the context of a traditional PKI model as it involves
a certification authority (CA) providing an efficient implicit certification service for clients’
public keys.

Subsequent works [28, 26] considered the relations between identity-based (IBE), certifi-
cate based (CBE) and certificateless encryption schemes (CLE) and established a result of
essential equivalence [28] between the three primitives. The generic transformations of [28, 26]
do not use random oracles but those results do not hold in the full security model developed
in [1] for CLE schemes (they were even shown not to hold in relaxed CLE models [14]).

In [11], Dodis and Katz described generic methods to construct IND-CCA secure multiple-
encryption schemes from public key encryption schemes which are individually IND-CCA.
They proved that their methods apply to the design of certificate-based encryption schemes
[15] and yield CBE schemes without random oracles. Because of the strong properties required
of decryption oracles in [1], these techniques do not directly apply in the present context.
In security proofs, the technical difficulty is that the simulator does not know the secret
value of entities whose public key was replaced. In other words, the constructions of [11] are
not designed to handle decryption queries for arbitrary public keys chosen “on-the-fly” by
adversaries as in the present context.

Other authors [21] have also recently attempted to address the problem of designing
certificateless cryptosystems (or related primitives) in the standard model. However their
results are not presented in the full model of [1].
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A recently initiated research direction finally considers authorities [2] that maliciously
generate system-wide parameters. As we shall see, the model of [2] makes it even more difficult
to devise schemes that are provably secure in the standard model.

1.2 Our Contributions

We make two contributions which resolve questions raised by the debate above concerning
CLE security models.

Firstly, we present a generic construction for strongly secure CLE. Our construction uses
any CLE scheme and any normal public key encryption (PKE) scheme as components, but
these only need to be secure against passive adversaries. In contrast to [20], our construction
does not intrinsically require the use of random oracles. Instead, we use an extension of the
techniques of Naor-Yung [22] and Sahai [23]; however, some additional ideas are needed to han-
dle decryption queries for adversarially-selected public keys. As it makes use of non-interactive
zero-knowledge (NIZK) proofs for general statements in NP, our generic construction cannot
be regarded as being practical. Nevertheless, using existing results from [20], we prove that
strongly secure CLE can be obtained in the standard model assuming only the existence of a
passively secure IBE scheme and a NIZK system. Thus our generic construction can be used
to address the question of what minimal assumption is required to obtain strongly secure
CLE. Since the security of Waters’ IBE scheme [25] relies on the hardness of the Decisional
Bilinear Diffie Hellman (DBDH) problem, and the construction of a NIZK proof system can
also be based on this assumption [7], we can obtain strongly secure CLE in the standard
model based on the DBDH assumption alone.

Secondly, we provide the first concrete and efficient construction for a CLE scheme that is
secure in the standard model against strong adversaries. In fact, our scheme is secure against
both Strong Type I attackers and Strong Type II adversaries. The latter represents a natural
strengthening of the original Type II adversary introduced in [1]. The construction is based
upon the Waters identity-based encryption (IBE) scheme, modifying this scheme using ideas
from [1]. The scheme enjoys relatively short public keys and ciphertexts; its security is based
on the hardness of a slight and natural generalisation of the DBDH problem.

2 Preliminaries

2.1 Notation

We use the following notation. Let ∅ denote the empty bitstring. If A is a deterministic
algorithm, then y ← A(x) denotes the assignment to y of the output of A when run on the
input x. If A is a randomised algorithm, then y

$← A(x) the assignment to y of the output
of A when run on the input x with a fresh random tape. We let y ← A(x; r) denote the
assignment to y of the output of A when run on the input x with the random tape r. If A is a
probabilistic polynomial-time (PPT) algorithm, then we may assume that r is of polynomial
length. If S is a finite set, then y

$← S denotes the random generation of an element x ∈ S
using the uniform distribution. A function ν : N→ [0, 1] is said to be negligible if for all c ∈ N
there exists a kc ∈ N such that ν(k) < k−c for all k > kc.
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2.2 Certificateless Encryption Schemes

The notion of a certificateless encryption scheme was introduced by Al-Riyami and Pa-
terson [1]. A certificateless public-key encryption scheme is defined by seven probabilistic,
polynomial-time algorithms:

– Setup: takes as input a security parameter 1k and returns the master private key msk
and the master public key mpk . This algorithm is run by a KGC to initially set up a
certificateless system.

– Extract: takes as input the master public key mpk , the master private key msk , and an
identifier ID ∈ {0, 1}∗. It outputs a partial private key dID. This algorithm is run by a
KGC once for each user, and the corresponding partial private key is distributed to that
user in a suitably secure manner.

– SetSec: given the master public key mpk and an entity’s identifier ID as input, and outputs
a secret value xID for that identity. This algorithm is run once by the user.

– SetPriv: takes as input the master public key mpk , an entity’s partial private key dID

and an entity’s secret value xID. It outputs the full private key skID for that user. This
algorithm is run once by the user.

– SetPub: given the master public key mpk and an entity’s secret value xID, this algorithm
outputs a public key pkID ∈ PK for that user. This algorithm is run once by the user
and the resulting public key is widely and freely distributed. The public-key space PK
is defined using mpk and is assumed to be publicly recognisable: given mpk , public keys
having a matching private key should be easily distinguishable from ill-formed public keys.

– Encrypt: this algorithm takes as input the master public key mpk , a user’s identity ID, a
user’s public key pkID ∈ PK and a message m ∈M. It outputs either a ciphertext C ∈ C
or the error symbol ⊥.

– Decrypt: this algorithm takes as input the master public key mpk , a user’s private key
skID and a ciphertext C ∈ C. It returns either a message m ∈M or the error symbol ⊥.

We insist that all certificateless encryption schemes satisfy the obvious correctness conditions
(that decryption “undoes” encryption).

Dent [10] has surveyed the numerous different security models proposed for certificateless
encryption. In this paper, we will only be concerned with the Strong Type I and Strong Type
II security definitions. Both of these security models consider attack games that extend the
standard IND-CCA attack game for public-key encryption. In both games, we are concerned
with the difference in probability

AdvCL-CCA-XA (k) = |Pr[ExptCL-CCA-XA (0, k) = 1]− Pr[ExptCL-CCA-XA (1, k) = 1]|

for X ∈ {I, II} whereA is any PPT adversaryA = (A1,A2) and the experiment ExptCL-CCA-XA (b, k)
is defined as:

ExptCL-CCA-XA (b, k):
(mpk ,msk) $← Setup(1k)
(m0,m1, ID

∗, state) $← A1(1k,mpk , aux )
C∗ $← Encrypt(mb, pkID∗ , ID

∗,mpk)
b′ $← A2(C∗, state)
Output b′
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We insist that A1 outputs messages (m0,m1) such that |m0| = |m1|. The Type I security
model (X = I) and the Type II security model (X = II) are distinguished by the value aux
and the oracles to which the attacker has access. The Type I model is meant to represent an
outside attacker and so aux = ∅. The Type II model captures the actions of an honest-but-
curious KGC and so aux = msk . We consider the following oracles:

– Request public key: the attacker supplies an identity ID and the oracle returns the public
key pkID for that identity. If pkID has not previously been defined, the oracle generates it.

– Replace public key: the attacker supplies an identity ID and a public key pkID ∈ PK,
and the oracle replaces any previously generated public key for ID with pkID. Such a query
is only allowed for correctly shaped new keys. Recall that the model of [1] requires the
well-formedness of pkID (and the existence of a secret value) to be publicly checkable.

– Extract partial private key: the attacker supplies an identity ID and the oracle returns
the partial private key dID for that identity.

– Extract private key: the attacker supplies an identity ID and the oracle responds with
the full private key skID for that identity.

– Strong decrypt (or decrypt): the attacker supplies an identity ID and a ciphertext
C, and the oracle responds by constructing a private key skID that corresponds to the
identity ID and its associated public key. The oracle returns the decryption of C under
this private key. Note that the oracle has to respond to decryption oracle queries even if
the public key for the identity has been replaced.

Definition 1. A CLE scheme is Strong Type I secure if, for every PPT adversary A that
respects the following oracle constraints

– A cannot extract the private key for the identity ID∗ at any time,
– A cannot extract the private key of any identity for which it has replaced the public key,
– A cannot extract the partial private key of ID∗ if A replaced the public key pkID∗ before

the challenge was issued,
– A2 cannot query the strong decrypt oracle on the challenge ciphertext C∗ for the identity

ID∗ unless the public key pkID∗ used to create the challenge ciphertext has been replaced,

we have that AdvCL-CCA-IA (k) is negligible. In this model, aux = ∅.

Definition 2. A CLE scheme is Strong Type II secure if, for every PPT adversary A that
respects the following oracle constraints

– A cannot extract the private key for the identity ID∗ at any time,
– A cannot extract the private key of any identity for which it has replaced the public key,
– A does not query partial private keys (since it can compute them itself given msk),
– A1 cannot output a challenge identity ID∗ for which it has replaced the public key,
– A2 cannot query the strong decrypt oracle on the challenge ciphertext C∗ for the identity

ID∗ unless the public key pkID∗ used to create the challenge ciphertext has been replaced.

we have that AdvCL-CCA-IIA (k) is negligible. In the Type II model, we have aux = msk, i.e. A1

takes the master private key as an additional input.

We note that the definition of Type II security only covers honest-but-curious KGCs, as
originally defined by Al-Riyami and Paterson [1]. An alternative definition, proposed by Au
et al. [2], attempts to model security against a KGC that can maliciously generate its master
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public and private keys. We note that our schemes are not secure in this model. Nevertheless,
we claim that the original security model still captures a significant level of security and
that the design of secure standard model schemes fitting the original definitions represents a
significant step forward in the theory of certificateless encryption. We do not find it unrealistic
to assume that KGCs are honest at key generation time and erase relevant crucial information
in case they are later broken into. Furthermore, it is difficult to see how a scheme can be proven
secure against malicious key generation centres and outside attackers in the standard model
and with strong decryption oracles using known proof techniques. The recent work of Huang
and Wong [17] is in the standard model but does not permit a Strong Type II adversary, so
the construction of such a scheme should still be considered an open problem.

A certificateless encryption scheme is said to be strongly secure if it is both Strong Type
I and Strong Type II secure. A certificateless encryption scheme is said to be passively secure
if it is Strong Type I and Strong Type II secure against adversaries who make no decryption
oracle queries.

3 Generic Construction

In this section we develop a generic construction of a strongly secure certificateless encryption
scheme from a passively secure certificateless encryption scheme, a passively secure public key
encryption scheme, and a non-interactive zero-knowledge proof system. We do this by adapting
the ideas of Naor-Yung [22] and Sahai [23] to the certificateless setting. The requirement that
the simulator be able to decrypt ciphertexts encrypted using arbitrary public keys makes the
construction slightly more complicated than in the public-key encryption case.

We first recall the notion of NP language and that of simulation-sound non-interactive
zero-knowledge proof system. Our requirements are similar to those of Sahai [23], but slightly
more demanding.

Definition 3. A language L ∈ {0, 1}∗ is an NP language (L ∈ NP) if there exists a (deter-
ministic) Turing machine R that is polynomial-time with respect to its first input and satisfies:

x ∈ L ⇐⇒ ∃w ∈ {0, 1}∗ such that R(x,w) = 1

We require a NIZK proof system that is statistically sound, computationally simulation-sound
and computationally zero knowledge. We require statistically soundness because (at one point
in the proof) we will be forced to simulate a decryption oracle that can provide functionality
that cannot be computed in polynomial-time, i.e. decrypting ciphertexts that are encrypted
under adversarially chosen public keys.

Definition 4. A statistically sound, computationally simulation-sound, and computationally
zero knowledge non-interactive zero-knowledge proof system (NIZK) for a language L ∈ NP
is a tuple Π = (f, P, V, S1, S2) where f is a polynomial and P , V , S1 and S2 are probabilistic,
polynomial-time Turing machines that satisfy the following conditions:

– Complete: For all x ∈ L and all w such that R(x,w) = 1, and for all strings σ ∈
{0, 1}f(k), we have that V (x, π, σ) = 1 for all π

$← P (x,w, σ).
– Simulation-complete: For all x ∈ {0, 1}∗ and all strings (σ, κ) $← S1(1k), we have that

V (x, π, σ) = 1 for all π
$← S2(x, κ). κ can be thought of as a secret key that allows S2 to

produce false proofs.
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– Statistically sound: Almost all common random strings σ should not allow any false
theorem to be proven. In other words,

Pr[∃x ∈ {0, 1}∗ \ L ∃π ∈ {0, 1}∗ such that V (x, π, σ) = 1|σ $← {0, 1}f(k)]

is negligible as a function of the security parameter k.
– Simulation-sound: For all non-uniform PPT adversaries A = (A1,A2) we have that

AdvNZIK-SSA (k) = Pr[ExptSS
A (k) = 1] is negligible as a function of k, where

ExptSS
A (k):

(σ, κ) $← S1(1k)
(x, state) $← A1(1k, σ)
π

$← S2(x, κ)
(x′, π′) $← A2(π, state)

Output 1 if and only if:
• (x′, π′) 6= (x, π)
• x′ /∈ L
• V (x′, π′, σ) = 1

– Zero knowledge: For all non-uniform PPT adversaries A = (A1,A2) we have that

AdvNIZK-ZKB (k) = |Pr[ExptA(k) = 1]− Pr[ExptSA(k) = 1]|

is negligible as a function of k, where

ExptA(k):
σ

$← {0, 1}f(k)

(x, w, state) $← A1(1k, σ)
If R(x,w) = 0, then π ← ∅
Otherwise π

$← P (x,w, σ)
Return A2(π, state)

ExptSA(k):
(σ, κ) $← S1(1k)
(x, w, state) $← A1(1k, σ)
If R(x,w) = 0, then π ← ∅
Otherwise π

$← S2(x, κ)
Return A2(π, state)

Sahai [23] uses a (single theorem) computationally sound and computationally zero-
knowledge NIZK proof system to construct a (multiple theorem) computationally sound,
computationally simulation-sound and computationally zero-knowledge NIZK proof system.
This construction assumes that one-way permutations exist. A brief examination of the proof
verifies that we can construct a statistically sound, computationally simulation-sound NIZK
proof system from a statistically sound NIZK proof system. Furthermore, it is not difficult to
verify that statistically sound NIZK proof systems can be constructed for any NP language
using the techniques of Feige, Lapidot and Shamir [12]. Our construction will also make use
of a passively-secure encryption scheme.

Definition 5. A triple of PPT algorithms (G, E ,D) is an encryption scheme if (1) G takes
as input a security parameter 1k and outputs a public key pk and a private key sk; (2) E takes
as input a message m ∈ M and a public key pk, and outputs a ciphertext C ∈ C; and (3) D
takes as input a ciphertext C ∈ C and a private key sk, and outputs either a message m ∈M
or the error symbol ⊥. This encryption scheme is said to be passively secure if the difference
in probabilities

AdvPKE-CPAA (k) = |Pr[ExptPKE-CPAA (0, k) = 1]− Pr[ExptPKE-CPAA (1, k) = 1]|

is negligible for every probabilistic, polynomial-time attacker A = (A1,A2). The experiment
ExptPKE-CPAA (b, k) is defined as
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ExptPKE-CPAA (b, k):
(pk, sk) $← G(1k)
(m0, m1, state) $← A1(1k, pk)
C∗ $← E(mb, pk)
Return A2(C∗, state)

where we insist that |m0| = |m1|.

We construct a strongly secure certificateless encryption scheme from a passively secure
one and two distinct instances of a public-key encryption scheme. We use the NIZK proof
system to prove that these three independently generated ciphertexts are all encryptions
of the same message. Let (Setup, Extract, SetSec, SetPriv, SetPub, Encrypt, Decrypt) be a
passively secure CLE scheme and (G, E ,D) be a passively secure public-key encryption scheme.
Furthermore, let (f, P, V, S1, S2) be a statistically sound and computationally simulation-
sound NIZK proof system for the language

L = {(C1, pk, ID,mpk1, C2,mpk2, C3,mpk3) | ∃ (m, r1, r2, r3)
such that C1 = Encrypt(m, pk, ID,mpk1; r1)
∧ C2 = E(m,mpk2; r2) ∧ C3 = E(m,mpk3; r3)}

Let (Setup′, Extract, SetSec, SetPriv, SetPub, Encrypt′, Decrypt′) be the certificateless en-
cryption scheme derived from the passively secure scheme and the algorithms given in Figure 1.
We assume that users’ public key pk and identity ID are included in their full private key sk.

Setup′(1k):

(mpk1,msk1)
$← Setup(1k)

(mpk2,msk2)
$← G(1k)

(mpk3,msk3)
$← G(1k)

σ
$← {0, 1}f(k)

mpk ′ ← (mpk1,mpk2,mpk3, σ)
msk ′ ← msk1

Output (mpk ′,msk ′)

Encrypt′(m, pk, ID,mpk ′):
r1, r2, r3

$← {0, 1}∞
C1

$← Encrypt(m, pk, ID,mpk1; r1)

C2
$← E(m,mpk2; r2)

C3
$← E(m,mpk3; r3)

x ← (C1, pk, ID,mpk1, C2,mpk2, C3,mpk3)

π
$← P (x, (m, r1, r2, r3), σ)

C ← (C1, C2, C3, π)
Output C

Decrypt′(C, sk,mpk):
x ← (C1, pk, ID,mpk1, C2,mpk2, C3,mpk3)
If V (x, π, σ) 6= 1 then output ⊥
Otherwise set m

$← Decrypt(C1, sk,mpk)
Output m

Fig. 1. A construction for a strongly secure certificateless encryption scheme

Theorem 1. The certificateless encryption scheme given in Figure 1 is Strong Type I and
Strong Type II secure.

The proof is given in Appendix A. It depends upon the fact that the master private key msk ′

does not contain the decryption keys for the public-key encryption schemes (msk2,msk3) or
the simulation key κ for the NIZK proof system.
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Remark 1. This construction can also be thought of as using a NIZK proof to bind the
encryption of a message under a passively secure certificateless encryption scheme to the
encryption of the same message under an IND-CCA2 secure encryption scheme. In the specific
case of the construction that we have proposed, the IND-CCA2 encryption scheme is the Sahai
[23] construction of an IND-CCA2 encryption scheme from two passively secure encryption
schemes and a (separate) NIZK proof system. The proofs of security can easily be adapted
to the case where an arbitrary IND-CCA2 secure encryption scheme is used.

Remark 2. We note that we may construct passively secure encryption schemes and suitably
secure NIZK proof systems for any NP language from trapdoor one-way permutations [23].
Furthermore, we may construct passively secure CLE schemes from passively secure public-
key encryption schemes and passively secure identity-based encryption schemes [20]. Hence,
we can conclude that strongly secure certificateless encryption schemes exist provided that
NIZK proof systems and passively secure identity-based encryption schemes exist. It is an open
problem to show that a passively secure identity-based encryption scheme can be constructed
from any recognised minimal assumption. Since NIZK proof systems can be built on the
DBDH assumption however [7], these results easily show the existence of strongly secure
certificateless encryption schemes under the DBDH assumption alone.

4 Concrete Construction

Our concrete construction for CLE uses bilinear map groups, i.e. groups (G,GT ) of prime
order p for which there is an efficiently computable mapping e : G × G → GT with the
following properties:

1. bilinearity: e(ga, hb) = e(g, h)ab for any (g, h) ∈ G×G and a, b ∈ Z;
2. non-degeneracy: e(g, h) 6= 1GT

whenever g, h 6= 1G.

In such groups, we require the intractability of the following decisional problem that was
suggested for the first time in [?] as a natural variant of the DBDH and DDH problems.

Definition 6. The Decision 3-Party Diffie-Hellman Problem (3-DDH) is to decide if T = gabc

given (ga, gb, gc, T ) ∈ G4. Formally, we define the advantage of a PPT algorithm A as

Adv3-DDH
A (k) =

|Pr[1 $← A(ga, gb, gc, T ) | T $← gabc ∧ a, b, c
$← Z∗p]

−Pr[1 $← A(ga, gb, gc, T ) | T $← G ∧ a, b, c
$← Z∗p]|

We will assume that Adv3-DDH
A (k) is a negligible function for all PPT algorithms A.

Our scheme is easily adapted to work in the more general setting of prime-order groups
(G1,G2,GT ) with a pairing e : G1 × G2 → GT (instantiable from ordinary elliptic curve
unlike the symmetric configuration that requires supersingular curves), in which case we need
to use the obvious variant of the above hardness assumption.

We also require a hash function H drawn from a family of collision resistant hash functions.

Definition 7. A hash function H
$← H(k) is collision resistant if for all PPT algorithms A

the advantage

AdvCR
A (k) = Pr[H(x) = H(y) ∧ x 6= y | (x, y) $← A(1k,H) ∧H

$← H(k)]

is negligible as a function of the security parameter.
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Our scheme is an extension of the chosen-ciphertext secure IBE obtained by applying
ideas from Boyen, Mei and Waters [6] to the 2-level hierarchical extension of the Waters IBE.

Setup(1k, n): Let (G,GT ) be bilinear map groups of order p > 2k and let g be a generator
for G. Set g1 = gγ , for a random γ

$← Z∗p, and pick a group element g2
$← G and

vectors (u′, u1, . . . , un), (v′, v1, . . . , vn) $← Gn+1. We note that these vectors define the
hash functions

Fu(ID) = u′
n∏

i=1

u
ij
j and Fv(w) = v′

n∏

i=1

v
wj

j

where ID = i1i2 . . . in and w = w1w2 . . . wn. We also select a collision-resistant hash
function H : {0, 1}∗ → {0, 1}n. The master public key is

mpk ← (g, g1, g2, u
′, u1, . . . , un, v′, v1, . . . , vn)

and the master secret3 is msk ← gγ
2 .

Extract(mpk, γ, ID): Pick r
$← Z∗p and return dID ← (d1, d2) = (gγ

2 · Fu(ID)r, gr).
SetSec(mpk): Return a randomly chosen secret value xID

$← Z∗p.
SetPub(xID,mpk): Return pkID ← (X, Y ) = (gxID , gxID

1 ).
SetPriv(xID, dID,mpk): Parse dID into (d1, d2), choose r′ $← Z∗p and set the private key to

skID ← (s1, s2) = (dxID
1 · Fu(ID)r′ , dxID

2 · gr′) = (gγxID
2 · Fu(ID)t, gt)

with t = rxID + r′.
Encrypt(mpk,m, ID, pkID): To encrypt m ∈ GT , parse pkID as (X, Y ), then check that it has

the right shape (i.e. that e(X, g1)/e(g, Y ) = 1GT
). If so, choose s

$← Z∗p and compute

C = (C0, C1, C2, C3) ←
(
m · e(Y, g2)s, gs, Fu(ID)s, Fv(w)s

)

where w ← H(C0, C1, C2, ID, pkID) ∈ {0, 1}n.
Decrypt(C, mpk, skID): Parse C as (C0, C1, C2, C3) and the private key skID as (s1, s2). Check

that
e
(
C1, Fu(ID) · Fv(w)

)
= e

(
g, C2 · C3

)

where w ← H(C0, C1, C2, ID, pkID) ∈ {0, 1}n, and reject C if those conditions do not hold.
Otherwise, return

m ← C0 · e(C2, s2)
e(C1, s1)

To check the completeness, we note that private keys (s1, s2) satisfy

e(g, s1) = e(Y, g2) · e(Fu(ID), s2) and so e(C1, s1) = e(Y, g2)s · e(C2, s2) .

To speed up the decryption algorithm using ideas from [19], we observe that the receiver can
randomly choose α

$← Z∗p and directly return

m = C0 · e(C2, s2 · gα) · e(C3, g
α)

e(C1, s1 · Fu(ID)α · Fv(w)α)
3 In order to ensure security against Type II attacks according to definition 2, the discrete logarithms of

elements g2, u′, u1, . . . , un, v′, v1, . . . , vn w.r.t. the base g are not part of the master secret and should be
deleted after key generation by the KGC.
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which is the actual plaintext if C was properly encrypted and a random element of GT

otherwise. The well-formedness of C is thus implicitly checked and a product of three pairings
suffices to decipher the message. This is sufficient to satisfy our security models; however, it
should be noted that this system has the disadvantage of outputting a random message when
presented with an invalid ciphertext. This may be a problem in some applications. In the same
way, the public key validation can be made implicit at encryption: given pkID = (X, Y ), the
sender picks β

$← Z∗p and computes C0 = m · e(Y, gs
2 · gsβ)/e(X, gsβ

1 ) which actually encrypts
m whenever pkID has the correct shape and results in an invalid ciphertext otherwise.

We have the following security results for this concrete scheme:

Theorem 2. Suppose A is a Strong Type I adversary that runs in time t, makes at most qd

decryption queries, qppk partial private key queries, and qpk private key queries. Then we have

AdvCL-CCA-I

A (k) < 8(qppk + qpk)qd(n + 1)2 · (8 ·Adv3-DDH
A′ (k) + δ) + AdvCR

A′′(k)

where ε and δ are sufficiently small, A′ runs in time O(t) + O(ε−2 ln δ−1) and A′′ runs in
time O(t).

The proof of this theorem is given in Appendix B; it uses ideas from [6, 25]. Namely, the
mapping Fv is chosen so as to have Fv(w) = g

Jv(w)
2 gKv(w), for certain functions Jv and Kv, in

the simulation of the attack environment. Hence, for any valid ciphertext C = (C0, C1, C2, C3),
we have C1 = gs and C3 = Fv(w)s, for some s ∈ Z∗p, and the simulator can extract

gs
2 = (C3/C

Kv(w)
1 )1/Jv(w)

whenever Jv(w) 6= 0 mod p. Hence, the simulator can compute e(Y, g2)s regardless of whether
the public key pk = (X, Y ) was replaced or not.

Theorem 3. Suppose A is a Strong Type II adversary that runs in time t and makes at most
qd decryption queries and qpk private key queries. Then we have

AdvCL-CCA-I

A (k) < 8qpkqd(n + 1)2 · (8 ·Adv3-DDH
A′ (k) + δ) + AdvCR

A′′(k)

where ε and δ are sufficiently small, A′ runs in time O(t) + O(ε−2 ln δ−1) and A′′ runs in
time O(t).

A sketch proof of this theorem is given in Appendix B.
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A Proof of Theorem 1

We will use standard game hopping techniques. The proof is simple, but it requires a large
number of game hops. In the language of Shoup [24], almost every transition will be a “tran-
sition based on indistinguishability”. We seek to bound the advantage of an arbitrary proba-
bilistic polynomial-time attacker attacker A

AdvCL-CCA-XA (k) = |Pr[ExptCL-CCA-XA (0, k) = 1]− Pr[ExptCL-CCA-XA (1, k) = 1]|

for X ∈ {I, II}. The proof strategy is the same for both Type I and Type II security. First,
we re-write ExptCL-CCA-XA (b, k) as ExptCL-CCA-XA (α, β, γ, k) where

ExptCL-CCA-XA (α, β, γ, k):
(mpk1,msk1)

$← Setup(1k)
(mpk2,msk2)

$← G(1k)
(mpk3,msk3)

$← G(1k)
σ

$← {0, 1}f(k)

mpk ′ ← (mpk1,mpk2,mpk3, σ)
msk ′ ← msk1

(m0,m1, ID
∗, state) $← A1(1k,mpk ′)

r∗1, r∗2, r∗3
$← {0, 1}∞

C∗
1

$← Encrypt(mα, pkID∗ , ID
∗,mpk1; r∗1)

C∗
2

$← E(mβ,mpk2; r∗2)
C∗

3
$← E(mγ ,mpk3; r∗3)

x∗ ← (C∗
1 , pkID∗ , ID

∗,mpk1, C
∗
2 ,mpk2, C

∗
3 ,mpk3)

w∗ ← (mb, r
∗
1, r

∗
2, r

∗
3)

π∗ $← P (x∗, w∗, σ)
C∗ ← (C∗

1 , C∗
2 , C∗

3 , π∗)
b′ $← A2(C∗, state)

Hence,
ExptCL-CCA-XA (b, k) = ExptCL-CCA-XA (b, b, b, k) .

The proof strategy is given in Figure 2. It is clear that if we can show that the difference
between the success probabilities in successive games is negligible, then we will have shown
that the difference in probabilities between the first and last game is negligible, and can
therefore conclude that the proposed certificateless encryption scheme is secure.

Theorem 4. Let

– Π = (Setup, Extract, SetSec, SetPriv, SetPub, Encrypt, Decrypt) be a passively secure
certificateless encryption scheme,
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Game Description Transition

Game 1 This game is identical to ExptCL-CCA-XA (0, k)

Game 2

We change the way in which the decryption oracle works. To decrypt a cipher-
text (C1, C2, C3, π), instead of searching for the unique message which encrypts
to the given ciphertext (a non-polynomial-time operation), we simply decrypt the
ciphertext C3 using msk3.

Statistically sound

Game 3
We simulate the NIZK proof in the challenge ciphertext rather than generating a
proper NIZK proof. This will allow us later to produce false proofs.

Zero knowledge

Game 4 We change the value of α from 0 to 1. Type X security

Game 5 We change the value of β from 0 to 1.
Security of the

encryption scheme

Game 6

It would be nice if, at this stage, we could change γ from 0 to 1. However, if we
were to try to do this, we would run into a problem as we would not be able to
simulate the decryption oracle. Hence, we change the way the decryption oracle
works. A ciphertext (C1, C2, C3, π) is now decrypted by decrypting the ciphertext
C2 using the msk2.

Simulation-sound

Game 7 We change the value of γ from 0 to 1.
Security of the

encryption scheme
Game 8 We produce the NIZK proof in the challenge ciphertext using the correct algorithm. Zero knowledge

Game 9

We change the way the decryption oracle works back to the correct method, i.e.
the oracle searches for the unique value m gives the ciphertext when encrypted.
This games is now identical to ExptCL-CCA-XA (1, k)

Statistically sound

Fig. 2. The proof strategy for proving Theorem 1

– Γ = (G, E ,D) be a passively secure public-key encryption scheme,
– Σ = (f, P, V, S1, S2) be a statistically sound, computationally simulation-sound and com-

putationally zero-knowledge NIZK proof system for the language

L = {(C1, pk, ID,mpk1, C2,mpk2, C3,mpk3) | ∃ (m, r1, r2, r3)
such that C1 = Encrypt(m, pk, ID,mpk1; r1)
∧ C2 = E(m,mpk2; r2) ∧ C3 = E(m,mpk3; r3)} ,

– and let Π ′ = (Setup′, Extract, SetSec, SetPriv, SetPub, Encrypt′, Decrypt′) be the cer-
tificateless encryption scheme defined by Π and the algorithm contained in Figure 1.

If A = (A1,A2) is any probabilistic, polynomial-time adversary in Strong Type I security
model, then

AdvCL-CCA-IA (k) ≤ 2AdvNIZK-Sim(k)+2AdvNIZK-ZKB (k)+2AdvPKE-CPAB (k)+AdvNIZK-SSB (k)+AdvCL-CPA-IB (k) .

If A = (A1,A2) is an probabilistic, polynomial-time adversary in the Strong Type II security
model, then adversary in Strong Type I security model, then

AdvCL-CCA-IIA (k) ≤ 2AdvNIZK-Sim(k)+2AdvNIZK-ZKB (k)+2AdvPKE-CPAB (k)+AdvNIZK-SSB (k)+AdvCL-CPA-IIB (k) .

Proof The proof uses standard game hopping techniques.

Game 1 and Game 2 – Simulating the decryption oracle (part 1)

Let Game 1 be identical to ExptCL-CCA-XA (0, k).
Let Game 2 be identical to Game 1 except that we change the way in which the decryp-

tion oracle handles decryption queries. In Game 2, the decryption oracle uses the following
algorithm to decrypt ciphertexts:
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Decrypt′(C, sk,mpk):
x ← (C1, pk, ID,mpk1, C2,mpk2, C3,mpk3)
If V (x, π, σ) 6= 1 then output ⊥
Otherwise set m

$← D(C3,msk3)
Output m

Furthermore, let

AdvNIZK-Sim(k) = Pr[∃x ∈ {0, 1}∗ \ L ∃π ∈ {0, 1}∗ such that V (x, π, σ) = 1|σ $← {0, 1}f(k)] ,

which is negligible as a function of k by the assumption that Σ is a statistically sound NIZK
proof system. We will need to use the following basic lemma:

Lemma 1. Let A, B and E be events in some probability space and suppose that Pr[A|¬E] =
Pr[B|¬E]. Then |Pr[A]− Pr[B]| ≤ Pr[E].

We may now state and prove the lemma which captures the difficulty associated with this
game hop.

Lemma 2.

|Pr[A outputs 1|A plays Game 1]− Pr[A outputs 1|A plays Game 2]| ≤ AdvNIZK-Sim(k)

Proof Game 1 and Game 2 proceed identically unless A submits a ciphertext (C1, C2, C3, π) to
the decryption oracle for which x ← (C1, pk, ID,mpk1, C2,mpk2, C3,mpk3) satisfies V (x, π, σ) =
1 but Decrypt(C1, skID,mpk) 6= D(C3,msk3). Let E be the event that this occurs, and let
A and B be the events that A outputs 1 in Game 1 and Game 2 respectively. Note if E
occurs, then x /∈ L; hence, Pr[E] ≤ AdvNIZK-Sim. The result can now be proven by applying
Lemma 1. ut

Game 3 – Simulating the challenge ciphertext (part 1)

We next replace the proof π∗ used in the challenge ciphertext with a simulated proof.
Let Game 3 be identical to Game 2 except that the proof π∗ in the challenge encryption is
produced using the simulated proof algorithms, rather than the real proof algorithm. In other
words, we define Game 3 to be:

Game 3(k):
(mpk1,msk1)

$← Setup(1k)
(mpk2,msk2)

$← G(1k)
(mpk3,msk3)

$← G(1k)
(σ, κ) $← S1(1k)
mpk ′ ← (mpk1,mpk2,mpk3, σ)
msk ′ ← msk1

(m0,m1, ID
∗, state) $← A1(1k,mpk ′)

r∗1, r∗2, r∗3
$← {0, 1}∞

C∗
1

$← Encrypt(mb, pkID∗ , ID
∗,mpk1; r∗1)

C∗
2

$← E(mb,mpk2; r∗2)
C∗

3
$← E(mb,mpk3; r∗3)

x∗ ← (C∗
1 , pkID∗ , ID

∗,mpk1, C
∗
2 ,mpk2, C

∗
3 ,mpk3)

π∗ $← S2(x∗, κ)
C∗ ← (C∗

1 , C∗
2 , C∗

3 , π∗)
b′ $← A2(C∗, state)

Lemma 3.

|Pr[A outputs 1|A plays Game 2]− Pr[A outputs 1|A plays Game 3]| ≤ AdvNIZK-ZKB (k)

where B is an algorithm that runs in approximately the same time as A.
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Proof Consider the following probabilistic, polynomial-time algorithm B = (B1,B2) against
the zero knowledge property of the NIZK proof system Σ:
B1(1k, σ):
(mpk1,msk1)

$← Setup(1k)
(mpk2,msk2)

$← G(1k)
(mpk3,msk3)

$← G(1k)
mpk ′ ← (mpk1,mpk2,mpk3, σ)
msk ′ ← msk1

(m0,m1, ID
∗, state) $← A1(1k,mpk ′)

r∗1, r∗2, r∗3
$← {0, 1}∞

C∗
1

$← Encrypt(m0, pkID∗ , ID
∗,mpk1; r∗1)

C∗
2

$← E(m0,mpk2; r∗2)
C∗

3
$← E(m0,mpk3; r∗3)

x∗ ← (C∗
1 , pkID∗ , ID

∗,mpk1, C
∗
2 ,mpk2, C

∗
3 ,mpk3)

w∗ ← (mb, r1, r2, r3)
Output (x∗, w∗, state)

B2(π∗, state):
C∗ ← (C∗

1 , C∗
2 , C∗

3 , π∗)
b′ $← A2(C∗, state)
If b′ = b then output 1
Otherwise output 0

It is easy to see that B can handle all of A’s oracle queries trivially (using its knowledge
of msk ′) except for the decryption oracle queries. This it handles by first checking whether
V (x, π, σ) = 1 and (if so) responding with D(C3,msk3). Therefore, it is easy to see that

Pr[A outputs 1|A plays Game 2] = Pr[ExptB(k) = 1]

and
Pr[A outputs 1|A plays Game 3] = Pr[ExptSB(k) = 1] .

Hence, the lemma holds by the definition of computational zero knowledge. ut

Game 4 – The passive Type X security of the certificateless scheme
Let Game 4 be identical to Game 3 except that, when we construct the challenge cipher-

text, the Encrypt algorithm is applied to m1 rather than m0. In other words,
Game 4(k):
(mpk1,msk1)

$← Setup(1k)
(mpk2,msk2)

$← G(1k)
(mpk3,msk3)

$← G(1k)
(σ, κ) $← S1(1k)
mpk ′ ← (mpk1,mpk2,mpk3, σ)
msk ′ ← msk1

(m0,m1, ID
∗, state) $← A1(1k,mpk ′)

r∗1, r∗2, r∗3
$← {0, 1}∞

C∗
1

$← Encrypt(m1, pkID∗ , ID
∗,mpk1; r∗1)

C∗
2

$← E(m0,mpk2; r∗2)
C∗

3
$← E(m0,mpk3; r∗3)

x∗ ← (C∗
1 , pkID∗ , ID

∗,mpk1, C
∗
2 ,mpk2, C

∗
3 ,mpk3)

π∗ $← S2(x∗, κ)
C∗ ← (C∗

1 , C∗
2 , C∗

3 , π∗)
b′ $← A2(C∗, state)

Let AdvCL-CPA-XB (k) = AdvCL-CCA-XB (k) for all probabilistic, polynomial-time adversaries B
which make no decryption oracle queries. This value will be negligible of the certificateless
scheme in question is passively secure.

Lemma 4.

|Pr[A outputs 1|A plays Game 3]− Pr[A outputs 1|A plays Game 4]| ≤ AdvCL-CPA-XB (k)

where B is an algorithm that runs in approximately the same time as A.
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Proof Consider the following probabilistic, polynomial-time adversary B = (B1,B2) against
the passive security of the certificateless encryption scheme Π:

B1(1k,mpk1):
(σ, κ) $← S1(1k)
(mpk2,msk2)

$← G(1k)
(mpk3,msk3)

$← G(1k)
mpk ′ ← (mpk1,mpk2,mpk3, σ)
(m0,m1, ID

∗, state) $← A1(1k,mpk ′)

B2(C∗
1 , state):

r∗2, r∗3
$← {0, 1}∞

C∗
2

$← E(m0,mpk2; r∗2)
C∗

3
$← E(m0,mpk3; r∗3)

x∗ ← (C∗
1 , pkID∗ , ID

∗,mpk1, C
∗
2 ,mpk2, C

∗
3 ,mpk3)

π∗ $← S2(x∗, κ)
C∗ ← (C∗

1 , C∗
2 , C∗

3 , π∗)
b′ $← A2(C∗, state)

Note that B may answer all of A’s oracle queries using its own oracles, except for A’s de-
cryption oracle queries. B may answer A’s decryption oracle queries directly using msk3.
Therefore, it is easy to see that

Pr[A outputs 1|A plays Game 3] = Pr[ExptCL-CPA-XB (0, k) = 1]

and

Pr[A outputs 1|A plays Game 4] = Pr[ExptCL-CPA-XB (1, k) = 1] .

Hence, the lemma holds by the definition of a passively secure certificateless encryption
scheme. ut

Game 5 – The passive security of the encryption scheme (part 1)

Let Game 5 be identical to Game 4 except that, when we construct the challenge cipher-
text, the first instance of the public key encryption algorithm E is applied to m1 rather than
m0. In other words,
Game 5(k):
(mpk1,msk1)

$← Setup(1k)
(mpk2,msk2)

$← G(1k)
(mpk3,msk3)

$← G(1k)
(σ, κ) $← S1(1k)
mpk ′ ← (mpk1,mpk2,mpk3, σ)
msk ′ ← msk1

(m0,m1, ID
∗, state) $← A1(1k,mpk ′)

r∗1, r∗2, r∗3
$← {0, 1}∞

C∗
1

$← Encrypt(m1, pkID∗ , ID
∗,mpk1; r∗1)

C∗
2

$← E(m1,mpk2; r∗2)
C∗

3
$← E(m0,mpk3; r∗3)

x∗ ← (C∗
1 , pkID∗ , ID

∗,mpk1, C
∗
2 ,mpk2, C

∗
3 ,mpk3)

π∗ $← S2(x∗, κ)
C∗ ← (C∗

1 , C∗
2 , C∗

3 , π∗)
b′ $← A2(C∗, state)

Lemma 5.

|Pr[A outputs 1|A plays Game 4]− Pr[A outputs 1|A plays Game 5]| ≤ AdvPKE-CPAB (k)

where B is an algorithm that runs in approximately the same time as A.

Proof Consider the following probabilistic, polynomial-time adversary B = (B1,B2) against
the passive security of the public-key encryption scheme Γ :
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B1(1k,mpk2):
(σ, κ) $← S1(1k)
(mpk1,msk1)

$← Setup(1k)
(mpk3,msk3)

$← G(1k)
mpk ′ ← (mpk1,mpk2,mpk3, σ)
(m0,m1, ID

∗, state) $← A1(1k,mpk ′)

B2(C∗
2 , state):

r∗1, r∗3
$← {0, 1}∞

C∗
1

$← Encrypt(m1, pkID∗ , ID
∗,mpk1; r∗1)

C∗
3

$← E(m0,mpk3; r∗3)
x∗ ← (C∗

1 , pkID∗ , ID
∗,mpk1, C

∗
2 ,mpk2, C

∗
3 ,mpk3)

π∗ $← S2(x∗, κ)
C∗ ← (C∗

1 , C∗
2 , C∗

3 , π∗)
b′ $← A2(C∗, state)

Note that B can answer all of A’s oracle queries using its knowledge of msk1 and msk3.
Therefore, it is easy to see that

Pr[A outputs 1|A plays Game 4] = Pr[ExptPKE-CPAB (0, k) = 1]

and
Pr[A outputs 1|A plays Game 5] = Pr[ExptPKE-CPAB (1, k) = 1] .

Hence, the lemma holds by the definition of a passively secure public-key encryption scheme.
ut

Game 6 – Simulating the decryption algorithm (part 2)

It would be nice if, at this stage, we could use the same argument as in Game 5 to move
to a game in which m1 was encrypted by the second instance of the public-key encryption
scheme. Unfortunately, we cannot do this at the moment. The reason for this is that, in the
adversarial algorithm B which we used to relate Game 4 and Game 5, we used our knowledge
of msk3 in order to simulate the decryption algorithm. Therefore, if we were to try and change
the second instance of public-key encryption scheme to encrypt m1, then we would not know
msk3 and therefore would not be able to simulate the decryption algorithm. In order to solve
this problem, we change the decryption algorithm so that it decrypts ciphertexts using msk2

rather than msk3.
Let Game 6 be identical to Game 5 except that the decryption algorithm used by the

decryption oracle is changed to

Decrypt′(C, sk,mpk):
x ← (C1, pk, ID,mpk1, C2,mpk2, C3,mpk3)
If V (x, π, σ) 6= 1 then output ⊥
Otherwise set m

$← D(C2,msk2)
Output m

Lemma 6.

|Pr[A outputs 1|A plays Game 5]− Pr[A outputs 1|A plays Game 6]| ≤ AdvNIZK-SSB (k)

where B is an algorithm that runs in approximately the same time as A.

Proof We apply Lemma 1 for this result. Let A and B be the events that A outputs 1
in Game 5 and Game 6 respectively. Let E be the event that A submits a ciphertext
(C1, C2, C3, π) to the decryption oracle such that D(C2,msk2) 6= D(C3,msk3) but x ←
(C1, pk, ID,mpk1, C2,mpk2, C3,mpk3) satisfies V (x, π, σ) = 1. Note that if E does not oc-
cur, then we must have that D(C2,msk2) = D(C3,msk3) and so Game 5 and and Game 6
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proceed identically. Furthermore, note that if E does occur then we have found a pair (x, π)
such that x /∈ L but V (x, π, σ) = 1. Now, by Lemma 1, we have that

|Pr[A outputs 1|A plays Game 5]− Pr[A outputs 1|A plays Game 6]| ≤ Pr[E] .

We now construct an adversary against the simulation-soundness of the NZIK proof system
whose advantage is related to Pr[E]. Consider the probabilistic, polynomial-time adversary
B = (B1,B2) where B1(1k, σ) acts as follows:

B1(1k, σ):
(mpk1,msk1)

$← Setup(1k)
(mpk2,msk2)

$← G(1k)
(mpk3,msk3)

$← G(1k)
mpk ′ ← (mpk1,mpk2,mpk3, σ)
msk ′ ← msk1

(m0,m1, ID
∗, state) $← A1(1k,mpk ′)

r∗1, r2, r∗3
$← {0, 1}∞

C∗
1

$← Encrypt(m1, pkID∗ , ID
∗,mpk1; r∗1)

C∗
2

$← E(m1,mpk2; r∗2)
C∗

3
$← E(m0,mpk3; r∗3)

x∗ ← (C∗
1 , pkID∗ , ID

∗,mpk1, C
∗
2 ,mpk2, C

∗
3 ,mpk3)

Output (x∗, state)

B2(π∗, state):
C∗ ← (C∗

1 , C∗
2 , C∗

3 , π∗)
b′ $← A2(C∗, state)
Output (∅, ∅)

For all oracle queries except decryption oracle queries, B responds to A correctly using its
knowledge of msk ′. IfA queries the decryption oracle on oracle with a ciphertext (C1, C2, C3, π)
then B computes x ← (C1, pk, ID,mpk1, C2,mpk2, C3,mpk3) and checks that V (x, π, σ) = 1.
If not, B returns ⊥ to A. Otherwise, B checks that D(C2,msk2) = D(C3,msk3). If not, B
outputs (x, π) as a false proof and halts. Otherwise, B returns D(C2,msk2) to A.

It is clear to see that if E occurs, then B will output a false proof and so break the
simulation-soundness of the NIZK proof system. In other words, Pr[E] ≤ AdvNIZK-SSB (k). This
completes the proof. ut

Game 7 – The passive security of the encryption scheme (part 2)
This game hop is similar to the hop between Game 4 and Game 5. Let Game 7 be identical

to Game 6 except that when we construct the challenge ciphertext, the second instance of
the public key encryption algorithm E is applied to m1 rather than m0. In other words,
Game 7(k):
(mpk1,msk1)

$← Setup(1k)
(mpk2,msk2)

$← G(1k)
(mpk3,msk3)

$← G(1k)
(σ, κ) $← S1(1k)
mpk ′ ← (mpk1,mpk2,mpk3, σ)
msk ′ ← msk1

(m0,m1, ID
∗, state) $← A1(1k,mpk ′)

r∗1, r∗2, r∗3
$← {0, 1}∞

C∗
1

$← Encrypt(m1, pkID∗ , ID
∗,mpk1; r∗1)

C∗
2

$← E(m1,mpk2; r∗2)
C∗

3
$← E(m1,mpk3; r∗3)

x∗ ← (C∗
1 , pkID∗ , ID

∗,mpk1, C
∗
2 ,mpk2, C

∗
3 ,mpk3)

π∗ $← S2(x∗, κ)
C∗ ← (C∗

1 , C∗
2 , C∗

3 , π∗)
b′ $← A2(C∗, state)

Lemma 7.

|Pr[A outputs 1|A plays Game 6]− Pr[A outputs 1|A plays Game 7]| ≤ AdvPKE-CPAB (k)
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where B is an algorithm that runs in approximately the same time as A.

This lemma is proven in exactly the same way as Lemma 5.

Game 8 – Simulating the challenge ciphertext (part 2)

We now start to restore the certain elements in the game. We begin by removing the
simulated proof. Let Game 8 be identical to Game 7 except that we use the real proof algorithm
to create the challenge ciphertext. In other words,

Game 8(k):
(mpk1,msk1)

$← Setup(1k)
(mpk2,msk2)

$← G(1k)
(mpk3,msk3)

$← G(1k)
σ

$← {0, 1}f(k)

mpk ′ ← (mpk1,mpk2,mpk3, σ)
msk ′ ← msk1

(m0,m1, ID
∗, state) $← A1(1k,mpk ′)

r∗1, r∗2, r∗3
$← {0, 1}∞

C∗
1

$← Encrypt(m1, pkID∗ , ID
∗,mpk1; r∗1)

C∗
2

$← E(m1,mpk2; r∗2)
C∗

3
$← E(m1,mpk3; r∗3)

x∗ ← (C∗
1 , pkID∗ , ID

∗,mpk1, C
∗
2 ,mpk2, C

∗
3 ,mpk3)

w∗ ← (mb, r
∗
1, r

∗
2, r

∗
3)

π∗ $← P (x∗, w∗, σ)
C∗ ← (C∗

1 , C∗
2 , C∗

3 , π∗)
b′ $← A2(C∗, state)

Lemma 8.

|Pr[A outputs 1|A plays Game 7]− Pr[A outputs 1|A plays Game 8]| ≤ AdvNIZK-ZKB (k)

where B is an algorithm that runs in approximately the same time as A.

This lemma is proven in exactly the same way as Lemma 3.

Game 9 – Simulating decryption (part 3)

Lastly, we restore the decryption algorithm to its original state. Let Game 9 be identical
to Game 8 except that the decryption algorithm now works properly:

Decrypt′(C, sk,mpk):
x ← (C1, pk, ID,mpk1, C2,mpk2, C3,mpk3)
If V (x, π, σ) 6= 1 then output ⊥
Find the unique message m such that C = Encrypt(m, pk ID, ID,mpk)
Output m

Lemma 9.

|Pr[A outputs 1|A plays Game 8]− Pr[A outputs 1|A plays Game 9]| ≤ AdvNIZK-Sim(k)

This lemma is proven in exactly the same way as Lemma 2. However, Game 9 is identical to
ExptCL-CCA-XA (1, k). Combining all of the results of the lemmas give us that

AdvCL-CCA-XA (k) = |Pr[ExptCL-CCA-XA (0, k) = 1]− Pr[ExptCL-CCA-XA (1, k) = 1]|
= |Pr[A outputs 1|A plays Game 1]− Pr[A outputs 1|A plays Game 9]|
≤ 2AdvNIZK-Sim(k) + 2AdvNIZK-ZKB (k) + 2AdvPKE-CPAB (k) + AdvNIZK-SSB (k) + AdvCL-CPA-XB (k) .

Hence, AdvCL-CCA-XA (k) is negligible as a function of the security parameter, and Π ′ is Strong
Type I and Strong Type II secure. ut
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Appendix B

Proof. (of Theorem 2). The proof proceeds by a sequence of games. All games involve a Type
I attacker AI who attempts to guess a hidden bit d for which she eventually outputs a guess
d′. For all i, we call Si the event that Ai is successful (i.e. that d′ = d) in Game i and we
denote by Advi = |Pr[Si]− 1/2| the advantage of AI .

We use the following game hopping technique suggested by Dent [9]. Suppose Game i is
such a game where AI wins with probability Si. Consider an event E that may occur during
AI ’s execution such that:

– E is detectable by the simulator;
– E is independent of Si;
– Game i and Game i + 1 are identical unless E occurs, in which case the game halts and

outputs random bit.

Then we have Advi+1 = |Pr[Si+1]− 1
2 | = Pr[¬E]|Pr[Si+1]− 1

2 | = Pr[¬E] ·Advi.

Game 1: In this game, AI is interacting with the actual attack environment. Namely, B
generates the master key, the public parameters and the initial user’s public keys and secret
values following the specification of the scheme. We also assume that the environment B can
answer decryption queries without knowing the matching secret values for changed public
keys. In this real attack, let PPK = {ID1, . . . , IDqppk

} denote the inputs of partial private key
queries and PK = {ID′1, . . . , ID′qpk

} be the set of identities queried for private key extraction.
Let also D = {w1, . . . , wqd

} be the set of strings wj = H(C0, C1, C2, IDj , pkj) involved in
decryption queries. Finally, let (ID?, pk ID?) denote the target identity/public key pair involved
in the challenge phase and let C? = (C?

0 , C?
1 , C?

2 , C?
3 ) be the returned challenge ciphertext and

w? = H(C?
0 , C?

1 , C?
2 , ID?, pk?).

Game 2: Here, we change the generation of the master public key. The attack environment
picks a, b

$← Z∗p to set g1 = ga, g2 = gb. It also picks κu, κv ∈ {0, . . . , n}. Let τu and τv

be integers such that τu(n + 1), τv(n + 1) < p. We will define these values explicitly later
on. The environment randomly selects x′u

$← Zτu , x′v
$← Zτv and vectors (xu,1, . . . , xu,n),

(xv,1, . . . , xv,n) of elements with xu,j ∈ Zτu , xv,j ∈ Zτv for all j. It also draws y′u, y′v
$← Zp and

vectors (yu,1, . . . , yu,n), (yv,1, . . . , yv,n) with yu,j , yv,j
$← Zp for all j. The remaining master

public key elements are chosen to be

u′ = g
x′u−κuτu

2 gy′u uj = g
xu,j

2 gyu,j for 1 ≤ j ≤ n (1)

v′ = g
x′v−κvτv

2 gy′v vj = g
xv,j

2 gyv,j for 1 ≤ j ≤ n. (2)

This change obviously does not affect the distribution of the master public key. Hence,
Pr[S1] = Pr[S2] and Adv1 = Adv2.

Game 3: This game is identical to Game 2 except that the environment halts if the attacker
submits a decryption query (C, ID, pk) for a well-formed ciphertext C = (C0, C1, C2, C3)
where w is either equal to the same value as a previously submitted ciphertext or w is equal
to w? in the post challenge phase. For such a legal decryption query, we have C 6= C? or
(ID, pk) 6= (ID?, pk?). In either case, this implies a collision for H. Hence, we can construct
an algorithm A′′ such |Pr[S1]− Pr[S2]| ≤ AdvCR

A′′(k).
It may initially be thought that it is not possible to build the algorithm A′′ in such a way

that it runs in polynomial-time, as the algorithm has to simulate the responses of the strong
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decryption oracle, which is a non-polynomial-time function. However, we note that the strong
decryption oracle is only required to decrypt ciphertexts under the action of a well-formed
public key (i.e. a public key pk ID = (X, Y ) where e(g1, X) = e(g, Y )), therefore we can assume
that X = gxID and Y = gxID

1 for some (possibly unknown) value xID. For such a public key
we may form a private key s1 = gγxID

2 Fu(ID)t and s2 = gt by choosing a value of g2 = gz

and computing s1 = XγzFu(ID)t. Hence, the private key can always be computed and the
decryption oracle will work correctly.

Game 4: We modify the environment so that it flips a coin cmode
$← {0, 1} at the outset of

the game. If cmode = 0, it bets that AI will choose to be challenged on an identity of replaced
public key (and never extracts the matching partial private key). If cmode = 1, it expects AI

to rather extract the partial private key of the target entity at some point.
At the challenge phase, if cmode = 0 and AI has not replaced the challenge public key,

then B aborts and simulates A’s output as d′ $← {0, 1}. Similarly, B aborts if cmode = 1 and
AI has replaced the challenge public key. Since cmode is completely hidden from AI , this
new abortion rule applies with probability 1/2. The Dent game hopping argument [9] yields
Adv4 = 1

2 ·Adv3.

Games 5 and 6: We alter the generation of the challenge ciphertext. To this end, we consider
values from (1)-(2) which allow defining functions

Ju(ID) = x′u +
n∑

j=1

ijxu,j − κuτu, Ku(ID) = y′u +
n∑

j=1

ijyu,j ,

Jv(w) = x′v +
n∑

j=1

wjxv,j − κvτv, Kv(w) = y′v +
n∑

j=1

wjyv,j ,

taking as input n-bit strings ID = i1 . . . in and w = w1 . . . wn. For any strings ID, w ∈ {0, 1}n,
Fu(ID) = u′ ·∏n

j=1 u
ij
j = g

Ju(ID)
2 · gKu(ID) and Fv(w) = v′ ·∏n

j=1 v
wj

j = g
Jv(w)
2 · gKv(w). Game

5 is the same as Game 4 except that, after AI outputs her guess d′ for d, the environment B
checks whether Ju(ID?) = Jv(w?) = 0 mod p. If Ju(ID?) 6= 0 mod p or Jv(w?) 6= 0 mod p, B
aborts and simulates AI ’s output using a random d′ $← {0, 1}. Since values (x′u, xu,1, . . . , xu,n)
and (x′v, xv,1, . . . , xv,n) are information theoretically hidden from AI , it can only produce ID?

so that Ju(ID?) = 0 mod p by chance. Therefore

Pr[Ju(ID?) = 0 mod p] = Pr[Ju(ID?) = 0 mod p|Ju(ID?) = 0 mod τu] · Pr[Ju(ID?) = 0 mod τu]

=
1

τu(n + 1)

and we similarly have Pr[Jv(w?) = 0 mod p] = 1
τv(n+1) since the event Jv(w?) = 0 mod p

is easily seen to occur by pure chance. Hence, the game hopping argument of [9] yields
Adv5 = Adv4/τuτv(n + 1)2.

In Game 6, we actually modify the way the challenge ciphertext is constructed. The
environment B introduces a new variable c

$← Z∗p and sets C?
1 = gc. Let pkID? = (X?, Y ?) be

entity ID?’s public key at the challenge phase. The environment flips a coin d? $← {0, 1} and
computes

C?
0 = md? · e(Y ?, g2)c C?

2 = C?
1

Ku(ID?) = (gc)Ku(ID?) C?
3 = C?

1
Kv(w?) = (gc)Kv(w?)
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where w? = H(C?
0 , C?

1 , C?
2 , ID?, pkID?). The returned ciphertext (C?

0 , C?
1 , C?

2 , C?
3 ) has the cor-

rect distribution since Ju(ID?) = Jv(w?) = 0 mod p. We clearly have Adv6 = Adv5.

In Games 7 and 8, we modify the treatment of private key, partial private key and de-
cryption queries.

Game 7: We change Game 6 so that, after AI outputs her guess d′, the environment B checks
if one of the following events occurs:

• cmode = 0 and Ju(IDi) = 0 mod τu for some IDi ∈ PPK with i ∈ {1, . . . , qppk}.
• Ju(IDj) = 0 mod τu for some IDj ∈ PK where j ∈ {1, . . . , qpk}.
• Jv(wl) = 0 mod τv for some wl ∈ D where l ∈ {1, . . . , qd}.

Let E be the event that any of these conditions hold. It would be nice, at this point, if we could
apply the Dent game hopping lemma. It is easy to see that E is recognisable, but we cannot
be sure that E is independent of S6. It might be the case that there exists two sequences
of oracle queries for which Pr[E] is significantly different for each sequence and that A can
choose to use one sequence in a manner that somehow depends upon the challenge message
md.

We avoid this problem by using the “re-normalisation” technique of Waters [25]. We derive
a non-negligible lower bound for the probability that ¬E occurs for any set of oracle queries,
estimate the probability that E occurs for the particular set of oracle queries that occurred
during the execution of A, and add “artificial aborts” to make sure that A aborts with exactly
the probability given by the lower bound.

We begin by deriving the theoretical lower bound. For simplicity, we only consider the
case where cmode = 1. The case where cmode = 0 is similar.

Pr[¬E] = Pr[
∧

ID∈PK

Ju(ID) 6= 0 mod τu

∧

w∈D

Jv(w) 6= 0 mod τv (3)

| Ju(ID?) = 0 mod τu ∧ Jv(w?) = 0 mod τv]

= Pr[
∧

ID∈PK

Ju(ID) 6= 0 mod τu | Ju(ID?) = 0 mod τu]

· Pr[
∧

w∈D

Jv(w) 6= 0 mod τv | Jv(w?) = 0 mod τv] (4)

We may handle each of these two terms independently.

Pr[
∧

ID∈PK

Ju(ID) 6= 0 mod τu | Ju(ID?) = 0 mod τu]

= 1− Pr[
∨

ID∈PK

Ju(ID) = 0 mod τu | Ju(ID?) = 0 mod τu] (5)

≥ 1−
∑

ID∈PK

Pr[Ju(ID) = 0 mod τu | Ju(ID?) = 0 mod τu] (6)

= 1− qpk

τu
(7)

The other term is handled similarly. We therefore have that

Pr[¬E] ≥
{

(1− qd
τv

)(1− qpk

τu
) if cmode = 1

(1− qd
τv

)(1− qppk+qpk

τu
) if cmode = 0

(8)
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If we set τv = 2qd, τu = 2qpk if cmode = 1 and τu = 2qppk + 2qpk if cmode = 0, then we have
Pr[¬E] ≥ 1/4.

As we’ve mentioned, this is only a theoretical lower bound for the abort probability. We
wish to arrange it so that the abort probability is exactly 1/4. To this end, we estimate
the probability that the sequence of oracle queries that A has made will cause an abort by
repeatedly picking values for x′u, xu,j , x′v and xv,j and testing to see whether these values will
cause an abort for the sequence of oracle queries that A made. Note that this does not involve
re-running the attacker A, but instead merely checking to see whether the simulator aborts
with the set of oracle queries that A made during its first execution. Note also that we do not
constrain the values of x′u, xu,j , x′v and xv,j to “fit” the public key value — we may assume
that the y values are chosen so that the public key elements are as in the original execution
of A. Let η′ be the probability that we do not have to abort for the given sequence of queries
made by A, i.e. η′ = Pr[¬E]. Let η′′ be the probability estimate for η′ given by the repeated
sampling of the x values. The Chernoff bound implies that for ε ≥ 0, δ ≥ 0 and O(ε−2 ln δ−1)
samples, we have that Pr[|η′ − η′′| ≥ ε] ≤ δ. We have already shown that η′ ≥ 1/4. If A’s
execution did not abort, we force an artificial abort with probability (η′′−1/4)/η′′ (whenever
η′′ ≥ 1/4). In such a situation, the environment assumes that A output a random value d′.
The probability that an abort occurs is now given by:

Pr[Abort] = Pr[Natural Abort] + Pr[Artificial Abort]

= (1− η′) +
η′′ − 1/4

η′′
η′

= 1− η′ + (η′′ − 1/4)
η′

η′′

≤ 1− η′ + (η′′ − 1/4)
η′

η′ − ε

= 1− η′ + (η′′ − 1/4)(1 +
ε

η′ − ε
)

≤ 1− η′ + (η′′ − 1/4)(1 +
4ε

1− 4ε
) as η′ ≥ 1/4

≤ 1− η′ + (η′′ − 1/4)(1 + 5ε) as 1/(1− 4ε) ≤ 5/4 for sufficiently small ε

≤ 1− η′ + (η′ + ε− 1/4)(1 + 5ε)
≤ 3/4 + 6ε + 5ε2

Hence, an abort does not occur with probability at least 1/4 − O(ε) providing |η′ − η′′| ≤ ε
(which itself occurs with probability 1− δ). We first say that an error occurs if |η′ − η′′| > ε
(which adds a constant δ term) and then apply Dent’s game hopping lemma. We conclude
that Adv7 ≥ (Adv6 − δ)(1/4 − O(ε)). For sufficiently small ε, we may conclude that Adv7 ≥
(Adv6 − δ)/8.

Game 8: We effectively change the treatment of AI ’s queries. Let A = ga be a random
element such that a is unknown to B. We first change the generation of the master public
key. Depending on cmode, g1 is generated in different ways.

• If cmode = 0, B sets g1 = A (and does not know the master secret a).
• If cmode = 1, it sets g1 = gγ for a randomly chosen γ

$← Z∗p which is kept for later use.

Queries: once started, AI issues queries whose treatment may depend on cmode.
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– Request public key queries for an identity ID:

• If cmode = 0, B randomly picks xID
$← Z∗p, returns pkID ← (gxID , gxID

1 ).

• If cmode = 1, B picks xID
$← Z∗p and returns pkID ← (AxID , AγxID).

– Replace public key queries for an input (ID, (X̃, Ỹ )): B ensures that (X̃, Ỹ ) has the
correct shape and performs the replacement.

– Extract partial private key queries on an identity ID:

• if cmode = 0, B aborts if Ju(ID) = 0 mod τu as in the previous game. Otherwise
(observe that Ju(ID) 6= 0 mod τu implies Ju(ID) 6= 0 mod p), it draws r

$← Z∗p and
returns dA = (d1, d2) where

d1 ← Fu(ID)r · g−
Ku(ID)
Ju(ID)

1 = ga
2 · Fu(ID)r̃ d2 ← gr · g−

1
Ju(ID)

1 = gr̃

where r̃ = r − a
Ju(ID) .

• if cmode = 1, B uses the master key msk = γ to compute partial private keys following
the specification of the scheme.

– Extract private key queries on an input ID: as previously, B aborts if Ju(ID) 6= 0 mod
τu. If not, we necessarily have Ju(ID) 6= 0 mod p. Let pkID = (X,Y ) be the (unreplaced)
public key for ID: the environment draws t

$← Z∗p and computes

skID = (s1, s2) =
(
Fu(ID)t · Y −Ku(ID)

Ju(ID) , gt · Y −1/Ju(ID)
)

=

{(
gaxID
2 · Fu(ID)t̃, gt̃

)
with t̃ = t− axID

Ju(ID) if cmode = 0(
gaγxID
2 · Fu(ID)t̃, gt̃

)
with t̃ = t− aγxID

Ju(ID) if cmode = 1

(Recall that in the case cmode = 0 the secret value is xID and the implicitly defined master
key value is a. In the case cmode = 1 the implicitly defined secret value is axID and γ is
the master key.)

– Decryption queries for a valid ciphertext C = (C0, C1, C2, C3) encrypted for an en-
tity ID using pkID = (X, Y ) (which may have been replaced by the attacker): let w =
H(C0, C1, C2, ID, pk). As in the previous game, B aborts and chooses a random d′ $← {0, 1}
if Jv(w) = 0 mod τv. Otherwise, Jv(w) 6= 0 mod p and we have C3 = (gJv(w)

2 gKv(w))s and
C1 = gs for some s ∈ Z∗p. Hence, B is able to extract

gs
2 =

(
C3/C

Kv(w)
1

)1/Jv(w)

which allows B to compute e(Y, g2)s and m = C0/e(Y, g2)s regardless of whether (X, Y )
is the original public key or not.

We observe that the altered generation of the master key does not prevent B to answer AI ’s
queries as in Game 7. This implies Adv8 = Adv7.

Game 9: We again alter the generation of the challenge ciphertext. For the variables b, c
$← Z∗p

respectively introduced in Games 2 and 6, let C?
1 = gc and T = Abc.
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• If cmode = 0, let pkID? = (X?, Y ?) be entity ID?’s current public key. For a binary coin
d? $← {0, 1}, B computes

C?
0 = md? · e(X?, T ) (9)

which equals C?
0 = md? ·e(gx?

, T ) = md? ·e(gax?
, gbc) = md? ·e(Y ?, g2)c. Then, B computes

w? = H(C?
0 , C?

1 , C?
2 , ID?, pkID?). If Jv(w?) 6= 0 mod p, B aborts as previously. Otherwise,

it defines C?
2 = (gc)Ku(ID?) and C?

3 = (gc)Kv(w?) and returns (C?
0 , C?

1 , C?
2 , C?

3 ).

• If cmode = 1, B retrieves the value xID? s.t. pkID? = (AxID? , AγxID? ), flips a coin d? $← {0, 1},
computes

C?
0 = md? · e(g, T )γxID? , (10)

computes w? = H(C?
0 , C?

1 , C?
2 , ID?, pkID?). As previously, B aborts if Jv(w?) 6= 0 mod p.

Otherwise, it sets C?
2 = (gc)Ku(ID?) and C?

3 = (gc)Kv(w?) and returns (C?
0 , C?

1 , C?
2 , C?

3 ).

As long as Jv(w) = 0 mod p, these changes do not affect the distribution of the challenge
ciphertext and Adv9 = Adv8.

Game 10: We again alter the challenge phase. This time, the environment “forgets” the values
b, c and simply retains g2 = gb and C?

1 = gc. The challenge ciphertext is constructed following
(9) and (10) as in Game 9 but using a randomly chosen T

$← G this time. In Game 10, the
whole simulation only depends on the values ga, gb, gc and the simulator does not use a, b, c
at all. The transition between Game 9 and Game 10 is clearly based on indistinguishability:
both games are equal unless there exists a PPT algorithm A′ that distinguishes T = gabc from
random. Therefore, we have |Pr[S9]−Pr[S10]| ≤ Adv3-DDH

A′ (k). Besides C?
0 now perfectly hides

md? and is completely independent from d?. Therefore Pr[S10] = 1/2.

This completes the game hopping. We now combine the various inequalities arising in our
game hopping steps. We have

Adv7 = Adv8 = Adv9 ≤ Adv3-DDH
A′ (k)

and
Adv5 = Adv6 ≤ 8 ·Adv7 + δ.

Since Adv5 = Adv4/(τuτv(n + 1)2), τu ≤ 2(qppk + qpk) and τv = 2qd, we get

Adv4 < 8(qppk + qpk)qd(n + 1)2 · (8 ·Adv3-DDH
A′ (k) + δ).

We also have Adv3 = 2 ·Adv4 and

Adv1 = Adv2 = |Pr[S2]− 1
2
| ≤ |Pr[S2]− Pr[S3]|+ |Pr[S3]− 1

2
| = AdvCR

A′′(k) + Adv3.

Combining the above, we finally obtain

Adv1 < 8(qppk + qpk)qd(n + 1)2 · (8 ·Adv3-DDH
A′ (k) + δ) + AdvCR

A′′(k)

which completes the proof. ut
Proof. (of Theorem 3). The proof is very similar to that of Theorem 2. The differences are in
Games 8, 9 and 10. Recall that the adversary AII never makes partial private key queries and
receives the master key msk := γ at the beginning of the game. In Game 8, the environment
proceeds as in the case cmode = 1 in the proof of Theorem 2 and hands msk = γ to AII .
All queries are handled as in the cases cmode = 1 and the challenge ciphertext is computed
following equation (10) in Game 9. ut


