
Attacking the IPsec Standards in Encryption-only
Configurations

Jean Paul Degabriele1 and Kenneth G. Paterson2 ?

1 Hewlett-Packard Laboratories, Bristol
Filton Road, Stoke Gifford, Bristol BS34 8QZ, UK.

jeanpaul.degabriele@gmail.com
2 Information Security Group,

Royal Holloway University of London,
Egham, Surrey TW20 0EX, UK.
Kenny.Paterson@rhul.ac.uk

Abstract. At Eurocrypt 2006, Paterson and Yau demonstrated how flaws in the Linux
implementation of IPsec could be exploited to break encryption-only configurations of ESP,
the IPsec encryption protocol. Their work highlighted the dangers of not using authenticated
encryption in fielded systems, but did not constitute an attack on the actual IPsec standards
themselves; in fact, the attacks of Paterson and Yau should be prevented by any standards-
compliant IPsec implementation. In contrast, this paper describes new attacks which break
any RFC-compliant implementation of IPsec making use of encryption-only ESP. The new
attacks are both efficient and realistic: they are ciphertext-only and need only the capability
to eavesdrop on ESP-encrypted traffic and to inject traffic into the network. The paper also
reports our experiences in applying the attacks to a variety of implementations of IPsec, and
reflects on what these experiences tell us about how security standards should be written
so as to simplify the task of software developers.

Keywords: IPsec, integrity, encryption, ESP, standard.

1 Introduction

The need to use integrity protection along with encryption in order to prevent active attacks is
well-understood in the theoretical cryptography community. Moreover, there are plenty of high-
profile examples where lack of strong integrity checks (or their inappropriate application) has
allowed attacks to succeed [2–5, 21]. Yet “encryption-only” configurations are still allowed by
the IPsec standards [10, 12], and may still be in quite common use in spite of Bellovin’s classic
attacks against them [3]. Instead of choosing to eliminate configurations known to have weaknesses
altogether, the IPsec RFCs have included progressively stronger warnings about encryption-only
configurations, together with a recommendation that implementations should check the correctness
of encryption padding when performing in-bound processing. The latter check, if implemented
properly, is sufficient to prevent certain specific attacks of Bellovin from working.

However, the placement of warnings to implementors in the standards does not prevent imple-
mentors from making weak configurations available to end-users. Indeed, support for encryption-
only configurations was mandatory until the most recent generation of IPsec standards. Nor do
warnings in RFCs prevent end-users from selecting such weak configurations. In case there is any
doubt about this, one only needs to consult the on-line manual pages for market-leading VPN
products, where one can find statements such as:

If you require data confidentiality only in your IPSec tunnel implementation, you should
use ESP without authentication. By doing so, you gain some performance speed but lose
the authentication service. [6]

? This author’s research supported in part by Hewlett-Packard Laboratories, BT Laboratories, and the
EPSRC through the Industrial CASE scheme, and in part by the European Commission under contract
IST-2002-507932 (ECRYPT).

Moreover, as we shall see, despite the recommendations concerning padding checks in the RFCs,
many open-source implementations still fail to check encryption padding correctly, even though
this renders them vulnerable to Bellovin’s 10-year old attacks.

Paterson and Yau [17] aimed to show that encryption-only configurations of IPsec are fatally
flawed. They described realistic attacks against encryption-only, tunnel mode IPsec and showed
that the attacks worked against the Linux kernel implementation of IPsec. However, as was made
clear in [17], these attacks do not apply to an implementation of IPsec that is faithful to the
relevant IPsec standards. In particular, the attacks do not work if certain post-processing policy
checks specified in the IPsec architectural RFCs [9, 11] are actually carried out as they should be.
The underlying reason for this is that the modified IP datagrams used in the attacks would not
pass the policy checks and would simply be dropped by IPsec. The Linux implementation of IPsec
does not carry out these checks.

Thus [17] is only partially successful in highlighting the dangers of encryption-only IPsec.
Indeed, the work of [17] can be regarded as providing attacks against a specific and incomplete
implementation of the IPsec standards, rather than attacks against the standards per se. This point
of view brings with it the danger that implementors and users of IPsec might go on to dismiss
the work of [17], assuming instead that a standards-compliant implementation of IPsec would
still be fit-for-purpose in encryption-only configurations. After all, bad security implementations
are commonplace; bad security standards hopefully less so. This paper sets out to show that the
broad community of IPsec users should not be lulled into such a false sense of security, by providing
attacks against encryption-only IPsec as specified in the IPsec RFCs themselves.

Our new attacks are both realistic and efficient, and we have studied their applicability to a
variety of open-source IPsec implementations. In particular, we are able to use them to break the
OpenSolaris IPsec implementation. In contrast to the chosen-plaintext requirements of the attacks
of Bellovin [3], our new attacks are ciphertext-only. Our main attacks are applicable only if an
IPsec implementation performs a full padding check, in accordance with the recommendations of
the IPsec RFCs. Thus, our attacks work where Bellovin’s are prevented, and vice-versa. We also
sketch variants of our ciphertext-only attacks that work when less rigorous padding checks are
implemented. Taken as a whole, the various attacks show that IPsec in encryption-only configura-
tions is vulnerable, whether or not implementors follow the RFCs and carry out proper padding
checks.

1.1 Our Contributions

We provide new attacks against encryption-only IPsec as specified in the RFCs. For concreteness,
we work with the latest generation of IPsec standards, RFCs 4301-4309, but our attacks also
apply for the second generation of IPsec standards, RFCs 2401-2411. Our attacks can extract the
complete contents of IPsec-encrypted datagrams and remove a significant barrier to the operation
of the best attacks in [17]: they do not require the attacker to be able to monitor all the traffic
emanating from a host performing IPsec, but instead just the traffic flowing in two directions in
an IPsec tunnel. For simplicity, we focus in this paper on tunnel mode IPsec, but we also sketch
how to apply our ideas to transport mode. We also show that variants of our attacks can be used
to defeat the two traffic flow confidentiality mechanisms that have been included in the newest
versions of the IPsec standards (when configured in encryption-only mode). These attacks allow
an attacker to efficiently separate ciphertext blocks of real interest from dummy traffic. We report
on our experiences in applying the new attacks to various IPsec implementations, in particular,
our success in breaking the OpenSolaris implementation.

Our new attacks involve a combination and significant extension of ideas from [17] and the
padding oracle attacks of Vaudenay [20]. The main idea we borrow from [17] is to manipulate
selected header fields of inner datagrams protected using ESP, the encryption protocol of IPsec,
so that they consistently lead to the creation of ICMP messages. However, because of the order of
processing in IPsec and IP, an ICMP message will only be generated if the padding and certain
other fields in the ESP trailer that follows the inner datagram are correctly formatted. Here we are
assuming that an implementor has followed the advice of the relevant RFCs [10, 12] that padding

checks SHOULD3 be carried out. Thus the absence or presence of the ICMP messages can be used
to build an ESP trailer oracle, an extension of Vaudenay’s padding oracle concept. To complicate
matters, because of constraints on our attack imposed by the need to satisfy policy checks specified
in the IPsec RFCs, these ICMP messages will only be available to the attacker in encrypted form.
However, they have stereotypical lengths which allow them to be detected nevertheless. The single
bit of information revealed by our ESP trailer oracle can then be leveraged to extract the entire
contents of IPsec-encrypted datagrams.

We note that Vaudenay [20] has already sketched how a padding oracle attack against IPsec
might operate if a suitable padding oracle were available. However, the attack sketched in [20]
will not work as described, for reasons explained in more detail in Section 3. Indeed, a degree of
ingenuity is needed to turn this sketch into a working attack: we need to find a means of building
the oracle, and we need to overcome a variety of technical obstacles which interfere with the
operation of Vaudenay’s basic attack. A second contribution of this paper, then, is to flesh out the
IPsec attack sketched in [20], in a similar way as Canvel et al. [5] did when turning the padding
oracle attack against SSL/TLS described in [20] into an attack against an actual implementation of
SSL/TLS. This paper, like [5], demonstrates the real-world applicability of padding oracle attacks,
showing that they are not just a theoretical nicety.

A further theme of this paper is to illustrate the complexities that arise in the real-world
cryptanalysis of secure protocols. As we shall see, significant effort must be invested to turn
attacks that work “on paper” into attacks that would actually work in practice against systems
compliant with relevant standards. However, as we shall also discover, whether or not a particular
attack works against a particular implementation depends in a complex way on the extent to which
the implementor has deviated from the specification provided by the standards, or has chosen to
“interpolate” details missing from the standards.

1.2 Overview of Paper

In the next section we provide additional background on IPsec and related topics. We focus on how
padding and CBC mode encryption are carried out in ESP in tunnel mode. Section 3 discusses
padding oracle attacks [20] and explains why, in their basic form, they are unlikely to succeed
against IPsec implementations. Section 4 presents a simple chosen-plaintext attack on encryption-
only ESP, which illustrates the main ideas in the ciphertext-only attacks to follow. As with [17],
our attacks are somewhat different in character, depending on whether the underlying block cipher
used by ESP (the IPsec encryption protocol) has 64-bit or 128-bit blocks. An attack well-suited
to the 64-bit case is discussed in Section 5 and an attack for the 128-bit case is given in Section
6. We briefly discuss how to defeat the traffic flow confidentiality mechanisms in IPsec in Section
7. Section 8 explains how our ideas can be adapted to attack transport mode configurations of
IPsec. Our experiences in attacking implementations of IPsec using our new ideas are reported in
Section 9. We conclude in Section 10.

2 Background

2.1 IPsec

IPsec, as defined in RFCs 2401–2412 and 4301–4309, provides security at the IP layer. The inter-
ested reader is invited to consult [7, 8] for accessible introductions to IPsec. We will make free use
of IP and IPsec terminology in what follows.

We recall that the ESP protocol, as defined in [10, 12] principally provides a confidentiality
service, and usually makes use of a block cipher algorithm operating in CBC mode. We assume
3 “SHOULD” is one of the key words used in RFCs to indicate requirement levels. It’s meaning is defined

in RFC 2119 as follows: This word, or the adjective “RECOMMENDED”, mean that there may exist
valid reasons in particular circumstances to ignore a particular item, but the full implications must be
understood and carefully weighed before choosing a different course.

throughout the remainder of this paper that CBC mode is in use. The algorithms, mode, keys, IVs
and other associated data to be used in encrypting network traffic are stored in an object called
a Security Association (SA); the selection of SAs applied to a particular datagram is determined
by matching fields in IP datagrams to IPsec security policies.

In tunnel mode ESP, entire IP datagrams, called inner datagrams, are protected; each inner
IP datagram is encrypted and forms part of the payload of an outer IP datagram. In transport
mode ESP, only the payload of a datagram is encrypted, and the original datagram header is
modified to include IPsec-specific information. ESP may also be configured to provide integrity
protection through the application of a MAC algorithm, or this service can be provided by a
separate IPsec protocol, AH. In the second generation of IPsec standards, including support for
encryption-only operation of ESP was a “MUST” [10]. This requirement has been weakened to
a “MAY” in the third generation of standards [12]. Both generations do warn against the use of
encryption-only ESP without some additional integrity protection (being provided either by ESP
itself, by combining ESP with AH, or by an upper-layer protocol). Paterson and Yau [17] provide
further background on the history of integrity protection in ESP.

2.2 Padding and CBC Mode Encryption in Tunnel Mode ESP

Our attacks depend crucially on how padding and CBC mode encryption (and the reverse op-
erations of decryption and depadding) are performed by IPsec. The variant of CBC mode that
is used by ESP in tunnel mode operates as follows. The original (inner) datagram that is to be
protected is treated as a sequence of bytes. This sequence is padded with a particular pattern
of bytes and then a Pad Length (PL) byte and a Next Header (NH) byte are appended. Each
different encryption algorithm for use with ESP is specified in a separate RFC, and each such
RFC may specify its own padding method. However none of the relevant RFCs appears to do so,
and so the default padding method specified in [10, 12] is universally used in practice. This method
adds bytes so that:

1. The total number of bytes present (including the PL and NH byte) is aligned with a block
boundary; and

2. The added pattern of padding bytes is either a null string or t bytes of the form 1, 2, . . . , t for
some t with 1 ≤ t ≤ 255.

It is permissible for the padding to be of variable length, though this option seems to be rarely
exercised in practice – usually the minimum amount of padding consistent with the above rules
is added (one notable exception is the KAME implementation.4) According to [12, Section 2.7]
it is permissable in tunnel mode to precede this padding with an arbitrary amount of Traffic
Flow Confidentiality (TFC) padding too. This is intended to aid in preventing traffic analysis by
disguising the true length of the inner datagram. Our attacks have no problem dealing with either
type of extended padding. Note that even minimal padding may extend over multiple blocks. For
example, if the block size is 64 bits (8 bytes) and the IP datagram ends at byte 7 in a block, then
the padding pattern would be:

1, 2, 3, 4, 5, 6, 7

followed by the PL byte (in this case, equal to 7) and the NH byte. Here, the first byte with value
1 would complete a block, and the 6 remaining padding bytes together with the PL and NH bytes
would appear in an extra block.

The NH byte is present in order that the decrypting IPsec entity can know to which protocol
implementation it should pass the bytes that precede the padding. In tunnel mode, this value
should be 4, indicating IP-in-IP encapsulation and that the bytes are indeed an IP datagram.
The latest ESP RFC [12] specifies that an NH byte value of 59 indicates a dummy packet. Such
datagrams are to be ignored upon decryption and so can be used along with TFC padding to build
a traffic flow confidentiality service.

4 http://www.kame.net

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Security Parameters Index (SPI) |

+-+

| Sequence Number |

+--------

| IV | ^ p ^e

+-+ | a |n

| Rest of Payload Data (variable) | | y |c

~ ~ | l |r

| | | o |y

+ +-+ | a |p

| | TFC Padding (optional, variable) | v d |t

+-+-+-+-+-+-+-+-+ +--- |i

| | Padding (0-255 bytes) | |o

+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |n

| | Pad Length | Next Header | v

+-------

Fig. 1. Structure of ESP protected-datagram (adapted from RFC 4303 [12] for CBC mode without in-
tegrity protection and to show encryption scope).

After padding, the data is encrypted using CBC mode. Let us assume that the byte sequence
after padding consists of q blocks, each of n bits (where n = 64 for triple-DES and n = 128 for
AES, for example). We denote these blocks by P1, P2, . . . , Pq. We use K to denote the key used
for the block cipher algorithm and eK(·) (dK(·)) to denote encryption (decryption) of blocks using
key K. An n-bit initialization vector, denoted IV , is selected at random. Then ciphertext blocks
are generated according to the equations:

C0 = IV, Ci = eK(Ci−1 ⊕ Pi), (1 ≤ i ≤ q).

The encrypted portion of the outer datagram is then defined to be the sequence of q + 1 blocks
C0, C1, . . . , Cq. The basic format of an ESP-protected datagram is shown in Figure 1.

2.3 CBC Mode Decryption and Depadding in Tunnel Mode ESP

At the entity performing IPsec decryption (which is also in possession of the key K), the payload
of the outer datagram can be recovered using the equations:

Pi = Ci−1 ⊕ dK(Ci), (1 ≤ i ≤ q).

Any padding along with the PL and NH bytes can then be stripped off, revealing the original
inner datagram. Section 2.4 of both the ESP RFCs [10, 12] states that “the receiver SHOULD
inspect the padding field”, because certain cut-and-paste attacks are prevented if “the receiver
checks the padding values upon decryption”. This is apparently a reference to the chosen-plaintext
attack of Bellovin [3] which can extract 1 byte per block from ciphertexts of special lengths and
which depends for its success on the padding not being properly checked. What kind of inspection
is required is not made clear. Moreover, it is not made explicit in the ESP RFCs what action
should be taken in the event that the padding does not have the correct format. It is not explicitly
specified that the datagram should be dropped, nor that the event is auditable.

However, padding checks are only effective as a countermeasure against Bellovin’s attack if the
padding is checked strictly and the datagram dropped if the padding is not fully conforming. For

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|Version| IHL |Type of Service| Total Length |

+-+

| Identification |Flags| Fragment Offset |

+-+

| Time to Live | Protocol | Header Checksum |

+-+

| Source Address |

+-+

| Destination Address |

+-+

| Options | Padding |

+-+

Fig. 2. Structure of IP header according to RFC 791, [14].

this reason, we assume that a compliant implementation does perform a strict check, checking that
the padding conforms exactly to what is expected given the value of the PL field, and dropping
the inner datagram if the check fails.

We will see in Section 9 that, in the absence of a detailed specification in the RFCs, imple-
menters have taken a variety of approaches to handling depadding. As we shall also see, appropriate
handling of this function is security-critical. It is implicit in the text of the ESP RFC [12, p.30]
that the removal of any TFC padding is the responsibility of the upper layer protocol specified in
the NH byte.

The ESP RFCs next specify that the NH byte should be examined, and if the value is 59, then
the packet is discarded without further processing. At this point, the receiver is able to reconstruct
the original inner datagram that was encrypted. The exact process for doing so is specified in the
IPsec architectural RFCs [9, 11]. These further mandate that implementations should check that
the cryptographic processing performed to recover the inner datagram does in fact match that
specified in local IPsec policies. If the check fails, the datagram should be dropped [11]. If the
check passes, then (in tunnel mode) the inner datagram is passed on to the IP implementation for
further processing.

Note that when ESP is employed without integrity protection, the sequence number in the
ESP header is not checked by the recipient.

2.4 Transport Mode ESP

Much of the discussion in the previous two-subsections applies to transport mode ESP as well.
Major differences include the inclusion of an upper layer protocol number in the NH byte to
indicate the content of the protected payload (for example, 6 for TCP, 11 for UDP, etc), and
the fact that the payload resulting from depadding and decryption is passed to an upper layer
implementation for further processing, rather than to IP.

2.5 IP Datagram Headers

Our attacks depend in a detailed way on the structure of the headers of IP datagrams, on the
order in which the fields of inner IP datagram headers are processed by an implementation of IP
after IPsec processing has completed, and on the way in which ICMP errors are generated in the
event of certain errors in processing. Figure 2 shows the structure of an IP datagram header.

In essence, the processing is as follows in a typical implementation of IP (where, for simplicity
of presentation, we ignore any fragmentation processing).

Basic checks are performed on the Version field and IHL field. The IHL (Internet Header
Length) field is 4 bits long and has a value between 5 and 15. This field indicates the length of the
header in 32-bit words. The typical value is 5, indicating that the header length is 20 bytes and
no additional options bytes are present. If the IHL value is greater than 5, then additional options
bytes are assumed to be present after the main header, in the Options field.

The next action is to check the Header Checksum field. This 2-byte field is initially formed
by interpreting the header (including the Options field if present) as a sequence of 16-bit words,
summing them using 1’s complement arithmetic, and then taking the 1’s complement of the result
as the Header Checksum value. During this computation, the Header Checksum bytes are set to
zero. As a consequence, the 1’s complement sum of the 16-bit header words (now including the
computed Header Checksum field) should equal zero. If this check fails, the datagram is simply
dropped.

After this, length checking is carried out. A typical implementation like Linux will check that
the number of bytes in the datagram is at least as many as are indicated in the Total Length
field, and at least the minimum size of an IP header (20 bytes). The datagram will then be
trimmed to the length indicated in the Total Length field. The datagram is dropped if these
checks fail. We refer to this style of length checking as relaxed. Strict length checking, in which
an IP implementation ensures that the number of bytes in the datagram exactly matches the
number indicated in the Total Length field and rejects the datagram if not, could be carried out
instead. However, a lower layer implementation cannot necessarily know how to trim its payloads
to present the IP implementation with a datagram of exactly the right size. Moreover, for the TFC
padding mechanism to work as implicitly defined in [12], we must assume that IP implementations
perform relaxed checking and then discard any “redundant” bytes beyond the length indicated in
the Total Length field. This is consistent with the IP specification [14], which does not explicitly
specify any kind of length checking, but does state that “an implementation should be liberal in its
receiving behaviour”. In the remainder of this paper, we will assume that relaxed length checking
is performed (but we will indicate how our attacks can be modified to handle strict checking).

Next, options processing is carried out if the IHL field indicates that options are present. The
Options field has a strict format. If the format is not followed, then the datagram is dropped and
IP generates an ICMP “parameter problem” message which is routed to the host indicated in the
Source Address field.

Then a routing decision is made: either the datagram is delivered locally or it is forwarded to
another host (if this host is configured for routing). In the former case the Protocol field is used to
determine the upper layer protocol to which the datagram payload should be passed. If the field
contains a value corresponding to a protocol that is not supported at the host, then IP should drop
the datagram and generate an ICMP “protocol unreachable” message to be sent back to the host
indicted in the source address. Slightly more than half of the 256 possible values of the Protocol
field are already allocated to specific upper layer protocols (such as TCP and UDP), but a typical
host may only support 5-10 different protocols. In the latter case, where the datagram is to be
forwarded, the Time to Live (TTL) field is then checked. The TTL field is used to track the “age”
of datagrams. It is set to an initial value by the sending host, typically 64 or 128, and decreased by
1 by each intermediate router visited by the datagram. If the TTL field reaches zero, the datagram
is dropped and an ICMP “Time Exceeded” error message indicating this event is sent back to the
host at the source address in the datagram. Otherwise, the datagram is forwarded.

We will make use of the IHL and Protocol fields in our attacks, noting their propensity to
provoke the generation of ICMP messages in the event of their containing certain values. We
will also exploit the Time to Live (TTL) and Identification fields in some of our attacks. The
Identification field carries a 16-bit value that is used to track the fragments making up a datagram
in the event that the datagram is fragmented. Typically, an implementation of IP fills this field
with a counter that is incremented for each new datagram.

2.6 ICMP and IPsec

ICMP was originally specified in [19], and revised for IPv4 routers in [1]. We have already indi-
cated above a number of circumstances under which ICMP messages will be generated during IP
processing. The particular format and length of the payload of these messages will depend both
on the error type and on the implementation of ICMP.

The IPsec architectural RFCs [9, 11] contain complex prescriptions for how IPsec should handle
ICMP messages. RFC 4301 [11] distinguishes between error and non-error messages, with the latter
type being catered for by specific security policies and SAs. ICMP error messages are divided into
two types: messages directed to the IPsec implementation itself, and transit messages. All the
ICMP error messages arising in our attacks will be of the transit type. The manner in which
these are to be handled by IPsec processing is described in [11, Section 6.2]. The highlights are as
follows. In a first case, either an SA already exists that accommodates the ICMP message, or IPsec
security policy allows one to be created. In this case, out-bound and in-bound IPsec processing
proceed as normal. In a second case, no SA exists and IPsec security policy does not allow one to
be created. In this situation, IPsec out-bound processing must use the SA that would be used for
return traffic corresponding to the traffic that generated the ICMP message in the first place. This
SA can be identified by examining the ICMP payload, as this carries the header and part of the
payload of the error-provoking IP datagram. Thus, even if no policy applicable to ICMP traffic is
extant, the ICMP traffic will still be sent protected by IPsec. However, it is possible that no SA
exists for the return traffic, in which case the RFC specifies that the message should be dropped
and an auditable event occurs. In-bound processing in the second case involves an extra check to
ensure that the SA applied is consistent with the fields in the IP datagram carried in the ICMP
payload.

The key point to remember from this discussion is that, while IPsec processing of ICMP
messages can be complicated, our attacks only involve transit ICMP error messages. In the IPsec
configurations we attack, these will not be blocked by IPsec and will travel in encrypted form
across the network. They will be detectable through their characteristic (though implementation-
dependent) lengths, or via related techniques that are discussed in Section 4.

2.7 Bit Flipping in CBC Mode

We recall the following well-known property of CBC mode. Suppose an attacker captures a CBC
mode ciphertext C0, C1, . . . , Cq, then flips (inverts) a specific bit j in Ci−1 and injects the modified
ciphertext into the network. Then the attacker induces a bit flip in position j in the plaintext block
Pi as seen by the decrypting party. This tends to randomize block Pi−1, but if the modification is
made in C0 (equal to IV), then no damage to plaintext blocks will result.

2.8 Correcting Checksums after Bit Flipping

In our attacks, we will be modifying certain bits in the headers of inner datagrams. Any such
modifications will require further compensation to be made elsewhere in the header so that the
Header Checksum is still correct – otherwise the inner datagram will be silently dropped. In [17],
two basic techniques were used to achieve this: firstly, randomisation of the Header Checksum field
(possibly along with other fields) by making changes to non-IV ciphertext blocks, and, secondly,
bit flipping in positions in the IV corresponding to the checksum itself. The first technique tends
to lead to changes to source and/or destination addresses in the inner datagram, which results
in datagrams being dropped by IPsec policy checks performed during in-bound processing. The
second technique had two manifestations: trying all 216 16-bit values, and, when only small num-
bers of bit flips to the headers were involved, using sequences of correcting masks. In the 64-bit
case, this second technique does not work, because the checksum is located in the second plaintext
block. Because of these limitations, we will use a modified approach to ensure that correct Header
Checksums are maintained. The approach is based on ideas in [15].

We recall that the condition for the Header Checksum to be correct is that the 1’s complement
sum of the 16-bit header words (including the Header Checksum field) should equal zero. This
means that, from the point of view of further modifying an inner header to compensate for earlier
modifications to that header, there is no need to stipulate (as in [17]) that it is the Header
Checksum field itself that must be manipulated: any 16-bit header word can be used for this
purpose. However, not every 16-bit header word is equally well-suited to this job, since they
contain fields whose values may adversely affect subsequent IP processing. But recall that the
16-bit Identification field, located in bytes 5 and 6 of the datagram header, can quite legally take
on any 16-bit value without affecting the processing of unfragmented datagrams. Because of its
location in the header, this field can be modified by bit-flipping in bytes 5 and 6 of the IV, both in
the 64-bit and 128-bit cases. These properties make the Identification field an ideal 16-bit header
word for working with to ensure we obtain correct checksums.

Finally, we note that we can use the Identification field in two ways. If many bit changes have
been made to the header, then we can systematically vary the value of the Identification field over
all possible 16-bit values, using a 16-bit counter to modify bytes 5 and 6 of the IV. An average
of 215 and at most 216 trials will be needed to produce a header with a valid checksum value.
If a small number of bit changes have been made to the header, then we can use the tables of
masks from [17] to vary the value of the Identification field. Although these masks were designed
for modifying the Header Checksum field itself, it is clear from the discussion above that they
will work just as well when applied to the Identification field. So for example, suppose a single bit
change is made to the header. Then we know that using the masks from an appropriate table Ti

in [17] to modify bytes 5 and 6 of the IV, we will need to try at most 17 masks, and on average 2
masks, to produce a header with a valid checksum value.

3 Padding Oracle Attacks

We provide a brief introduction to padding oracle attacks, as introduced by Vaudenay in [20]. In
such an attack, the attacker has access to a padding oracle that, on receipt of a ciphertext, outputs
a single bit indicating whether or not the underlying plaintext is correctly padded.

It is shown in [20] that, for CBC mode encryption and a variety of padding methods, repeated
use of a padding oracle can be used to build a decryption oracle. We sketch how this can be done
for the default padding method used by ESP, assuming the existence of a suitable padding oracle.
To simplify the presentation, for now we assume that the NH byte is not present, so that the PL
byte appears in the rightmost byte of a block.

Suppose the attacker wishes to decrypt a target ciphertext block Ci, i ≥ 1, from a CBC
mode ciphertext consisting of blocks C0, C1, . . . , Cq. Let us assume that each block Cj has t
bytes, labeled Cj,0, Cj,1, . . . , Cj,t−1 from left to right. We label the unknown bytes of dK(Ci) as
(dK(Ci))0, (dK(Ci))1, . . . , (dK(Ci))t−1, and the unknown bytes of Pi as Pi,0, Pi,1, . . . , Pi,t−1. The
attacker creates a two-block ciphertext of the form R, Ci and submits this to the oracle. Here
R with bytes R0, R1, . . . , Rt−1 is a random block. If the oracle indicates the padding is correct,
then the rightmost byte of R⊕ dK(Ci) is most probably equal to 0, a PL byte indicating that no
padding bytes are present. (The next most probable valid combination of padding and PL byte is
1, 1. This is 256 times less likely to occur and can be excluded using an extra oracle query.) Then
the attacker can easily calculate (dK(Ci))t−1 and hence Pi,t−1. If the oracle indicates incorrect
padding, the attacker can try again with a different value for Rt−1. It is now easy to see how an
attacker who systematically varies byte Rt−1 and makes padding oracle queries can extract the
rightmost byte of Pi using on average 128 and at most 256 queries.

This idea can be extended to extract every byte of Pi. Suppose the rightmost byte has been
extracted, so the attacker has learned (dK(Ci))t−1. To get byte Pi,t−2, we can fix Rt−1 so that
Rt−1 ⊕ (dK(Ci))t−1 = 1 and then vary Rt−2 until a correct padding is indicated by the oracle.
When this happens, we know that the padding and PL byte must be of the form 1, 1. From this,
byte Pi,t−2 can be deduced. The decryption process continues in this way, with the padding pattern
being increased in length by one at each step. Recovering each plaintext byte requires on average
128 queries to the padding oracle.

3.1 Applicability to IPsec

Unfortunately, a padding oracle attack, as described above, will not work against an implementa-
tion of IPsec. First,we have not identified whether a padding oracle really exists, or a mechanism
by which the output of the oracle becomes known to the adversary. Our analysis above of the rele-
vant RFCs suggests that strict padding checks should be carried out, but a failure is simply logged
and the offending datagram dropped. In [20], it is remarked that, in the event of incorrect padding
in ESP,“It is reasonable to assume that the lack of activity of the receiver . . ., or the activity of
the auditor, can be converted into one bit of information”. Detecting the activity of the auditor
would seem to need the attacker to have access to the relevant log file, or to be able to measure
the length of that file. It is not immediately clear how a lack of activity because of a padding
failure can be distinguished from lack of activity that might arise for a multitude of other reasons.
This should be contrasted with the situation with SSL/TLS, where a padding failure leads to the
generation of an error message, an active event that can be detected (although it also results in
the tear-down of the SSL connection) [20, 5].

Furthermore, the attack as described does not take into account the presence of the NH byte
and its effect on subsequent processing of the decrypted-and-depadded data. The attack works by
placing the target ciphertext block as the last block in a ciphertext, after a random block. This
implies that the NH byte is effectively randomized in the attack as described. By changing R, the
NH byte can be varied, but it is not clear at the outset what effect modifying this byte has. In fact,
if post-processing policy checks are carried out and tunnel mode is in use, then the decrypted-and-
depadded data will always be discarded unless the NH byte is equal to 4: any other value would
indicate an upper layer protocol that was not IP, and hence would indicate that transport mode
ESP was being used, leading to a policy violation. Thus, in this situation, correctness of padding
alone will not be enough to ensure that data is not simply discarded; we will also need the NH
byte to take on a particular value. In the analysis that follows, we assume that, in tunnel mode
processing, the decrypted-and-depadded data will always be discarded unless the NH byte is equal
to 4.

Even supposing the NH byte could be arranged to equal 4 so as to indicate tunnel mode, there
is the question of how the decrypted-and-depadded data, now interpreted as an IP datagram, is
subsequently processed. The attack as described above uses ciphertexts of the form R, Ci where Ci

is the target block. Data produced after decryption and depadding is very unlikely to correspond
to a valid IP datagram. In this case, subsequent processing by IP is almost certain to lead to a swift
packet drop, resulting in a lack of activity by the receiver that seems likely to be indistinguishable
from inactivity due to a padding failure. Thus we need to be much more careful in the way in
which we compose ciphertexts if a padding oracle attack is to be successful.

4 A Tutorial Chosen-Plaintext Attack

In this section, we describe a chosen-plaintext attack that illustrates the main principles of the
ciphertext-only attacks in the sections to follow. For concreteness, we suppose the block size of
the block cipher used in ESP to be 64 bits. It is trivial to adapt the attack in this section to the
128-bit case. As with all of the attacks in this paper, we make the following assumptions:

1. Encryption-only ESP is used in tunnel mode between a pair of security gateways GA and GB ;
these gateways provide security for pairs of communicating hosts HA and HB located behind
the gateways as illustrated in Figure 3. This is a typical VPN configuration of IPsec.

2. The key K used to perform ESP encryption for IP traffic flowing from GA to GB is fixed
during the attack;

3. The attacker can monitor and capture ESP-protected datagrams that flow between the two
gateways; and

4. The attacker can inject modified datagrams into the network between GA and GB .

Notice that the monitoring requirement here is more realistic than in [17], where the ability to
observe all traffic emanating from a gateway was needed.

ESP tunnel

Gateway G Gateway G

A

B

A B

Host H

Host H

Fig. 3. Network setup.

We assume that appropriate SAs are in place to protect traffic from GA to GB and vice-versa.
As discussed in Section 2.6, additional ICMP-specific SAs might be used to protect ICMP messages
flowing from GA to GB and back again. Our attack works irrespective of whether the same SAs
are used to protect both ICMP and non-ICMP traffic.

We suppose the attacker has collected a target ciphertext C = C0, C1, . . . , Cq from the payload
of an outer IP datagram that was directed towards GB . This could represent traffic flowing from
HA to HB , for example. The attacker’s goal is to discover the plaintext corresponding to C.

4.1 Preparation

We assume the attacker has obtained the ciphertexts Cj corresponding to a set of 7 chosen
plaintexts P j (0 ≤ j ≤ 6). Here, P j is selected to contain an inner IP datagram with source
address set to that of HA, destination address set to that of HB and a TTL field set to 1. We
further assume that P j contains exactly j + 12 bytes of payload data after the IP header. These
bytes need not be in the format of any particular upper layer protocol. Thus P j begins with 20
bytes of IP header, followed by j + 12 bytes of payload data, a total of j + 32 bytes. Plaintext
P j also contains padding and the PL and NH bytes. We see that P j has j bytes of payload in
the final block, so, following the default padding rule, this will be followed by 8 − j − 2 bytes of
padding, the PL byte, and finally the NH byte (equal to 4). For example, P 6 ends with the byte
pattern 0, 4, while P 0 ends with the byte pattern 1, 2, 3, 4, 5, 6, 6, 4 which fills the entire last block.
Thus we see that P j has 5 blocks, and the corresponding ciphertext Cj has 6 blocks (including
the IV).

If Cj is injected into the network as the payload of an outer datagram with destination address
equal to that of GB , then the corresponding inner datagram will be recovered at GB and passed to
the IP implementation at GB . This will decrement the TTL field of the inner datagram, producing
a TTL value of zero. The IP implementation at GB will then produce an ICMP error message (of
type 11 and code 0) indicating a “time to live exceeded” event. Assuming the IP implementation
follows [19] and includes the header and first 64 bits of payload of the original datagram, the total
length of the ICMP message (including the header of the IP datagram in which it is carried) will

be 56 bytes. The error message will have the host HA as its destination, and so will become an
ESP-encrypted inner datagram at GB . Using the padding rule, an extra block containing padding
and the NH byte will be added, and so the resulting ciphertext will have 9 blocks (including the
IV). Thus, an outer datagram carrying a 9-block ciphertext will be seen traveling in the reverse
direction on the tunnel shortly after the injection of Cj . In principle, this ICMP message can be
detected by the attacker (based on its length) even though it is carried inside a datagram that has
been encrypted by IPsec.

If TFC padding or variable length encryption padding is in use on the tunnel, then the relevant
ICMP message may be harder to separate from other encrypted network traffic. In this case, we
can look for correlations in time between the injection of test datagrams and the appearance of
encrypted messages in the reverse direction in the tunnel. This will be straightforward if the reverse
direction is relatively quiet. If not, then false positives may occur. Then, to increase the accuracy of
this approach, multiple trials can be used for each test datagram. We assume henceforth (without
further mention) that this kind of technique is used in place of length-based detection whenever
TFC measures are in force.

The attacker will use modifications of the ciphertexts Cj in his attack. In what follows, we let
Cj

0 , Cj
1 , . . . , Cj

5 denote the blocks of Cj (recall that Cj
0 will be an IV).

4.2 Extracting the Rightmost Two Bytes

The attacker selects an arbitrary target block Ci, i ≥ 1, from the target ciphertext. Consider the
effect of injecting into the network an outer datagram containing as payload the ciphertext:

C ′ = C6
0 , C6

1 , C6
2 , C6

3 , R6, Ci

where R6 is a random block. The positioning of R6 does not disturb the inner IP header in the
corresponding plaintext P ′. Thus the first part of P ′ will still correspond to an IP datagram
carrying some upper layer protocol data destined for HB . However, the payload data, padding,
PL and NH bytes will be upset. Based on our discussions of ESP decryption and depadding and
NH processing in Sections 2.3 and 3.1, we know that GB will discard the inner datagram unless
the padding is valid and the NH byte equals 4. With R6 being random, by far the most likely valid
padding pattern is the one of length zero, with the PL field containing 0. When this holds and
the NH byte equals 4, decryption and depadding of C ′ produces a perfectly good IP datagram,
albeit one whose payload data has been changed from C6. The length and checksum fields in the
IP header will still be correct and the TTL field will contain a value of 1. So, in this situation,
the inner IP datagram will be passed to the IP implementation at GB , and we will get an ICMP
error message in the reverse direction on the tunnel. This message will be encrypted in a 9-block
ciphertext, and the attacker can detect it based on its length.

It is now obvious that the attacker should systematically vary R6 in bytes 6 and 7, inject the
modified ciphertexts, and look for the tell-tale 9-block ciphertext in the reverse direction. When
this is detected, the attacker knows that the last two bytes of R6 ⊕ dK(Ci) are equal to 0, 4 with
high probability. (A simple additional test, manipulating byte R6

5, can be used to eliminate the
unlikely case where the padding is valid but the PL byte does not equal 0.) From this, it is trivial
to extract bytes Pi,6, Pi,7. The maximum number of trial injections needed is 216, and the average
number 215.

We see that, using chosen plaintexts, we have established an “ESP trailer” oracle that can be
used to extract bytes 6 and 7 of Pi simultaneously. The remaining bytes of Pi can be extracted
using a fairly standard padding oracle attack, as described next.

4.3 Extracting the Remaining Bytes

The attacker can proceed to extract the remaining bytes much more efficiently, working in sequence
from right (Pi,5) to left (Pi,0). The attacker now works with a ciphertext of the form:

C ′ = C5
0 , C5

1 , C5
2 , C5

3 , R5, Ci

where R5 is initially set to the value of R6 that produced an ICMP message when extracting
the rightmost two bytes, except that we put R5

6 = R6
6 ⊕ 1. This ensures that P ′, the decrypted-

and-depadded version of C ′, ends with bytes 1, 4. Now the attacker systematically varies R5 in
byte 5 and injects the modified ciphertexts. Only when P ′ ends 1, 1, 4 will we again see a 9-
block ciphertext in the reverse direction. When this is detected, the attacker knows that byte 5 of
R5 ⊕ dK(Ci) is equal to 1. From this, he can deduce the value of Pi,5.

Continuing in this way, it’s now easy to see how the attacker can extract all the bytes of Pi,
consuming an average of 128 and a maximum of 256 trials per byte, by using modified versions of
ciphertexts Cj and extending the amount of padding one byte at a time.

4.4 Notes on the Attack

The complexity of the whole attack is at most 216 + 6 · 28 trials per ciphertext block, and on
average half this. The main term here arises from the need to extract the rightmost two bytes
simultaneously. A term like this appears in all of the attacks in this paper. We have not been able
to find a way to reduce it except in attacks against specific IPsec implementations where weaker
padding checks are carried out (see Section 9 for details).

The attack works even if the IP implementation at GB performs strict length checking: at each
stage, the inner IP datagram produced after successful decryption and depadding has exactly the
right number of bytes as indicated in its Total Length field. If relaxed checking is in operation,
then we can reduce the number of chosen plaintexts needed from 7 to 1 by working just with the
single plaintext P 0. This datagram has a Total Length field that indicates 12 payload bytes after
the IP header, and ends with 7 bytes of padding and the NH byte. Now modifications to the last
two blocks of C0 made in the padding oracle attack produce either incorrectly padded plaintexts
or plaintexts that are correctly padded but in which there are more bytes in the inner datagram
than are indicated in the Total Length field. These plaintexts pass relaxed length checks.

The curious reader might wonder why we have not simply used ICMP echo request messages as
our chosen plaintexts, with the idea that correct padding and NH byte would lead to the generation
of an ICMP echo reply message in the reverse direction on the tunnel. This is a seductive idea, but it
does not work in general. One problem is that the ICMP echo request messages include a checksum
that covers the entire body of the ICMP message, and this body is upset by the introduction of
random blocks during our attack. Thus the checksum would almost always be incorrect and the
ICMP messages would simply be dropped before the reply message was generated. This checksum
problem can be circumvented if relaxed length checking is assumed – we could then exploit ICMP
echo request messages, and indeed it is not hard to see that a single chosen plaintext will do.
However, we would need to make the additional assumption that a single SA is being used for
both ICMP and non-ICMP traffic in this case. For these reasons, we have preferred to present a
tutorial attack based on the TTL field.

This attack introduces the key ideas that we will use in the sequel. The main challenge now is
to move from a chosen-plaintext attack to a ciphertext-only one.

5 An Attack Based on Options Processing

In this section, we present a ciphertext-only attack against tunnel-mode ESP that is based on op-
tions processing. We focus on the case of 64-bit blocks, sketching the 128-bit case at the end of this
section. We assume that relaxed length checking is carried out by IP, sketching the modifications
necessary to handle strict checks later. Otherwise, we make the same operating assumptions as in
Section 4.

Our main idea is to take an existing ciphertext and transform it into a ciphertext carrying
an inner datagram which always produces an ICMP error message because of a failure of options
processing. The transformed ciphertext will then be used in a padding oracle attack similar to
that above. We suppose the attacker has collected a number of target ciphertexts of the form
C = C0, C1, . . . , Cq from the payload of an outer IP datagram that was directed towards GB . This
could represent traffic flowing from HA to HB , for example.

5.1 Preparation

Let C ′ denote one of the target ciphertexts from the tunnel. The preparation phase will be con-
ducted just once on C ′, after which any non-IV block from any other target ciphertext can be
decrypted efficiently. It will be convenient in practice to select a C ′ that is as short as possible.
Let the blocks of C ′ be C ′0, C

′
1, . . . , C

′
r, where we know that r ≥ 3 (because C ′ must carry at least

the header of an inner datagram, occupying 3 blocks).
The preparation stage can be codified as follows; an explanation follows.

1. Modify block C ′0 by flipping bits 6 and 7 to obtain a new block C ′′0 .
2. Set a counter i to 0.
3. Repeat:

a. Modify block C ′′0 so that bytes 4 and 5 contain the binary representation of i. Let C†0
denote the modified block.

b. Prepare an outer datagram directed to GB with payload identical to C ′, except that C ′0
is replaced with C†0 . Inject this modified datagram into the network.

c. Increment i.
Until an ICMP-indicating ciphertext is seen on the tunnel from GB to GA.

We begin by flipping bits 6 and 7 of C ′0, the IV (here we number bits in a block from 0,
starting at the left of a block). This has the effect of changing the IHL field in the inner header
from 5 to 6, thus indicating that one 32-bit word of options are present in the inner header. The
checksum calculation used by IP includes all bytes of the header, including any options bytes, so
the checksum will now almost certainly be completely wrong. Thus we systematically modify bytes
4 and 5 of C ′0 in the loop, setting them to all possible 216 values. This has the effect of modifying
the Identification field in the inner datagram, as discussed in Section 2.8. We inject these modified
ciphertexts into the network as the payloads of outer datagrams directed to GB . After decryption
and depadding, the resulting inner datagrams will be passed on to the IP implementation at GB

for further processing. Because of the modifications to the Identification field, exactly one of these
datagrams will have a correct Header Checksum. It will also pass any length checks (relaxed or
even strict). Options processing will then take place, with the first 4 bytes following the original
inner header now being interpreted as options bytes. These will almost certainly be incorrectly
formatted, leading to the generation of an ICMP type 12 “parameter problem” message. This
message will be relayed through the reverse IPsec tunnel to host HA, and will have a characteristic
length of 9 blocks (assuming the ICMP RFC [19] has been followed and the inner datagram has
at least 64 bits of payload).

We recall from [17] that, upon receipt of a datagram with random bytes in the Options field, an
implementation of IP will produce an ICMP type 12 message with high probability. For example,
this probability is 0.985 in Linux. Thus we can be almost certain that the attack above will succeed
within 216 trials, and on average using 215 trials. In the unlikely event of the options bytes actually
being correctly formatted, a different ciphertext can be tried in a fresh run of this stage.

At the end of this preparation stage, the attacker has in his possession a ciphertext C∗ (say)
with r + 1 blocks that he knows will always lead to the generation of a detectable ICMP message
when it is decrypted, depadded and passed to IP.

5.2 Extracting the Rightmost Two Bytes of a Block

The attacker is now ready to use the r+1 block ciphertext C∗, with blocks denoted by C∗0 , C∗0 , . . . , C∗r ,
to attack an arbitrary target ciphertext block Ci. He proceeds in a similar manner as in Section
4.2: he injects into the network an outer datagram containing as payload the r+3 block ciphertext:

C# = C∗0 , C∗1 , C∗2 , . . . , C∗r , R6, Ci

where R6 is a random block and Ci the target block. The plaintext blocks corresponding to these
new blocks are interpreted as the last bytes of payload data, the padding bytes and the PL and

NH bytes. We know that the gateway GB will discard the plaintext unless the padding is valid and
the NH byte equals 4. By far the most likely valid padding pattern is the one of length zero, with
PL byte 0. When the PL byte does equal 0 and the NH byte 4, decryption and depadding of C#

produces an inner datagram that is passed on to the IP implementation at GB . The introduction
of R6 and Ci does not disturb the inner header. Thus we will have an inner datagram that has a
correct Header Checksum and that has sufficiently many bytes to pass the relaxed length checks
carried out by IP.5 We see that the “old” padding, PL and NH bytes encrypted in blocks C∗r−1, C

∗
r

are now regarded as redundant bytes by IP processing, being located beyond the last byte indicated
by the Total Length field in the inner header. They are thus trimmed by IP. Because of the value
of its IHL field, the inner datagram triggers options processing at GB . And because of the content
of the Options field, an ICMP message is generated in the reverse direction on the tunnel. The
attacker can detect this based on its length.

As usual, the attacker systematically varies R6 in bytes 6 and 7, injects the modified ciphertexts,
and looks for the ICMP-carrying ciphertext in the reverse direction. When this is detected, the
attacker knows that the last two bytes of R6 ⊕ dK(Ci) are equal to 0, 4 with high probability. A
simple additional test, manipulating byte R6

5, can be used to eliminate the unlikely case where the
padding is valid but the PL byte does not equal 0. From this, it is trivial to extract bytes 6 and
7 of plaintext block Pi. The maximum number of trial injections needed is 216, and the average
number 215.

5.3 Extracting the Remaining Bytes

The attacker can proceed to extract the remaining bytes, roughly as in Section 4.3. The attacker
now works with a ciphertext of the form:

C# = C∗0 , C∗1 , C∗2 , . . . , C∗r , R5, Ci

where R5 is equal to the value of R6 that produced an ICMP message when extracting the
rightmost two bytes, except that as before, we set R5

6 = R6
6 ⊕ 1. This ensures that P#, the

decrypted-and-depadded version of C#, ends with bytes 1, 4. Now the attacker systematically
varies R5 in byte 5 and injects the modified ciphertexts. Only when P ′ ends 1, 1, 4 will we again
see an ICMP-indicating ciphertext in the reverse direction. When this is detected, the attacker
knows that byte 5 of R5 ⊕ dK(Ci) is equal to 1. From this, he can deduce byte 5 of Pi.

Continuing in this way, it’s now easy to see how the attacker can extract all the bytes of Pi,
consuming an average of 128 and a maximum of 256 trials per byte.

5.4 Notes on the Attack

The complexity of the preparation phase is, on average, a little more than 215 trials. The subsequent
cost per block is of roughly the same complexity on average. A variant of the attack can also be
applied in the case where the block cipher has 128-bit blocks The overall complexity is roughly
the same as in the 64-bit case.

If strict length checking is being used by the IP implementation, then a much more compli-
cated preparation stage is needed: we aim instead to produce from C∗ a set of ICMP-generating
ciphertexts {C∗0, C∗1, . . . , C∗6} in which C∗j encapsulates an inner datagram whose length equals
j modulo 8, and which contains exactly the correct format for the padding bytes (with no redun-
dant bytes after the payload being tolerated by the IP implementation). This set of ciphertexts
can be built in two stages. First we find the extent of the padding in C∗, by modifying bytes from
right to left starting in the second last block of C∗. If the padding is disturbed, then the padding
format will be incorrect and IPsec will drop the data. On the other hand, if the modification is
made to payload bytes located to the left of the padding, then the padding will be undisturbed and
5 It is easy to show that there is no possibility that the introduction of R6 and Ci produces a long enough

padding pattern so that insufficient bytes remain after depadding to pass even the relaxed length checks
subsequently carried out by IP.

an ICMP message will be generated. Then we simultaneously adjust the Total Length field, the
Header Checksum field (both by manipulating the IV of C∗) and the padding bytes (by modifying
the last-but-one block in C∗). The most efficient way to proceed involves an iterative approach
in which the Total Length field is reduced by one and the padding pattern extended by one byte
in each iteration. The details and the associated complexity analysis are omitted. If strict length
checks are applied, we also need to be a little more careful in extracting plaintext bytes from the
target ciphertext block. We work initially with variants of ciphertext C∗6 when extracting bytes 6
and 7, and then with ciphertexts C∗5 down to C∗0 when attacking the other bytes. These cipher-
texts contain inner datagrams whose Total Length fields have just the right values for extracting
the targeted bytes.

6 An Attack Based on the Protocol Field

Similar ideas to those in the last section can be used to develop an attack which works in the
128-bit case by manipulating the Protocol field in the inner datagram.

The main idea is that an ICMP message will be generated if a host HB receives a datagram
whose Protocol field indicates an upper layer protocol that is not supported at HB . Since protocol
numbers from 138 to 252 are currently unassigned [13], it follows that inverting the two most
significant bits of the protocol field will always result in the generation of an ICMP message.6

In a preparation phase, we capture a ciphertext, then modify its IV to flip bits in the protocol
field and correct the checksum, with the aim of constructing an encrypted inner datagram that
always results in an ICMP message. Since only two bit flips are involved, we can use tables of
masks to correct the checksum; this results in a more efficient preparation phase which requires on
average 7 trials for success (the analysis is the same as the protocol field attack in [17] which also
involved two bit flips). The resulting datagram is then used in an attack which jointly extracts
the last two bytes of each target ciphertext block, followed by the remaining bytes. The details
of how this is done are identical to the attack based on options processing in Section 5, and the
overall complexity is roughly the same (albeit with a much more efficient preparation stage).

One major difference between this Protocol field attack and the options processing attack in
the previous section is that the former only works if a somewhat relaxed IPsec policy is deployed
between GA and GB : we need the policy (or policies) to be protocol non-specific, i.e. to allow
“ANY” protocol field to appear in inner datagrams. Otherwise, bit-flipping in the protocol field
is likely to lead to a failure of policy checks during in-bound processing. Such liberal policies seem
to be quite widely used in VPNs in practice, since VPNs are usually designed to protect all traffic
flowing between gateways, irrespective of the traffic type.

We have not succeeded in developing a 64-bit version of this attack. The barrier is that the
Protocol field is located in the second plaintext block and is not easily manipulated without
upsetting further IP header fields. A substantially more complicated version of the 128-bit attack
can be mounted when strict length checking is carried out; again, the details are omitted.

7 Attacking IPsec’s Traffic Flow Confidentiality Mechanisms

Our techniques can be adapted to defeat the traffic flow confidentiality (TFC) methods specified
in [12], in encryption-only mode. Recall from Section 2 that these comprise TFC padding and the
use of an NH byte of 59 to indicate dummy packets. If these mechanisms are in use, it may be
infeasible for an attacker to attempt a full decryption attack on every datagram he intercepts.
The attacks in this section require much less effort than full decryption attacks. Using them, an
attacker can quickly isolate the datagrams that contain real rather than dummy data, and then
proceed with a full decryption attack against these. The attacks also demonstrate that the TFC
mechanisms specified in [12] require the use of integrity protection in order to be effective.

6 Provided that the original value of the protocol field is 60 or less. This includes both the TCP and UDP
protocols which are of most interest.

Note that, since we assume TFC measures are being used in the IPsec tunnel, the correlation
techniques mentioned in Section 4 will be needed to detect all ICMP messages generated during
the attacks in this section.

7.1 Distinguishing Dummy Datagrams

Given a ciphertext with blocks C = C0, C1, . . . , Cq, we can easily test whether it represents a
dummy packet or not. We prepare a ciphertext C∗ = C∗0 , C∗1 , . . . , C∗r that is known to generate
ICMP messages, through one of the methods described in Sections 5 or 6. Now we simply concate-
nate C∗ and C, and inject the resulting (r+q)-block ciphertext C ′ = C∗0 , C∗1 , . . . , C∗r , C0, C1, . . . , Cq

into the network. Note that the last byte of the decrypted version of C ′ equals the NH byte that
was encrypted in the target ciphertext C. Moreover, if C was correctly padded, then so is C ′. If
the last byte of the decrypted version of C ′ has value 59, the inner datagram will be identified
by the security gateway as a dummy, and it will be discarded before any ICMP message can be
generated. On the other hand, if this last byte has value 4, then the decrypted payload will be
depadded and forwarded to the IP layer, where it will be trimmed and eventually generate the
expected ICMP message. Thus it is possible to discriminate genuine datagrams from dummy ones
using a small number of trials per datagram after the preparation phase. Note that this attack
does require relaxed length checking.

7.2 Defeating TFC Padding

We can always uncover the true length of the inner datagram that is encapsulated in a payload C =
C0, C1, . . . , Cq (thus defeating the TFC padding mechanism) simply by decrypting the ciphertext
block C1 which contains the Total Length field. On the other hand, it can be possible to produce a
more efficient attack with the same objective. We illustrate this in the 128-bit case, using a variant
of our protocol field attack. We assume IP adopts relaxed length checking.

In a preparation phase, we capture an arbitrary ciphertext C ′ from the tunnel and use it
to prepare a sequence of valid ESP trailers containing different amounts of padding. First, we
manipulate C ′ using the method described in Section 6 to create a ciphertext C∗ = C∗0 , C∗1 , . . . , C∗r
that always produces an ICMP message. Then we play with the last two blocks of C∗ using an
obvious modification of the padding oracle attack to create a set of 15 ciphertexts of the form:

C∗i = C∗0 , C∗1 , . . . , C∗r−2, Ri, C
∗
r , 0 ≤ i ≤ 14

such that C∗i is correctly padded and contains a padding pattern of length i, followed by a PL
byte of i and an NH byte of 4. From C∗14, we go on to create a special ciphertext of the form

C∗15 = C∗0 , C∗1 , . . . , C∗r−3, Q15, R15, C
∗
r

such that C∗15 is correctly padded and contains a padding pattern of length 15, followed by a PL
byte of 15 and an NH byte of 4. Here the padding pattern extends over the last 2 blocks. The
total cost of this preparation phase is at most roughly 16 · 28 = 212 trials (because we begin
with a correctly padded ciphertext, there is no step involving 216 trials to set up a PL and NH
combination of 0, 4. This figure also assumes we can detect any ICMP messages based on time
correlations without multiple trials).

Next, we take our target ciphertext C = C0, C1, . . . , Cq, and create from it a (q + 1)-block
ciphertext that contains the same (encrypted) Total Length field and that always produces an
ICMP message (again, using the method of Section 6). The cost of this is on average about 7
trials. Then we replace the last two blocks of this ICMP-generating ciphertext with blocks R0,
C∗r to create a (q + 1)-block ciphertext C# containing a zero-length padding pattern. Because of
relaxed length checking, C# will still generate an ICMP message.

Now we systematically chop blocks out of C#, reducing the number of blocks in the ciphertext
one at a time, and inject the resulting ciphertexts into the network. We begin by removing block

C#
q−2, then block C#

q−3, and so on. In this way, the injected ciphertexts are correctly padded
and have the same ICMP-generating inner header as C#. When an ICMP message is no longer
generated, we know that relaxed length checking has failed, in which case the number of bytes
in the payload must now be less than are indicated in the Total Length field.7 This tells us the
value of the Total Length field up to the nearest block. This part of the attack can of course be
speeded-up using a binary search.

Suppose the last ciphertext to generate an ICMP message is C† = C†0 , C†1 , . . . , C†s , with s + 1
blocks. Then we know that the value of the Total Length field in the inner datagram lies between
16(s− 2) + 15 and 16(s− 1) + 14. Now we can exactly determine the Total Length field. Starting
with i = 1, we replace the last two blocks of C† with Ri, C

∗
r for increasing values of i, and inject

the resulting ciphertexts into the network. When i = 15, we replace the last three blocks of C†

with Q15, R15, C
∗
r . Using the same reasoning as above, we see that ICMP messages will continue to

be generated until the padding pattern is sufficiently long that relaxed length checking fails after
depadding. For example if no ICMP message is generated for i = 1, then we can deduce that the
value of the Total Length field in the inner datagram is 16(s− 1) + 14. If we get to i = 15 and an
ICMP message is still generated, then we can deduce that the Total Length field has its minimum
value 16(s−2)+15. This part of the attack can also be made more efficient using a binary search.

The overall number of trials needed in this length finding attack is (using the binary search
variant and ignoring the preparation step) logarithmic in the ciphertext length. The cost of the
preparation phase can be spread over many target ciphertexts. Even if we only attack a single
ciphertext, include the cost of the preparation step, and assume multiple trials are needed to detect
each ICMP message, the attack is still more efficient than simply decrypting block C1.

We have presented the above attack in the 128-bit case. An obvious variant using our options
processing ideas works in the 64-bit case. However, the attack is much less efficient: now every
target ciphertext needs about 215 trials on average to create an ICMP-generating variant, and it
is roughly as efficient to decrypt C1 directly.

8 Attacking Transport Mode ESP

Our ideas can be adapted to attack transport mode configurations of IPsec using encryption-only
ESP. We sketch how this can be done in this section. We assume the reader is familiar with UDP.

We assume now that ESP is used in transport mode between a pair of hosts. As usual, we assume
that the attacker can intercept ESP-protected datagrams flowing between the hosts, and inject
modified datagrams into the network. We also make our usual assumptions about the presence of
appropriate SAs.

In a preparatory phase, the attacker creates a set of datagrams that are used in the main
attack. We assume the attacker is able to capture a datagram whose payload encapsulates a UDP
message. Such datagrams can in theory be distinguished on the network because they do not result
in acknowledgements, unlike TCP segments. The attacker then manipulates the payload of this
datagram so as to create an encapsulated UDP message which always results in the production
of an ICMP response from the end host receiving it, and which has a UDP checksum field that
is equal to zero. The significance of the latter condition is that a checksum field containing zero
will lead to the result of the checksum calculation being ignored by the processing host, so that
the attacker need not worry about ever fixing the checksum in subsequent stages of the attack.
This is very helpful since the UDP checksum covers the entire message and is therefore disturbed
when, for example, target blocks are spliced onto a payload. The manipulation can be done by
systematically varying fields of the IV corresponding to the UDP checksum field and the UDP
port number field; the ICMP message produced will then be of the “port unreachable” type. These
fields are contained in the first 64 bits of the UDP message, so this can be done even in the case
where a 64-bit block cipher is in use. A simple additional test can be carried out to check that the

7 We assume here that the content of the Total Length field is sufficiently large that we do not end up
chopping out blocks containing bytes of the inner header.

checksum field contains zero (rather than the actual correct value): if the value is zero, then any
further bit flip to the UDP message will still produce an ICMP message.

The attacker then discovers the true length of the encrypted UDP message, by modifying
padding bytes in the last block(s) of the encrypted payload from right to left – once the modification
affects UDP data rather than padding, ICMP messages will be seen once again. Then the attacker
further manipulates the UDP payload, simultaneously varying the length field in the UDP header
(again by manipulating the IV) and the contents of the padding bytes and the PL byte in the
last block(s), to create a set of ICMP-generating encrypted UDP messages whose byte lengths
cover a block. This set of messages has similar properties to the set of chosen plaintexts used in
the tutorial attack in Section 4. A set is needed rather than a single message because UDP (at
least in the OpenSolaris implementation) uses strict length checking, dropping messages if the
number of bytes present in the message does not exactly match the content of the length field.
The preparation phase is now complete.

The main part of the attack now largely follows the same steps as the attack in Section 4, with
a target block being spliced onto the end of one of the pre-prepared encrypted UDP messages at
each stage. Again, the rightmost two bytes need to be extracted jointly, costing on average 215

trials, and this requirement dominates the cost of the attack as a whole.
Note that the attack as sketched can be used to recover non-UDP traffic encrypted using

transport mode, providing it has been protected using the same SA as the initial UDP message.

9 Implementing the Attacks

To implement our attacks, we need to find a suitable implementation of IPsec conforming to the
RFCs. More specifically, we need an implementation that inspects the ESP padding and discards
the inner datagram in the event that it is incorrectly formatted. Because conformance testing
is easier with access to source code, we have focused on open-source implementations of IPsec.
Surprisingly, it was rather difficult to find an open-source implementation that conforms to the
IPsec specifications.

9.1 Linux

The native Linux implementation of IPsec does not inspect the padding; it merely inspects the
Pad Length field and chops off the number of bytes indicated there. Indeed the ESP decryption
code contains the following comment at the point where a padding check should be made:

/* ... check padding bits here. Silly. :-) */

It is evident from this comment that the developers of Linux either do not understand the security
implications of omitting the padding check, or they do not perceive the attack of Bellovin [3] as
posing a serious threat. Recall that Bellovin’s attack only works if the padding is not inspected,
and only then on special length ciphertexts. However, this length condition is quite likely to be
met in some applications, for example, when IPsec is used to protect telnet sessions. Moreover,
the attack requires just 28 chosen plaintexts if variable length padding is permissable.

The lack of a padding check in Linux means that our attacks will not work directly. However,
we can still recover the two rightmost bytes of every plaintext block using variants of our attacks.
We next sketch how this can be done.

First, in a preparation phase, we capture a ciphertext from the tunnel and manipulate the
inner datagram’s header and the ESP trailer fields to produce two special ciphertexts C∗1 and
C∗2 with the following properties. Ciphertext C∗1 with r + 1 blocks has at least 256 more bytes
of payload than are indicated in its Total Length field, and always produces an ICMP message.
Ciphertext C∗2 with s + 1 blocks ends with PL and NH bytes 0,4, has a Total Length field that
indicates that the last payload byte immediately precedes the PL byte, and also always produces
an ICMP message. These ciphertexts can be created using our usual techniques (with some extra

tricks to handle manipulation of the Total Length field for C∗2), at a cost of a small multiple of
216 trials in the 64-bit case, and at much lower cost in the 128-bit case.

We then use C∗1 and C∗2 to obtain the last two bytes of the plaintext Pi corresponding to an
arbitrary ciphertext block Ci in a two-stage attack.

In the first stage, we inject ciphertexts of the form

C∗10 , C∗11 , . . . , C∗1r−2, R, Ci,

replacing the last block of C∗1 with the target ciphertext block Ci and using a random block R.
We then use a counter to make modifications to the last byte of R until an ICMP message is
observed. When this occurs, we know that the decrypted version of the injected ciphertext ends
with 4, because otherwise either a policy violation would occur, or (in implementations like Linux
where policy checking is not carried out) the decrypted ciphertext would be passed to an upper
layer protocol implementation other than IP that would most likely just drop the message. From
this knowledge and Ci−1, we can easily find the rightmost byte of Pi. Notice that here we have
ensured that enough extra bytes are present in C∗1 so that depadding does not corrupt the inner
datagram header, irrespective of the uncontrolled content of the PL field.

In the second stage, we use C∗2 to extract the second-last byte of Pi. We inject ciphertexts of
the form

C∗20 , C∗21 , . . . , C∗2s−2, R, Ci,

now replacing the last block of C∗2 with Ci and re-using the successful value of R from the
first stage. We now use a counter to make modifications to the second-to-last byte of R until
an ICMP message is observed. When this occurs, we know that the decrypted version of the
injected ciphertext ends with 0, 4, because any longer valid padding pattern would result in an
inner datagram with too few payload bytes to pass IP’s relaxed length checks. (Recall that we set
the Total Length field of C∗2 to point to the payload byte immediately to the left of the PL byte.)
From this, we can deduce the second last byte of Pi.

The worst-case cost of extracting the rightmost two bytes from each plaintext block is only 29

trials with this attack (28 trials for each byte). This attack then provides an example where it is
possible to break through the “216 barrier” that was imposed on our earlier attacks by the need
to jointly extract the rightmost two bytes.

A simplified version of this attack was carried out against the Linux implementation of IPsec
using a 128-bit block cipher (AES) and a test setup similar to that in [17]. Our implemented
attack in fact extracts the rightmost two bytes jointly, essentially just using the second stage of
the above attack. Here an ICMP message is generated only if the last two bytes of plaintext are
correctly formatted with values 0, 4, and the cost of the attack is at worst 216 trials. The attack
successfully recovered the last two bytes of every block, within 216 trials.

Of course, better attacks are possible against the Linux implementation of IPsec – see [17].
But this experimental result illustrates that real attacks can be built using ESP trailer oracles.
In turn this shows that our understanding of the operation of IPsec and IP processing is correct,
so providing evidence that, if proper padding checks were carried out, then there should be no
barrier to the operation of the full attacks in Sections 5 and 6.

9.2 Other Open Source Implementations

The OpenBSD, FreeBSD, and NetBSD IPsec implementations of IPsec are all the result of the
KAME project. They all use a crude padding check: either the PL byte is zero or else it must be
equal to the last padding byte. This choice is somewhat justified as the ESP RFCs do not specify
explicitly how the padding should be checked. This crude padding check is also employed by MacOS
X, as it makes use of the KAME IPsec implementation. The nature of this padding check means
that all these implementations are vulnerable to the chosen-plaintext attack of Bellovin. They are
also vulnerable to obvious variants of the ciphertext-only attacks in this paper: the attacker first
arranges for the pattern 0,4 to appear at the end of the last plaintext block, and then the pattern

1,1,4. These variants can extract the rightmost 3 bytes of any block using slightly more than 216

trials.
Openswan and strongSwan, two independent continuations of the FreeS/WAN project, pro-

vide alternative IPsec implementations for Linux. Note that Openswan and strongSwan do not
allow encryption-only configurations to be selected; nevertheless this policy is enforced by the key
management daemon pluto, and it should therefore be possible to configure an encryption-only
SA manually. Both do carry out a full padding check, but fail to drop the inner datagram in the
event that the padding is incorrect. This is not inconsistent with the ESP RFCs, as these do not
explicitly mandate datagram drops, but does immediately render them vulnerable to Bellovin’s
attack.

9.3 OpenSolaris

The OpenSolaris implementation of IPsec can be configured to perform a full padding check that
drops datagrams, by adjusting a parameter ipsecesp padding check. If this parameter has value
0, the padding is not inspected at all, while the default value 1 indicates the KAME padding check
should be carried out, and a value of 2 mandates a full padding check. To its credit, the OpenSolaris
implementation does issue a warning to a user selecting an encryption-only configuration.

Our initial examination of the build 51 source code, reproduced in Appendix A, showed that
the full padding check implementation was in fact incorrect: it produced an error when presented
with length zero padding (where the PL and NH bytes are 0,4), unless the PL byte is itself preceded
either with a zero byte or with another valid padding sequence of any length. Since these additional
requirements refer to bytes from the payload of the inner datagram, and since the OpenSolaris code
does allow zero-length padding to be selected during encryption, we had evidently discovered a
bug in the OpenSolaris implementation. This bug resulted in legitimate datagrams being dropped
during depadding, thus preventing correct communication between IPsec peers. Unfortunately,
this bug also prevented our attacks from working. The bug was subsequently documented8 and
fixed in OpenSolaris build 55, after which we were able to successfully implement our attacks. We
report on this next.

The experimental setup we used is essentially that of Figure 3, with an attack machine placed
on the network between the two gateways. We focused on the protocol field attack of Section
6, with Gateway B running OpenSolaris build 55 and with Gateway A, Host A and Host B all
running Linux kernel version 2.6.4. This setup meant that ICMP responses generated at Host
B were contained in relatively long datagrams (since Linux follows [1] rather than [19] when
implementing ICMP), but these were still detectable in the tunnel based on their lengths. We
note that the production of ICMP messages is generally a rare event in our attacks, meaning that
they are not particularly affected by ICMP rate-limiting. The VPN was configured to use AES
with a 128-bit key. We ran the attack against 100 different ciphertext blocks (for a fixed key). The
preparation phase required only a handful of trials. The average number of trials then needed to
extract the rightmost two bytes of each block was 31343, while the average number of trials for
each of the other 14 bytes was 128.6. The average number of trials to decrypt each complete block
was 33144. These averages are in-line with our complexity analysis for this attack. The number
of trials per second we could perform was limited only by the speed of our test network; in our
setup, each block took only a few tens of seconds to decrypt.

9.4 Summary

It is evident that all of the open-source IPsec implementations we examined were deficient to some
extent in their treatment of padding. Many are still vulnerable to Bellovin’s attack [3], while others
do not drop badly padded payloads. The single implementation that does full padding checks and
drops failing payloads did not correctly implement the checks at first. Once this bug was fixed, our
attack was successful. In summary, we have attacks that work only if implementors do properly
8 http://bugs.opensolaris.org/bugdatabase/view_bug.do?bug_id=6478675

follow the RFCs, and attacks (from [3, 17] and variants of our padding oracle attacks) that work
because implementors do not follow the RFCs.

10 Conclusions

We have presented attacks showing that encryption-only configurations of IPsec, as defined in and
allowed by the IPsec standards, are highly insecure. These new attacks extend and complement the
implementation-specific attacks in [3, 17]. Taken all together, the various attacks show that IPsec
in encryption-only configurations is vulnerable, whether or not implementors follow the RFCs and
carry out proper padding checks.

We consider it unfortunate that the IETF did not take the opportunity to outlaw encryption-
only configurations once and for all in the new generation of IPsec RFCs (RFCs 4301-4309).
Instead, we are reliant on implementors knowing what to do with warnings in the standards and
on end-users to select their configurations appropriately. As was argued in [17, 18], the risk that
end-users will actually select weak configurations is very real. A more conservative approach, which
would seem to be appropriate in a security standard, might even have led to such a change after
the original attacks of Bellovin were published [3]. However, the need for backwards compatibility
seems to have over-ridden security concerns. It is then somewhat ironic that the IETF’s selected
solution to Bellovin’s attacks – to recommend that padding checks should be carried out – is
precisely what enables our new attacks.

In the light of our new attacks, some of the advice for implementors in [12] for when ESP
might be usable in encryption-only configurations now appears to be rather ill-informed. For
example, the idea that adequate security may be obtained “when higher-layer authentication is
offered independently” is incorrect: our attacks work irrespective of any upper layer protection
that might be applied, and some of our attacks work in certain configurations even if integrity
protection is provided by AH. It appears that the IETF currently has no plans to further develop
the IPsec standards; thus we seem to be stuck with such advice for some time to come.

The attacks in this paper also highlight some of the complexities inherent in properly spec-
ifying and then implementing secure communication protocols. For example, we have seen the
tendency for implementors to ignore requirements to perform policy and/or padding checks stated
in the IPsec RFCs, and how this reduces or enhances the applicability of attacks. (Neverthe-
less, our attack techniques are now sufficiently general that some variant will break almost any
encryption-only configuration.) We’ve also seen how attacks like Bellovin’s, well-known in the aca-
demic and IPsec standards communities, are either not taken seriously or not known about by
implementors. Our analysis of various open-source implementations contradicts the often-made
claim that an open-source approach results in better and more secure software than closed-source
development. Indeed, by far the cleanest code we saw was that from OpenSolaris, which has only
recently emerged from a closed-source environment. However, even that code failed to perform a
full padding check correctly, and only had this check available as a non-default option. We note
that similar observations concerning open-source security software were made in [16].

The research in this paper is located at the rather murky interface between cryptographic
theory, security standards, and software development. It seems to us that this general area needs
to be much better understood if we are to ensure that the useful outputs of theory are adequately
carried forward into implementations. We certainly need to produce specifications that are much
more precise about how to handle security-sensitive issues such as padding, policy checking and au-
diting, even if RFCs are traditionally aimed at ensuring inter-operability rather than security. For
example, it is probably not enough to simply specify that the padding in ESP should be checked.
Rather, it seems necessary to specify exactly how it should be checked, what the consequences
of not checking it might be, and what actions should be taken if the checks fail. As we’ve seen,
different implementors respond very differently to any vaguer prescription, making their software
vulnerable to old attacks. Including explanations and references for why certain checks need to
be performed would encourage better implementations and persuade implementors that the RFCs
were not just being fussy. However, as we have shown, just getting padding checks right is not
enough to prevent attacks on encryption-only ESP.

Many factors would reduce the reliability of our attacks in real networks, for example, ICMP
blocking mechanisms in place at firewalls. However, it would seem unwise to rely on these weak
protections to prevent our attacks. Ultimately, it seems better to be more defensive from the outset
and outlaw configurations that are known to have security weaknesses.

Acknowledgements

We thank Dan MacDonald for his assistance with the OpenSolaris implementation of IPsec.

References

1. F. Baker, “Requirements for IPv4 Routers”, RFC 1812, June 1995.

2. M. Bellare, T. Kohno and C. Namprempre, “Breaking and provably repairing the SSH authenticated
encryption scheme: A case study of the Encode-then-Encrypt-and-MAC paradigm.” ACM Transac-
tions on Information and System Security (TISSEC), Vol. 7, No. 2, May 2004, pp. 206–241.

3. S. Bellovin, “Problem Areas for the IP Security Protocols”, in Proceedings of the Sixth Usenix Unix
Security Symposium, pp. 1–16, San Jose, CA, July 1996.

4. N. Borisov, I. Goldberg and D. Wagner, “Intercepting Mobile Communications: The Insecurity of
802.11”, in Proc. MOBICOM 2001, ACM Press, 2001, pp. 180-189.

5. B.Canvel, A.P. Hiltgen, S. Vaudenay and M. Vuagnoux, “Password Interception in a SSL/TLS Chan-
nel,” in D. Boneh (ed.), Advances in Cryptology – CRYPTO 2003, LNCS Vol. 2729, Springer-Verlag,
2003, pp. 583–599

6. Cisco “Using Management Center for VPN Routers 1.3 — Working with Building Blocks”, avail-
able from http://www.cisco.com/en/US/products/sw/cscowork/ps3994/products_user_guide_

chapter09186a00801f596a.html. Last accessed 29th March 2007.

7. N. Doraswamy and D. Harkins. IPsec: the new security standard for the Internet, Intranets and Virtual
Private Networks (second edition), Prentice Hall PTR, 2003.

8. S. Frankel, K. Kent, R. Lewkowski, A.D. Orebaugh, R.W. Ritchey and S.R. Sharma, “Guide to IPsec
VPNs”, NIST Special Publication 800-77, Dec. 2005.

9. S. Kent and R. Atkinson, “Security Architecture for the Internet Protocol”, RFC 2401, Nov. 1998.

10. S. Kent and R. Atkinson, “IP Encapsulating Security Payload (ESP)”, RFC 2406, Nov. 1998.

11. S. Kent and K. Seo, “Security Architecture for the Internet Protocol”, RFC 4301 (obsoletes RFC
2401), Dec. 2005.

12. S. Kent, “IP Encapsulating Security Payload (ESP)”, RFC 4303 (obsoletes RFC 2406), Dec. 2005.

13. Internet Assigned Numbers Authority (IANA), “Assigned Internet Protocol Number.” Available from
http://www.iana.org/assignments/protocol-numbers.

14. Internet Protocol, RFC 791, Sept. 1981.

15. C.B. McCubbin, A.A. Selcuk and D. Sidhu, “Initialization vector attacks on the IPsec protocol suite.”
In 9th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative En-
terprises (WETICE 2000), IEEE Computer Society, 2000, pp. 171–175.

16. P.Q. Nguyen, “Can we trust cryptographic software? Cryptographic flaws in GNU Privacy Guard
v1.2.3”, in C. Cachin (ed.), Advances in Cryptology – EUROCRYPT 2004, LNCS Vol. 3027, Springer-
Verlag 2004, pp. 555–570.

17. K.G. Paterson and A.K.L. Yau, “Cryptography in theory and practice: The case of encryption in
IPsec.” In S. Vaudenay (ed.), Advances in Cryptology – EUROCRYPT2006, LNCS Vol. 4004, Springer-
Verlag, 2006, pp. 12-29. Full version available at http://eprint.iacr.org/2005/416.

18. K.G. Paterson and A.K.L. Yau, “Lost in translation: theory and practice in cryptography.” IEEE
Security and Privacy, Vol. 4, No. 3, May/June 2006, pp. 69-72.

19. J. Postel, “Internet Control Message Protocol”, RFC 792, Sept. 1981.

20. S. Vaudenay, “Security flaws induced by CBC padding – applications to SSL, IPSEC, WTLS...”, in
L.R. Knudsen (ed.), Advances in Cryptology – EUROCRYPT 2002, LNCS Vol. 2332, Springer-Verlag
2002, pp. 534–545.

21. T. Yu, S. Hartman and K. Raeburn, “The perils of unauthenticated encryption: Kerberos version 4”,
in Proc. NDSS 2004, The Internet Society, 2004.

Appendix A: OpenSolaris full padding check source code

We reproduce below the build 51 OpenSolaris ‘C’ source code which is responsible for carrying
out the full padding check. At the start of this code, the variable last points to the byte before
the Pad Length byte (ostensibly, the last byte of padding, but actually a byte of payload when the
Pad Length byte contains zero). It can be seen that this code does not properly handle the case
where the content of the Pad Length field is zero: the main loop between lines 914 and 926 only
exits without error if the byte before the Pad Length field is also zero, or if the bytes prior to the
Pad Length field form a valid padding pattern of some non-zero length. This code was replaced in
build 55.

902 if (ipsecesp_padding_check > 1) {
903 uint8_t *last = (uint8_t *)(scratch->b_wptr - 3);
904 uint8_t lastval = *last;
905
906 /*
907 * this assert may have to become an if
908 * and a pullup if we start accepting
909 * multi-dblk mblks. Any packet here will
910 * have been pulled up in esp_inbound.
911 */
912 ASSERT(MBLKL(scratch) >= lastval + 3);
913
914 while (lastval != 0) {
915 if (lastval != *last) {
916 ipsec_rl_strlog(info.mi_idnum, 0, 0,
917 SL_ERROR | SL_WARN,
918 "Possibly corrupt ESP packet.");
919 esp1dbg(("padding not in correct"
920 " format:\n"));
921 ESP_BUMP_STAT(bad_padding);
922 *counter = &ipdrops_esp_bad_padding;
923 return (B_FALSE);
924 }
925 lastval--; last--;
926 }
927 }

