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Abstract. Trivium is a stream cipher candidate of the eStream project.
It has successfully moved into phase 2 of the selection process and is
currently in the focus group under the hardware category. As of yet
there has been no attack on Trivium faster than exhaustive search.
Bivium is a class of simplified versions of Trivium that are built on the
same design principles. Their design serves as a tool for investigating
Trivium-like ciphers with a reduced complexity. This provides an insight
into effective methods of attack that could be extended to Trivium. There
have been successful attempts in the cryptanalysis of Bivium ciphers.
This paper focuses on a type of guess and determine attack that utilises
the satisfiability solver MiniSat. Given a minimal amount of keystream
MiniSat determines the remaining unknown state, leading to complete
key recovery.

1 Introduction

The eStream project [5] was established with the aim of finding a cryptographic
primitive for a stream cipher. There are two main categories, software encryption
and hardware encryption. Of the criteria specified, the two main goals being that
the cipher is secure and fast. There were 34 proposals, some of which have suc-
cessfully passed the introductory phase 1 and have continued to phase 2. Several
of the ciphers exhibited weaknesses in security and were dropped. Of the ciphers
that passed to phase 2, a handful gained special recognition for their design
and have been placed within a Focus group under their corresponding category.
One of these ciphers is Trivium which was designed for hardware encryption.
Trivium, designed by Cannière and Preneel [3], is both simple and elegant in its
design. Although this design has attracted alot of interest from cryptanalysts, it
remains unbroken.

It is well known that, breaking a good cipher should require “as much work
as solving a system of simultaneous equations in a large number of unknowns of
a complex type”, see Shannon [6]. The structure of Trivium directly establishes
a system of sparse quadratic equations. However, solving a system of quadratic
equations (known as the MQ problem) is generally NP-hard.

This paper converts the problem of solving a system of non-linear equations
into a corresponding satisfiability problem. The method involves the application
of multiple strategies to convert the system of equations in algebraic normal form



(ANF) to a system of clauses in conjunctive normal form (CNF). A subset of
state variables are guessed to reduce the complexity of the system, which is then
solved by the satisfiability solver MiniSat [8]. The solution returned by MiniSat
is the remaining unknown state variables. Once the entire state is known, the
cipher can be clocked backwards to eventually recover the private key. This
attack requires minimal known keystream. The following analysis focuses on the
cipher Bivium [4] to gain an understanding of the effectiveness of this method
and how it may be applied to Trivium.

2 Previous results

Raddum introduces a new method of solving systems of sparse quadratic equa-
tions and applies it to Trivium, see [4]. The complexity arrising from this attack
on Trivium is O(2162), which is much worse than exhaustive key search. In his
paper, Raddum introduces two simplified versions of Trivium, called Bivium-A
and Bivium-B. The first version was broken “in about one day”, the second
required about 256 seconds.

A.Maximov and A. Biryukov [2] use a different approach to solve the sys-
tem of equations produced by Trivium by ‘guessing’ the value of state bits (or
the product of state bits). In some cases this reduces the system of quadratic
equations to a system of linear equations that can be solved (for example by
Gaussian Elimination). The complexity of this attack is O(c · 283.5) for Trivium
and O(c · 236.1) for Bivium, where c is the time taken to solve a sparse system
of linear equations. They do not give a complexity estimate for the value of c,
however from private correspondence they provide a rough estimate of O(216.2)
for Bivium.

3 Description of Bivium

Let xt
i ∈ GF (2) denote the i−th variable of vector x at clock time t. Addition

and multiplication, denoted by + and · respectively, are done over GF (2).

Bivium consists of a non-linear feedback shift register (NLFSR) coupled with
a linear filter function (LF). The NLFSR operates on a 177-bit state, denoted
by (st

1
, ..., st

177
). The LF takes a linear combination of the state to produce the

keystream. Each clock of the cipher involves updating two bits of the state and
outputting one bit of keystream, denoted by zt

i . The cipher continues to run
until the required number of keystream bits is output. The following algorithm



provides a full description of the keystream generation:

for i = 1 to N do

t1 ← s66 + s93

t2 ← s162 + s177

zi ← t1 + t2

t1 ← t1 + s91 · s92 + s171

t2 ← t2 + s175 · s176 + s69

(s1, s2, ..., s93)← (t2, s1, ..., s92)

(s94, s95, ..., s177)← (t1, s94, ..., s176)

end for

Like Trivium, Bivium incorporates a similar Key and IV setup where the cipher
is clocked a number of times to initialise the state. Our analysis does not make
use of this initialisation process and will not be discussed further.

4 Attacking Bivium

This attack method consists of two separate stages, a pre-attack computation
stage and an attack stage. The pre-attack computation involves the following
events:

1. Produce a system of equations that describe Bivium.
2. Convert the system of ANF equations into a system of CNF clauses.

Each of these events have their own strategy which will be discussed. The attack
stage consists of the following repeated sequence of events:

1. Guess m state variables and substitute into the system of clauses.
2. Solve the resulting clauses.

Both these events also contribute several different strategies.
The time complexity of the attack is dependent on the number of state vari-

ables guessed and the time taken to solve the clauses. If the time taken to solve
the resulting clauses is Tm clock-cycles for a m-bit guess, the complete state can
be recovered in Tm · 2

m−1 clock-cycles on the average.

5 Pre-Attack stage

5.1 System of Bivium equations

A system of keystream equations are composed such that each output keystream
bit (zt

i) is related to the same state (at clock time t). That is, equations of the
following form:

zt
i + Ai(s

t
1, . . . , s

t
177) = 0,

where i = 1 . . .N (N is the number of equations required). A subset of the
keystream equations is listed in the Appendix 10.



5.2 Converting ANF to CNF

The input to MiniSat is in the DIMACS graph format [7] which specifies that
set of clauses are in conjunctive normal form (CNF).

The running time complexity of MiniSat depends on the number of variables
and clauses in the system. Converting an equation in ANF with α monomials
produces 2α−1 CNF clauses; see [1].

Different strategies are needed to handle clause expansion introduced by this
process:

1. The ‘cutting’ number - split the equations to reduce the number of mono-
mials per equation (density).

2. Gaussian Elimination - unevenly distribute the frequency of the variables.
3. Replace common groups of monomials by new variables.

The cutting method introduced by Bard et al.[1] was a necessary step to
reduce the clause production in the conversion of the equations to CNF. There
is a tradeoff between the sparsity of the equations and the production of new
variables since each cut introduces a new variable. Experiments determined that
the ‘optimal’ cutting number for Bivium equations was five.

It is stated in [1] that a preprocessing scheme based on Gaussian elimination
reduces the complexity of the system. However in our situation this method
increased the density of the equations, thereby degrading the performance of
MiniSat.

The last method searches for groups of monomials which are repeated in
multiple equations. A new variable is introduced which represents the sum of
the common group of monomials. This reduces the density of the equations
while minimising the introduction of new variables.

For example, consider the following Bivium equations:

s66 + s93 + s162 + s177 + z1 = 0,

s27 + s69 + s96 + s111 + s162 + s175 · s176 + s177 + z67 = 0.

The total number of clauses produced from these equations is 24 + 27 = 144.
However the Bivium feedback function is directly related to the output function
and so (s162 + s177) occurs in both equations.

Introducing a new variable a1 = s162 + s177 gives a new system of equations:

s66 + s93 + a1 + z1 = 0,

s27 + s69 + s96 + s111 + s175 · s176 + a1 + z67 = 0,

s66 + s177 + a1 = 0.

Now the total number of clauses produced by this set of equations is 23+26+22 =
76. This reduction in clauses is obtained at the cost of introducing a new variable.
The limit on how many new variables are introduced and the total reduction of
clauses is determined by experimentation.



6 Attack stage

The attack stage consists of guessing a subset of the state variables and using
MiniSat to recover the remaining variables. MiniSat will return UNSATISFI-
ABLE if the guess is incorrect, in that case another guess is tried. This process
continues until MiniSat returns SATISFIABLE. At this stage the entire state
vector has been recovered.

6.1 Guess state variables

Many strategies can be used in selecting which subset of state bits to guess.
These include:

1. Select a subset of the variables which occur with the highest frequency in the
set of equations - reduces the maximum number of monomials per variable
guessed.

2. Select a subset of the variables that occur in the quadratic monomials -
reduces the non-linearity of the system.

3. Select a subset of the quadratic monomials - (In this strategy we assign a
guess to the product of two variables. The initial guess should be zero, since
the probability of this being true is 3/4 (for independent variables))

4. Select a subset of alternate variables - all quadratic monomials are the prod-
ucts of two adjacent bits (see example below).

Consider the quadratic monomials in the following subset of Bivium equa-
tions:

s24 + s91 · s92 + s93 + s108 + s159 + s171 + s172 · s173 + s174 + z70 = 0,

s23 + s90 · s91 + s92 + s107 + s158 + s170 + s171 · s172 + s173 + z71 = 0,

s22 + s89 · s90 + s91 + s106 + s157 + s169 + s170 · s171 + s172 + z72 = 0,

s21 + s88 · s89 + s90 + s105 + s156 + s168 + s159 · s170 + s171 + z73 = 0.

To reduce all the quadratic terms to linear terms we need only guess the variables
{s89, s91, s170, s172}. Thus 8 quadratic terms become linear by guessing four of
the variables.

6.2 Solving the equations

To solve the system of equations arsing from Bivium we used the satisfiability
solver MiniSat [8]. As the complexity of the MiniSat algorithm is very difficult to
analyse we have developed several solution strategies based on experiments. The
different strategies provided a large spread of MiniSat computing times making
it difficult to pinpoint the best strategy to use in the average case. (We hope to
report more on this in the future.)



Hamming weights of solutions We observed that the Hamming weights of
the solutions (state vectors) affected the performance of MiniSat. Figure 1 plots
the average running time of MiniSat against the Hamming weight of random
states when 40 bits of the state are guessed. In the graph we distinguish between
times that MiniSat requires to return SAT or UNSAT.
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Fig. 1. MiniSat Time vs. State Weight

From this graph we derive two important observations which affect the av-
erage running time of MiniSat:

1. MiniSat returns faster when the guess is correct.
2. MiniSat running time increases with weight.

Therefore during the attack stage a limit should be set on the running time
of MiniSat. If this limit is reached the guess is most likely incorrect and another
guess should be tried.

Furthermore, in order to evaluate an average running time for MiniSat, we
must observe how the probability distribution of the state varies with respect to
the weight. The observed weights of random states over multiple clock times are
given in Figure 2.

This graph indicates that for the majority of time clocks the state has weight
of approximately half the state length. Since the bits being guessed during the
attack stage are a subset of the state we have no reason to suspect that the
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Fig. 2. Probability distribution on state weight

weight distribution of these subsets (correct guesses) is uniformly distributed. In
fact the weight distribution is Hypergeometric.

For a state of length n with weight wn, the probability of a subset of length
m having weight (wm) equal to k is:

Pr(wm = k) =

(

wn

k

)(

n−wn

m−k

)

(

n
m

) .

We can generalize this result by averaging over the probability distribution
of Bivium states with respect to weight. We obtain the overall probability that
a m-bit subset of any Bivium state has weight k:

Pr(wm = k) =

n
∑

i=0

Pr(wn = i) ·

(

i
k

)(

n−i
m−k

)

(

n

m

) .

For example, the probability distribution of 10-bit subsets of state with re-
spect to weight is displayed in the Table 1.

On the average we expect to reach a correct guess when

l
∑

i=k

Pr(wm = i) ≥ 1/2, (1)



k 0 1 2 3 4 5 6 7 8 9 10

Pr(wm = k) 0.001 0.01 0.05 0.12 0.21 0.25 0.20 0.11 0.04 0.01 0.0009

Table 1. Probability distribution of 10-bit subsets

for some interval [k, l]. The total number of guesses required to achieve this is

G =

l
∑

i=k

(

m

i

)

.

By this method we will obtain an increase in efficiency when G < 2m−1, since
2m−1 is the expected average when iterating over all consecutive guesses from 0
to 2m − 1.

7 Total attack time

Let Tm denote the time that MiniSat takes to return SAT or UNSAT given a
m-bit guess. Then the total attack time is Tm · 2

m−1.

Figure 3 gives the total attack times for different values of m which was
observed experimentally.

We see that the optimal attack time on Bivium occurs when 34-bits of the
state are guessed. The average MiniSat running time on this system is 440 ≈
28.8 seconds. Using the Hamming weight guessing strategy (Section 6.2), the
corresponding probabilities that a 34-bit guess has weight k are shown in Figure
4.

From this distribution it follows that the values of k and l satisfying (1) are
17 and 20 respectively. The corresponding number of guesses required to achieve
this is G =

∑

20

i=17

(

34

i

)

≈ 232.8.

This strategy gives a slight increase in efficiency compared to a generic guess-
ing strategy such as iterating all consecutive values from 0 to 2m − 1.

The overall average attack time on Bivium is 232.8 · 28.8 = 241.6 seconds.
Raddum states that approximately 213.3 keys can be searched exhaustively in 1
second, which gives 255 as the approximate complexity of our attack.

7.1 Minimum running time of MiniSat

In our experiments we encountered many instances where MiniSat completed in
a fraction of the average time. In 10% of the tests there was at least one case
which was solved in only 5% of the average time. Hence if we run parallel MiniSat
processes on a minimum of 10 different blocks of keystream we can expect to
encounter a system that is solved in 5% of the average time. This strategy gives
the best complexity of 250.6 for a 34-bit guess.
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8 Bivium-A

Bivium-A is a simplification of Trivium which was analysed by Raddum [4].
Bivium-A differs from Bivium (Bivium-B) in the linear output filter. The output
is

zi ← t1,

a combination of only two state variables. This leads to keystream equations of
the type:

zi + sj + sk = 0.

Where zi ∈ {0, 1}. Upon substitution of the observed keystream, these simple
keystream relations directly connecting two state variables allow a large reduc-
tion in the number of variables in the system. In comparison to Bivium, this
system of clauses has such a reduced complexity that it can be solved directly
by MiniSat without the need for guessing state variables.

The system of equations is converted to CNF by cutting the equations into
blocks of five. MiniSat was run on a sample of 100 random states and the results
are plotted in Figure 5.
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Fig. 5. Attack time for Bivium-A

The average running time to recover the state (and hence the key) of Bivium-
A is 21 seconds. The minimum observed time was 0.5 seconds, while the max-
imum was 60 seconds. This can be compared to Raddum’s algorithm which
recovers the state of Bivium-A in ‘about a day’ [4].



9 Summary of our results

Due to the unpredictable behaviour and complexity of the MiniSat algorithm, the
majority of results given in this paper are derived from experiments. We estimate
the best complexity for the attack on Bivium to be O(251). This algebraic attack
recovers the private key with observing minimal amounts of keystream (1780
bits). The simpler version Bivium-A is completely broken within 21 seconds on
the average, where only 178 bits of keystream are required.
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10 Appendix

s66 + s93 + s162 + s177 + z1 = 0,

s65 + s92 + s161 + s176 + z2 = 0,

...

s1 + s28 + s97 + s112 + z66 = 0,

s27 + s69 + s96 + s111 + s162 + s175 · s176 + s177 + z67 = 0,

s26 + s68 + s95 + s110 + s161 + s174 · s175 + s176 + z68 = 0,

s25 + s67 + s94 + s109 + s160 + s173 · s174 + s175 + z69 = 0,

s24 + s91 · s92 + s93 + s108 + s159 + s171 + s172 · s173 + s174 + z70 = 0,

s23 + s90 · s91 + s92 + s107 + s158 + s170 + s171 · s172 + s173 + z71 = 0,

...

s10 + s77 · s78 + s79 + s94 + s145 + s157 + s158 · s159 + s160 + z84 = 0,

s9 + s66 + s76 · s77 + s78 + s91 · s92 + s93 + s144 + s156 + s157 · s158 + s159 + s171 + z85 = 0,

s8 + s65 + s75 · s76 + s77 + s90 · s91 + s92 + s143 + s155 + s156 · s157 + s158 + s170 + z86 = 0,

...

s1 + s58 + s68 · s69 + s70 + s83 · s84 + s85 + s136 + s148 + s149 · s150 + s151 + s163 + z93 = 0,

s57 + s67 · s68 + s82 · s83 + s84 + s135 + s147 + s148 · s149 + s150 + s175 · s176 + s177 + z94 = 0,

...

s16 + s26 · s27 + s41 · s42 + s43 + s94 + s106 + s107 · s108 + s109 + s134 · s135 + s136 + z135 = 0,

s15 + s25 · s26 + s40 · s41 + s42 + s66 + s91 · s92 + s93 + s105 + s106 · s107 + s108 + s133 · s134

+ s135 + s171 + z136 = 0,

s14 + s24 · s25 + s39 · s40 + s41 + s65 + s90 · s91 + s92 + s104 + s105 · s106 + s107 + s132 · s133

+ s134 + s170 + z137 = 0,

...

s4 + s14 · s15 + s29 · s30 + s31 + s55 + s80 · s81 + s82 + s94 + s95 · s96 + s97 + s122 · s123

+ s124 + s160 + z147 = 0,

s3 + s13 · s14 + s28 · s29 + s30 + s54 + s66 + s79 · s80 + s81 + s91 · s92 + s93 + s94 · s95 + s96

+ s121 · s122 + s123 + s159 + s171 + z148 = 0


