Attacking Bivium with MiniSat

Cameron McDonald, Chris Charnes and Josef Pieprzyk

Centre for Advanced Computing, Algorithms and Cryptography,
Department of Computing, Macquarie University
{cmcdonal, charnes, josef }@ics.mqg.edu.au

Abstract. Trivium is a stream cipher candidate of the eStream project.
It has successfully moved into phase two of the selection process and is
currently in the focus group under the hardware category. As of yet there
has been no attack on Trivium faster than exhaustive search.

Bivium-A and Bivium-B are simplified versions of Trivium that are built
on the same design principles. Their design serves as a tool for investi-
gating Trivium-like ciphers with a reduced complexity. This provides an
insight into effective methods of attack that could be extended to Triv-
ium. There have been successful attempts in the cryptanalysis of Bivium
ciphers.

This paper focuses on a type of guess and determine attack that utilises
the satisfiability solver MiniSat. Given a minimal amount of keystream
MiniSat determines the remaining unknown state, leading to complete
key recovery.

1 Introduction

The eStream project [6] was established with the aim of finding a cryptographic
primitive for a stream cipher. There are two main categories in the call - software
encryption and hardware encryption. The two main goals stated in the specifi-
cation criteria are that the cipher is secure and fast. Of the 34 proposals which
were received, some have successfully passed the introductory phase one and
continued to the second phase. The call is now in phase three of the evaluation
process.

The ciphers which exhibited weaknesses in security were dropped in the first
two phases. A handful of the proposals which gained special recognition for their
design have been placed within a Focus group. One such proposal by Canniere
and Preneel [4] is Trivium - a design which was optimized for hardware encryp-
tion. The design of Trivium is simple and elegant.

Although this design has attracted much interest from cryptanalysts it re-
mains unbroken. It is well known that breaking a good cipher should require
‘as much work as solving a system of simultaneous equations in a large number
of unknowns of a complex type’; Shannon [7]. The structure of Trivium can be
directly expressed as a system of sparse quadratic equations over GF'(2). How-
ever, solving systems of quadratic equations - known as the MQ problem, is in
general a NP-hard problem.

In this paper we convert the problem of solving a system of non-linear equa-
tions over GF'(2) into a corresponding SAT-problem. That is, we convert the
algebraic equations into a propositional formula in conjunctive normal form
(CNF). We use a SAT-solver to solve the SAT-problem, which allows us under
certain conditions to recover the key. Our method is based on multiple strategies
for converting the algebraic normal form (ANF) of the equations describing the
cipher into a propositional formula.

We need to guess a subset of the state variables in order to reduce the com-
plexity of the system, before it can be solved by the SAT-solver MiniSat [9]. The
solution returned by MiniSat is the remaining unknown state variables. Once
the entire state is known, the cipher is clocked backwards to recover the key.
The distinguishing feature of this type of attack is that only minimal amounts
of keystream need to be observed in order to recover the key.

In what follows we focus on the cipher Bivium [5] to ascertain the effectiveness
of this method, and how it may be applied to the cryptanalysis of Trivium.

2 Previous results

Raddum [5] introduced a new method of solving systems of sparse quadratic
equations and applied it to the cryptanalysis of Trivium. The complexity of this
attack on Trivium is O(216%), which is much worse than an exhaustive key search.

Raddum introduced two simplified versions of Trivium: Bivium-A and Bivium-
B. The first version was broken ‘in about one day’, and the second version re-
quired approximately 2°¢ seconds.

Maximov and Biryukov [2] used a different approach to solve the system of
algebraic equations describing Trivium by ‘guessing’ the value of the state bits
(or the products of some state bits). In certain cases guessing reduces the system
of quadratic equations to a system of linear equations that can be solved (for
example by Gaussian elimination). The complexity of this attack is O(c - 283-%)
for Trivium and O(c - 23¢-1) for Bivium. The constant ¢ is the time taken to
solve a system of sparse linear equations. Maximov and Biryukov do not give a
complexity estimate of the constant ¢ in [2]. However in [3] an estimate of the
constant for Bivium is stated as O(216-2).

3 Description of Bivium

Let 2t € GF(2) denote the i-th variable of vector z at clock time ¢. Addition
and multiplication, denoted by + and - respectively, are done over GF(2).

Bivium consists of a non-linear feedback shift register (NLFSR) coupled with
a linear filter function (LF). The NLFSR operates on a 177-bit state, denoted
by (st,...,s!,;). The LF takes a linear combination of the state to produce the
keystream. Each clock of the cipher involves updating two bits of the state and
outputting one bit of keystream, denoted by zi(t). The cipher continues to run
until the required number of keystream bits are produced.

The following algorithm is a full description of the keystream generation:

for i=1to N do
t1 < Se6 + S93
to < S162 + S177
zi — t1 + t2
t1 «—t1+ S91 - S92 + S171

to < t2 + S175 - S176 + S69

(s1,82,...,893) < (t2,51,...,502)
(594,895, - - ., 8177) — (t1,504, ..., 5176)
end for

Like Trivium, Bivium incorporates a Key and IV setup stage, where the
cipher is clocked a number of times to initialise the state. Our analysis does not
use the initialisation process and this will not be discussed further.

4 Attacking Bivium

Our attack has two separate stages - a pre-attack computation stage and an
attack stage. The pre-attack computation involves the following steps:

1. Produce a system of equations that describe Bivium.
2. Convert the system of ANF equations into a system of clauses in CNF.

Each of the above steps has its own strategy which will be discussed below.
The attack stage comprises the following repeated steps:

1. Guess m state variables and substitute for these values into the propositional
formula.

2. Find a solution that satisfies all the clauses in the resulting propositional
formula.

Again different strategies will affect the outcome.

The time complexity of the attack depends on the number of state variables
guessed, and the time taken to find a satisfiable solution. If the time taken to find
a satisifiable solution is T, clock-cycles for a m-bit guess, then on the average
the complete state can be recovered in T}, - 2™~ ! clock-cycles.

5 Pre-Attack stage

5.1 System of Bivium equations

A description on the system of equations representing Bivium was given in [5].
Where each clock introduces two new variables and three new equations. A
minimum of 177 bits of keystream are required to produce a unique solution [5].

It is possible to express the Bivium equations in terms of only one initial state.
This has the advantage that there are less variables in the system of equations.
However after certain periods the density and the degree increases. A subset of
the keystream equations is listed in the Appendix 10.

5.2 Converting ANF to CNF

The input to MiniSat is in the DIMACS graph format [8] which specifies that
propositional formulae are in CNF.

The running time complexity of MiniSat depends on the number of variables
and clauses in the propositional formula. Converting an equation in ANF with
« monomials produces 2*~1 disjunctive clauses in the CNF; see [1].

Different strategies are needed to handle clause expansion introduced by the
conversion process:

1. The ‘cutting’ number - split the equations to reduce the number of mono-
mials per equation (density).

2. Gaussian elimination pre-processing scheme.

3. Replace common groups of monomials by new variables.

The cutting method [1] was used to reduce clause production in the con-
version of the equations to CNF. There is a tradeoff between the sparsity of
the equations, and the production of new variables since each cut introduces a
new variable. Experiments established that the ‘optimal’ cutting number for the
Bivium equations is five.

It was stated in [1], that a preprocessing scheme based on Gaussian elimina-
tion reduces the complexity of the system. However in our setting this procedure
was superflous, as it increased the density of the equations and degraded the per-
formance of the SAT-solver.

The last method searches for groups of monomials which are repeated in
multiple equations. New variables are introduced which represent sums of groups
of monomials. Packaging the variables in this way reduces the density of the
equations and minimises the introduction of new variables.

For example, consider the following Bivium equations:

866 + S93 + S162 + S177 + 21 = 0,

S27 + Se9 + S96 + S111 + S162 + S175 - S176 + S177 + 267 = 0.

The total number of clauses produced by these equations is 2% + 27 = 144.
However in Bivium the feedback is directly related to the output function and
hence (s162 + $177) occurs in both equations.

Introducing a new variable a; = s162 + S177 gives a new system of equations:

S66 + S93 + a1 + 21 =0,
897 + Se9 + S96 + S111 + S175 * S176 + A1 + 267 = 0,
S66 + s177 +ay = 0.

Now the total number of clauses produced by these equations is 23 4264-22 = 76.
Clause reduction was achieved at the cost of introducing a new variable. The
limit on how many new variables should be introduced, and hence the total
reduction of clauses was determined experimentally.

6 Attack stage

For each guess of the state variable MiniSat will return either SAT for a satisi-
fiable assignment, or UNSAT for an unsatisfiable assignment. SAT is returned
if the guess is correct and an assignment of values to the variables is obtained.
At this point the whole state of Bivium is recovered. If UNSAT is returned the
guess was incorrect and another guess is tried.

6.1 Guessing state variables
The strategies that were used to guess subsets of state bits include:

1. Select a subset of the variables occurring with the highest frequency in the
set of equations - reduces the maximum number of monomials per variable
guessed.

2. Select a subset of the variables occurring in the quadratic monomials - re-
duces the non-linearity of the system.

3. Select a subset of the quadratic monomials - (guess the product of two vari-
ables [2].).

4. Select alternate variables - all quadratic monomials are the products of two
adjacent bits (see example below).

Consider the quadratic monomials in the following subset of Bivium equa-
tions:
S24 + S91 - S92 + S93 + S108 + S159 + S171 + S172 - S173 + S174 + 270 = 0,
823 + 890 * S91 + S92 + S107 + S158 + S170 + S171 - S172 + S173 + 271 = 0,
S92 + 889 * Sg0 + 891 + S106 + S157 + S169 + 5170 * S171 + S172 + 272 = 0,
821 + 888 * S89 + S90 + S105 + S156 + S168 + S159 - S170 + S171 + 273 = 0.
To reduce all the quadratic terms to linear terms we need only guess the variables

{889, S91, $170, S172}. Thus eight quadratic terms become linear by guessing four
of the variables.

6.2 Solving the equations

To solve the system of equations arising from Bivium we used the satisfiability
solver MiniSat [9]. Because the complexity of the MiniSat algorithm is difficult
to analyse we developed several solution strategies based on experiments. These
strategies resulted in a large spread of MiniSat computing times making it diffi-
cult to pinpoint the best strategy to use in the average case. (We hope to report
more on this in the future.)

Hamming weights of solutions We observed that the Hamming weights of
the solutions (state vectors) affected the performance of MiniSat. Figure 1 plots
the average running time of MiniSat against the Hamming weight of random
states when 40 bits of the state are guessed. In the graph we distinguish between
times that MiniSat requires to return SAT or UNSAT.

250

—— SATISFIABLE
- UNSATISFIABLE

200

5]
=}
Il

Time (sec)

=

o

o
1

50

111 26 41 5 71 86 101 116 131 146 161 176
Weight

Fig. 1. MiniSat Time vs. State Weight

From this graph we derive two important conclusions which affect the average
running time of MiniSat:

1. MiniSat returns faster when the guess is correct.

2. MiniSat running time increases with weight.

Therefore during the attack stage a limit should be placed on the running
time of MiniSat. If this limit is reached the guess is most likely incorrect and
another guess should be tried.

Furthermore, in order to evaluate an average running time for MiniSat we
observed how the probability distribution of the state varies with respect to the
weight. The weights of random states over multiple clock times are given in
Figure 2.

0.06

0.05

0.04

0.03

Probability

0.02

0.01 —

0.00

111 26 41 56 71 86 101 116 131 146 161 176
Weight

Fig. 2. Probability distribution on state weight

7 Total attack time

Figure 3 displays the total attack times for different values of m observed exper-
imentally.

The optimal attack time on Bivium occurs when 34-bits of the state are
guessed. The probability that a guess is correct is 2734, thus around 234 values
will be tried before finding the correct guess. The average MiniSat running time
on this propositional formula is 440 ~ 287 seconds. The overall average attack
time on Bivium is 234.287 = 2427 seconds. Raddum states [5] that approximately
2133 keys can be searched exhaustively in 1 second, which gives 2°¢ as the
approximate complexity of our attack.

7.1 Minimum running time of MiniSat

In our experiments we encountered many instances where MiniSat completed
in a fraction of the average time. In 10% of the tests there was at least one
case which was solved in only 5% of the average time. Hence if we run parallel
MiniSat processes on a minimum of 10 different blocks of keystream, we can
expect to encounter an instance that is solved in 5% of the average time. The
best complexity achieved by this strategy for a 34-bit guess is 2°2.

Maximum
—— Average
- Minimum

897 —

769 —

641

513

385 —

Attack Time (2738 seconds)

257 4

129 —

48 46 44 42 40 38 36 34 32 30
Number of Bits Guessed

Fig. 3. Attack time vs. Number of bits guessed

8 Bivium-A

Bivium-A is a simplified version of Trivium which was initially analysed by
Raddum [5]. The design of Bivium-A differs from Bivium (Bivium-B) in the
linear output filter. The output is

Zq tl)

a combination of only two state variables. This leads to keystream equations of
the type:

Z5 + Sj + Sk = 0)
where z; € {0,1}.

After substituting the observed keystream these simple keystream relations
between the two state variables give a large reduction in the number of variables
in the propositional formula. Compared to Bivium, this propositional formula
can be solved directly by MiniSat without the need for guessing state variables.

The system of algebraic equations for Bivium-A is converted to CNF by
cutting the equations into blocks of five. MiniSat was run on a sample of 100
random states and the results obtained are plotted in Figure 4.

The average running time to recover the state (and hence the key) of Bivium-
A is 21 seconds. The minimum observed running time was 0.5 seconds and the
maximum was 60 seconds. This can be compared to Raddum’s algorithm which
recovers the state of Bivium-A in ‘about a day’ [5].

60

50 —

IS
S
I

)
S
I

Attack Time (sec)

n
S]
I

10

16 16 26 36 46 56 66 76 86 96
Random State

Fig. 4. Attack time for Bivium-A

9 Summary of our results

Due to the unpredictable behaviour and complexity of the MiniSat algorithm,
the results obtained in this paper are derived from experiments. We estimate the
best complexity for the attack on Bivium to be O(2°?). This algebraic attack
recovers the private key after observing only 1770 bits of keystream. Bivium-A
is completely broken within 21 seconds on the average requiring only 177 bits of
keystream.

References

1. G. Bard, N. Courtois and C. Jefferson. Efficient Methods for Conversion and So-
lution of Sparse Systems of Low-Degree Multivariate Polynomials over GF(2) via
SAT-Solvers. Cryptology ePrint Archive, Report 2007/024, 2007.

2. A. Maximov and A. Biryukov. Two Trivial Attacks on Trivium. Cryptology ePrint
Archive, Report 2007/021, 2007.

3. A. Maximov. private communication 14/3/07.

4. C. De Cannié¢re and B. Preneel. TRIVIUM - a stream cipher construction inspired
by block cipher design principles. eSTREAM, ECRYPT Stream Cipher Project,
Report 2005/030, 2005. http://wuw.ecrypt.eu.org/stream/trivium.html

5. H. Raddum. Cryptanalytic results on TRIVIUM. eSTREAM, ECRYPT Stream
Cipher Project, Report 2006/039, 2006. http://www.ecrypt.eu.org/stream

6. eSTREAM: ECRYPT Stream Cipher Project
http://www.ecrypt.eu.org/stream/

7. C. Shannon. Communication theory of secrecy systems. Bell System Technical
Journal 28, 1949.

8. DIMACS http://www.cs.ubc.ca/ hoos/SATLIB/Benchmarks/SAT /satformat.ps
9. MiniSat 2.0 http://www.cs.chalmers.se/Cs/Research /FormalMethods/MiniSat/MiniSat.html

10 Appendix

566 + S93 + S162 + S177 + 21 = 0,
565 + S92 + 8161 + S176 + 22 = 0,

81+ Sa2g + So7 + S112 + 266 = 0,

S27 + S69 + So6 + S111 + S162 + S175 * S176 + S177 + 267 = 0,

S26 + Ses + S5 + S110 + S161 + S174 - S175 + S176 + 268 = 0,

825 + S67 + S94 + S109 + S160 + S173 * S174 + S175 + 269 = 0,

824 + S91 * S92 + S93 + S108 + S159 + S171 + S172 - S173 + S174 + 270 = O,
823 + 890 - S91 + S92 + S107 + S158 + S170 + S171 - S172 + S173 + 271 = 0,

510 + S77 - 878 + S79 + S94 + S145 + S157 + S158 S159 + S160 + 284 = 0,
89 + S66 + S76 - S77 + S78 + So1 - S92 + S93 + S144 + S156 + S157 - S158 + S159 + S171 + 285 = 0,
88 + 865 + S75 * S76 + S77 + Sg0 * S91 + S92 + S143 + S155 + S156 * S157 + S158 + S170 + 286 = 0,

81 + 858 + Se8 - Se9 + S70 + 583 - S84 + Sg5 + S136 + S148 + S149 - S150 + S151 + S163 + 293 = 0,
857 + Se7 + S68 + 582 * S83 + S84 + S135 + S147 + S148 * S149 + S150 + 5175+ S176 + S177 + 294 = 0,

516 + 526 * S27 + S41 - 842 + 543 + So4 + S106 + S107 - S108 + S100 + S134 - S135 + S136 + 2135 = 0,

815 + S25 - S26 + S40 - S41 + S42 + Se6 + S91 - S92 + S93 + S105 + S106 - S107 + S108 + 5133 - S134
+ 5135 + S171 + 2136 = 0,

S14 + S24 - S25 + 839 * S40 + S41 + Se5 + S90 * S91 + S92 + S104 + S105 - S106 + S107 + S132 - S133

+ 5134 + S170 + 2137 = 0,

S4 + S14 - S15 + S29 - S30 + S31 + S55 + S80 - S81 + Sg2 + S94 + S95 - Sg6 + S97 + S122 - S123
+ 8124 + S160 + 2147 = 0,
83 + 813 - S14 + S28 - S29 + S30 + S54 + S66 + S79 - S80 + Ss1 + So1 - S92 + S93 + S94 - S95 + S96

+ 5121 - S122 + S123 4+ S159 + S171 + 2148 =0

