
Noninteractive Manual Channel Message
Authentication Based On eTCR Hash Functions

Mohammad Reza Reyhanitabar, Shuhong Wang,
and Reihaneh Safavi-Naini

University of Wollongong, Australia 2500
Email: {mrr790, shuhong, rei}@uow.edu.au

Abstract. We present a new non-interactive message authentication
protocol in manual channel model (NIMAP, for short), using the weakest
assumption on the manual channel (i.e., assuming the strongest adver-
sary). The most recent NIMAP of Mashatan and Stinson (referred to as
MS protocol) uses hybrid collision resistance (HCR) hash function and
the HCR hardness is evaluated in the random oracle model. Our protocol
in contrast, uses enhanced target collision resistant (eTCR) hash family
and is provably secure in the standard model. To provide insights into
the advantages of our protocol compared to the MS protocol and also
other protocols with similar properties, we revisit a number of security
notions for hash and study their relationship in terms of implication or
separation, and also constructions that can be used for arbitrary length
messages. This study is also of independent interest in the study of hash
functions. We show that our new NIMAP can reach the same level of
security as the best previously known protocols, whilst is simpler and
more efficient from theoretical and practical view point. In particular in
case for authentication of a messages such as a 1024 bit public key, our
protocol enable one to construct the needed eTCR hash family from any
off-the-shelf Merkle-Damgard hash function using randomized hashing
mode. The construction only requires the underlying compression func-
tion to be evaluated second preimage resistant(eSPR), which is strictly
weaker than collision resistance. We note, however, that in the construc-
tion using randomize hashing, the reduction from eSPR to eTCR is not
tight. We leave it as an open problem to find constructions with tight
reduction.

Keywords: Message authentication, manual channel, eTCR hash family,
randomized hashing, hash function security.

1 Introduction

Message authentication protocols provide assurance that a received mes-
sage is genuine and sent by the claimed sender. Authentication protocols
have been studied in asymmetric (assuming PKI ) and symmetric (as-
suming shared secret keys) settings. Manual channel (or two-channel)



authentication model is a recently proposed model, motivated by secu-
rity requirements of ad hoc networking applications. In this model a user
wants to send an authenticated message to a receiver. There is no shared
secret key between the communicants, nor there is public key infrastruc-
ture. However the sender, in addition to an insecure broad-band channel
(e.g. a wireless channel) that is used to send the message, has access
to a second narrow-band channel, referred to as manual channel that is
authenticated in the sense that messages over this channel cannot be mod-
ified, although they can be delayed, replayed or removed. The channel is
low capacity and can only transfer up to a few hundred bits. A manual
channel models human assisted channels, such as face-to-face commu-
nication, telephone conversation between two parties, or communication
between two devices facilitated by a human: a person read a short number
on the display part of one device and input it into a second device using its
keyboard. The short authentication string sent over the manual channel
is called SAS [22]. A number of interactive and non-interactive protocols
have been proposed in this model and their security have been proven
in computational and unconditional security frameworks [8, 7, 1, 17, 12,
15]. In this paper we consider computationally secure non-interactive
message authentication protocols (NIMAPs) in manual channel model
and assume a weak manual channel as defined by Vaudenay [22] (see
section refprevious-NIMAPs) which corresponds strongest adversary. We
note that in NIMAP the scarce resource is the bandwidth of the manual
channel.

Computationally secure NIMAPs using manual authentication.
Balfanz, Smetters, Stewart, and Wong [1] (referred to as BSSW proto-

col) were the first to propose a manual channel NIMAP that was based on
collision resistant hash functions. The basic idea is to send the massage
m over the insecure channel, and send its hash value, computed using
collision resistant hash function, over the manual channel. Vaudenay [22]
proposed a formal security model for manual authentication protocols
and gave a security reduction the security of the protocol to collision re-
sistance property of the hash function. To guarantee security against an
adversary having time T = 2n, the SAS length must be at least 2n.

Gehrmann, Mitchell, and Nyberg [7] proposed a number of protocols,
MANA I, II and III, of which only MANA I is a NIMAP. MANA I requires
low bandwidth for manual channel. For example to make the probability
of a successful attack less than about 2−17, one should use a SAS of
length about 40 bits. The protocol requires manual channel to also provide
confidentiality and Vaudenay in [22] pointed out that the manual channel



must be at least stall-free. We will not include MANA I in our comparisons
because of these strong requirements on the manual channel.

Pasini-Vaudenay [17] presented a NIMAP (referred to as PV protocol)
that requires, a hash function that is second preimage resistant, and a
trapdoor commitment scheme in Common Reference String (CRS) model.
Although in comparison with BSSW that uses a collision resistant hash
function, PV protocol has a weaker security requirement on the hash
function (i.e. second preimage resistance), but it needs a secure trapdoor
commitment scheme in CRS model which make it a more complex and
demanding protocol.

Mashatan and Stinson [12] proposed a new property, Hybrid Collision
Resistance(HCR) for hash functions and proposed a NIMAP (referred
to as MS protocol) that is provably secure assuming the hash function
is HCR. Usingrandom oracle model it is shown that this is a weaker
security property for hash functions and so the protocol is of interest
because it achieves the same level of security and efficiency as PV protocol
without requiring a complex commitment and added assumption of CRS.
In section 3 we investigate HCR notion and show there is no clear method
for instantiating the hash function used in the protocol and so this leaves
efficient construction of NIMAPs forarbitrary length message, in weak
manual authentication model, an open problem.

More details on BSSW, PV, and MS protocols is given in Appendix
A.

Our Contributions. We propose a new NIMAP in weak manual channel
model. Our new NIMAP only uses a hash function family and is provably
secure in standard model. The protocol is based on an enhanced target
collision resistant (eTCR) hash function family. Such a family of hash
functions can be constructed using randomized hashing mode of a Merkle-
Damgard hash function (Theorem 4 of [9]).

To evaluate our protocol we consider underlying security assumptions
of existing NIMAP protocols that use weak manual channel model. This
includes BSSW, PV and MS protocols. In all these cases, and also in the
case of our protocol, the security relies on (in BSSW and our protocol
reduces to) the required property of the hash function. We give a care-
ful comparison of these properties (collision resistance, second-preimage-
resistance, HCR and eTCR ) of hash functions, in two directions. Firstly,
in terms of implication or separation. That is showing whether one prop-
erty implies the other one, or there is a clear separation between them.
Secondly, we consider constructions that ensure a defined property holds
when hashing arbitrary length messages. This latter requirement is im-



portant because the length of a message in a manual authentication sce-
nario cannot be restricted. Our comparison also includes evaluated sec-
ond preimage resistance (eSPR) property, a property for compression
functions introduced to construct an eTCR hash function family using
Merkle-Damgard construction in the randomized hashing mode as pro-
posed by Halevi and Krawczyk [9]. We show that eSPR notion is not
strictly stronger than HCR notion, using previously known results [9]
that eSPR is not strictly stronger than SPR notion.

The comparison is of interest both because of its direct application
to NIMAP but also from the view point of grading properties of hash
functions.

Paper Organization. In section 2 we describe communication and se-
curity model for manual channel authentication which will be used in
evaluation of our proposed protocol. In section 3 we give an overview of
security notions for hash function and then provide more details on three
security notions, eSPR, eTCR and HCR, directly related to our NIMAP
and MS protocol. In section 4 we present our new protocol and analyze
its security. We also compare it with previous protocols and show its
potential advantages. The paper is concluded in section 5.

2 Communication and security model

Communication model. We consider the problem of noninteractive
authentication between a sender Alice and a verifier Bob: Alice wants to
send a message, M , to Bob such that Bob be assured that the message has
come from Alice (entity authentication) and has not been modified by an
adversary Eve (message authentication). It is assumed that Alice and Bob
have access to two communication channels; a broadband insecure channel
(denoted by −→) and an authenticated narrow-band channel (denoted by
=⇒ ). It is further assumed that the authenticated narrow-band channel
is linked to the identity of the sender, i.e. Alice. In other words when Bob
receives a message from this channel he is ensured that it is generated by
Alice although the message can be a replay of a previous one. The most
important restriction on the narrow-band channel is the limitation on the
bandwidth: the channel can transmit messages of length at most n and
in some applications n can be as small as 32 bits.

As a real world example of this scenario consider user-aided pairing of
two wireless devices (e.g. Bluetooth) such as a mobile phone and a laptop.
The user can read a message consisting of a number of characters on the
screen of mobile phone and type them on laptop keyboard. In this case



the user establishes the authenticated channel manually. These kinds of
human controlled authenticated channel are also called manual channels.

Security model. We assume weak authenticated channel model and the
strong adversary described in Vaudney [22]. The adversary Eve has full
control over the broadband channel, i.e. she can read, modify, delay, drop
messages, or insert new ones. In the weak manual channel model, it is
assumed that Eve can read, delay, replay and drop messages sent over
manual channel, but she cannot modify or insert messages to this channel.
In other words there is no extra security assumptions, like confidentiality
or stall-freeness, on a weak manual channel. A manual channel with some
additional security requirement on it is called a strong manual channel. It
is also assumed that the adversary can employ adaptive chosen message
attack: she can adaptively choose the input message to be sent by Alice
and make Alice to produce messages of the protocol to be sent over the
two channels. The number of such queries made by Eve is her online
complexity and is denoted by Q. A second resource of Eve is her offline
complexity, denoted by T , denoting the time spent on processing the
messages in the attack. We assume that Eve has bounded computational
resources.

A typical manual channel NIMAP works as follows. On input message
M Alice uses (possibly randomized) algorithms to compute a tag x and
a short authentication string (SAS) s. The message M together with the
tag x are sent over insecure broadband channel and SAS is sent over the
authenticated channel. Note that x may be a null string in which case no
tag will be sent over the insecure channel. Figure 1 shows communication
flows in such a protocol. We note that in PV protocol the message might
not be explicitly sent over the insecure channel. However the message
in their protocol can be transformed (i.e. re-coding) into our proposed
representation. The transformation is public and so will not affect security
of the protocol. Received messages by Bob are denoted as M ′, x′ and s′

to show possible effects of an adversary. The verification process (accept
or reject a received message) by Bob is abstractly denoted by a (publicly
known ) deterministic binary function Verify(.). The function outputs 1
if the acceptance conditions (specified for the protocol) are satisfied by
the received message, and 0 otherwise.

Definition 1 (Successful attack) An adversary Eve, having resources
Q (number of queries made from Alice) and T (time complexity), is suc-
cessful if with probability at least ε, she can make Bob output (Alice , M ′)
while M ′ has never been an input of protocol on Alice side, i.e. it has



Alice Bob

Input: M

Compute x
M, x−−−→ M ′, x′

Compute s
s

=⇒ s′

output (Alice, M ′)
if Verify(M ′, x′,s′)=1; else reject

Fig. 1. A typical manual channel NIMAP

never been authenticated by Alice. The protocol is called (T,Q, ε)-secure
if there is no (T,Q, ε)-breaking adversary against it.

Note that to be considered a successful adversary, Eve should respect the
communication and security model restrictions above. For example she
can only replay a previously obtained s from Alice but she cannot modify
it or inject a new one by herself. More specifically if Eve has made Q
queries from Alice and has collected a data set {(Mi, xi, si); 1 ≤ i ≤ Q},
then a successful attacker Eve should find an M ′ /∈ {Mi; 1 ≤ i ≤ Q}, any
x′ and an s′ ∈ {si; 1 ≤ i ≤ Q} such that Verify(M ′, x′, s′)=1.

Proving security of a manual channel NIMAP consists of two steps.
Firstly one should show that the protocol is (T ′, 1, ε′)-secure, i.e. secure
against adversaries that can only make one query from Alice (called one-
shot adversaries in [22] ) and have time complexity T ′. This is done by
transforming such an adversary against the protocol into an adversary
that can defeat security assumptions on the underlying building primi-
tive(s) of protocol. The second step of proof ( i.e., showing that proto-
col is (T,Q, ε)-secure ) can be done (Lemma 6 in [22]) by transforming
any (T,Q, ε)-breaking adversary to a (T ′, 1, ε′)-breaking adversary, where
ε′ = ε

Q .

3 Hash function and some security notions

Cryptographic hash functions play an important role in design of NIMAPs
as well as many other cryptographic protocols like MACs and digital
signature schemes. There are numerous informal and formal definitions of
security for hash functions. In some cases the definition is very application
specific. For example Zero-Finder-Resistant was defined by Brown [4] as
difficulty of finding a preimage of zero (i.e. finding a domain element that



is hashed to 0) and was shown to be a necessary security assumption on
the hash function proving security of DSA algorithm.

The most widely used security notions for hash functions are Col-
lision resistance(CR), Second-preimage resistance(SPR) and Preimage
resistance(PR) and are required in or more applications such as digital
signature, commitment and password protection. Informal definitions of
these notions for a fixed hash function and formal definitions of CR no-
tion and one of its weaker variants, UOWHF (Universal One Way Hash
Function) for a family of hash functions, can be found in [5, 6, 13, 14, 16].
UOWHF notion (originally defined in asymptotic security framework in
[14]) is also called TCR (Target Collision Resistance) (as rephrased in
concrete security framework in [3]).

Briefly and informally, for a fixed hash function H, CR means that it
is computationally hard to find two distinct inputs M ′ 6= M that collide
under hash function, i.e. H(M) = H(M ′). SPR means that it is com-
putationally hard to find a sibling M ′, for any given input M , so that
M ′ 6= M and H(M) = H(M ′). PR refers to one-wayness property and
means that it is computationally hard to find a preimage (domain element
x) for any given hash value ( range element y), so that these constitute a
valid (input, output) pair for hash function (i.e. H(x) = y).

There are some subtleties regarding formal definitions of security no-
tions for hash functions and studying relations between different notions.
A brief summary is provided in Appendix B

3.1 Definitions for eSPR, eTCR and HCR notions

We review three security notions relevant to our discussion (, as well as
previously mentioned CR and SPR notions,) in the next section.

The following definition is as in [12], but here the game is parameter-
ized by the length of the provided randomness by indicating l2 explicitly
in the definition.(l2 and n are security related parameters as shown in
[12].) We introduce a state variable State, for adversary A, to keep the
adversary state between its attack phases.

Definition 2 (HCR notion) A compression function H : {0, 1}l1+l2 →
{0, 1}n is (T, ε)−HCR[l2] if no adversary A, having time at most T , can
win the following game with probability at least ε:



Game(HCR[l2], A)

(M,State) $← A() //M ∈ {0, 1}l1

M ′ R← {0, 1}l2

M ′′ $← A(M ′, State) //M ′′ ∈ {0, 1}l1+l2

A wins the game if M ′′ 6= M ||M ′ and H(M ′′) = H(M ||M ′)

Notice that HCR[l2] notion for an arbitrary-input-length hash function
H : {0, 1}∗ → {0, 1}n (i.e. if one lets length l1 be arbitrary) will be a
game in which the adversary can output M ∈ {0, 1}∗ and M ′′ ∈ {0, 1}∗,
in the above game.

eSPR notion [9] is defined for a compression function using Merkle-
Damgard [13, 6] domain extension. Merkle-Damgard method converts a
compression function to a hash function for arbitrary length input, while
preserving CR property of the compression function. Recently some mod-
ifications of this method were shown in [3, 21] that preserve TCR notion
while extending hash domain.

For a compression function H : {0, 1}n+b → {0, 1}n, an L-round
Merkle-Damgard construction is a method to construct a compression
function MDL[H] : {0, 1}n+L.b → {0, 1}n with an extended domain. For
an initial value C0 ∈ {0, 1}n and a message M = M1||M2|| . . . ||ML con-
sisting of L blocks, each of size b bits, it outputs an n-bit hash value
denoted by CL as shown in figure 2:

– The input message M is divided to L blocks M1, ...,ML, each block
Mi of length b bits.

– The chaining variable C is initialized to C0.
– For i=1 ... L :

Ci = H(Ci−1,Mi)
– CL is output as the hash value.

If input message length is not a multiple of block length b, proper
padding can be used. For a fixed initial value C0 we denote the transfor-
mation by MDC0

L [H] : {0, 1}Lb → {0, 1}n.

Definition 3 (eSPR notion) A compression function H : {0, 1}n+b →
{0, 1}n is (T,L, ε)- eSPR if no adversary, spending time at most T and
using messages of length L(in b-bit blocks), can win the following game
with probability at least ε. It is assumed that the adversary knows the ini-
tial value C0 before starting the game, i.e. either C0 is chosen at random



Fig. 2. L-round Merkle-Damgard construction

and given to the adversary (uniform setting) or it is a parameter of the
game that adversary may depend on it (non-uniform setting).

Game(eSPR, A )

∆1, . . . ,∆L
$← A() //∆i ∈ {0, 1}b , L ≥ 2

r
R← {0, 1}b

M = ∆L ⊕ r; C = MDC0
L−1[H](∆1 ⊕ r, ..., ∆L−1 ⊕ r)

M ′ $← A(C,M) //M ′ ∈ {0, 1}n+b is of the form (C,M)

A wins the game if M ′ 6= C||M and H(M ′) = H(C||M)

eTCR notion [9] is defined for an arbitrary-input-length hash function
family (unlike HCR or eSPR notions that are defined for a fixed hash
function or a fixed compression function).

Definition 4 (eTCR notion) An arbitrary-input-length hash function
family, H : {0, 1}k×{0, 1}∗ → {0, 1}n, is (T, ε)- eTCR[m], if no adversary
spending time at most T can win the following game with probability at
least ε. We use a state variable State to keep adversary state between its
attack phases:

Game(eTCR[m])

(M,State) $← A() //M ∈ {0, 1}m

K
R← {0, 1}k

(K ′,M ′) $← A(K, State) //K ′ ∈ {0, 1}k and M ′ ∈ {0, 1}∗

A wins the game if (K, M) 6= (K ′,M ′) and HK(M) = HK′(M ′)

A possible method to construct an eTCR hash function family is using
an iterated hash method (e.g. Merkle-Damgard construction) employ-
ing a compression function, like in randomized hashing mode of [9]. In
such a construction eTCR notion is reduced to eSPR assumption on the
compression function (as in Theorem 2), and the length of messages (in
blocks) used by the adversary is denoted by L and is considered as an-



other resource parameter of the adversary. So the adversary is denoted as
a (T,L, ε) adversary.

3.2 Relations among eSPR, eTCR and HCR notions

In this section we study relations between three recent notions, namely,
eSPR, eTCR and HCR ntions. First we argue that eSPR notion is not
strictly stronger than HCR notion, considering an arbitrary compression
function. Then after showing a simple fact that assuming existence of a
HCR function implies existence of a (specific) eTCR family , we discuss
some practical limitations in designing a HCR secure arbitrary-input-
length hash function (in a proper manner), by pointing out that Merkle-
Damgard method does not suit for this aim. Notice that a proper con-
struction for a HCR hash function is a construction by which one can
get HCR-ness without having to have CR property, else it is obvious that
any CR function is also HCR. Finally, we review the randomized hashing
mode (proposed in [9]), for constructing an arbitrary-input-length eTCR
family based on an eSPR compression function, using Merkle-Damgard
method.

eSPR versus HCR We want to point out that eSPR assumption is
not strictly stronger than HCR assumption for any compression function.
The desired fact can be seen combining the following two already known
facts. Halevi et al [9] pointed out a separation between eSPR and SPR
(denoted r-SPR in [9]). They argued that depending on the structure of a
compression function eSPR assumption can be weaker than SPR assump-
tion (i.e., winning eSPR game can be harder than winning SPR game,
for some compression functions). We also note that HCR[b] assumption
(for any b, and)1 for any compression function is strictly stronger than
SPR assumption. So, it follows that for some compression functions eSPR
assumption can be weaker than HCR assumption.
Notice that here we do not need to argue about the cases that HCR (, as

1 Here we denote HCR game parameter by b to remind that in eSPR game the amount
of provided randomness is also b bits.



security assumption of MS protocol) may be weaker than eSPR2, as our
aim is in fact showing the converse of this fact.3

Relation between HCR and eTCR We want to show that exis-
tence of a (T, ε)-HCR [l2] compression function implies a construction for
a (T, ε)- eTCR compression function family (namely, a keyed compression
function whose key length is l2 bits).
Assume that we have a (T, ε)-HCR[l2] compression function
H : {0, 1}l1+l2 → {0, 1}n . We can easily construct a (specific) compres-
sion function family that is (T, ε)- eTCR as: H = {HK}K∈{0,1}l2 , where

HK(M) = H(M ||k) (i.e., H : {0, 1}l2 × {0, 1}l1 → {0, 1}n). This is easily
seen from definitions of HCR and eTCR notions.

HCR for arbitrary length messages We want to show that in Merkle-
Damgard hash functions, one cannot achieve more immunity by assuming
HCR property rather than CR property. In other words we show that
failure of such a hash function to collision finding attacks will also yield
to failure in HCR sense.

It is shown in [12] that, in Random Oracle Model, winning HCR game
is more difficult than finding any collisions. This could suggest that com-
pared to NIMAPs that rely on CR property, NIMAPs based on HCR
assumption would be easier to achieve. In the following we show that
for iterated hash functions (like SHA1), a collision finding attack against
compression function can also be used to construct an HCR attacker for
the hash function and so one cannot use these type of hash functions to
be more immune than CR case.

The standard paradigm for constructing an arbitrary-input-length
hash function (family), having some defined security property, consists of
two steps. First a fixed-input-length hash function(family) (i.e. a compres-
sion function) is constructed (having some defined security property) and
then a domain extension method is used to convert this compression func-
tion (family) to the required arbitrary-input-length hash function (fam-
ily). A commonly used method of domain extending is Merkle-Damgard
method and its extensions [3, 21]. We show that this method cannot be
employed for constructing an arbitrary-input-length HCR hash function
2 If randomized hashing mode used to construct eTCR family, eSPR will be required

security assumption on the compression functions security assumption
3 It is not so hard to show (using counterexamples) that for some compression func-

tions HCR[b] can be weaker than eSPR and complete the argument that there is a
separation between HCR and eSPR notions



without having to make CR assumption on the underlying compression
function.

Let H be a strengthened Merkle-Damgard hash function (e.g. SHA1).
By strengthened Merkle-Damgard we mean Merkle-Damgard with length
indicating padding and constant initial value. Now consider the case that
the sum of lengths of the message to be sent in NIMAP (i.e. l1) and
the security parameter l2 (e.g. l2 = 70 as proposed in [12] ), becomes
more than one block (e.g. more than 512 bits in SHA1). In this case
any collision finding adversary A against H can be used to construct
an algorithm B that defeats H in HCR[l2] sense as follows. Algorithm,
B, invokes A to obtain two (equal length) colliding messages M and M ′

under H. W.l.o.g we assume that their length is a multiple of block length
(i.e. l1 ∈ {0, 1}512.m in SHA1 for some integer m), for we can consider
complete blocks consisting of messages together with padding as M and
M ′. In the first move of HCR game, algorithm B commits on M and when
receives random challenge K ∈ {0, 1}l2 , it outputs M ′||K as colliding pair
with M ||K.

Reduction from eSPR to eTCR Halevi and Krawczyk [9] con-
structed a provably secure eTCR hash function family from a compression
function that satisfies eSPR assumption by randomizing the input mes-
sage in a Merkle-Damgard based hash function (like SHA1).

This gives an arbitrary-input-length eTCR hash function family that
is provably secure (based on eSPR assumption on the compression func-
tion). We note that eSPR is not a strictly stronger assumption than CR
about a compression function.

More details can be found in Appendix C. We will use Halevi-Krawczyk’s
result (Theorem 2 in Appendix C) in following section.

On Hardness of eSPR game.
(T,L, ε-)eSPR property for a given (fixed) compression function is just a
security assumption whose validity can be verified by the best cryptanal-
ysis results against the specified compression function, and this is also
the case for all other properties defined for a fixed compression function
(not for a family of functions). For example considering a compression
function like md5 : {0, 1}128+512 → {0, 1}128 used in the MD5 hash func-
tion, one can assume as a security notion that md5 is SPR or PR, but
validity of such an assumption (is not a provable matter and ) one can
have some intuitions about this as a result of the fact that at present the
best practical cryptanalysis results cannot do much or by some abstract



modeling like Random Oracle Model, i.e. modeling a hash function as a
random oracle.

Regarding the fact that eSPR notion is a very recent one at present we
should wait for cryptanalysis results to evaluate popular practical hash
functions like MD5(not so popular now due to recent attacks like [23])
and SHA1. In Appendix C, taking the other easy step, i.e. Random Oracle
Model, we provide an intuition about eSPR game difficulty.

4 A new NIMAP based on any eTCR hash function
family

4.1 Protocol description and security reduction

Assume that we have a (T, ε)- eTCR hash function family H : {0, 1}k ×
{0, 1}<m → {0, 1}n, where m is a huge number representing maximum
allowed input length( e.g., m = 264). We want to have a secure NIMAP
between a claimant, Alice, and a verifier, Bob, in weak manual channel
model. In this model Alice can send messages of length up to m bits
(practically up to a length which is determined by required security level)
in an authenticated way, over insecure channel using a short authenticated
message over manual channel. Our new NIMAP is as follows:

1. On input message M , Alice chooses uniformly at random a key x ∈
{0, 1}k and computes s = Hx(M)

2. Alice sends (M , x) to Bob over insecure broadband channel and sends
s = Hx(M) over authenticated channel

3. Bob receives (M ′, x′) via insecure channel and s′ via authenticated
channel

4. Bob outputs (Alice, M ′) if s′ = Hx′(M ′) and rejects M ′ otherwise

The proposed protocol is illustrated in Figure 3.
It is easy to prove the security of this new NIMAP as stated in the

following Theorem.

Theorem 1 Let H : {0, 1}k × {0, 1}<m → {0, 1}n be a (TH , εH)- eTCR
hash function family. The proposed NIMAP as in Figure 3 is a (T,Q, ε)-
secure NIMAP, where T = TH − µQ, ε = QεH and constant µ represents
the maximum time complexity of Alice over all Q queries.

Proof : First we show that any (T ′, 1, ε′)-breaking adversary Â against our
NIMAP can be used to construct a (T ′, ε′)-breaking adversary B against
eTCR hash family H. Then the proof is completed as a result of a simple



Alice Bob

Input: M

x ∈R {0, 1}k M, x−−−→ M ′, x′

s = Hx(M)
s

=⇒ s′

output (Alice, M ′)
if s′ = Hx′(M ′); else reject

Fig. 3. A new manual channel NIMAP based on eTCR hash family

to prove general reduction from any (T,Q, ε)-breaking adversary A to
(T ′, 1, ε′)-breaking adversary Â, where T ′ = T + µQ and ε′ ≥ ε

Q .

To prove the first part, let Â be a (T ′, 1, ε′)-breaking adversary against
our NIMAP, i.e. it can make only one query from Alice to obtain (M,x, s)
and then spends time at most T ′ to mount a successful attack, i.e. to
produce (M ′, x′) where M ′ 6= M and Hx′(M ′) = s. There is no condition
on x′, it can be equal to x or not. Adversary B against H plays eTCR
game using Â as follows. It runs Â and obtains the query M then commits
to it in the first move of eTCR game. After receiving the hash function
key, i.e. x ∈ {0, 1}k , B computes s = Hx(M) and forwards x and s to Â.
Adversary Â within time T ′ produce (M ′, x′). Adversary B outputs M ′

as the second message and x′ as the second hash function key in eTCR
game. It is obvious that B succeeds at the same time T ′ and with the
same success probability ε′.

The second part of proof is already known as a general transforma-
tion between any Q-query adversary and 1-query adversary, e.g. [22]. For
completeness of our proof, here we include a proof for our simple case(i.e.
two-party NIMAP). Let A be a (T,Q, ε)-breaking adversary against our
NIMAP. We can construct a (T ′, 1, ε′)-breaking adversary Â as follows.

Adversary Â chooses uniformly at random j ∈ {1, 2, . . . , Q} and runs
A. When A makes its i− th query M i, adversary Â selects at random an
xi ∈R {0, 1}k, computes si = Hxi(M i) and provide A with xi and si. This
is done for every i − th query else when i = j in which Â forwards the
query (j − th query of A) to Alice (in real protocol) and uses obtained
response from Alice to respond A. When A succeeds it outputs (M ′, x′, s′)
where s′ = Hx′(M ′), M ′ is different from all previously queried messages
and s′ is replay of one of the previously obtained authenticated messages.
With probability 1

Q we have s′ = sj and so Â succeeds with probability
ε′ ≥ ε

Q . Denote by µ the maximum overall time to run the protocol once,



i.e., to compute x and s on an input M , where the maximum is over Q
queries made by A. It is easy to see that time complexity of algorithm Â
is T ′ = T + µQ. This completes the proof of the theorem.

4.2 Comparison with previous schemes

We compare our proposed NIMAP with the existing NIMAP protocols
using weak manual channel, namely BSSW [1], PV [17] and MS [12]. The
comparison is made for the same security level, from:

1. the security assumptions required from underlying primitives (com-
mitment schemes and/or hash functions), and

2. the bandwidth required on manual channel (i.e., the SAS length).

Security assumptions. It is often plausible to reach a security goal for
a protocol in a more efficient way using stronger building blocks, i.e. re-
quiring primitives which should provide stronger security properties. For
instance, constructing UOWHF hash families[14] using one-way permuta-
tions is much simpler than using one-way functions. However, in practice,
the stronger the property a primitive should provide, the harder would
it be to construct such a primitive. This motivate researchers to design
protocols using weaker assumptions on the underlying primitives. In the
following we compare the above mentioned protocols in this manner.

The BSSW protocol uses a fixed (unkeyed) hash function and requires
it to be collision resistant (CR). As discussed in Appendix B CR is a very
strong assumption which cannot even be formally defined for a single
hash function. A possible way out from this formalization problem can
be using a CR hash function family (i.e., a keyed hash function), but then
one needs to send the key via manual channel as well as hash value that
increases the SAS length.

The PV protocol uses a weaker assumption than BSSW protocol, SPR.
However, it requires a secure trapdoor commitment scheme in CRS model
in addition. So the security level is determined by both the hash function
and the trapdoor commitment scheme. Furthermore, the commitment is
taken as an input to the hash function; to independently choose these
two primitives, one needs the hash domain to be of arbitrary size, i.e.,
one needs an arbitrary-input-length hash function.

The MS protocol also uses a fixed hash function satisfying HCR prop-
erty. The HCR[l] is a notion between CR and SPR, depending on the value
of l. Unfortunately, the standard domain extension Merkle-Damgard con-
struction cannot be used if one wants to construct arbitrary-input-length
HCR hash functions from fixed-input-length ones.



Different to BSSW, PV and MS protocol, we use an assumption
(eTCR) on hash family instead of a fixed hash function. This let us be
able deal with the security formally. In fact, using the standard Merkle-
Damgard iteration in randomized hashing mode, eTCR hash family can
be easily constructed from any eSPR compression function. That means,
the security of our protocol can also be reduced to the eSPR notion on
a fixed-input-length hash function. It has been shown [9] that eSPR is a
strictly weaker than CR assumption. We also showed in section 3 that
eSPR is not stronger than SPR or HCR notions. In this sense, our pro-
tocol has priority over BSSW, PV and MS protocols.

Manual channel bandwidth. We assume an adversary with the same
resources and the level of security (denoted by ε) assumed in [12]. Then
we compare our protocol to other NIMAPs. We require the NIMAP to
be (T,Q, ε)-secure , where T ≤ 270, Q ≤ 210 and ε = 2−20.

In BSSW the SAS length must be at least 140 bits. In PV protocol a
SAS of length 100 is claimed, but that requires a demanding assumption
of ideally secure SPR hash function. MS can theoretically reach the same
level of security using a SAS of 100 bits for l2 = 70 bits.

Compared to BSSW, Our NIMAP needs a SAS with length n = 100+
log2(L + 2) bits, where L denotes the message length in blocks (see more
details below). For a 1024-bit message using SHA1 in randomized hashing
mode (L=2), the required SAS length will be 102 bits. Our NIMAP can
still use randomized hashing mode for messages up to about 249 bits using
a SAS of only 140 bits, and benefits from a weaker security assumption.
One may argue that our SAS length increases logarithmically in length
of message. But as will be seen from the following discussion, the claims
in PV and MS will not be true for Merkle-Damgard hash functions like
MD5, SHA-1, RIPEMD-160, Whirlpool.

PV reaches the short SAS length (i.e, 100) assuming an ideally se-
cure SPR hash function, i.e., a hash function with security level of 2−n,
where n is the hash size. This assumption (for an arbitrary-input-length
hash function) is very demanding due to Kelsey-Schneier [11] generic at-
tack against iterated hash functions (like MD5, SHA1, RIPEMD-160,
Whirlpool) [11]. So a 100-bit SAS will not provide claimed security level
of PV for such hash functions.

Also, the SAS of 100 bits in MS should assume that one has a specially
designed arbitrary-input-length hash function, for which HCR property
is really weaker and easier to achieve than CR property. To the best of
our knowledge, there is no such constructions of HCR hash functions in



the literature yet. Recall that the iterated Merkle-Damgard method can
not be used for this purpose.

Now we show how the SAS length of our protocol is calculated. Using
Theorem 1, it is seen that to have our NIMAP be (T,Q, ε)-secure (for
T = 270, Q = 210, ε = 2−20) we need a hash function family that is
(270+µ210, 2−30)- eTCR.( Note that µ is a small constant time required to
select the random string x and to compute Hx(M) and so the second term
of time complexity i.e. µ210 is negligible compared to 270.) Using Theorem
2 in Appendix C, we know that we can construct an eTCR family with ε =
2−30 based on the assumption that compression function is eSPR with ε′ =

ε
L+2 , where L is the number of blocks in an input message of constructed
eTCR functions. Because of non-tightness of the reduction between eTCR
and eSPR notions one should compute the required length of SAS for
each message length. Assume that we use a compression function with
input length 640 bits(i.e., block length b = 512 bits) and hash size n
bits (e.g. compression function of SHA1 whose output is reduced to n
bits, by truncation or applying another proper output function ). We
assume (as a security assumption) that this compression function provides
security level of 2−n in eSPR sense. Using Theorem 2 from Appendix C,
for messages of length 512L bits, our NIMAP needs a SAS with length
n = 100+ log2(L+2) bits. Notice that if one uses a compression function
with hash size n bits, but a larger input length (i.e. block length larger
than 512 bits), the number of blocks, i.e., L will be reduced and so a
shorter SAS will be needed in our protocol.

5 Conclusion

We proposed a new non-interactive message authentication protocol in
manual channel model. The proposed NIMAP uses a family of eTCR se-
cure hash functions. For some of interesting applications, like sending a
public key, where message length is small, e.g. 1024 bits, there is already
a randomized hashing mode to construct an eTCR hash family using any
off-the-shelf Merkle-Damgard hash function like SHA1. In these cases,
using our NIMAP, one requires a significantly weaker than collision re-
sistance property from underlying compression function, namely eSPR
property, and without need to any change into internal structure of used
hash function (e.g. SHA1 code can used as is in randomized hashing
mode). If one wants to send very long messages in imaginable special
applications like authenticated file transfer through insecure broadband
channel (with an emphasize on not using any confidentiality or MAC al-



gorithm), randomized hashing mode is not an optimal way (from SAS
length viewpoint in our NIMAP) to construct eTCR hash family. This
is due to non-tightness of its security reduction. Although we can still
use randomized hashing mode for messages up to about 249 bits using
a SAS of only 140 bits in our NIMAP, we recommend constructing an
eTCR hash family with a tight security reduction from a weaker than CR
notion or from some general complexity assumptions. We leave this as an
open question. Any such eTCR hash function family can be used in our
NIMAP.
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Appendix

A Previous Works

BSSW protocol [1] is the first NIMAP based on collision resistant hash
functions. The protocol is shown in Figure 4. The massage M and its hash
are sent over the insecure channel and the manual channel, respectively. It
can be shown that a (T, ε)- collision finding adversary can be transformed
to a (T + µ, 1, ε)- breaking adversary against this NIMAP, where µ is the
overall time complexity of the protocol (i.e., overall time complexity of
Alice to respond to one query.)

It is easy to see that any collision finding adversary (e.g. using only
offline computations based on Birthday attack) can be used to break this
NIMAP.

PV protocol [17] is a manual channel NIMAP which uses both a hash
function and a trapdoor commitment scheme in CRS model. Its security
relies on second preimage resistance of the hash function and security



Alice Bob

Input: M

M−→ M ′

Compute s = H(M)
s

=⇒ s′

output (Alice, M ′) if
s′ = H(M ′)

else reject M ′

Fig. 4. BSSW protocol

of the trapdoor commitment scheme in the Common Reference String
(CRS) model. In CRS model a public random string Kp is assumed to
be accessible to all parties in the system. In the definition of a trapdoor
commitment scheme to be used in PV protocol, as usual in CRS model,
it is assumed that in a setup() phase a pair of keys (Kp,Ks) is generated
and Kp is made publicly available to all parties. The key Ks is secret
and can only be used by special algorithms (or oracles) in extensions of
the commitment scheme. For example it can be used by equivocate(.) al-
gorithm in equivocable commitment schemes or by extract(.) algorithm
in extractable commitment schemes. The protocol is shown in Figure 5.
This NIMAP uses a weak security property of a hash function (i.e. second
preimage resistance) but needs a secure trapdoor commitment scheme in
CRS model (which is stronger than the standard model) as well.
The two algorithms, commit(.) and open(.) are used to generate (commit,
decommit) values (represented by (c, d)) and to recover message, respec-
tively. Both these algorithms have access to the CRS, Kp. The commit(.)
algorithm is probabilistic(randomized) algorithm and open(.) is determin-
istic. In the case of any error open(.) outputs a special symbol ⊥. More
details can be found in [22, 17].

As noted before the two message flows in PV protocol can be trans-
formed into the form shown in Figure 1, by using open(.) function to
obtain M and consider the message (M,x) = (M, (c, d)) as the message
over insecure channel.

MS protocol [12] is a manual channel NIMAP which uses a hash
function and requires the hash function to be Hybrid Collision Resis-
tance(HCR) as defined in [12]. The protocol is in weak manual channel
model and requires the same bandwidth for the manual channel as PV
protocol (to reach to the same level of security). MS protocol is shown in
Figure 6.



Alice Bob

Input: M

(c, d)← commit(Kp, M)
c,d−−→ c′, d′

s = H(c)
s

=⇒ s′

M ′ ← open(Kp, c′, d′)
output (Alice, M ′) if

s′ = H(c′) and M ′ 6= ⊥
else reject M ′

Fig. 5. PV protocol

Alice Bob

Input: M
|M | = l1

x ∈R {0, 1}l2 M,x−−−→ M ′, x′

Compute s = H(M ||x)
s

=⇒ s′

output (Alice, M ′) if
s′ = H(M ′||x′))
else reject M ′

Fig. 6. MS protocol

B On security notions for hash functions

A crucial step in formally defining and comparing security notions is
to make it clear that what one means by a hash function. There are
two proper ways to view a hash function , namely seeing it as a hash
function family or as a fixed hash function. Modeling a hash function as
a Random Oracle can be seen as an extreme case in which one assumes a
hash function family in which the family consists of all possible function
with specified domain and range.

Assuming that binary alphabet ({0, 1}) used for representation of
strings, A hash function familyH is a family of functions (a two-argument
mapping) H : {0, 1}k ×D → {0, 1}n. In this notation, {0, 1}k represents
the set of strings of length k bits, whose elements are used as a key to
select a function from the family, D represents the domain of function
family, and n is the hash length in bits. This setting is also called as
keyed hash function. A member of this family (i.e. a fixed hash function
belonging to this family) is selected by a key K ∈ {0, 1}k and is denoted



as H(K, .) or HK(.). If domain D is the set of all strings of arbitrary
length (in practice of length less than a huge number) the family is called
an arbitrary-input-length hash function family or for brevity just referred
to as a hash function family. If domain only consists of strings of a fixed
length (i.e., D = {0, 1}m for a fixed m) the family is called a fixed-input-
length hash function family or a compression function family.

A fixed (unkeyed) hash function H is a function (a one-argument
mapping ) H : D → {0, 1}n. Similarly we have an (arbitrary-input-length)
hash function or a compression function, if domain D is {0, 1}∗ or {0, 1}m
(for some fixed m), respectively.

Most of efficient practical hash functions (like MD5, SHA1) are de-
signed as a fixed (unkeyed) hash function and it has been a common
practice in many of the cryptographic protocols to use a hash function
as a single function (not a family) and security of the protocol on some
security assumptions on the hash function, e.g. assuming some properties
like CR, SPR or PR from the hash function..

Here we reiterate a problem in giving a formal definition for collision
resistance notion. It is well-known that treating a hash function as a fam-
ily and not a single function, is the only way to give a formal definition of
collision resistance notion. Defining CR as a game between an adversary
and challenger for a fixed hash function (and saying that it is computa-
tionally hard to win this game) is problematic as there is no challenge
from the challenger and so an adversary with a priori knowledge of a
colliding pair for the function cannot be ruled out. More details on this
can be found in[2, 18, 20]. We discuss this matter briefly at the end of this
subsection.

For some of security notions for hash function (exempt CR notion),
like second preimage resistance notion, there are both sensible formal def-
initions for a family of hash functions and a fixed hash function. But it is
worth noticing that to compare two different security notions (i.e. study-
ing their relative strength or showing separation results) both notions
should be defined in the same setting, in order to stay away from funda-
mental formalization problems arise regarding mathematical meaning of
definitions (like in CR notion as above).

Rogaway and Shrimpton [18] gave formal definitions in concrete secu-
rity framework for basic security notions (CR, SPR, PR) of hash functions
and some of their variants. These definitions are given in the setting of
keyed hash functions, i.e. considering a family of a hash function rather
than one fixed hash function. They also studied all relations (implications
and separations) between these notions (in the keyed setting).



To point out some relations between a security notion defined for a fam-
ily of hash functions and required security assumption(s) on a fixed hash
function (to be a member of that family), we consider two security notions
, called aSec and aPre and defined in [18], for a family of hash functions.
The notions are defined in terms of games in which a key that is known
to the adversary is chosen first and then the challenger chooses a random
challenge. (Alternatively the key can be chosen by the adversary using
the best strategy.) Here we point out the fact that existence of an aSec or
aPre family of hash functions, say H : {0, 1}k ×{0, 1}∗ → {0, 1}n implies
existence of a fixed (unkeyed) hash function, H ′ : {0, 1}∗ → {0, 1}n, that
is SPR or PR, respectively, as defined by following games. (x R← X and

x
$← X represent randomly selecting an element x of the set X according

to uniform distribution and some specific distribution, respectively. )

Game(SPR[m], A) Game(PR[m], A)

M
R← {0, 1}m M

R← {0, 1}m; Y = H ′(M)

M ′ $← A(M) //M ′ ∈ {0, 1}∗ M ′ $← A(Y ) //M ′ ∈ {0, 1}∗

A wins the game if : A wins the game if :
M 6= M ′ and H ′(M) = H ′(M ′) H ′(M ′) = Y

We say that the hash function H ′ is (T, ε)−SPR[m] or (T, ε)−PR[m] if
no adversary with time complexity at most T can win the corresponding
game with probability at least ε. If H ′ is compression function (i.e., H ′ :
{0, 1}m → {0, 1}n), all inputs will have the same length and one can drop
superscript m from notations( i.e., just say (T, ε) − SPR or (T, ε) − PR
compression function).

Stinson [20] studied relations between security notions (Zero-Preimage,
CR, SPR, and PR) for a fixed hash function via related games. To show
an implication between two notions, a black-box reduction is used from
any adversary winning one game to an adversary that wins the other
game.

Let us end this brief overview by considering the notion of collision
resistance. The formal definition of CR notion for a hash function fam-
ily was proposed by Damgard [5, 6], in asymptotic security framework.
A rephrased variant of this formal definition for a hash function family
H : {0, 1}k ×D → {0, 1}n , in concrete security framework (as in [18]), is
as follows:



Game(CR, A)

K
R← {0, 1}k

(M,M ′) $← A(K) // M,M ′ ∈ D

A wins the game if :
M 6= M ′ and HK(M) = HK(M ′)

A hash function family H is said (T, ε)−CR if no adversary with time
complexity at most T can win the corresponding game with probability
at least ε.

As it is seen from CR game if one wants to consider a fixed hash
function, then there would be no input (as a challenge) for adversary and
so one cannot say that there is no (T, ε) adversary. Consider an adversary
that already saved a colliding pair M,M ′ in her/his memeory. Such a
colliding pair is assured if hash function is compressing and so existence
of such a simple adversary is already assured for any fixed (compressing)
hash function. This may seem somewhat puzzling because security of
many of protocols is based on CR property of a fixed hash function to
be used in the protocol. Some options can be imagined for treating this
matter. If it is possible modify the protocol to make it use a weaker
than CR notion. Or modify it to let application of a hash function family
(instaed of only a single hash function) and then use a provably secure CR
hash function family in it. But what if one wants to study and compare
protocols as they are? An (informal) option is pointed out by Brown [4]
(see also [20]) assuming CR as a strong property that “ there is no known
(T, ε) adversary” instead of assuming that “there is no (T, ε) adversary
at all ”.

C Relations between eSPR and eTCR

The following theorem reproduced from [9] shows practicality of an eTCR
hash function family.

Theorem 2 [9] Assume that h : {0, 1}n+b → {0, 1}n is a (T,L + 1, ε)-
eSPR compression function that is also (T ′, ε′)-OWH. The (L + 1)-round
Merkle-Damgard construction based on h as compression function and
used in randomized hashing mode, defines a family of hash functions H̃r :
{0, 1}b×{0, 1}Lb → {0, 1}n that is (T −O(L), L, ε′ +(L+1)ε)- eTCR se-



cure. This family is constructed as H̃r(M) = H̃(r, M) = MDC0
L+1[h](r, M1⊕

r . . . ML ⊕ r), where M = M1||...||ML and C0 is a known initial value.

The second property in addition to eSPR , i.e. being (T ′, ε′)- OWH,
is a flavor of one-wayness that, assuming a mild structural property for
compression function, is implied by eSPR (i.e. ε′ ≤ ε ) and so for most
practical compression functions that compress a reasonable amount, say
128 bits, it is a redundant assumption and actually the assumption about
compression function is still eSPR. We refer the reader to [9] for more
discussion on this matter.

On Hardness of eSPR game in Random Oracle Model:
The proof of following proposition on eSPR difficulty is very similar(with
some small modification) to that of HCR game as shown by Mashatan
and Stinson[12] and is omitted for brevity.( Proof Hint : Note that be-
cause of modeling H as a random oracle we should only consider eSPR
adversaries with L = 2, for by repeated invocation of random oracle, the
output distribution (related to evaluated part in eSPR game) does not
change. The rest of proof is very similar to proof of HCR difficulty in [12]
)

Proposition 1 (eSPR difficulty in Random Oracle Model) Assume
that H is a random function from the set of all functions with domain
{0, 1}n+b and range {0, 1}n and every adversary has only oracle access
to it, i.e. can query M and obtain H(M). For any adversary A making
at most T = 2t queries from oracle H an upper bound for the success
probability in winning eSPR game, provided that 2t is small compared to
2n and b ≥ t, is ε ≤ 2t−n + 22t−2n−b.

Notice that the first term in success probability (i.e. 2t−n) is as one
expects for SPR notion and the second term can be made negligible (com-
pared to the first term) for proper values of b.


