Equivocal Blind Signatures and Adaptive UC-Security

Aggelos Kiayias Hong-Sheng Zhou
April 12, 2007

Abstract

We study the design of practical blind signatures in the universal composability (UC) setting against
adaptive adversaries. We introduce a new property for blind signature schemes that is fundamental for
managing adaptive adversaries: exquivocal blind signaturés a blind signature protocol where a sim-
ulator can construct the internal state of the client so that it matches a simulated transcript even after
a signature was released. We present a general construction methodology for building practical adap-
tively secure blind signatures: the starting point is a 2-move “lite blind signature”, a lightweight 2-party
signature protocol that we formalize and implement both generically as well as number theoretically:
formalizing a primitive as “lite” means that the adversary is required to show all private tapes of adver-
sarially controlled parties; this enables us to conveniently separate zero-knowledge (ZK) related security
requirements from the remaining security properties in the primitive’s design methodology. We then fo-
cus on the exact ZK requirements for building blind signatures. To this effect, we formalize two special
ZK ideal functionalities, single-verifier-ZK (SVZK) and single-prover-ZK (SPZK) and we investigate
the requirements for realizing them in a commit-and-prove fashion as building blocks for adaptively se-
cure UC blind signatures. SVZK can be realized without relying on a multi-session UC commitment; as
a result, we realize SVZK in a very efficient manner using number theoretic mixed commitments while
employing a constant size common reference string and without the need to satisfy non-malleability.
Regarding SPZK we find the rather surprising result that realizing it only for static adversaries is suf-
ficient to obtain adaptive security for UC blind signatures. This important observation simplifies blind
signature design substantially as one can realize SPZK very efficiently in a commit-and-prove fashion
using merely an extractable commitment.

We instantiate all the building blocks of our design methodology efficiently thus presenting the first
practical UC blind signature that is secure against adaptive adversaries in the common reference string
model. In particular, we present (1) a lite equivocal blind signature protocol that is based on elliptic
curves and the 2SDH assumption of Okamoto, (2) efficient implementations of SPZK, SVZK for the
required relations. Our construction also takes advantage of a round optimization method we discuss
and it results in a protocol that has an overall communication overhead of as little as 3Kbytes, employing
six communication moves and a constant length common reference string. We also present alternative
implementations for our equivocal lite blind signature thus demonstrating the generality of our approach.

Finally we count the exact cost of realizing blind signatures with our protocol design by presenting
the distance between tiféssi-hybrid world and theF-rs-hybrid world as a function of environment
parameters. The distance calculation is facilitated by a basic lemma we prove about structuring UC
proofs that may be of independent interest.

*Unpublished manuscript.
TUniversity of Connecticut, Computer Science and Engineering, Storrs, CT, {#&8elos,hszhou }@cse.uconn.edu

Contents

1

Introduction 2
1.1 OurResults. e 3
Preliminaries 5
2.1 The Universal Composibility Framework 5
2.2 SIgnatures e e e 6
2.2.1 Signature Schem&SIG) and Signature Functionalit¥sig 6
2.2.2 Bilinear Groupso 6
2.2.3 Camenisch-Lysyanskaya Signatute. 7
224 Waters Signature e e 7
2.25 Okamoto Signature. e 8
2.2.6 Blind Signature Schemes. 9
2.3 Encryplions. e e e e e 10
2.3.1 Palillier Encryption. 10
2.3.2 LinearEncryption. e e 11
2.4 Commitments. e 11
2.5 Non-Interactive Zero-Knowledge. e 12
2.6 SigmaProtocols e 13
2.7 OtherPrimitives e e 14
Equivocal Lite Blind Signatures 15
3.1 Our Basic Building Block: Lite Blind Signatures 15
3.2 Lite Blind Signature Constructions. 17
3.2.1 GenericConstruction. e 17
3.2.2 Construction based on Camenisch-Lysyanskaya Signature and Linear Encryptid8
3.2.3 Construction based on Waters Signature. 19
3.2.4 Construction based on Okamoto Signature 20
3.3 Equivocal Blind Signatures e 22
UC Blind Signatures Definition 29
Design Methodology for Adaptively Secure UC Blind Signatures 33
5.1 Generic Construction in tHéFcrs, Fsvzk, Fspzk)-HybridWorld 33
5.2 Implementation Strategies f@kvzk andFspziK - -« « « « v v e e 41
Efficient UC Blind Signatures against Adaptive Adversaries 52
6.1 OVEIVIEW o 52
6.2 Detailed Description. e 53
6.3 Efficiency e 57
6.4 SECUNMY. e e e e e e e e 58

1 Introduction

A blind signature is a cryptographic primitive that was proposed by Ch&lra§2; it is a digital signature
scheme where the signing algorithm is substituted by a two-party protocol between a user (or client) and a
signer (or server). The signing protocol’s functionality is that the user can obtain a signature on a message
that she selects in a blind fashion, i.e., without the signer being able to extract some useful information about
the message from the protocol interaction. At the same time the existential unforgeability property of digital
signatures should hold, i.e., after the successful termination of a numberasfupted user instantiations,

an adversary should be incapable of generating signaturés fprl) distinct messages.

A blind signature is a very useful privacy primitive that has many applications in the design of electronic-
cash schemes, the design of electronic voting schemes as well as in the design of anonymous credential
systems. Since the initial introduction of the primitive, a number of constructions have been proposed
[Dam88 0089 Oka92 PS96 JLO97, PS97 P0i98 PS0Q AO0O, Abe01, AO01, BNPS03 Bol03, CKWO04,

KZ06, Oka0§ based on different intractability assumptions and security models with various communica-
tion and time complexities. The first formal treatment of the primitive in a stand-alone model and assuming
random oracles (RO) was given by Pointcheval and SterR39§.

Blind signatures is in fact one of the few complex cryptographic primitives (beyond digital signatures
and public-key encryption) that has been implemented in real-world Internet settings (e.g., in the Votopia
[KimO04] voting system) and thus the investigation of more realistic attack models for blind signatures is of
pressing importance. Juels, Luby and Ostrovsky(d97 presented a formal treatment of blind signatures
that included the possibility for an adversary to launch attacks that use arbitrary concurrent interleaving of
either user or signer protocols. Still, the design of schemes that satisfied such stronger modelling proved
somewhat elusive. In fact, LindelLin03] showed that unbounded concurrent security for blind signatures
is impossible under a simulation-based security definition without any setup assumption; more recently in
[HKKLO7], the generic feasibility of blind signatures without setup assumptions was shown but using a
game-based security formulation.

With respect to practical provably secure schemes (which is the focus of the present work), assum-
ing random oracles or some setup assumption, various efficient constructions were proposed: for example,
[BNPSO03 Bol03] presented efficient two-move constructions in the RO model, wHIEOB, Oka0q pre-
sented efficient constant-round constructions without random oracles employing a common reference string
(CRS) model (i.e., when a trusted setup function initializes all parties’ inputs) that withstand concurrent
attacks. While achieving security under concurrent attacks is an important property for the design of use-
ful blind signatures, a blind signature scheme may still be insecure for a certain deployment. Game-based
security definitionsPS96 JLO97, CKWO04, KZ06, Oka06§ HKKLO7] capture properties that are intuitively
desirable. But the successive extensions of definitions in the literature and the differences between the vari-
ous models in fact exemplify the following: on the one hand capturing all desirable properties of a complex
cryptographic primitive such as a blind signature is a difficult task, while on the other, even if such prop-
erties are attained, a “provably secure” blind signature may still be insecure if deployed within a larger
system. For this reason, it is important to consider the realization of practical blind signatures under a gen-
eral simulation-based security formulation such as the one provided in the Universal Composability (UC)
framework of CanettiCan0] that enables us to formulate cryptographic primitives so that they remain
secure under arbitrary deployments and interleavings of protocol instantiations.

In the UC setting, against static adversaries, it was shown how to construct blind signatures in the CRS
model [FisOg with two moves of interaction. Moreover, one can construct blind signatures in the CRS model
secure against adaptive adversaries using@&[S07 secure two party computation compiler. None of
these protocols are practical and it is currently unknown whether it is possible to build practical UC blind
signature protocols using either methodology.

While generic feasibility results are important in understanding the requirements of a cryptographic
primitive, it is equally important to study the exact requirements of building simulation-based provably
secure blind signatures that are practical.

1.1 Our Results

In this work we study the design of practical blind signatures in the UC framework against adaptive ad-
versaries. We emphasize that by “practical” we mean the following: (i) protocol design with a constant
number of rounds, (ii) a choice of session scope that is consistent with how a blind signature would be im-
plemented in practice, in particular a multitude of clients should be supported within a single session, (iii)
a trusted setup string that is of constant length in the number of parties within a session, (iv) making exact
measurements for communication, time complexity as well as tightness of security reductions, (v) avoiding,
if possible, cryptographic primitives that are “per-bit”, such as bit-commitment, where one has to spend a
communication length d?(l) wherel is a security parameter per bit of private input.
We present the following results:

Equivocal blind signatures. We introduce a new property for blind signatures, called equivocality that is
fundamental for proving security against adaptive adversaries. An equivocal blind signature allows a simu-
lator to construct the internal state of a client including all random tapes so that a simulated communication
transcript can open to any given message; this capability should holdwemafter a signature correspond-

ing to the simulated transcript has been released from the protocol. Equivocality strictly strengthens the
notion of blindness as typically defined in game-based security formulations of blind signatures.

New methodology for building UC blind signatures. We present a general methodology for designing
practical UC blind signatures. Our starting point is the new notion tifeablind signature this is a “light
weight” blind signature protocol that we put forth that has a simple game-based security modelling and is
intended to be relatively easy to instantiate. The idea behind lite blind signatures is that security properties
should hold under the condition that the adversary “deposits” the private tapes of the parties he controls. This
“open-all-private-tapes” approach simplifies the blind signature definitions substantially and allows one to
separate security properties that relate to zero-knowledge compared to other necessary properties for blind
signatures. Note that this is not an honest-but-curious type of adversarial formulation as the adversary is not
required to be honestly simulating corrupted parties; in particular, the adversary may deviate from honest
protocol specifications as long as he can present private tapes that match his communication transcripts.
We present four instantiations of a lite blind signature, one that is based on generic cryptographic prim-
itives and three that are number theoretic: (1) based on the LRSW assumyiRisivP9 and the DLDH
assumption BBS04, (2) the CDH assumptiondH76] and (3) the 2SDH assumptio®ka0g. We then
extend lite blind signatures with the equivocality definition and we prove the conditions under which the lite
blind signature protocols we presented above are equivocal (with the exception of the DLDH scheme).
Using an equivocal lite blind-signature as a fundamental building block, we illustrate a general protocol
design strategy that allows one to produce a blind-signature secure against adaptive adversaries in the UC
setting when coupled with an appropriate pair of ZK-functionalities. The formulation of the appropriate ZK-
functionalities that are required for building blind signatures is an important part of our design approach. In
particular these functionalities turn out to be simplifications of the standard multi-session ZK functionality
Fumzk that restrict the multi-sessions to occur either from many provers to a single verifier (we call this
Fsvzk) or from a single prover to many verifiers (we call tifispzk). Note that we adopt the assumption
that in each blind signature session there is a single signer and a multitude of users and verifiers (this is
consistent with the notion that a blind-signature signer is a server within a larger system and is expected
that the number of such servers would be very small compared to a much larger population of users and
verifiers).

Study of the exact ZK requirements for UC blind signatures.We study the exact requirements for adap-

tive security of UC blind signatures in terms of realizing the two necessary ZK functionalities. Our findings
enable much more practical instantiations of these functionalities compared to realizing them “generically”
based on existing UC-ZK formulations. First, we show tha{zk can be realized in a commit-and-prove
fashion using a commitment scheme that does not require non-malleability (while such property is essential
for general UC commitments). We proceed to realfzg 7k using mixed commitmentdDNO2, Nie0J

with only a constant length common reference string (as opposed to linear in the number of parties). Sec-
ond, rather surprisingly, we find that the functionalifgpzk that will be employed by the signer need

only be realized against static adversaries for our blind signature scheme to satisfy adaptive security! This
enables a much more efficient realization designfgpzk as we can implement it using merely an ex-
tractable commitment and a Sigma protocol. The intuition behind this result is that in a blind signature the
signer is not interested in hiding his input in the same way that the user is: this can be seen by the fact
that the verification-key itself leaks a lot of information about the signing-key to the adversary/environment,
thus, using a full-fledged zero-knowledge instantiation is an overkill from the signer’s point of view; this
phenomenon was studied in the context of zero-knowledgl€207)].

Practical implementation and calculating the cost of UC security.Based on our methodology and the

ZK investigation above we present the fipsactical blind signature protocol that is universally composable

and secure against adaptive adversaries. In particular, our construction is based on the 2SDH assumption
and builds upon the lite blind signature derived frobkp0§. We first prove that this protocol is equivocal
unconditionally. Then, using our general methodology for building adaptively secure UC blind signatures
we pair this lite blind signature with two efficient instantiations f&f,zx and Fspzk realized as described

above. Our final protocol employs a CRS that is of constant length, it needs 6 moves of interaction and has a
total communication overhead of only 3 KBytes. Our protocol also utilizes a round reduction technique that
we introduce that enables us to save two communication moves. We then investigate the concrete security of
our blind signature protocol and we show that if one substitutes an instance of arfiggalbox with our

protocol instantiation, this will incur at moidvagan + (¢1 +3¢3) - Advaer + (g1 +¢2) - (Advaieg +Advernr) +

q1-27 4 q1- 27N £ g9 - 275 + (g1 +4q3) - 27 computational advantage, whegg ¢z, g3 are parameters
specified in the adversarial environment such thats the number of the users which are corrupted initially,

g2 is the number of valid message-signature pairs obtained from a corrupted signgriatite number of

the users not corrupted initially. Note that theév functions correspond to the computational advantage that

the adversary has in breaking the subcomponents of our construction and are defiaetian 2

Proof strategy. This distance calculation between thgsie-hybrid world and theF-rs-hybrid world is

based on a specific structuring of the UC security proof that relies on a stepwise refinement of an initial
dummy functionality that is gradually made to resemblgy¢. We present this as a general proof strategy

for UC security proofs and we show a general lemma that helps structure such proofs and count their distance
in a systematic way (refer tbemma 5.); we note that while this has no bearing on the security of the
construction, we feel it makes a UC proof easier to understand as the final simulator would be comprised of
different “simulator layers” that correspond to the stepwise refinements of the initial dummy functionality

0 FsiG-

Notations: a < RND denotes randomly selectingn its domain;negl() denotes negligible functiomoly()
denotes polynomial function.

2 Preliminaries

2.1 The Universal Composibility Framework

Defining the security in the universal composibility framework includes the following steps: we first specify

an ideal functionality, which describes the desired behavior of the protocol by using a trusted party; then we
prove that a particular protocol operating in the real world securely realizes this ideal functionality. Below,
we give a brief description of the framework. S€ah03 for more details.

Authenticated communicatiofe assume an asynchronous, authenticated, public network, without guar-
anteed delivery of messages. More precisely, the adversary is allowed to delay a message indefinitely, and
to change the contents of the message, as long as the sender is corrupted at the time of delivery (even if the
sender was uncorrupted at the time of transmission).

Corruptions strategyThere are two corruption strategies, static corruption and adaptive corruption. In the
static case, the adversary corrupts parties only at the onset of the computation; in the adaptive case, the
adversary chooses which parties to corrupt as the computation evolves. Once the adversary corrupts a party,
it learns all its internal information, including the private input, the communication history, and the random
bits used. Once they are corrupted, the behavior of the parties is arbitrary.

The real-world modelThe real-world model is defined as a system of interactive Turing machines (ITMs)
including the execution of a protocal, an adversary4, and an environmeng with input z, where the
adversary represents all adversarial activities against the protocol execution, and the environment represents
all other protocols instances and adversaries. The environfhénactivated first, then the adversatyis

invoked by Z. The parties in an instance of protoeokan be invoked by with an input message, or by

A with an incoming communication message. Once the adversary is activated, it may deliver a message to
some party by writing this message to the party’s incoming communication tape, or corrupt a party if the
environment allows it, or report some informationZo Once a party is activated, it follows its code and
possibly writes outputs on the subroutine output tap&€ pbr writes outgoing messages on the incoming
communication tape ofl, or invokes other ITM instances as subroutines by providing inputs to them and
receiving outputs from them. Finally, the environment will output one bit and halt. Let EXE£denote

the ensemble of random variables describifig output when interacting with adversa®y and parties

running protocolr, on a security parametar assuming uniformly-chosen random tapes for all entities.

The ideal-world modelSecurity of protocols is defined via comparing the real-world execution to an ideal-
world process. We introduce an ideal functionalfyinto the ideal-world process to capture the desired
functionality of the given task. The ideal-world process involves an ideal functionglitgn ideal-world
adversary (also known as the simulatér)an environmeng with input z, and a set of dummy parties.

The ideal functionality can be seen as a “joint subroutine” of the dummy parties. As in the real model, the
environmentZ is always activated first, and then activates either the advefsarysome dummy party by

writing an input. If the simulatoS is activated, then it activates the ideal functionalfiyby delivering a
message, or reports some informatiortoWhen a dummy party is activated by an input message f£om

it forwards the input message fa Based on its program and the inputsgenerates its outputs. Corruption

of parties is captured as a request from the simul&ttar the functionalityF. Let EXECfmS’Z denote the
ensemble of random variables describi#ig output after interacting witl¥ andF, on a security parameter

A, and assuming uniformly-chosen random tapes for all entities.

Securely realizing an ideal functionalityn the UC framework, a protocat securely realizes an ideal
functionality F if for any real-world adversaryd there exists an ideal-world simulatér such that no
environmentZ, on any input, can tell with non-negligible probability whether it is interacting witand

parties runningr in the real world, or withS, F and dummy parties in the ideal world. More precisely, the

two distribution ensembles are indistinguishable, i.e. E){dFTgZ ~ EXEC; 4 z.

Security with respect to the dummy adversémgtead of quantifying over all possible adversarie£anetti

[Can0j shows that it suffices to require the simulafbto simulate a very simple adversary, called “dummy
adversary”, for anyZ. Here dummy adversary just delivers the messages between the envirctirmaedt
the parties. NowZ fully controls over the communication. We will ignoré and let EXEG =z denote the
ensemble of random variables describifig output whenA is dummy.

The hybrid model. The hybrid model with a functionalityF is similar to the real-world model, with the
addition that the parties may invoke an unbounded numbgt sfibroutines. Each copy ¢f is identified

via a unique session identifier (SID). Let Exﬁ’gz denote the ensemble of random variables describing
the output ofZ, after interacting with4 and parties running protocelin the 7-hybrid model. Assume now
that protocolo securely realizeg. The composed protoca¥ is constructed by replacing the first input to
F in 7 by an invocation of a new copy @f with fresh random tapes, the same SID, and with the contents
of that message as input; each subsequent message to that cBpy mdplaced with an activation of the
corresponding copy af, with the contents of that message as new input to

The composition theoremn its general form, the composition theorem basically says thatsiécurely
realizesF in the G-hybrid model for some functionalitg, then an execution of the composed protocol
w2, running in theG-hybrid model, “emulates” an execution of protoeoin the F-hybrid model. That

is, for any adversaryl in the G-hybrid model there exists an advers&yn the F-hybrid model such that

no environmentZ can tell with non-negligible probability whether it is interacting withand ¢ in the
G-hybrid model or it is interacting witly andr in the -hybrid model, i.e. EXE@,,A,Z ~ EXECZ;SZ.

2.2 Signatures
2.2.1 Signature Schem&:(SIG) and Signature Functionality Fsig

Goldwasser et al. GMR8§ first introduced the security notion of existential forgeability against chosen
message attacks (EU-CMA), for digital signatures.

Definition 2.1 (EU-CMA Signature Schemes).A signature schem&(SIG) = (gen, sign,verify) is
called EU-CMA if the following properties hold for any negligible functiesgl(-), and all large enough
values of the security parametgr

Completenesd=or any message:. € M,

Pr[(vk, sk) — gen(1*); rnd < RND; o — sign(vk, sk, m, rnd); 0 «— verify(vk,m,o)] < negl(\).

Consistency:For anym € M, the probability thaigen(1*) generatesvk, sk) andverify(vk,m,o)
generates two different outputs in two independent invocations is smallen¢gin).
Unforgeability: For any PPT forgeF’,

Pr[(vk, sk) — gen(1?); (m, o) «— Fsigavksk) (L)
1 « verify(vk,m,o) andF never askedign(vk, sk, -,) to signm] < negl(}\).
CanettiCan03§ defines the signature functionaliffs;¢ in Figure 1and proves the theorem below, where
signature protocotsy, iy presented irfrigure 2is transformed front(SIG).

Theorem 2.2. %(SIG) is EU-CMA< 75,1y securely realizesgig.

2.2.2 Bilinear Groups

Let G1, G be two groups of prime orderso that ()G, = (¢g1) andGs = (g2); (ii) ¥ : G — Gy is an
isomorphism withy(g2) = g1 and (iii) & : G; x G2 — G is a bilinear map. We remark that in some cases
it can be thatG; = G2 (and in this case), would be the identity mapping). Lét; = (g1), Go = (g2)
groups as above witlz;| = |G| = p; a bilinear map is a maps.t. for all (u,v) € G; x G, it holds that
é(a”,bY) = &(a, b)™ andé(gi, g2) # 1.

Functionality Fsia

Key generation: Upon receiving(KeyGen, sid) from party S, verify thatsid = (S, sid") for somesid’. If not,
then ignore the input. Else, forwafdeyGen, sid) to the adversang.
Upon receiving(Algorithms, sid, sig, ver) from the adversarys, record (sig, ver) in history(S) and
output(VerificationAlg, sid, ver) to party.S, wheresig is a signing algorithm, ander is a verification

algorithm.
Signature generation: Upon receiving (Sign, sid, m) from party S where sid = (S,sid'), let ¢ =
sig(m, rnd) where some random coing:d may be used, and verify thatr(m,o) = 1. If so,

then output(Signature, sid, m,o) to party S, and record(m, o, rnd) into history(S). Else, output
(Signature, sid, error) to partyS and halt.

Signature verification: Upon receiving(Verify, sid, m, o, ver') from party V, wheresid = (S, sid’), do:
if ver’ = ver, the signerS is not corruptedyer(m,o) = 1, andm is not recorded, then output
(Verified, sid, error) to partyV and halt. Else, outpuVerified, sid, m,ver'(m, o)) to partyV.

Corruption: Upon receiving(Corrupt, sid, J) from the adversang, return(Corrupted, sid, history(J)) to
S.

Figure 1: Signature functionalitfsic.

2.2.3 Camenisch-Lysyanskaya Signature

Camenisch and Lysyanskay@l[04] proposed a digital signature scheme which is EU-CMA secure under
the LRSW assumption. The LRSW was first introduced by Lysyanskaya ¢REW99.

Definition 2.3 (LRSW Assumption). Given the bilinear group parametdrs g, G1,Gr,8). Let X, Y €
G1,X «— ¢*,Y « ¢ and defineDx y () to be an oracle that, on input a value < Z,, it outputs a triple

(a,b,c) such thab = a?, andc = a®"™*¥ wherea < G;. Then, for all PPT adversaries,

def 2,y € Lp; X = g%Y = ¢Y;(m,a,b,c) — AOXvY()(X,Y) :

Advit, = P
dv g me&QAMEZ,Am#0Na€ G ANb=a¥Ac=a"t"V

Irsw

< negl(}),

whereQ is the set of queries that made toOx y ().

Next we introduce Camenisch-Lysyanskaya signature.

Key generationgenerate the bilinear group parameterG,, G, g, 8); then choose:, y < Z,, and com-
puteX = ¢g* andY = ¢¥; set signing key ask = (x, y) and verification key ask = (p, G1,Gr, 9,8 X,Y).
Signature generationon input message, signing keysk = (x, y), and verification keyk = (p, G, Gr, g,
&; X,Y), choose a random € G4, and output the signature= (a, a¥, a®*m*).

Signature verification:on input verification kewk = (p, G1,Gr, g,&; X,Y), messagen, and signature
o = (a, b, c), check whether the verification equatic{s, Y) = &(g,b) andé(X,a) - &(X,b)™ = &(g, c)
hold.

2.2.4 Waters Signature

Waters proposed a signature schem&t0g which is EU-CMA secure under the CDH assumption over
groupG;.

Protocol 7s;s1a)

Key generation: When partyS is invoked with (KeyGen, sid) by Z, it verifies thatsid = (S, sid’) for
somesid’; If not, it ignores the input; Otherwise, it run@k, sk) < gen(1*), lets the signing al-
gorithm sig = sign(vk, sk,-,-) and the verification algoritheer = verify(vk,-,-), and outputs
(VerificationAlg, sid,ver) to Z.

Signature generation: When partys is invoked with(Sign, sid, m) by Z wheresid = (S, sid"), it setso «
sig(m, rnd) where some random coingad may be used, and outputdignature, sid, m,c) to Z.
Signature verification: When partyV is invoked with(Verify, sid, m, o, ver’) by Z wheresid = (S, sid’), it

outputs(Verified, sid, m,ver'(m, o)) t0 Z.

Corruption: When partyJ is invoked with(Corrupt, sid, J) by Z, it returns(Corrupted, sid, history(J)) to
Z.

Figure 2: Signature protocal; sic)-

Definition 2.4 (Computational Diffie-Hellman (CDH) Assumption). Let G, be a cyclic group of prime
orderp. The CDH problem defined as follows: giveng?, ¢® € G, outputg®® € G,. The CDH assumption
suggests that any PPT algorith#nsolving the CDH problem has negligible probability, i.e.

Advéih =Pr [g €Gi;a,beZy: Alg, 9% ¢%) = g"b} < negl(A).

Next, we introduce Waters signature.

Key generationRandomly seleat < Zp, and select generatogsgs, v, u1, . . ., u, € Gy and sey; «— g.
Set verification keyk = (g, g1, g2, v, u1, . . ., up) and secret keyk = (g3').

Signature generationtet m be then-bit message to be signea,; is the ' bit of m. SignerS randomly
selects < 7, and computer; « g5 (v IT5-: u}"j)r andos — g". The signature fom is o «— (o1, 02).
Signature verification:Given public keyvk = (g, g1, 92, v, u1,. .., u,), messagen, and signatures =
(01,02), check tha(o1, g)/&(o2, v [}, u;”j) = &(g1,92). If they hold, then the verification is valid,;
otherwise invalid.

2.2.5 Okamoto Signature

In our construction, we will use the signature recently proposed in section@kaOg, which is based on
bilinear groups, and is EU-CMA secure unge2SDH assumption.

Definition 2.5 (2-Variable Strong Diffie-Hellman (2SDH) Assumption).Let (G1, G2) be bilinear groups
defined as above. The2SDH problem inG;, G2) is defined as follows: given@q+4)-tuple (g, g2, we «—

y+by y+bg y+d fot
T+a xz+a . ‘o Tr
g% ug — 95,99 o gy U a, ... aq,b1,. .., by) @S input, outputs «— g{* T o — g2 d, Vi, Va)

whereay, ..., aq,b1,...,bq,d, f,7 € Zp; w1 «— P(w2),s, Vi € Gy; o, Vo € Goj andé(s, a) = é(gl,uggg),
é(Vi,a) = &(wy,ws) - &(g1,V2), d & {b1,...,bs}. Theg-2SDH assumption suggests that any PPT algo-
rithm A solving theg-2SDH problem has negligible success probability, i.e.

T,y € ZLp; g2 € Go; g1 — ¥(g2); wa — G55 ug — g5;

y+by yibq
def . z+ay THaq
AdVéL\Sdhé ala--'va‘(pbla'-'abq6Zp7cl<_92 sy Cq < go q> éneg|()\)

(s, a,d, Vi, Vo) — A(g1, g2, w2, u2,a1,...,aq,b1,...,bg,¢1,...,¢q) :
&(s,) = &(g1, u299) N &(Vi, @) = &(wi, wa) - &(g1, Vo) Ad & {b1,...,bg}

Next we briefly introduce Okamoto signature.

Key generation:Randomly selects, ua, v2 < Go and sety; — ¥(gs), u1 — ¥(uz) andwv; «— 1(vy).
Randomly select: <~ Z, and computeX « g € Go. Setvk = (g1, ga,us,v2, X) and secret key
sk = (x).

Signature generationLet m € Z, be the message to be signed. Sigsieandomly selects ands from Z,,
s.t. z + r # 0 mod p; and compute «— (g?ulvf)leﬂLT, o — g§x+r, Vi« @D(X)%g?, Vo th+?g§h,
wheref,r, s, h < Zy. The signature fom iso = (s, a, s, Vi, V2).

Signature verification:Given verification keyvk = (g1, g2, u2, v2, X), messagen, and signaturer =
(s,a,s,V1,Va), check thatn, s € Z,, s, Vi € G1, o, Va € Ga, ¢ # 1, a # 1 andé(s, o) = &(g1, g5 uavs),
é(V1,a) =é(y(X), X) - &(g1, Vo). If they hold, then the verification is valid; otherwise invalid.

2.2.6 Blind Signature Schemes

Definition 2.6 (Blind Signature Scheme).A blind digital signature schemeg(BSIG) is a five-tuple, con-
sisting of two interactive Turing machinegs U, where S denotes the signer, arld the user, and three
algorithmsCRSgen, gen, verify as follows:

- CRSgen(1%) is a probabilistic polynomial time CRS generation algorithm which takes as an input a
security parametex and outputs a paifcrs, 7) of CRS and its trapdoor.

- gen(crs) is a probabilistic polynomial time key generation algorithm which takes as an impaind
outputs a pai(vk, sk) of public and secret keys.

- S andU are a pair of probabilistic interactive Turing machines with the following tapes: a read-only
public input tape, a read-only secret input tape, a write-only public output tape, a write-only secret
output tape, a read/write secret work tape, a read-only secret random tape, and incoming/outgoing
communication tapes. They are both given, vk on their public input tapes. Additionally is given
sk on his secret input tape arid is given message: on his secret input tape, where the length of
all inputs must be polynomial in the security parameterBoth U and.S engage in the interactive
protocol of some polynomial number of rounds. At the end of this prots@ltputs eithecompleted
or L andU outputs eithe(m, o) or L.

- verify(crs,vk, m,o) is a deterministic polynomial time algorithm, which outputsr 0. For any
messagen, and for all(¢rs, 7) < CRSgen(1}) and(vk, sk) < gen(crs), if both S andU follow the
protocol then ifS outputscompleted and the output of the user(is:, o) thenverify(crs, vk, m,o) =
1.

Note that in the plain modelCRSgen is not employed, and now the blind signature scheiBSIG)
consists ofigen, S, U, verify).

When partyS and partyU are same, i.eS = U, a blind signature schen¥(BSIG) will collapse to a
plain signature schen®(SIG) = (gen, sign, verify). Heregen andverify are same as that defined in

9

Y (BSIG), andsign is the signature generation algorithm which can be used to generate sign&ure:
o «— sign(vk, sk, m,rnd) wherernd < RND (such algorithm is immediately from the collapse$/
into a single unit).

A secure blind signature scheme has the following two properties:

Unforgeability. A one-more forgery adversary against the blind signature is a PPT madhivgch is
given crs andvk wherecrs < CRSgen(1?) and(vk, sk) < gen(crs), engages i, = poly()) interactions
with the signer in concurrent and interleaving fashion, and terminates by retdénmiagsage-signature pairs
(m1,01), ..., (mg, o¢) Wherem; # m;,1 < i # j < {. We define the advantage &f by Advfﬁf;rge()\) =

Pr[(verify(crs,vk,m;,0;) = 1,1 < ¢ < {) A (¢ > L)] and we say that the blind signature scheme is
unforgeable if for all PPT4 and for all polynomialZ, Adv:” (A) < negl(A).

unforge

Blindness. A blindness distinguisher adversary against the blind signature is a PPT mathvhech is
given crs where crs < CRSgen(1*), outputs two messages and the verification key, my, vk), en-
gages in two honest user instantiations in concurrent and interleaving fashion with {iapytst, m;) and
(crs, vk, mq_yp), respectively, where bii is hidden; next if both user instantiations terminate successfully
and output two valid signaturésy, o1), thenA is supplied with(cy, 01), elseA is supplied with(_L, 1);
finally .A terminates by returning a bit. We define the advantage dfby Advi}, ;(\) = | Pr[b* = b] — 31,
and say that the blind signature scheme satisfies the blindness property if for aJA,P/RHK/ﬁmd()\) <

negl(\).

Remark 2.7. We will revisit the security model later on in this paper. We only mention the above notions

to illustrate the current understanding of the properties of blind signature in a game-based modeling. The
definition here is following the definitions iOka0q and HKKLO7]. In [JLO97, the unforegeability defi-

nition is stronger than the definition above: the adversary is required to supply different message-signature
pairs, i.e.(m1,01), ..., (my, 0¢) Where(m;, o;) # (mj,05), 1 < i # j < ¢; and the blindness definition

is weaker than the definition here: the adversarial signer is not allowed to generate the verificatién key
and the key-paifvk, sk) is generated honestly, i.€vk, sk) < gen(crs). In [FisO@, the blindness defini-

tion is same as here, and the unforgeability definition is the stronger versionHAsda7. In [KZ06], the
unforgeability is same as here, and the blindness definition is the weaker versiodla® @[

2.3 Encryptions
2.3.1 Paillier Encryption

Here we give a brief description of Paillier encryptid?aj99. Paillier encryption has been proven seman-
tically secure if and only if the Decisional Composite Residuosity (DCR) assumption is true.

Key generationiet p andq be random primes for which, q > 2, p # q, |p| = |q| and gcdpq, (p — 1)(q —
1)) =1;letn = pq,d = lcm(p—1,q— 1), K = d~! mod n, andg = (1 + n); the public key ik = (n, g)
while the secret key isk = (p, q).

Encryption: the plaintext set iZ,; given a plaintextn, choose a random € Z}, and let the ciphertext be
¢ = g™¢" mod n2.

Decryption:given a ciphertext, observe that?X = gmdK. (n-dK — gm-(Kmodn n-dkmod nd _ gm modn.

mod n?)—1

0 mod nd 2 it : (2
¢vmodnd — g™ — 1 4+ mn mod n“. Thus, itis possible to recovet = S mod n.

Definition 2.8 (Decisional Composite Residuosity Assumption)lhere is no PPT distinguishgt for n-th
residues modula?, i.e.

Advi, © | Priy € Z%h;z — y" mod n? : A(z) = 1] — Pr[z € Z%, : A(2) = 1] | < negl(}).

10

Damdard and Jurik[DJOT] generalize Paillier encryption from modulet to modulams™! wheres € N.
They also show that the extension is based on the DCR assumption above.

2.3.2 Linear Encryption

Boneh et al. BBS04 proposed a variant of EIGamal encryption, called, Linear Encryption that is suitable
for groups over which the DDH assumption fails.

Key generationthe public keypk is a triple of generators v, w € G; and the secret kesk is the exponents
x,y € Zy such that® = v¥ = w.

Encryption:to encrypt a message € G, choose random valuesb € Z,, and output the triplét®, b, m-
waer).

Decryption:given an encryptiofZ’, V, W), we recover the plaintext as followsm = =1

The Linear encryption is based on the Decision Linear Diffie-Hellman assumption, which was first
introduced by Boneh et alBBS04. With g € G; as above, along with arbitrary generators andw of
G4, consider the following problem:

Definition 2.9 (Decision Linear Diffie-Hellman Assumption). Givent, v, w,t*,v%, w? € G; as input,
there is no PPT adversay can distinguish with non-negligible probability that+ 5 = ~, i.e.

A def | Pr[t,v,w € Gy, o, B € Zy : A(t,v,w, %, 05, wHF) = 1]
= < .
Adledh - Pr[t?v7w7X7 € Gl,OQﬂ € Zp : A(t7v7w7ta7v/87X) = 1] B negI(A)

2.4 Commitments

A commitment scheme includes following algorithms: a PPT algorigemthat produces the committing
key pk; a PPT committing algorithmom that based opk commits a plaintextn to a commitment value,
i.e. ¢ — com(pk, m;() where(is randomly selected, an@n, ¢) is the opening (“decommitment”) value;
a polynomial time verification algorithmer that checks if the opening valuen, ¢) is consistent to the
commitment value.

Definition 2.10 (Commitment Scheme).X(COM) = (gen, com, ver) is a commitment scheme if the
following properties hold:

CompletenessFor allpk — gen(1*), for allm € M, for any¢ < RND, ver(pk, com(pk,m;), m, () = 1.
Binding: For all PPT adversaried,

AdVEAinding & Pr[pk — gen(1*); (c,m1, (1, m2, () — A(pk) :
ver(pk,c,m1, (1) = ver(pk,c,ma,(2) = 1 Amy # ma] < negl()).

Hiding: For all PPT adversary,

by | P gen(1); (ma,ma) — A(pk);
AdvA . def (1 < RND; ¢1 «— com(pk, my; (1) : Aler) = 1
hiding _py | PR gen(1Y); (ma, ma) — A(pk);
(2 < RND; ¢ « com(pk,ma; (2) : A(co) = 1

< negl(\).

Next we define equivocal commitment schemes and extractable commitment schemes.

11

Definition 2.11 (Equivocal Commitment). 3(EQC) = (gen, com, ver, fake, equivocate) iS an equiv-
ocal commitment schemeggn(1*) outputs a key paifpk, ek), and ifgen, is the algorithm returning only
the first element of the output gén then(gen, , com, ver) is a commitment scheme as well as the following
property holds.

Equivocality:If for any PPT distinguished we have

Pr[(pk, ek) < gen(1?) : AOpk ck (pk) =1]

Adva <
e — Pr[(pk, ek) « gen(1*) : A% (pk) = 1]

< negl(A).

The oracles are defined as foIIov@;',k,ek on querym € M returns(c, ¢), where(c, aux) <« fake(pk, ek)
and{ < equivocate(pk, ¢, aux, m); Oy, ON querym € M returns(c, ¢), wherec < com(pk, m; () and
¢ < RND.

Definition 2.12 (Extractable Commitment). ¥(EXC) = (gen, com, ver, extract) is an extractable com-
mitment scheme igen(1%) outputs a key paitpk, zk), and ifgen, is the algorithm returning only the first
element of the output gfen then(gen,, com, ver) is a commitment scheme as well as the following prop-
erty holds.

Extractability: For all (pk, 2k) < gen(1*), for all m € M and for any(<~ RND, there exists an extraction
algorithmextract such thaextract(pk, zk, com(pk, m;()) = m.

2.5 Non-Interactive Zero-Knowledge

Here we briefly introduce non-interactive zero-knowledge schemes. The reader can refer @@SNG|[

for a more detailed discussion. LBtbe an efficiently computable binary relation. For pdirsw) € R we

call z the statement and the witness. Leip be the language consisting of statement®jri.e. Ly def

{z|Fw s.t. (z,w) € R}. An NIZK scheme includes following algorithms: a PPT algoritgen producing
a CRScrs together with a trapdoor; a PPT algorithnprove that takes as inputrs and(z, w) € R and
outputs a proofo; a polynomial time algorithmerify takes as inputcrs, z, @) and outputd if the proof
is valid and0 otherwise.

Definition 2.13 (Non-Interactive Zero-Knowledge (NIZK) Scheme).X(NIZK) = (gen, prove, verify,
simulate) is an NIZK scheme for the relatioR if the following properties hold:

Completenessor any(z, w) € R,
Pr[(crs, T) « gen(1%); ¢ < RND; @ « prove(crs, z, w; () : verify(crs,z,w) = 0] < negl(\).
Soundnesgor all PPT adversary,
Pr[(crs,7) « gen(1Y); (z, @) «— A(crs) : v & Lr Averify(ers,z, @) = 1] < negl(\).
Zero-knowledgelf for any PPT distinguisherl we have

Pr[(crs, 7) « gen(1) : A@C”’T(crs) = 1]

~ Prf(ers,) — gen(1*) : A% (crs) = 1] | = negl(\).

The oracles are defined as foIIov@'mJ onquery(z,w) € Rreturnsw, where(w, aux) < simulate(crs,
7,2); Ours ON query(z, w) € R returnsw, wherew « prove(crs, z, w; ¢) and(< RND.

Next we define non-erasure NIZK schemes.

12

Definition 2.14 (Non-Erasure NIZK (NENIZK)). X(NENIZK) = (gen,prove,verify, simulate,
reconstruct) is a non-erasure NIZK scheme (gen, prove, verify, simulate) is an NIZK scheme
and the following property holds.

Non-erasure zero-knowledgH:for any PPT distinguished we have

Pr[(crs,7) « gen(1?) : .,i\l@f”'sﬁ(gcrs) = 1]_ < negl(\).

—Pr[(crs,) < gen(1?) : A% (crs) = 1]
The oracles are defined as foIIowéA?m,T on query(z,w) € R returns(w, (), where(w,aux) «
simulate(crs, 7,x) and(< reconstruct(crs, x, w, aux, w); O.s On query(x, w) € R returns(w, (),
wherew «— prove(crs, z, w; () and(< RND.

2.6 Sigma Protocols

In this subsection we introduce Sigma protocol3DE94. Informally, a Sigma-protocol is a three move
public randomness protocol (cfrigure 3 with a honest verifier zero-knowledge property and a special
soundness property. In our formulation of Sigma-protocols below we will formalize soundness only to
satisfy membership consistency (rather than knowledge extraction).

statement = (x) statement = (x)
witness = (w)

rq < RND
a < prove, (z,w;ry)

e < {0,1}%

z «— prove,(z,w, g, e)

verify(z,a,e, z) =" 1

Figure 3: Three move public randomness protocol for relafloiere/, is the length of the challenge

Definition 2.15 (Sigma Protocol).A Sigma protocol for the relatioR is a tuple(prove,, proves, verify,
simulate), where(prove,, proves, verify) is a three-move public randomness protosahulate is a
PPT algorithm, and where the following properties hold:

Completenesdor any(z, w) € R,
Pr[r, < RND;a « prove,(z,w;r,); z + proves(r,w,rq,€) : verify(z, a, e, z) = 0] < negl()).
Special membership soundneBsr all PPT adversaried = (A,,.A,), for any statement,

e < {0,1}; (a,aux) — Ay (x); 2z «— As(e, aux)) :
verify(z,a,e,z) =1ANx & Lg

AdvA def Pr

sound

< negl(A).

13

Honest-verifier zero-knowledg€or any PPT distinguished and for any(z, w) € R, we have

Ta Sl RND; a «+ proVel(x7 w; ra); e & {07 1}25;]

Pr
A def [z « proves(z,w,rq,e) : Az, w,a,e,z) =1

Advy, = < negl(A).

prl € & {0,1}%; (a, z, auzx) «— simulate(z,e) :
—Pr
Alz,w,a,e,z) =1

Next we will introduce the non-erasure property for Sigma protocols.

Definition 2.16 (Non-erasure sigma protocol).A non-erasure Sigma protocol for relatidtis a tuple
(prove,,prove,, verify, simulate, reconstruct), where(prove,, proves, verify, simulate) is a
Sigma protocolreconstruct is a PPT algorithm, and the following property also holds:

Non-erasure honest-verifier zero-knowledger any PPT distinguished and any(z, w) € R, we have

pr| Ta & RND; a « prove, (z,w;rq); e < {0, 1}%;
AdyA - def z « proves(z,w,rq,€) : A(z,w,a,e,z,rq) =1 < negl(\)
nezk e < {0,1}%; (a, z, aux) + simulate(z,e); - '
—Pr

rq < reconstruct(z,a, z, w, e, aux) : A(z,w,a,e,z,r,) =1

We note that the zero-knowledge formulated above is weak (honest verifier) and thus unsuitable for
many settings. Nevertheless, there are generic methods of transforming a honest-verifier zero-knowledge
protocol to one that satisfies zero-knowledge in more reasonable adversarial settings. For exam@le Damg
showed how one can use an equivocal commitment to extend a Sigma protocol to achieve concurrent zero-
knowledge in the CRS modeDpmO0(Q. Please refer to section 2.9 of Nielsen’s PhD thebig(3 for a
wonderful explanation of Sigma protocol.

2.7 Other Primitives

Here we present some other definitions that will be useful in the sequel.

Definition 2.17 (Collision Resistent Hash Function Family).Let 7 be a finite family of functions such
thatvH € 2, we haveH : {0,1}* — Zg. We say.#Z is a collision resistent hash function family if for
any PPT adversary,

def

AdvA « E Pr[H — 52,y — A, program(H)) : H(z) = H(y) Az # y] < negl()).

whereprogram(H) denotes an implementation &f.

Definition 2.18 (Discrete Logarithm (DLOG) Assumption). Let G be a cyclic group of prime order
wherep is at least\-bits. The DLOG problem defined as follows: givgng® € G, outputa € Z,. The
DLOG assumption suggests that any PPT algoritheolving the DLOG problem has negligible probability,
ie.

Advio, & Pr [g €Gia &7, Alg g?) = a| < negl(\).

14

3 Equivocal Lite Blind Signatures

3.1 Our Basic Building Block: Lite Blind Signatures

A signature generation protocol is a tugBRSgen, gen, Ibs;, Ibsg, Ibss, verify) whereCRSgen is a com-

mon reference string generation algorithygan is a key-pair generation algorithbs;, i = 1, 2, 3, comprise

a two-move signature generation protocol between theldiserd the signef as described ifrigure 4and
verify is a signature verification algorithm. A lite blind signature is a signature generation protocol that
satisfies correctness as well as two security propettiesjnforgeabilityandlite-blindnessdefined below.

The motivation for lite blind signature is to simplify the security properties by requiring the adversary to
play the security games with “open tapes”.

CRS = (crs) CRS = {(crs)
VerificationKey = (vk) VerificationKey = (vk)
Plaintext = (m) SigningKey = (sk)

p1 < RND

u « lbsy(ers, vk, m; p1) - p2 < RND

s « lbsa(crs, vk, u, sk; p2)

p3 < RND

o — lbsz(crs, vk, m, p1,u,s; p3)

Figure 4: Outline of a two-move signature generation protocol.

We note thatRSgen is not employed in any of the security properties of a lite blind signature and thus it
may be just a length parameter in a certain instantiation of the primitive. Nevertheless, we include it, since a
lite blind signature is a basic building block in our design methodology and a common reference string will
be used by subsequent extensions of the lightweight primitive (in particular in the definition of equivocality
that will be given inSection 3.3.

Definition 3.1 (Completeness)A signature generation protocol asiigure 4is correct if for all(crs, 7) «—
CRSgen(1%), for all (vk, sk) « gen(crs), for all py, p2, p3 < RND, computeu « lbs; (crs, vk, m; p1),
s « Ibsy(crs, vk, u, sk; p2), ando « lbss(crs, vk, m, p1,u,s; p3), thenverify(crs, vk, m,o) = 1.

Note that the above completeness is very easy to be generalize to probabilistic casesa®h [
Lite-unforgeability that we define below suggests informally that if we “collapse’lie Ibsy proce-
dures into a single algorithm this will result to a procedure that combinedibgitwill be equivalent to the
signing algorithm of an unforgeable digital signature in the sengBldi8g. Recall that lite-unforgeability
is much weaker compared to regular unforgeability of blind signatures (as defined eJy.O®i7] Fis0q)
since it requires from the adversary to provide the input to an “honest” simulation of the user (as opposed to
letting the adversary impersonate user instantiations himself).

Definition 3.2 (Lite-unforgeability). A signature generation protocol ashigure 4is lite-unforgeable if
for all PPTA = (Aj,.A;) and for anyL, = poly()\), we haveAdvi';*(A) < negl(\), whereAdviF () &

Pr[Exp!{} (A) = 1] and the experimeriExp!}} (}) is defined below:

15

ExperimentExp "} (\)

(crs,T) « CRSgen(1); (vk, sk) «— gen(crs); state := 0; k := 0;

whilek < L
(mg, 1.k, state) «— Aj(state, crs, vk);
s < Ibsa(crs, vk, Ibsy (crs, vk, my; p1.k), SK; P2.k)i P2,k £ RND;
state «— state||sg; k — k+1;

(mqy,01,...,mg,00) — As(state);

if £> L, andverify(crs,vk,m;,0;) =1foralll <i</¢ andm; #m;foralll <i#j </
then returnl else returro.

We remark that lite-unforgeability is only required in the standard sense (&MRB8)) and not in its
strong flavor where the adversary can win the game even if he forges a signature for a message he has already
seen ADROZ]. It is straightforward to extend the formulation of lite-unforgeability of blind signatures to
capture this stronger flavor of digital signature unforgeability.

We proceed to the second property of a lite blind signature: lite-blindness; this property is designed
similar to the strong blindness property of the primitive (as e.g.Oka06 ANNOG6], adversarial key gen-
erations are allowed); but even with the adversary selecting the key-pair, the lite-blindness property is still
much weaker than strong blindness since it requires from the adversary to provide the signing key at some
point to an “honest” simulation of the signer; also this property is restricted in the two-move setting. Infor-
mally in a lite-blindness attack, the adversary selects two messages and verification key; the two messages
may be swapped according to a challengebldind the adversary receives the communication from two
honest users employing the two messages (swapped accordingte adversary then, may provide some
feedback and his private tape used for this feedback including the signing secret and the random coins; in
case that the provided signing secret is consistent to the verification key and the private tape is consistent to
the feedback, and the adversary’s communication to the two honest users results in two valid signatures, the
adversary is also provided access to the two signatures (in a predetermined order). The adversary wins the
game if he manages to guess the challenge bit.

Definition 3.3 (Lite-blindness). A signature generation protocol askigure 4satisfies lite-blindness if for
all PPTA = (A1, As, A3), we haveAdvit()) < negl()), whereAdvit(A) & |Pr[Expi®(\) = 1] — 1
and the experimerfixp®()\) is defined below:

ExperimenExp;° (\)

(crs,T) < CRSgen(1*);

(mo, my, vk, state) — Aj(crs);

b {0,1};

ug < Ibsy (crs, vk, my; p1,0); P1,0 £ RND;

uy « lbsy(crs, vk, mi_p;p11); p1,1 < RND;

(0,81, p2,0, P2.1, Sk, state) — Aq(state, ug,uy);

if (vk, sk) & KEYPAIR or sg # Ibsa(crs, vk, ug, sk; pa,0) OF s1 # Ibsa(crs, vk, uy, sk; p2.1),
set(og,01) «— (L, L1);

oy — lbsg(crs, vk, my, p1,0, U0, S0; P3,0); £3,0 < RND;

o1-p — Ibsg(crs, vk, mi_p, p1,1, 11,815 p3,1); p3, < RND;

if verify(crs, vk, mg,00) # 1 orverify(crs,vk, my,01) # 1, set(og,01) <« (L, L1);

b* — As(state,09,01);

if b* = b, then returnt;

Here KEYPAIR denotes the relation of verification-key and signing-key as defined by the key generation
algorithm.

16

3.2 Lite Blind Signature Constructions

Lite blind signatures are simpler than full-fledged blind signatures (in the sense eRSaif JLO97) and
thus can be more readily instantiated. In this subsection, first we present a generic construction, and then
we present three concrete number theoretic constructions.

3.2.1 Generic Construction

For the first scheme, refer to the signature generation proto¢égimme 5 the CRSgen algorithm produces
crs = (Pkeqes Pkexcs CTsnizk); EQC is @ commitment scheme with committing k¥, andEQCcon is its
committing algorithm;EXC is a commitment scheme with committing ke¥e.. andEXCcom is its com-
mitting algorithm;NIZK is an NIZK argument scheme with CRSs;,x WhereNIZKprove is the proof
generation algorithm antiIZKverify is the proof verification algorithm. Thgen algorithm produces
a key-pair(vk, sk) for a signature schem&IG whereSIGsign is the signature generation algorithm and
SIGverify is the corresponding verification algorithm. The langu#ge wf {z|(z,w) € R} where
R {(crs, vk, E,m), (u,s, p1,p3)|u = EQCcom(pkeqc, m; p1) A SIGverify(vk,u,s) = 1 AN E =
EXCcom(pkexc, U, s; p3)}. Theverify algorithm given a message and signaturer operates as follow:
parses into E andw, and check thatIzkverify((crs, vk, E,m), @) =" 1.

crs = <pkeqcapkexca CTSnizk)
VerificationKey = (vk) VerificationKey = (vk)
Plaintext = (m) SigningKey = (sk)

p1 < RND; u — EQCcom(pkeqc, m; p1)

— . & RND
SIGverify(vk,u,s) =" 1 «—————— s« SIGsign(vk, sk, u; p2)

p3, pa — RND; F — EXCcom(pkexc, U, S; p3)

w «— NIZKprove((crs, vk, E,m), (u,s, p1, p3); pa
: u = EQCcom(pkeqc, m; p1) A SIGverify(vk,u,s) =1
A E = EXCcom(pkexc, W, S; p3))

o« E||lw

verify(crs,vk,m,o) =" 1

output(m; o)

Figure 5: A generic signature generation protocol.

Theorem 3.4. The two-move signature generation protocoFigure 5is a lite blind signature as follows:
it satisfies lite-unforgeability provided thatG is EU-CMA secureEQC is binding,EXC is extractable, and
NIZK satisfies soundness; and it satisfies lite-blindness provided&E@taand EXC are hiding, andNIZK is
zero-knowledge.

Proof. (I) (sketch) Assumed is a lite-unforgeability adversary. We construct algoritifirio attack the
signhature schem@IG to produce a forgery. Note th#t is givenvk, and is allowed to query the signing
oracle withu; and obtairs; such thaBIGverify(vk, u;,s;) = 1. B's goal is to obtain a paifu*, s*) where
u* is not queried.

B runs a copy ofA inside, and suppliesl with crs andvk; note thatA4 is allowed to querym;, p1 ;)
whereu; = EQCcom(pkeqc, mi; p1,i); given such query3 queries his signing oracle witly;, obtainss; and

17

then gives sucly; to A, whereSIGverify(vk,u;,s;) = 1. At some point.4 produces a paitm*, o*)
wherec* = E*||w*, andNIZKverify(crs, vk, E*, m*; w*) = 1. Under the soundness of NIZK, there ex-
ist (u*, s*, p7, p3) such that(crs, vk, E*, m*), (u*,s*, pi, p5)) € R. Given that commitment scheri@C

is binding, we have only negligible probability to fimd, # m; such thatn; = EQCcom(pkeqc, mi; p1.:) =
EQCcom(pkeqe, m5; pf ;). Thereforen* cannot be based on any queried By using the extractable trapdoor
Tkeye Of commitment schemEXC, B can extracut* ands* from E. Note thatSIGverify(vk, u*,s*) =1,
andu* has never been queriefl,can obtain a forgeryu*, s*) for SIG.

(I Note that the lite-blindness is implied Broposition 3.1&ndTheorem 3.1below. O

3.2.2 Construction based on Camenisch-Lysyanskaya Signature and Linear Encryption

Lite blind signature construction that we presenfEigure 6uses the LRSW assumptionBRSW99 and the
DLDH assumptionBBS04 and is based on the blind signature that appeareld206]. The gen algorithm
producesk = (p,9,G1,Gr,& X,Y) andsk = (z,y), and theverify algorithm given a message and
signatures = (a, b, ¢), responds as follows: check thét:, Y') = (g, b) andé(X, a)é(X,b)™ = &(g, ¢).

Uk:<p7g7GlﬂGT7é;X7Y> ’Uk:<pava17GT7é;X7Y>
msg = (m), m € Z, sk = (z,y)
¢ < RND

(PKU7SKU) — genLE(lAvg)
PKU = <t,’U,’UJ>, SKU = <67£>
k& 2,0 & G
T — th: V — ol: W — gmpht!
PKy ,(0,T,V,W)

AN NAN T

o kU — 7y

’ ’
a — 0% ;b — v
T — szo/tk’o/- V! — szo/vl’o/

1
’ ’ ! r 7
W' «— W=rya gro wk, a'+l'a
a' b 1T\ W

a &7,

@ (@)% b — ()% ¢ — ()
o — (a,b,c)

output(m; o)

Figure 6: Lite blind signature protocol based &rP6]. Heregen, ; is Linear Encryption key generation.

Theorem 3.5. The two-move protocol dfigure 6is a lite blind signature as follows: it satisfies lite-
unforgeability under the LRSW assumption; and it satisfies lite-blindness under the DLDH assumption.

Proof. (I) (sketch) For lite-unforgeability, we can follow the unforgeability proofkZp6]. AssumeA is
a lite-unforgeability adversary. We construct algoritBrto break the LRSW assumption.

Note that3 is givenvk = (p, g,G1,Gr,& X, Y), and is allowed to query the orad®y y (as defined
in the LRSW assumption) withn; and obtaino; = (a;, b;, ¢;) such thatverify(vk, m;,0;) = 1. B’s
goal is to obtain a pai{m*,o*) wherem* is not queried. B runs a copy ofA inside, and suppliest
with vk; note thatA now may query with(m;, p1 ;) wherep, ; = (G, ki, l;, 6;); B can “recover” the key

18

pair (PKy, SKy). Given such queny3 queries his oracl€®y y with m;, obtainse; = (a;, b;, ¢;) where
verify(vk,m;,0;) = 1, and then compute, «— a;, b, — b;, W/ «— c;w® ', T/ — t*, V! — o', where
KU & Z,. Bretuns(al,b., W/, T!,V/) to A. At some point,A produces a paifm*, o*) wherem* has

never been queried ©x y, ando™® = (a*, b*, ¢*), verify(vk, m*, o*) = 1. B outputs such pair, and this
breaks the LRSW assumption.

(I1) (sketch) For lite-blindness, we follow the blindness proofZ)6]. The proof idea is when the adver-
sary initials two user instantiations with two messages and verificatiorirkgym, vk), the simulator as
in the lite-blindness definition, gives the verification key to two users, and randomly seléct®), 1} and
also supplies, say, the left user with, and the right user wittn_;.

Notice that the involved Linear Encryption is CPA-secure based on the DLDH assumption, there is only
negligible probability that the adversary can detect if the simulator simulates the two user instantiations with
random messages, i.e. the two messaggsni will not be used, or not.

At some point, the adversary will reply the two users following signer response function; and the adver-
sary also returns the random coins used and the signing key. If the simulator verify the random coins and the
signing key are consistent, then the simulator uses the signing key to produces two valid signatures
for (mg, m1) and returngoy, o1) to the adversary; otherwise simulator retufris L) to the adversary. At
this point the simulator finishes the simulation with the adversary and finally the adversary is required to
guess the coing Note that in the interactions between the user instantiations and the adversary,isoins
not used. So the adversary cannot win the game under the DLDH assumption. O

3.2.3 Construction based on Waters Signature

In Figure 7we present a lite blind signatuf@RSgen, gen, Ibs, Ibsq, Ibss, verify) that uses the CDH as-
sumption and is based on Waters’ digital signature schave(dd. Note that our lite blind signature
construction here is based on the blind signature constructiodka(q (refer to section 10, page 31 in
[Oka0@). In this setting thecRSgen algorithm producesrs = (p, G1,Gr, &, g, g2, v, u1, ..., uy,), thegen
algorithm produces a key-paitk = (g1) whereg; = g%, sk = (¢), and theverify algorlthm given an
n-bit messagen and signature = (o1, o2), responds as follow: check theo 1, g) /8(o2, v [T}, ;”]) =

&(91,92)-

Remark 3.6. We remark that Waters signature scheme is not secure without any restriction of message
For somen satisfie H] yu;’ =1, the signature fom is o = (01,02), wheres; = g5 andogy = ¢" for

some randomly selected— Z,. Note thatr; = sk, and a signature for sueh will reveal the signing key!

The blind signature scheme based on Waters signatutekiadg also suffers similar attack. An adver-
sarial user may select an such that H}Ll u;”j = 1 and the user based on sueghcomputed? = 1 and
sendgV to an honest signer; the signer will retirin = g5 W" andY, = ¢” wherer is randomly selected.
Note thatY; = gSW"™ = ¢$ which is the signing key!

A simple way to avoid such attack is to checknif satisfiesv]"[;;1 u;”J = 1, and refuse to produce
signature for such “bad” message. But this will change the message space of the signature scheme.

An alternative way is to require that> 2AP+” where), = Q(log? \). This requirement will not allow
the adversary to selegt such that HJ 1 u = 1 except negligible probability. FromH -1 uj =1,
we can have,, + Z —1 Tu;my =0, wherev =g™,u; =g™,...,u, = g"n. Notice that given the length
of m is n bits, there are at mo&t* potentialm satisfiesr, + E? 1 Tu;mj = 0. AIso notice thatrv € Zy
has2*»*" potential values. So the probability that+ > j=1Tu;my = 0 holds is 5 A ., i.e. which is
negligible.

In our lite blind signature construction based on Waters’ signature, we requine that»+. Still we
require thail” # 1 to avoid the adversarial selectiontof= 0.

2*’

19

Ccrs = <pﬂGl7GT7évga.923Uaulv cee 7un>

1] 5]

(03

vk = (g1 = g%) vk = (g1 = g%)
msg = (m) sk = {g8)
N e w)
t e Zp, W (0]) W #£1
TLZP
r Y1,Y2
S<—Zp Y1<—92aWT;Y2<—gT

o1 < Yi(u[Tj_, uj”)% o2 « Y3g°
o «— {o1,09)
verify(crs,vk,m,o) =" 1

output(m; o)

Figure 7: Signature generation protocol based on Waters digital signéfateéq. Herem is n-bit message,
andm is the;*" bit of m, andp > 2%+ where), = Q(log? \).

Theorem 3.7. The two-move protocol dfigure 7 is a lite blind signature as follows: it satisfies lite-
unforgeability under the CDH assumption; and it satisfies lite-blindness unconditionally.

Proof. (I) The proof idea of lite-unforgeability is similar to the proof for Waters IBE (refer to page 5,
in [Wat03). Note that here the lite blind signature will not suffer the attaclRemark 3.6 AssumeA

is a lite-unforgeability adversary. We construct algoritiihio break the CDH assumption by inputting
(g, A = g% B = ¢g®) and outputtingy®.

Assume.A at most querieg times. B first setsl = 4¢, randomly select& < {0,...,n}, and ran-
domly selectsw, z1, ...,z < Zj, 2,91,---,Yn < Z,. Forn-bit messagen, define F(m) = (p —
kl) + w + Z?:1 zjm; and J(m) = z + Z;‘:l y;mj, wherem; is the j*® bit of m. Now B gives
(9,91, 92,v,u1,...,u,) to Awhereg; = A, go = B,v = ggkawgz, uj =gy’ g% forj =1,...,n.

Now A queries the lite-unforgeability signing oracle with, t). HereW = (v []}_; u;”)t. B should
reply with (Y1,Y3) in the form of (g3 (v [},))™, g"), or in the form of (g5 (v [T}—, u]")", g"/"),
wherer is randomly selected. Note that nomﬂ?zl u.? = 1 holds with only negligible probability
based on the discussion Remark 3.6 So, we can computd; = g;’™/F™(y [Tj—,v;’)", and
Yy = gl_l/(F(m)t)gr/t. Let? = r —a/F(m). ThenY: = gs(v[];_, u;-nj)?, andY, = ¢’/ which is a
valid response. This finishes the simulation of signing oracle.

When the adversary outputs a valid message-signature péiand c* = (of,03), whereof =
95w IT)—, u;ﬁj)F ando; = ¢ for somer. If F(m*) # 0, aborts. Otherwisé”(m*) = 0, and we can
extractgg which is g?°; this finishes the proof.

(I) We ignore the proof of lite-blindness which is implied Byoposition 3.1@ndTheorem 3.1Dbelow.
O
3.2.4 Construction based on Okamoto Signature

In Figure 8we present a lite blind signatuf€RSgen, gen, Ibs;, Ibsy, Ibsg, verify) that uses the 2SDH
assumption and is based on Okamoto’s digital signature scheka®f. Note that our lite blind signature
construction here is based on the blind signature constructio®ka(q (refer to section 6, page 16 in

20

[Oka0@). In this setting the&cRSgen algorithm producesrs = (p, g1, 92, G1, G2, G, &, 1, ug, v2), thegen
algorithm produces a key-paitk = (X), sk = (x) such thatX = ¢3, and theverify algorithm given
a messagen and signaturer = (s, o, 3, V4, V), responds as follow: check that, 3 € Z,, ¢, Vi € Gy,
a,Vo € Ga, s £ 1, a # 1 andé(s, o) = &(g1, grugvl), &(Vi, o) = 8(1h(X), X) - &(g1, Va).

crs = <p)g13923 G17G27GT7é7¢7U2, ’UQ>

vk = (X = g3) vk = (X = g3)
msg = (m), m € Z, sk = (x)

r
t,s & Zp; W — glMtulvst

r,linS.t.x—FT;éO

Y,l,r 1
Y «— (Wol)=+

foh & T ¢ — yimodp

a<—ng{T;ﬁ<—s+%modp

Vi (X) 7 gl Va e XThtrglrh
o —(s,a,3,V1,Va)
verify(crs,vk,m,o) =" 1
output(m; o)

Figure 8: Signature generation protocol based on Okamoto digital sign@tkia®f.

Theorem 3.8. The two-move protocol dfigure 8is a lite blind signature as follows: it satisfies lite-
unforgeability under the 2SDH assumption; and it satisfies lite-blindness unconditionally.

Proof. (1) For lite-unforgeability, we can follow similarly the unforgeability proof of Okamoto signature
(refer to the proof of theorem 2, page 14, Dlfa0g). AssumeA is a lite-unforgeability adversary. We
construct algorithnB to break the 2SDH assumption.

We consider two types of forgers, Type-1 forger and Type-2 forgeriLet, g2, G1, G2, G, &, 1, us, va, X)
be the verification key for the forget andvs = g5. Now A queries with(m;, ¢;, s;) and is responded with
(Y, li,r;) fori =1,..., L. The two types of forgers are:

e Type-1forger: outputs aforgefyn*, o*) whereo™ = (¢*, *, 8, V", V5F), andm™*+ 3%z # m;+ ;2
fori=1,..., L.

e Type-2 forger: outputs aforgefyn*, o*) whereo™ = (¢*, a*, 8*, V", V5F), andm™*+ 3"z = m;+ ;2
fori=1,..., L.

B operates as follows:

y+b;

1. Bis given({g1, g2, A, B,C1,...,CL,a1,...,a5,b1,...,br) whereA = g3, B = ¢3,C; = g=+,
i=1,...,L.

2. B randomly selects,. € {1,2}.

3. If ¢yype = 1: B randomly selects € Z,, andB setsX — A = g3, up — B = g3, andvy «
95, B then gives(g1, g2, u2,v2, X) to A as the verification key. Whed queries with(m;, t;, s;),

21

y+b; m;+y+06;2
B computes3; «— 2Ty a; ¢ — p(Cy) = gf " =g, T andY; — o
ti(Bi — si). ThenB returns(Y;, l;, ;). WhenA outputs a successful forgefyn*, o*) wheres* =
(¢*,a*, 8%, V', V), Bchecksn™ + 5%z # m; + Biz forall: = 1,..., L. If not, B outputsfailure

and aborts. Elsg setsh* «— m* + 3*z, and outputss™, o™, b*, V}*, V¥).

4. If ciype = 2: Brandomly selects’, i’ € Z, and computeX « g3, ug « gg’, v — A = g5. Bthen
gives(g1, g2, uz, v2, X) to A as the verification key. The simulation of signing oracle can be achieved
sinceBB knowsz’. When.A outputs a successful forgetyn*, o*) whereo™ = (¢*, o*, 5%, V}*, V),

B computesz* ’gi m” forall i = 1,...,L such thats; # §*, and checks whethet = g5

d
If it holds, z* = z. B then outputs(g a,d, Vi, Va) wherec,d,n & Z,, ¢ « (¢<B))%+ch+d =

ytd

(1 (g2)Y)ng*d = (g)Fegi " = git, a — g5, Vi — p(A)gl, V2 Amtegl. Note that if

m* + *x = m; + B;x ands* # §; for some: € {1,...,L}. Thenx = ﬁ* 7[’; .

This completes the description Bf

(I We ignore the proof of lite-blindness which is implied Byoposition 3.1&ndTheorem 3.13

3.3 Equivocal Blind Signatures

In this subsection, we introduce a new propeeiyuivocality for blind signature schemes. For simplicity
we will only consider the property over two-move protocols following the skeletdrignire 4 We call a
lite blind signature scheme with the equivocality property as@uivocal lite blind signature scheme
Informally an equivocal blind signature scheme is accompanied by a simulator pro@edhieh can
produce communication transcripts without using the plaintexnd furthermore can “explain” the com-
munication transcripts to any adversarially selectedven after the signatueefor m has been generated.
Considering that in the equivocality definitiom, need not be used to produce communication transcripts,
we can prove that equivocality implies lite-blindness. Thus an equivocal lite blind signature needs to sat-
isfy only two properties: equivocality and lite-unforgeability. The property of equivocal blind signatures
parallels the property of equivocal commitmerBef9§ or zero-knowledge with state reconstruction, cf.
[GOS0§. We define the property formally below (dfigure 9.

Definition 3.9 (Equivocality). We say a lite blind signature scheme is equivocal if there exists an interactive
machineZ = (Z;,7,), such that for all PPT4, we haveAdvz, () < negl(}),

Pr|(crs, 7) < CRSgen(1%) : AUsers(ersy) (crg) = 1]
—PT[(CTS,T) — CRSgen(lk) . AI(CT‘S,T,~)(CTS) _ 1])

where oracleUsers(crs, -) operates as:

- Upon receiving messagéi,m,vk) from A, selectp; < RND and computeu «
Ibsy (crs, vk, m; p1), record(i, m, vk, u, p1) into history, and return message u) to .A.

- Upon receiving messade, s, p2, sk) from A, if there exists a recor, m, vk, u, p1) in history
and (vk, sk) € KEYPAIR ands = Ibsy(crs, vk, u, sk; p2), then selecps < RND and compute
o « lbss(crs, vk, m, p1,u,s; p3); if verify(ers, vk, m,o) = 1, then updatéi, m, vk, u, p1) in
history into (i,m, vk, u, o, p1, p3), and returnd with messagéi, o); otherwise return4 with
messagéi, 1).

- Upon receiving messade, open), return.A with messagéi, history).

Adva () &

22

Users Aeq
(crs,) «— CRSgen(1*)

Ccrs

message m and verification key vk

signing protocol

User(m)

deposit private tape

verify the private tape

return signature

corrupt /return tape

(crs,T) « CRSgen(1?)

CcTrs

message m and verification key vk

signing protocol

deposit private tape

verify the private tape

. signing protocol
Slgner 77>

return signature

corrupt /return tape

Figure 9: The two worlds an equivocality adversary is asked to distinguiBefimition 3.9

and oracleZ(crs, T, -) operates as:

- Upon receiving message, m, vk) from A, run (u,auz) «— Zy(crs, 7, vk), record(i, m, vk,
u, aux) into temp, and return message, u) to A.

- Upon receiving messagéi, s, p2, sk) from A, if there exists a recordi, m, vk, u, auz)
in temp and (vk,sk) € KEYPAIR ands = lbsy(crs,vk,u,sk;ps), then selecty <
RND and computec <« sign(crs,vk,sk,m,v), and update(i,m,vk,u) in temp into
(1, m,vk,u, aux;s, sk, p2; 0,v), and return messade, o) to A; otherwise returnd with mes-
sage(i, L).

- Upon receiving messag@, open), if there exists a recordi, m, vk, u,auz) in temp then
run p1 «— Zy(i,temp) and record(i, m,vk,u, p1) into history, and return.4 with mes-
sage (i, history); if there exists a recordi, m, vk, u, aux;s, sk, p2; 0,7v) in temp, then run
(p1,p3) < Za(i, temp) and recordi, m, vk, u, o, p1, p3) iNto history, and returnd with mes-
sage(i, history).

23

Proposition 3.10. Consider a tupléCRSgen, gen, |bs, Ibsy, Ibsz, verify), cf. Figure 4, that satisfies equiv-
ocality. Then it necessarily also satisfies lite-blindness.

Proof. (sketch) Here we show equivocality implies lite-blindness, which means if there is no equivocality
attacker, then there is no lite-blindness attacker. So we need to construct an equivocality afitatiesed
on a lite-blindness attacket;,. Next we give a description of such constructiorFigure 10

Aeq Obtainscrs from his oracle, i.e. the oracl&sers(crs,-) or the oracleZ(crs, 1, -); then A., gives
suchcrs to Ay, and obtains two messages), m; and verification keyk from A;;,. Now A, flips a coinb
and initials two query/response sessions with his oracle: querymyjthnd obtainug, and query withn,_,
and obtainu; .

Then A., sendsAy, with up and u; and obtains respons@y, s1, p2,0, p2,1,sk). Aeq Vverifies the
response, and if the response fro#g, is valid, A, initials two sessions with his oracle: query with
(s0, p2,0, sk) and obtains,, and query with(sy, p2,1, sk) and obtains;_y,.

If both oy ando; are produced, thed., sends them tod;, and obtains4;,’s guess of random bit. If
A;p’s guess is correct, theA,, outputsl, otherwiseD.

Notice that in the case that., is interacting with his oracl&(crs, 7, -), up andu; are not computed
based onmng or my, so.A;, has only probabilityl /2 to figure out the bit. In the case tha#,, is in-
teracting with his oracleUsers(crs,), Ay can figure out the bib with probability 1/2 + ¢ wheree is
non-negligible becausd;; is a successful lite-blindness attacker. Now we can conmdméfq = e which
is non-negligible.

O

Equivocality is in fact a strict strengthening of the lite-blindness property: for example the lite blind
signature irSection 3.2.3atisfies lite-blindness but is not equivocal due to the employment of an encryption
of the message in the first step of the signature generation protocol. Next we show the lite blind signature
constructions irSection 3.2.1Section 3.2.&andSection 3.2.4re equivocal, respectively.

Theorem 3.11. The two-move signature generation protocol describeBigure 5is equivocal provided
that EQC is equivocal EXC is hiding, andNIZK is non-erasure zero-knowledge.

Proof. Here we prove the lite blind signature ligure 3.11satisfies equivocality defined Definition 3.9
Generaté crs, 7) «+ CRSgen(1?); herecrs = (Pkeqes Pkexcs €T8nizk), T = (€keqe, Thizk) Whereekeqc is the
equivocal key for commitment scherBgC and ;. is the trapdoor for state reconstructionNazK. Send
crs to A.

For completeness, we first describe how ordéiers(crs, -) operates.

- Upon receiving messagé m, vk) from A, selecip; < RND and compute «— EQCcom(pkeqe, M p1),
record(i, m, vk, u, p1) into history, and return message u) to .A.

- Upon receiving messagg, s, p2, sk) from A, if there exists a recordi, m, vk, u, p1) in history
and (vk,sk) € KEYPAIR ands = SIGsign(vk, sk, u;py), then selecips, ps < RND and com-
pute £ <« EXCcom(pkexc, U, s; p3), andw «— NIZKprove((crs,vk, E,m), (u,s, p1,p3);ps : U =
EQCcom(pkeqge, m; p1) A SIGverify(vk,u,s) = 1 A E = EXCcom(pkexe, U, s; p3)) and seto «—
E||w. If verify(crs,vk,m,o) = 1, then updat€i, m, vk, u, p1) in history into (i, m, vk, u, o, p1, ps3,
p4), and returnd with messagéi, o); otherwise returnd with messagé:, L).

- Upon receiving messade, open), return.A with messagéi, history).
Next we construct (crs, 7, -).

24

Ccrs

BN A
crs
b (0,1} et
(0,mp,vk) |
Pt b
(0,u0)
(1,m1_p,vk)
P
(1,u1) uo
up
—_—
$0,81,02,0,02,1,5k
(vk, sk) €” KEYPAIR —

R
so =" Ibsa(crs, vk, ug, sk; p2,0)

(0,80,02,0,5k) ”
—— | s1 =" Ibsy(ers, vk, uy, sk; p2,1)

(1,81,p2,0,5k)
PR

(0,00)
-

(1,01-5) .
— S lifop=Lloro, =L

then se{(og, 01) «— (L, L) o

b*

1/0
b _7? b*

Figure 10: Construction of equivocality attacker from lite-blindness attacker.

- Upon receiving messadé m, vk) from A, run(u, auz) < Z;(crs, 7,vk), i.e. computéu, stateeqc) «—
EQCfake(pkeqgc, €keqc), @and recordi, m, vk, u, stateeqc) into temp, and return message, u) to A,
hereEQCfake is an algorithm of producing a fake commitment base@@eis committing keypkeqc.

- Upon receiving messade, s, p2, sk) from A, if there exists a recordi, m, vk, u, stateeqc) in temp
and (vk, sk) € KEYPAIR ands = SIGsign(vk, sk,u; p2); then computer «— E||w, whereE —
EXCcom(pkexc, U, s; p3) and(w, statenizx) «— NIZKsimulate((crs, vk, E,m), Thix) @andps £ RND.
Update(i, m, vk, u, stateeqc) iN temp iNto (i, m, vk, u, stateeyc; s, sk, p2; E, @, p3, stateiz), and
return message, o) to A; otherwise returnd with messagegi, L); hereNIZKsimulate is used to
produce a simulated proof foiIZK.

- Upon receiving messade, open),

— if there exists a recordi, m, vk, u, stateqqc) in temp then runp; «— Zy(i, temp), i.e. compute
p1 — EQCequivocate(pkeqc, U, stateeqc, m); and record(i, m, vk, u, p1) into history, and
return.A with messagéi, history); hereEQCequivocate is equivocation algorithm associated
with the equivocal commitmersqC;

25

— if there exists a recordi, m, vk, u, statecyc; s, sk, p2; E, @, p3, stateqizx) In temp, then run
ps «— Zy(i,temp), i.e. computep; «— EQCequivocate(pkeqc, U, stateeqe, m) and com-
pute py <« NIZKreconstruct((crs,vk, E,m),w, stateyix, (u,s, p1,p3)), and then record
(i,m,vk,u, o, p1, p3, p4) iINto history, and returnd with messagéi, history); hereNIZKreconstruct
is state reconstruction algorithm associated WithK.

In the interaction with oraclé/sers(crs, -), or with oracleZ(crs, 1, -), (p1, p3, p4) have the same dis-
tributions. Based on the construction Bfwe know that in the two experiments has exactly the same
distributions, andw and £ cannot be distinguished based on the zero-knowledge propentyzaf and
hiding property ofEXC respectively. Thereforel will output 1 with the same probability except negligible
probability in the two interactions. O

Theorem 3.12. The two-move signature generation protocol describeHigure 7is equivocal (uncondi-
tionally).

Proof. Here we prove the lite blind signature based on Waters signature satisfies equivocality defined in
Definition 3.9 Generatg(crs,7) < CRSgen(1*); herecrs = (p,G1,Gr, 8,9, g2, 0, U1, ..., Up), T =
(Tus Tugs - -« Tu,) SUCh that = g™, uy = g™, ..., u, = ¢g"*». Sendcrs to A.

For completeness, we first describe oraGlers(crs, -).

- Upon receiving message, m, vk) from A, wherevk = (g; = ¢®) selectt < Z, and compute
W — (v]]}_, u;)", record(i, m, vk, W, t) into memoryhistory, and return messadé, W) to A.

- Uponreceiving messadé (Y1, Y2), sk,) from A, wheresk = (¢9), if there exists arecord, m, vk,
W, t)in history andé(sk, g) = &(g2, g1), then compute « (o1, 02) whereo, — Yi (v [];_, u;”j)s,
o9 « Yig®, ands < Z,. If verify(crs,vk,m,o) = 1, then updatéi, m, vk, W,t) in history into
(i, m, vk, W (01,09), <t, s)), and returnA with messagei, o); otherwise return4d with message

(i, 1).

- Upon receiving messade, open), return.A with messagéi, history).

Next we construct (crs, T, -).

- Upon receiving messag{e m, vk) from A, run (W, aua:) — Ti(crs, T,vk) as: seleck-bit random

n

messagen, selectt < Z,, computel = (v o[- 1u]) and record(i, m, vk, W, 7, (m, 1)) into
temp, and return messade W) to A.

- Upon receiving messagde, (Y1, Ya), sk,) from A, if there exists a recortf, m, vk, W, 7, (m, t)) in
temp andé(sk, g) = e(gl,gg) andY; = sk - W" andY; = ¢", then computer — (o1, 02), where
o1« sk (v[[j_; u; "Nt andoy — gt tandf £ Z,. Update(i, m, vk, W, , (m,t)) in temp into
(i, m, vk, W, T, (m, >,<Yl,Y2>7sk‘,7‘, (01,02),),and return messagé o) to .4; otherwise returmd
with messagéi,).

- Upon receiving messade, open),
— if there exists a recori, m, vk, W, 7, (m, t)) in temp then runt — T, (i, temp) as: compute

from (7, + >0y Tu;my)t = (70 + 220 T)t and recordi, m, vk, W, t) into history, and
return.A with messagei, history);

26

~ ~

— ifthere exists arecord, m, vk, W, r, (m,t); (Y1, Ya), sk, r; (o1, 02),t) intemp, then run(t, s) «
I»(i, temp) as: compute based on equatiofr, +> 7 7u;m;)t = (T, +>_7_ Tu;m;)t, COM-
(To+227 1 Ty)t
(To 2274 Tu ;M)
record(i, m, vk, W, o, (t, s)) into history, and returnd with messagei, history).

putes based on equation= r¢ + s, and we have «— ,ands «— t — rt, and

We defineE as the event that upon receiving mességepen), the coins cannot be reconstructed by
the oracleZ(crs, 7, -). If eventE does not occur, then the adversary cannot distinguish the interaction with
the oracleUsers(crs, -) and the interaction with the oracl crs, 7, -) because the adversary’s views have
the same distribution. Next we still need to argue that the probability of the B/emiegligible.

Based on the discussion Remark 3.6there is only negligible probability that[]"_, u}nﬂ' =1,ie.

Ty + Z;T‘ZI mu;mj = 0. S0Z(crs,T,-) can reconstruct, s except negligible probability, which means the
eventE can happen with only negligible probability. Therefore the adversamannot distinguish the
interaction with the oraclé/sers(crs, -) and with the oracl€(crs, 7, -). This completes the proof.

O

Theorem 3.13. The two-move signature generation protocol describeHEigure 8is equivocal (uncondi-
tionally).

Proof. Here we prove the lite blind signature based on Okamoto signature satisfies equivocality defined
in Definition 3.9 Generatgcrs,) « CRSgen(l)‘); herecrs = (p, 91,92, G1,Ga, G, 8,9, ug,ve), T =
(Tuy, Toy) SUCh thatu; = g1, vy = g]". Senders to A.

For completeness we first describe the ordéers(crs, -).

- Upon receiving message, m, vk) from A, wherevk = (X) selectt,s <~ Z, and computéV «
gMtulvst, record(i, m, vk, W, (t, s)) into memoryhistory, and return message, W) to A.

- Uponreceiving messadé (Y, [, r), sk) from A, wheresk = (), if there exists a record, m, vk, W,
(t,s)) in history andgd = X, then computer — (<, o, 5, V1, V) whereg Yﬁ, o — nggT,
B— s+ %, Vi z/)(X)%g{l, Vo th+7”g£rh, andf, h & Z,. If verify(crs, vk, m, o) = 1, then
update(i, m, vk, W, (t, s)) in history into (i, m, vk, W, (s, «, 3, V1, Va), (t, s), (f, h)), and return4
with messagéi, o); otherwise returnd with messagé:, L).

- Upon receiving messagde, open), return.A with messagéi, history).

Next we construct (crs, 7, -).

- Upon receiving messade, m, vk) from A, run (W, auz) — Z(crs, 7, vk) as: selectn, t,5 < Ly,
and computéV — gt v, record(i, m, vk, W, 7, (fn, t, 3)) into temp, and return message, 1)
to A.

- Upon receiving messade, (Y, [, r), sk) from A, check whether the following conditions:

—Y #£1
1

— there exists a recortf, m, vk, W, r, (m,t,3)) in temp wheregd = X andY = (Wvl)=
hold,

27

1 T 1 o~
then computer — (¢, «v, 3, V1, V), whereg «— (g{"ulv?)fﬁr?, o — gggHT, Vi (X)) T gh, Vo
th+7ggﬁ, ands, f,7,h & Z,. if verify(crs, vk, m,o) = 1then updatéi, m, vk, W, , (i, t,3))
in temp into (i,m, vk, W, r, (m,t,3); (Y,1,7), sk; (s,a, 3, V1, Vo), (f,7, h)), and return message
(i,0) to A; otherwise returmd with messagéi, L).

- Upon receiving messagde, open),

— ifthere exists a recort, m, vk, W, 7, (m, t,5)) in temp then obtaint, s) «— Z(i, temp) where
7, is defined as: sele¢t™ Z, and compute from (m + 7, + 57y,)t = (M + Ty, + 574,)1, i.€.

(0t Tup 45709t (M FTug)t 50 recordi, m, vk, W, (t, s)) into history, and return4 with

Tyl
messagéi, history);
— ifthere exists arecortl, m, vk, W, 7, (i, t,3); (Y, 1,7, sk; (<, o, 3, V1, Va), <f, T, ﬁ)) intemp,
then run((t, s), (f, h)) < Za(i,temp) as:
« computet, s based on equatior(sn + Ty, + $7y,)t = (Mt + Ty, + 57,)t @NAB = s + L;
(mﬁffuﬁ%ﬁﬁ”*’ ands « §— l(mﬁ;ﬁ%ﬁfﬁiw’
x computef based on equatioﬁx + r = f(x + r), and computé: based on equation

z |7 _ =z . fxt7 xz | 7 z(ztr).
f+h_f+h,andwehavgf<— P andh<—f+h Toir

and recordi, m, vk, W, o, (t, s), (f, h)) into history, and returnd with messagei, history).

S <

and we have «—

We defineE as the event that upon receiving mességepen), the coins cannot be reconstructed by
the oracleZ(crs, 7, -). If eventE does not occur, then the adversary cannot distinguish the interaction with
the oracleUsers(crs, -) and the interaction with the oracl crs, 7, -) because the adversary’s views have
the same distribution. Next we still need to argue that the probability of the B/smiegligible.

¢ In the case thatl expectdi, m, vk, W, (t, s)):

— Z(crs, T, -) can reconstrucft, s) except that = 0; note that is randomly selected frord, and
Pr[t < Z, : t = 0] = 1/p which is negligible.

¢ In the case thatl expectsi, m, vk, W, o, (t, s), (f, h)):

— t can be reconstructed except thatt- 7, + 37,, = 0; note thats is randomly selected from
Z, afterZ(crs, 7,) receivingm from A, andPr[3 < Z, : m + 7, + 37, = 0] = 1/p which
is negligible;

— whent has been reconstructed;an always be reconstructed becaiiger ., + 37,)t + 7o, #
0; by contradiction, if(7 4 Ty, + 574,)t + Tw,l = 0, thenWv} = 1 which meang” = 1; how-
ever whern” = 1, messagéi, L) will be returned, and no effort for constructing the coins now;
(the reason of excluding = 1 is that in the oracld/sers(crs, -), whens = 1, no signature will
be generated; = Yﬁ, which means whel = 1 no signature will be produced.)

— note thatf(z +) # 0; otherwise in oracle/sers(crs,), a = X/ g)" = gg”(”” =1, and no
signature will be generated. So+ r # 0 andf:v + 7 # 0 and f can always be reconstructed,
and h can be reconstructed thﬁ # 0; notice thatf is randomly selected frori,,, and
Pr[f £ 7Z,: f = 0] = 1/p which is negligible;

Based on the argument above, the edéan happen with only negligible probability; so the adversary
A cannot distinguish the interactions with the orablers(crs, -) and with the oracl&(crs, 7, -).
O

28

4 UC Blind Signatures Definition

We formulate our blind signature ideal functionalifzsic in Figure 11 A previous formalization of the

blind signature primitive in the UC setting was given li%ig0g. We would like to point out that our
formalization is based offsig as given in £an03 while Fischlin’s is based otFgsig in [Can04; there is

a number of other (small) differences that we review in this section. One other difference is ttfaisqur

does not require strong unforgeability from the underlying signing mechanism; this makes the presentation
more general as strong unforgeability is not necessary for many applications of the blind signature primitive.
We explain inRemark 4.4ow it is possible to readily modify ouFggic to cover the strong unforgeability
property.

As defined irDefinition 2.6 a blind signature scheme is a tupléBSIG) = (CRSgen, gen, U, S, verify)
whereU, S is an interactive protocol between the user and the signer. In each round of the protocol the user
and the signer exchange messages denotéeadisg,, SignerMsg, (note thatU, S may extend to many
rounds). Given such protocol we can also defineign algorithm by collapsing the interactive protocol
U, S into a non-interactive algorithm (that simulates both parties). Given such a scheme each party in the
UC-framework will execute a program; ggiq) that is described ifrigure 12

Definition 4.1. A blind signature schemg(BSIG) = (CRSgen, gen, U, S, verify) is UC-secure in the
CRS model ifry,gsiq) realizes the ideal functionalitfssic of Figure 11in the Fcrs-hybrid world, where
Fcrs is an implementation of theRSgen algorithm as given in the specification of the scheme.

We note that each party that acts as a user in our framework is programmed to ask for a single sig-
nature; we make this choice without loss of generality and for the sake of keeping the description of the
scheme simple. We prove that if a blind signature protocol securely redizgs;, then the scheme is
also secure in the security model for blind signatures that was proposed on the concurrent security model of
[Oka06 HKKLO7] (cf. Section 2.2.&andRemark 2.7 Recall that the definitions cover regular version of
unforgeability and strong version of blindness.).

The theorem below is a sanity-check that shows that the ideal functionality we propose is consistent with
some of the previous modelling attempts. Naturally the intention is that realizing the ideal functionality goes
much beyond the satisfaction of such previous game-based definitions. Still establishing results as the one
below is important and non-trivial due to the fact that ideal functionalities interact with the ideal-world
adversary substantially something that may (if they are badly designed) lead to disparities with game-based
definitions.

Theorem 4.2. If %(BSIG) can realize ourFggic in Figure 11 then it is secure in the blind signature
security model ofQka0g HKKLO7].

Proof. The general plan of the proof is as follows: we first assiBSIG) is not secure according to
one of the previous definitions. Then we construct an environiesd that for allS it can distinguish the
interaction withrrs; gsiq), from the interaction with the ideal world adversahand Fpsic.-

() We first assume that there is a successful foigdor >(BSIG).Then Z internally runs an instance of
F. The environmeng invokes partyS with (KeyGen, sid), and gives the returned verification algorithm
ver to F.

When the simulated’ outputsuser; message on behalf of some pality Z creates party/; it corrupts
party U and forces it to send an outgoinger; message (through) to party S; when F' outputs auser;
message where > 1, Z forces partyU to send theiser; message to party; when the corrupted party
U receives an incomingigner; messageZ forwards it to the simulated’. Z usescounter; to count
the number of successful finai gner messages from the parf. Z usescounters to count the number

29

Functionality Fgsic

Key generation: Upon receivingKeyGen, sid) from party S, verify thatsid = (S, sid") for somesid’. If not,
ignore the input. Else, forwar®eyGen, sid) to the adversang.
Upon receiving(Algorithms, sid, sig, ver) from the adversans, record(sig, ver) in history(S), and
output(VerificationAlg, sid, ver) to party.S, wheresig is a signing algorithm, ander is a verification
algorithm.

Signature generation: Upon receiving(Sign, sid, m, ver’) from partyU # S, wheresid = (S, sid’), record
(m, ver') in history(U), and sendSign, sid, U, ver’) to the adversang.
Upon receiving(Signature, sid, U, SignerComplete) from the adversans, whereU is a user that has
requested a signature, outf@tignature, sid, U, completed) to party .S, and recordU, completed) in
history(S).
Upon receiving(Signature, sid, U, UserComplete) from the adversarnys, whereU is a user that has
requested a signature, do: Sfis honest andrer # ver’, output(Signature, sid, L) to party U and
halt. Else, use the information in bottistory(U) andhistory(S) to obtain a valid signature: computg
o « sig(m, rnd) with the required random coins:d, and verify thatver’(m,o) = 1; if so, output
(Signature, sid, m,o) to partyU, and record(o, rnd, done) into history(U) together with(m, ver’)
insidehistory(U). Else, outpu{Signature, sid, error) to partyU and halt.

1%

Upon receiving(Signature, sid, U, SignerError) from the adversans, whereU is a user that has re-
quested a signature, outp$tignature, sid, U, L) to party.S and halt.

Upon receiving Signature, sid, U, UserError) from the adversarg, whereU is a user that has requested
a signature, outpySignature, sid, L) to partyU and halt.

Signature verification: Upon receiving(Verify, sid, m, o, ver’) from party V, wheresid = (S, sid’), do:
if ver’ = ver, the signerS is not corrupted,ver(m,o) = 1, and there is ndJ such thatm is
recorded withdone in history(U), then output(Verified, sid, error) to partyV and halt. Else, out-
put(Verified, sid, m,ver'(m, o)) to partyV.

Corruption: Upon receiving Corrupt, sid, J) from S, return(Corrupted, sid, history(J)) to S. HereJ can
be partyU or partyS. Furthermore:

- after receiving(Corrupt, sid, U), upon receivingPatch, sid, U,m) from the adversang, and no
(U, completed) was recorded itkistory(S), then replace the old message, ver’) in history(U)
with (7, ver’); once a subseque(8ignature, sid, U, SignerComplete) is received fromS, record
done in history(U) and(U, completed) in history(S);

- after receiving(Corrupt, sid, S), upon receivingPatch, sid, S,sig) from the adversans, then
replacesig in history(S) with sig.

Figure 11: Blind signature functionalit§ssic.

30

Blind Signature Protocol 75 (gsiq)

CRS generation: crs « CRSgen(1*) where)\ is the security parameter.

Key generation: When partyS is invoked with input(KeyGen, sid) by Z, it verifies thatsid = (S, sid")
for somesid’; If not, it ignores the input; Otherwise, it run@k,sk) « gen(crs), lets the ver-
ification algorithmver = verify(crs,vk,-,-), records(sk,vk) in history(S), and sends output
(VerificationAlg, sid, ver) to Z.

Signature generation: When party is invoked with input(Sign, sid, m, ver’) by Z wheresid = (S, sid’) and
U # S, it computedJserMsg; where some random coinady ; may be used, recordsn, ver’, rndy,1)
in history(U), and sends outgoinfusery, sid, UserMsg,) to party S (through Z). If party U cannot
computeUserMsg,, then sends outpBignature, sid, 1) to Z.

When partyU is invoked with incoming(signer;, sid, SignerMsg,) from party S, where sid =
(S, sid"), it computedUserMsg, . ; where some random coingdy,; 1 may be used, recordsndy,it1)
in history(U), and sends outgoin@user; 1, sid, UserMsg,) to party S. If U cannot compute
UserMsg, , |, then sends outpiBignature, sid, 1) to Z.

When partysS is invoked with incominguser;, sid, UserMsg,) from partyU, wheresid = (S, sid’), it
computesSignerMsg; where some random coingds, may be used, recordsnds ;, U) in history(S),
and sends outgoin@igner,, sid, SignerMsg,) to partyU. If S cannot comput8ignerMsg,, then sends
output(Signature, sid, U, L) to Z.

When partysS is invoked with incominguser;,, sid, UserMsg,, .,), which is the last user message frot
party U, wheresid = (S, sid’), it computesSignerMsg,,, ., where some random coingds ;,; may be
used, recordérndy,ust, U) in history(S), and sends outgoin@igner,, ., sid, SignerMsg,, .,) to party
U, and sends outp@8ignature, sid, U, completed) to Z. If party S cannot comput8ignerMsg, .., then
sends outpufSignature, sid, U, L) to Z.

When partyl is invoked with incomingsigner,,,, sid, SignerMsg,,,.,), which is the last signer messag
from party S, wheresid = (S, sid"), it computes signature for m where some random COIMBA 1gst+1
may be used, records, rndy jqsi+1) In history(U). It verifies thatver’(m, o) = 1; if so, sends output
(Signature, sid, m, o) to Z; if not, sends outputSignature, sid, L) to Z.

Signature verification: When partyV is invoked with input(Verify, sid, m,o,ver’) by Z where sid =
(S, sid"), it sends outputVerified, sid, m,ver'(m,o)) to Z.

Corruption: When party J is invoked with incoming (Corrupt,sid,JJ) by Z, it sends outgoing
(Corrupted, sid, history(J)) to Z. HereJ can be party/ or partyS.

3

Figure 12: Blind signature protocak,gsiq)-

31

of (Signature, sid, U, completed) messages obtained from paiy(as this party returns this value to the
subroutine output tape &f). When the simulated’ outputs a number of, saly, forged message-signature
pairs, Z activatesL verifiers with (Verify, sid, m;, d;,ver), wherei = 1,..., L; the verifiers will return

1 for the successful forged pair&: usescounters to count the number af's. If Z finds thatcounters <
countersy it returns 0 otherwise it returns 1.

In the real world, becausg is a successful forger, with non-negligible probabilig, will observe
counters > countery. Moreover, note thatounter; = counters Will hold in the real world, which is
based on the fact: when pariysends his last outgoingigner message to party/, he also sends output
(Signature, sid, U, completed) to Z. It follows that whenZ operates in the real world it returns 1 with
non-negligible probability.

Next we turn to the ideal world. In the verification stage, when a verifier recéieed £y, sid, m;, o;, ver),
he will forward such message Bgs1c, and Fgsic Will check if the message is a forgery using the infor-
mation he possesses. Based on the definitiafmfi, such check will returver(m;, ;) to the verifier,
as longm; is recorded withdone. In case the message is not recorded wlithe the two possible an-
swers fromFpgig would be(Verified, sid, m;,;,0) and(Verified, sid, m;, oy, error). It follows that
countery Will be incremented only due to messages recorded dtte. Given that all users are corrupted
on start there is only one possibility that a message is recordediasithwithin Fpgi: S has patched the
particular message into some corrupted user instance iffgige;. Note that while unlimited patching is
allowed (and observe th&tmay be capable of obtaining unlimited numbers of forged signatures) a message
is recorded withdone by Figic only after a messag&ignature, sid, U, SignerComplete) is received by
S. The environment tracks t@ignature, sid, U, SignerComplete) messages inteounters thus we can
be certain that in the ideal world it would be impossible to hemgnters > counters. It follows that in
the ideal world,counters < counters; thus it follows that the environment always returns 0 and it is a
distinguisher between the real and the ideal world for any implementatisn of

(I) Next assume there is a successful blindness distinguidhtar ¥(BSIG). Then Z internally runs
an instance ofD. SuchD can be viewed as a signer inside When D outputs the verification algo-
rithm ver and two messagesng, m1), Z activates two partie¥’;, and Ui with (Sign, sid, my, ver) and
(Sign, sid, mi_y, ver), respectively, wheré < {0, 1} is randomly chosen bg.

SubsequenthZ relays all messages communicated between the gariyd the two user protocols.
Next if Z obtains two valid responséSignature, sid, my, 0p), (Signature, sid, mi_p, 01_p) from the
two partiesU;, and Ug respectively,Z returns the two message-signature pairs), oo;my,01) to D.
OtherwiseZ returns(.L; L) to D. Finally D returnsb* as the guess of the random caéiwhich is chosen
by Z. HereZ returnsh* =" b.

Consider now thaD is a successful blindness distinguisher ¥BSIG); in the real world,D will
guess the coih with non-negligible advantage. However, in the ideal world, no matter how the sim@$lator
is implemented we observe that the bittmains secured iZ and the ideal functionalitygsic does not
communicate any information relatedit®éo S. Moreover, even ifS jams one of the user instantiations the
environmentZ following its program will only return(_L; L) to the distinguisher; it follows that the coihs
are independent fro andS, and even an unbounddd cannot guess sudhwith probability better than
1/2. It follows that Z is a distinguisher between the real and the ideal worlds. O

Remark 4.3. We can easily modify the functionalitfgsic in Figure 11to incorporate Canetti'$ g in
[Can0j as a special case (refer Eigure 1in page7) by adding the following subitem into “Signature
generation” item infFggiq.

Upon receivingSign, sid, m) from partyS wheresid = (S, sid’), leto = sig(m, rnd) where some
random coingnd may be used, and verify thaér(m, o) = 1. If so, output(Signature, sid, m, o)

32

to party S, and recordm, o, rnd, done) into history(S). Else, outpu{Signature, sid, L) to party
S and halt.

Remark 4.4. The ideal functionalityFgsic; in Figure 11does not cover strong unforgeability. It is simple
to modify it so that the property can be achieved.

We have to incorporate the following modifications in the program of the ideal functionakigime 11
First, we need stricter check in the signature verification stagdi.er) is not recorded witklone:

Upon receiving(Verify, sid, m, o, ver') from party V, wheresid = (S, sid’), do: if ver’ = ver,
the signersS is not corruptedyer(m,o) = 1, and(m, o) is not recorded withdone, then output
(Verified, sid, error) to partyV and halt. Else, outpuWVerified, sid, m,ver’(m, o)) to partyV.

Second, when the user is corrupted, the functionality expects that the ideal adversary wi(lpaighnot
only 7 as before.

- after receiving(Corrupt, sid, U), upon receivingPatch, sid, U, m,) from the adversans,
and no(U, completed) was recorded irhistory(S), then replace the old message, ver’)
in history(U) with (m,a,ver’); once a subsequeli$ignature, sid, U, SignerComplete) is
received from the, recorddone in history(U) and(U, completed) in history(S);

5 Design Methodology for Adaptively Secure UC Blind Signatures

In this section we will present our design methodology for constructing UC-blind signatures secure against
adaptive adversaries, i.e the protocol obtained by our method can UC-realize the blind sighature functionality
Fusia (refer toFigure 13. Our design reveals the exact components required for designing UC blind
signatures in the adaptive security setting. In our construction we will employ a lite blind signature and we
will operate in a hybrid world where the following ideal functionalities exiBtgs, .Fg\}fZK, .7-"5PSZK; FcRrs
will be an appropriate common reference string functionality; on the other @%@K, fﬁﬁZK will be two
differentzero-knowledge functionalities that are variations of the standard multi-session ZK functionality:
(1)]—“é%\ﬁfZK is the “single verifier zero-knowledge functionality for the relati®n” defined inFigure 13and,
2]—“SEZK is the “single-prover zero-knowledge functionality for the relatidgi’ defined inFigure 14

These two functionalities differ from the multi-session zero-knowledge ideal functiom&lity (i.e.
Fzx in figure 7, page 49, inGLOS03) in the following manner: Fgyzk assumes that there is only a
single verifier that potentially many provers wish to prove to it a certain type of statements; on the other
hand, Fspzik assumes that only a single prover exists that potentially wishes to convince many verifiers
regarding a certain type of statement. Our setting is different from previous UC-formulations of ZK where
multiple provers wish to convince multiple verifiers at the same time; while we could use such stronger
primitives in our design, recall that we are interested in the simplest possible primitives that can instantiate
our methodology as these highlight minimum sufficient requirements for blind signature design in the UC
setting. Moreover, recall that in a single blind signature session we have a single signer interacting with
many users.

5.1 Generic Construction in the(Fcrs, Fsvzk, Fspzk)-Hybrid World

We proceed next to describe our generic constructionFigiure 15 we describe a UC blind signature
protocol in the(]-“CRS,]—“é%vUZK,}“é%;ZK)—hybrid world that is based on an equivocal lite blind signature pro-
tocol. The relations parameterized with the ZK functionalities &re = {((crs, vk, u),(m,p1)) | u =

33

Functionality F&,,

FL&.. . is parameterized by a binary relatigh

Proof stage: Upon receiving(ProveSVZK, sid, P;, =, w) from party P;, verify thatsid = (V, sid’) for some
sid’. If not, then ignore the input. Else, (f,w) € R then recordx, w) into history(P;), and forward
(ProveSVZK, sid, P;, x) to the adversang.

Upon receiving (ProveSVZK, sid, P;, VerifierComplete) from the adversary S, output
(VerifiedSVZK, sid, P;, x) to partyV. Else, if receiving(ProveSVZK, sid, P;, VerifierError) from the
adversans, output(VerifiedSVZK, sid, P;, 1) to partyV and halt.

Corruption: Upon receiving (CorruptProverSVZK, sid, P;) from the adversary S, return S
(CorruptedProverSVZK, sid, history(F;)).
After the successful corruption d?;, upon receiving(PatchSVZK, sid, P;, z’,w’) from the adversary
S, if (¢/,w’) € R and no outputVerifiedSVZK, sid, P;,...) was returned to party” yet, then output
(VerifiedSVZK, sid, P;, ') to partyV. Else, if (z’, w’) ¢ R and no outpufVerifiedSVZK, sid, P;,...)
was returned to party yet, then outputVerifiedSVZK, sid, P;, error) to partyV and halt.

Figure 13: Single-verifier zero-knowledge functionalfe ;..

Functionality 7%,

FI,,« is parameterized by a binary relatiéh

Proof stage: Upon receiving(ProveSPZK, sid, V;, z, w) from party P, verify thatsid = (P, sid’) for some
sid’. If not, then ignore the input. Else, (f, w) € R then recordV;, z,w) in history(P), and forward
(ProveSPZK, sid, V;, x) to the adversang.

Upon receiving (ProveSPZK, sid,V;, VerifierComplete) from the adversary S, output
(VerifiedSPZK, sid, V;,x) to partyV;. Else, if receiving(ProveSPZK, sid, V;, VerifierError) from the
adversans, output(VerifiedSPZK, sid, V;, L) to partyV; and halt.

Corruption: Upon receiving (CorruptProverSPZK,sid) from the adversary S, return S
(CorruptedProverSPZK, sid, history(P)).
After the corruption has occurred successfully, upon receiyigtchSPZK, sid, V;, ', w’) from the
adversaryS, if (2/,w’) € R and no output(VerifiedSPZK, sid,V;,...) was returned to party;
yet, then output(VerifiedSPZK, sid,V;,z’) to party V;. Else, if (z/,w’) ¢ R and no output
(VerifiedSPZK, sid, V;,...) was returned to party; yet, then outpu{VerifiedSPZK, sid, V;, error)
to partyV; and halt.

Figure 14: Single-prover zero-knowledge functionalfig}. .

34

lbsi(crs,vk,m;p1)} and Rs = {((crs,vk,u,s), (sk,p2)) | s = lbsa(crs, vk, u,sk;p2) A (vk,sk) €
KeyPaIR}. We remark that the protocol iRigure 15is non-interactive; due to the usage of the ideal
functlonalltles}“SVZK and]—"SPZK all the communication the users and the signer is relayed through the
ideal functionalities.

Protocol ms;psiq) in the (Fers, Fazx: Favzx)-Hybrid Model

CRS generation: crs < CRSgen(1*) where) is the security parameter.

Key generation: When partys is invoked with input(KeyGen, sid) by Z, it verifies thatsid = (S, sid") for
somesid’; If not, it ignores the input; Otherwise, it rurek, sk) < gen(crs), lets the verification
algorithmver = verify(crs, vk, -, -), and sends outpyVerificationAlg, sid, ver) to Z.

Signature generation: On input (Sign, sid, m,ver’) by Z where sid = (S,sid"), the party U ob-
tains vk’ from ver’, selects randomp; and computeSu — lbsy(ers,vk’;m;p1) and sends
(ProveSVZK, sid, U, (crs, vk’ ,u), (m, p1)) to]-"ﬁ;fZK Where]-'SVZK is parameterized by the relatidty,.

Upon receivingVerifiedSVZK, sid, U, (crs, vk’,u)) from]—‘SVZK, the partyS verifiesvk’ = vk. If not,
then the partyS outputs(Signature, sid, U, 1) to Z. Else the partys selects randorp, and computes
s « lIbsa(ers, vk’ u, sk; p2) and sendgProveSPZK, sid, U, (crs, vk’ ,u,s), (sk, p2)) to fﬁfZK where
F8s, . is parameterized by the relatidts; and output§Signature, sid, U, completed) to Z.

Upon receiving(VerifiedSVZK, sid, U, L) from J—‘SVZK, the partyS outputs(Signature, sid, U, L) to

Z.
Upon receiving (VerifiedSPZK, sid, U, (crs, vk’,u,s)) from fsf}FZK, the party U selects random
ps and computess «— Ibss(crs,vk’,m, p1,u,s;p3), and verifiesver’(m,c) = 1; if so, outputs

(Signature, sid, m, o) to Z; if not, outputs(Signature, sid, L) to Z.
Upon receivingVerifiedSPZK, sid, U, L) from]—'SVZK, the partyU outputs(Signature, sid, 1) to Z.

Signature verification: When partyV is invoked with input(Verify, sid, m,o,ver’) by Z where sid =
(S, sid"), it outputs(Verified, sid, m, ver’ (m, o)) to Z.

Corruption: When party J is invoked with incoming (Corrupt,sid,J) by Z, it sends outgoing
(Corrupted, sid, history(J)) to Z. HereJ can be party/ or partyS.

Figure 15: Blind signature protocek;gsic) in the (Fcrs, J-‘é%\ﬁfZK, }"SPZK) hybrid model based on a lite-
blind signature schem@RSgen, gen, Ibs, Ibsa, Ibss, verify).

Next we will prove a theorem that the blind signature protocdFigure 15can realize functionality
Fssia- Before we prove the theorem, we introduce a useful lemma as below which will help us to organize
the proof. Note that we can extend such lemma to general setting.

Lemma 5.1. Assume that

R
(1) 38,,VZ, EXEC. s sV Tso _ EXECF s,.2> WhereFy is dummy blind signature functionality

TS(BSIQ) 2

(cf. Figure 16);
(2) for S, 3Si41, V2, [EXEC] 5, — EXECL | < i, wherel < < 4;

(3) F5 = Frsia-

< Z?:l €.

TS(BSIG) 2 Td>S5,2Z

Rg
Then we havéss, V2, ‘EXEC ors PV Farc _ EXECTBYG

35

Dummy Blind Signature Functionality F;

Key generation: Upon receiving(KeyGen, sid) from party S, verify thatsid = (S, sid") for somesid’. If not,
ignore the input. Else, forwareyGen, sid) to the adversang.

Upon receivingVerificationAlg, sid, ver) from the adversang, recordver in history(S), and output
(VerificationAlg, sid, ver) to partyS, wherever is a verification algorithm.

Signature generation: Upon receiving(Sign, sid, m, ver’) from partyU # S, wheresid = (S, sid"), record
(m,ver') in history(U), and sendSign, sid, U, m, ver’) to the adversang.
Upon receiving(Signature, sid, S, U, completed) from the adversarys, whereU is a user that has
requested a signature, outpi$tignature, sid, U, completed) to party .S, and recordU, completed) in
history(S).
Upon receiving(Signature, sid, U, m, o) from the adversans, whereU is a user that has requested
a signature, outpufSignature, sid, m, o) to party U, and record{c, done) next to (m,ver’) inside
history(U).
Upon receiving(Signature, sid, S, U, L) from the adversans, whereU is a user that has requested|a
signature, outpufSignature, sid, U, L) to partyS and halt.
Upon receiving(Signature, sid, U, L) from the adversasy, whereU is a user that has requested a sig-
nature, outpuf{Signature, sid, 1) to partyU and halt.

Signature verification: Upon receiving(Verify, sid, m, o, ver’) from party V, wheresid = (S, sid’), send
(Verify, sid, V,m, o, ver’) to the adversang.
Upon receivingVerified, sid, V,m, ¢) from the adversang, output(Verified, sid, m, ¢) to partyV.

Corruption: Upon receivingCorrupt, sid, J) from S, return(Corrupted, sid, history(J)) to S. HereJ can
be partyU or partyS.

Figure 16: Dummy blind signature functionalify; in Lemma 5.1

Ry Rg
Proof. The proof is straightforward. ConsideiS, V.2, EXEC. " 7svzrFsizx — ExECh s.2

T5(BSIG) 2 Td,

this &1, there existsS,, for all Z, w1512 EXECfd’SQZ < €1; So we can havelS,, VZ,

EXECFCRS’}?VUZK’ §PZK EXECF 2 02

TS(BSIG) 2 T5(BSIG) 2 Td,

RU R
< ¢1. Similarly, 3S;, V2, ’EXECFCRS’fSVZK’ sPzK _ EXECH 5.2

< €1 + -+ -+ ¢4. Note thatF5; = Fpgic. We complete the proof.
d

Theorem 5.2. Given a signature generation protocol that is an equivocal lite blind signature, the protocol
Ty (Bsiq) N Figure 15securely realizeg s in the (Fegs, FészZK, fSRPSZK)-hybrid model with advantage
Adv® + Advi, whereAdvi>® and Advh; are the equivocality distance and lite-unforgeability distance for
the underlying lite blind signature.

Rg
Proof. In order to prove that EXEf,c(‘]‘:s’m?‘/zZK’)r SPZK EXEC B?;%, we use the proof strategy explored

in Lemma 5.1 We develop several bridge hybrid worlds between(tRgrs, 7, SVZK,]-"SPZK) hybrid world
and the ideal world, and define the ensemble of random variabl&'s autput of each bridge hybrid worlds

as EXE(;?’ sz =1,2,...,5, wherer, is the dummy protocol same as that in the ideal world. Next we
CRS?J: 7]: ~ Val ~ ~ 5 ~
prove EXE(fE(BSIG?\gK ST~ EXEC) gz ® 0 & EXECfd’S&Z ~ EXEC%?;%. In our sequence

36

of games we introduce a sequence of functionalities called “vault” which gradually becomes from dummy
blind signature functionalityF; into the ideal functionalityrzsic = F5 across a sequence of five steps.
At same time the corresponding simulator becomes f&nnto ideal world simulatolS = S;5. We also
explicitly present the construction Sfafter the proof.

Note that we assume the underlying lite blind signature satisfies both lite-unforgeability and equivocality.

EXECf:dIS1 ~. Here the vaultFy, i.e. the dummy blind signature functionality, is between the dummy
partiesS, U, V and the simulatos;; the vaultF; just forwards the messages between the dummy
parties ands;, and at same time does some “basic” recording. Please refféguce 16

The simulatorS; simulates exactly the protocelygsic) in the (Fors, Fawyx, Fasgi)-hybrid

model except that all inputs/outputs of the parties of proteggbsic) in the (Fcrs,]—“é%vUZK, J—"SIESZK)—
hybrid model are from/to the vauff; instead of from/taZ.

Analysis:

Note thatS; restates the whole execution in thEcrs, Failyw, Fasyi)-hybrid world. So we have
fCRS’fé?%K7f§PSZK — F1

EXECWE(BSIG)vZ = EXECw,&,Z'

EXECf;SQ’Z. Here the vaultF,, operating like the vaulF;, forwards the messages between the dummy
parties and the simulatdk,, and records some basic information. Furtherm@&keneeds to deal with
the patching forn as that inFpgi: if there is no(U, completed) in history(S), the vaultF; will
store the patchedh into history(U) (note that if there is oldm, ver’) in history(U), then replace
the oldm with this patchedn); now if receives messag@ignature, sid, U, completed) from S,
thenF;, stores a marlone into history(U).

S, is same asS; to simulate the Whol€Fcrs, Fayy, Fasyi)-hybrid world except: in the case that
the user is corrupted? sendq(crs, vk, u), (m, p1)) to]—"ﬁ}fZK on the behalf of the corrupted udér
if ((¢rs,vk,u),(m,p1)) € Ry, thenS, patchesn into Fo.

Analysis:

This is a preparation step for the next step and the modification has no effe€sautput. So
EXEC' s . = EXECP ..
d,©1, Td,O2,

EXEij’}S&Z. Here, we modify the signature verification and we use the same one used in the ideal world.
Now the vaultF; will be in charge of the verification: when receivigerify, sid, m, o, ver’) from
the dummy verifiel/, if ver’ = ver, the signerS is not corruptedyer(m,o) = 1, andm is not
recorded withdone in the table, thernF; outputs(Verified, sid, error) to the dummy party and
halts, otherwis€Verified, sid,m,ver'(m, o)) will be returned to the dummy’. From now on the
Verify andVerified messages will not appear between the simul&tcsnd the vaultFs.

Analysis:

We defineE as the event that in th&»-hybrid world, the signer has generated the verification
algorithmver, and some party is activated with a verification requeéterify, sid, m, o, ver),
wherever(m,c) = 1, and S is honest at this moment, and has not been signed. Note that
eventE can also be defined in th&s-hybrid world. The only difference between the two worlds,
i.e. the F,-hybrid world and theFs-hybrid world, is the verification stage. If evelt does not
occur, then EXEQ}SQ’Z = EXEC:;,Sg,Z' Based on the difference lemma (refer ®hp04),

[EXEC]2 5, ; — EXECL® 5, | < Pr[E]. Now we still need to argue th&t[E] is negligible.

37

We now construct an algorithii to output(k + 1) message-signature pairs aftequeries to the
signing oracle. Here the algorithBhis supplied with a verification keyk and is allowed to access to
the signing oracle as defined in the lite-unforgeability model.

B runs a simulated, and a simulated. Note that now the simulata$, has to simulate party
without knowing the signing keyk.

1. When Z activates some part§ with input (KeyGen, sid) with sid = (.59, sid’) for somesid’,

B returnsver to Z, wherever def verify(crs,vk,-,-). Note thatvk is from the input of3 as
described before.

2. When the simulated receivesVerifiedSVZK, sid, U, (crs,vk’,u)) from fé%\yzw in the case
thatvk’ = vk, Sy needs to simulaté‘ngK to send(ProveSPZK, sid, U, (crs, vk, u,s)) to Z.
HoweverS, cannot produce by itself because noW, does not have the signing key. Note
thatSs simulates7—'§v’fzK and(m, p1) can always be obtained; queries the signing oracle with
(m, p1) and obtains.

3. After finishing the above step, the simula,fi@rletsfs]fzpszK send(ProveSPZK, sid, U, (crs, vk, u,s))
to Z. In the case that the user is honest, the user will produce signafaren; B records such
(m, o) pairs. In the case that the user is corrupt@dpmputesr = Ibss(crs, vk, m, p1,u,s; p3)
by randomly selectings; B records(m, o).

4. When Z activates some parfy with input (Verify, sid, m, o, ver’), B checks whethefm, o)
is a forgery, i.e. ifver’ = ver, ver’(m,o) = 1, andm has never been queried to the signing
oracle. If(m, o) is a forgery,3 outputs the pair and all recorded pairs, say the numberasd
halts. If S, is asked byZ to corrupt the signer thef halts.

Note that whenever the evehl occurs, algorithmB can produce a successful one-more forgery.
ThereforePr[E] = Adv”. So, we hav#EXEij s,z — EXEC ¢ | < Advi.

EXECZ‘S4 ~. Here we let the simulata$, send the vaulF, the pair(sig, ver) in the key generation, i.e.
Sy sendgAlgorithms, sid, sig, ver) to F4. Now the vaultF, records(sig, ver) into history(S).

In the case that the signer is corrupted, insfdewhenZ sends((crs, vk, u, s), (sk, p2)) to }-é%leK

on behalf of the corrupted signst, S, definessig def sign(crs, vk, sk, -, -) and patchesig into Fy.
Now F, deals with the patching faiig as inFggiq: record the patchesdlg into history(S); if there
is oldsig, then replace the olslg with this patchedig.

Analysis:

This is a preparation step for the next step and the modification has no effe€sautput. So
EXECI® g » =EXECH;, ..

EXECf;Ssz. When the vaultF; receivesSign, sid, m, ver’) from each dummy usév, F5 “blocks” m
and sends$Sign, sid, U, ver’) to S5; now S5 will simulate the uset/ without the realn (as opposed
to the realm used inS,). Note that the underlying lite blind signature is equivocal, so ¥gvean
obtain some “help” from the machirie= (Z;, Z») which is defined irDefinition 3.9 Please refer to
a full description of the simulator immediately after the proof. Here we only give the difference from
the previous simulata$,:

Once receivindSignature, sid, U, ver’) from F5, S5 runsZ; with trapdoorr andvk’ and obtains:
with some auxiliary information, i.€u, aux) < Z;(crs, 7, vk’), wherevk’ is obtained fronver’; S

38

records(U, vk’ u, auz) into temp. ThenSs will simulate]-“éi}’ZK to send ProveSVZK, sid, U, (crs, vk, u))
to Z.

If Z corruptsU after Z receives(ProveSVZK, sid, U, (crs, vk’,u)) from]—'sz\ﬁfZK, Ss corrupts the
dummyU and obtains its input: from F5; thenSs recordsn into temp together withU, vk’ u, aux),
and runsp; <« Zo (U, temp). S5 returnsZ (m, p1) as the internal state &f.

If Z corruptsU after Z's receiving(Signature, sid, m, o), S5 corrupts the dummy/ and obtains
(m, o,v) from F5; thenS; records(s, sk, p2) and(m, o, ~y) into temp together withU, vk’ u, auz);
note that if.S is not corrupted,s, sk, p2) is produced by the simulatel, and if S is corrupted,
(s, sk, p2) can be obtained fronZ. Now S5 runs(p1, p3) < Z2(U, temp) and returnsz (m, p1, p3)
as the internal state @f.

Analysis:

AssumeZ can distinguish the two worlds, tl¥€,-hybrid world and theFs-hybrid world, with non-
negligible probability. We can construct an attacdo break the equivocality property of the under-
lying lite blind signature with the same probability.

First, we define€® where€ is obtained by modifying theF,-hybrid world with certain operations
with querying oracle):

e When Z sends(Sign, sid, m,ver’) to a dummy uset/, now & queriesO with (U, m, vk) and
receives U, u); Sy simulates?—“éz\}’ZK to send(ProveSVZK, sid, (crs, vk,u)) to Z;

e When Z returnsVerifierComplete to }“g}fZK which is simulated insid&S,;, S; simulates the

honest signef to computes « lbsy(crs, vk, u, sk; p2) whereps is randomly chosen; thefi
simulatesfé?ZK to send(ProveSPZK, sid, (crs,vk,s)) to Z; if Z returnsVerifierComplete to
]—“é%PSZK, then& queriesD with (U, s, p2, sk) and receiveslU, o); £ returns(Signature, sid, m, o)
to Z on behalf of the dummy user.
When the signer is corrupted may sendProveSPZK, sid, (crs,vk,s), (sk, p2)) to fé%PSZK
which is simulated insidé&,, if ((crs,vk,s), (sk, p2)) € Rs thenS, patchessk to Fy; now £
queriesO with (U, s, p2, sk) and receives signatueg and returns the signature gon behalf
of the dummy user.

e Once receivingCorrupt, sid, U) from Z, S4 needs to return the internal statel6to Z; now
€ queriesO with (U, open) and obtains the internal stat®; then returns the internal state %o

Observe thaf Uses(crs:) js exactly theF,-hybrid world, andZ(¢m:7) is exactly theFs-hybrid world.
If Z can distinguish the two worlds, thehcan break the equivocality of the underlying lite blind

signature. So we obtairEXECf;S4 s — EXEij S z’ < Adv,

Note that the vaultF; is exactly the functionalityFgsi¢ andSs is same asS in the ideal world. So
EXEC/PYS = EXECL ¢ .
Rg

R
. . JF. u 2
Based on all discussions above, we obt&XEC B, — EXEC, O 7svaiosrzic| < Adylbs AdyIs,
dsS, TS (BSIG)» u €q

Ibs
eq

Ibs

whereAdyv,; is the lite-unforgeability advantag@dv,. is the equivocality advantage.

O]

The construction of the ideal world simulator S. Based on the gradual modification of the simulator
in the proof above, we finally obtain the ideal functionalfy Here we explicitly give the description of

39

the simulatorS. To make the description clearer, we also give description of the dummy parties and the
functionality.
Setup:
The simulatokS generates the CRS for each party internally simulated, and keeps the trapdoor for himself:
(crs,7) « CRSgen(1%). Define two relationsky = {((crs, X, W), (m,t,s)) | W = g/uivi'} and

1
Rs = {((ers, X, W, Y,l,7),z) | Y = (Wol)e= A X = g&}.

Simulation of key generation:

(1) In the ideal world, when the dummy sign&rreceives an inputkKeyGen, sid) from the environment
Z, it sends this message fss1¢. The functionalityFpgig then forwardKeyGen, sid) to the simulator
S. Once receiving this message frafisic, S lets the simulated copy of the parfy run (vk, sk) «—
gen(crs), defines the signing algorithsig def sign(crs, vk, sk, -, -) and the verification algorithrmer def
verify(crs,vk,-,-); thenS sends messag@lgorithms, sid, sig, ver) to Fpgig. Now the functionality
Frsic Will record (sig, ver) in history(S), and sendVerificationAlg, sid, ver) to the dummy signes,
and then to the environmest.

(1) Now if S receiveqCorrupt, sid, S) from Z, returns(sig, ver) to Z. Note that in this stage no signature
has been generated, and no involved random coins will be séhttoen.S is corrupted.

Since this point,Z may play the corrupted with different (vk, sk) and some random coirns, to
respond to each different user request message. Note that in the future when the cdir(quetiolled
by Z) wants to respond to the user's requégirifiedSVZK, sid, U, (crs,vk,u)) from fé%\ﬁjzxi it needs
to send(ProveSPZK, sid, U, (crs,vk,u,38), (sk,py)) to Fé{PSZIO wheres = Ibsy(crs, vk, u, sk; py). When
]—'SR;ZK returns(VerifiedSPZK, sid, U, (crs, vk, u,s)) to the useU, i.e. ((crs, vk, u,8), (sk,p,)) € Rs,

the simulatoiS can obtain(sk, 5,) and defingig & sign(crs, vk, sk, -, -) and patclsig into Fsic. Note
that without this patchingZ may distinguish the two worlds based on the output/of

Simulation of signature generation:

Here we need to simulate the ugérand the signef. The simulation of the party/ is very complicated,
while that of partyS is simple. The main reason is that: the reals withheld by Fgsi¢ and the simulator
S has to simulaté&/ without suchm, and when party/ is corrupted the simulata$ has to equivocate the
generated transcripts; while the signing algorigighhas been known by the simulator, and the p&ftsan
be simulated honestly. Notice that though the reak not given,S can access to machife= (Z;,Z>)
defined inDefinition 3.9because the underlying lite blind signature is equivocal. We give details below.

(2) When the dummy usel/ receives an inpufSign, sid, m,ver’) from the environmentZ, it sends
this message t0Fsic, Fpsic records(m, ver’) in history(U) and forwards(Sign, sid,ver’,U) to the
simulatorS. Once receiving this message frafsgic, S obtainsvk’ from ver’ and runs(u, auz) —
Ti(crs, T, vk'), record(U, vk’, u, aux) intotemp. ThenS simulategL‘fVUZK to send the messagRroveSVZK,
sid, U, (crs,vk’,u)) to Z.

(2%) Now if the simulatorS receives(Corrupt, sid, U) from Z (i.e. after Z received theProveSVZK
message). The simulatéf reconstructs the simulated udéis internal statgm, p;) as follows: S sends
theCorrupt message tFggic and obtains the input of the dummyU, and addsn into temp, and then
runsp, < Zo(U, temp). S returns(m, p1) to Z.

Since this point,Z may play the corrupted with different’ and some random coirg, and the
corruptedU sends(ProveSVZK, sid, (crs,vk’, 1), (m,p;)) to the}"éz\ﬁfZK whereu = Ibs; (crs, vk, m; 9,).
WhenfgﬁfZK returns(VerifiedSVZK, sid, U, (crs,vk’,@)) to the simulated signet, i.e. ((crs, vk’, 1), (M, py))
€ Ry, the simulatoiS will patchm into Fgsiq. Note that without this patching? may distinguish the two
worlds based on the signature verification: valid signaturerfavill be rejected in the ideal world.

40

(3) When 2 returns(ProveSVZzK, sid, U, VerifierError) t0 F4l, ., Fa. sends(ProveSVZK, sid, U, 1) to
the simulatedS, andS now sendgSignature, sid, U, SignerError) to Fpgig; when Fpgig receives this
message, it will outputSignature, sid, U, 1) to the dummy partys, then toZ. Else whenZ returns
(ProveSVZK, sid, U, VerifierComplete) to]-"gﬁ’ZK, .7-"SR\§’ZK sends(ProveSVZK, sid, U, (crs,vk’,u)) to the
simulatedS, now S randomly selectg, and computes <« lbss(crs, vk, u, sk; p2), andS now sends
(Signature, sid, U, SignerComplete) to Fpgi; WwhenFggig receives this message, it recotds completed)
in history(S) and outputs(Signature, sid, U, completed) to the dummy partyS, then toZ. At the
same timeS sendqProveSPZK, sid, U, (crs,vk', u,s), (sk, p2)) to ‘7:£DSZK and]—"é%PSZK sendgProveSPZK,
sid, U, (ers, vk',u,s)) to Z.
(3") Now if the simulatorS receives Corrupt, sid, S) from Z (i.e. Z received théProveSPZK message);
S directly returns thésk, p2) as the internal state of the simulated sigheo Z.

In the future,Z may supply the corruptesl with different key-pair(vk, sk), and different random coins
P, for different user request as discussedlin).

(4) When Z returns(ProveSPZK, sid, U, VerifierError) to fé%leK, fé?iDSZK sendgProveSPZK, sid, U, L) to
the simulated’, S will send (Signature, sid, U, UserError) to Fpsig; whenFpsig receives this message,
it will output (Signature, sid, L) to the dummy party/, then toZ. Else whenZ returns(ProveSPZK, sid,
U, VerifierComplete) to fé:i}fZK, .7-"5PSZK sends(ProveSPZK, sid, U, (crs,vk’,u,s)) to the simulated’,
then U randomly select®s and computes «— lbss(crs, vk’ u,s, m, p1; p3); if ver'(crs,m,o) = 1,
then S now sends(Signature, sid, U, UserComplete) to Fpgia; how Fpgie Will select v and use the
recordedsig to computes « sig(m,), record(o, v, done) next to(m, ver’) insidehistory(U), and out-
put (Signature, sid, m, o) to the dummy uset/, then toZ. If ver'(crs,m,c) # 1, thenS now sends
(Signature, sid, U, UserError) to Fpsig, and nowFggig sends(Signature, sid, L) to the dummyU,
thentoZ.

(4%) Now if the simulatorS receives(Corrupt, sid, U) from Z (i.e. the dummyU has outputted a valid
signatures for m). S reconstructs the simulated udéls internal statgm, p1, p3) as follows:S sends the
Corrupt message tpgsic and obtainsn, o, v of the dummyU, and then record&, sk, p2) and(m, o,)
into temp, and rung p1, p3) < Z2(U, temp). S returns(m, p1, p3) to Z.

(5) If the signer is corrupted at the beginning, i.e. (HeyGen, sid) was sent out fron£, in future Z may
play the corrupteds with different (vk, sk) and some random coirs, to respond to each different user
request message as(ih").

(6) If the user is corrupted at the beginning, i.e.(Sagn, sid, m, ver’) was sent out fron£ to U, in future
Z may play the corruptedl” with different/m and some random coins as in(2").

Simulation of signature verification:

(7) When the dummy verifie¥” receives an inputVerify, sid, m, o, ver’) from the environmeng, it sends
this message t6sic, andFgsig Will check if the input consists of forgery. Ver’ = ver wherever is from
history(U), the signersS is not corruptedyer’(m, o) = 1, andm is not marked with alone, thenFgsic
outputs(Signature, sid, L) to partyU and halts; Else, it outpu{Signature, sid, ver'(m, o)) to partyU.

5.2 Implementation Strategies forFsyvzk and Fspzxk

In this section, we discuss the special circumstances that apply in realizing our ZK functionalities.

Realizing F&¥,.. The functionalityFa?,. will be realized against adaptive adversaries; we will proceed as
follows: first given(z, w) € Ry, we will have the prover commit the witnegsinto C, and then we design

a non-erasure Sigma protocol to show the consistency of the witness between the comdiitnenthe
statement: by performing a proof of language membership. The commitment scheme that we will employ
is tuned to our “single-verifier” setting and is based on the mixed commitment primitin@2N\d2, Nie03.

41

Please refer to an SVZK protocol Figure 18whereEQC andCOM are two equivocal commitment schemes,
and(prove,, prove;, verify, simulate, reconstruct) iS a non-erasure Sigma protocol for relatiBfy
defined as follows:R;, = {((crs,z,Co, E), (w,n,¢))| (z,w) € Ry A E = K*("modn? A Cy =
EQCcom(pkeqe, w;n)}. The combination of the commitment with the above Sigma protocol is shown in
Figure 17

Ccrs = <n7g; K;pkeqc>

statement = (x) statement = (x)
witness = (w)

7 < RND;
Cy + EQCcom(pkeqe, w; 1)
K, & La; 1 &7
Co,C1

Cy — KK1 (Ml)”Z mod n? e —
K, & 77,
Ko
K « K;K5 mod n? —
¢ &7
E «— K*(" mod n?
T4 <= RND
a < prove,((z,Co, E), (w,n,{);7a)
Ki,p1,E,a :
T oy =7 KE ()™ mod n
e < {0,1}%
e
PR
z « prove;((z,Cy, E), (w,1n,(), rq, €)
- =

verify((z, Co, E),a,e,2) =" 1

Figure 17: A combination of a committing step with a non-erasure Sigma protocol for ref@fjor-
{((ers,z,Co, E), (w,n,¢)) | (z,w) € Ry AN E = K¥("mod n? A Cy = EQCcom(pkeqe, w;n)} in the
single-verifier setting. HerBQCcom is the committing algorithm for equivocal commitment schezge.

Theorem 5.3. Given two equivocal commitment scherg@s and COM, and a hon-erasure Sigma protocol

(prove;, proves, verify, simulate, reconstruct), the SVZK protocoks,syzxk) in Figure 18securely

realizesF4,,. in the Fegrs-hybrid model with advantagg - (Adved® + Adveg™ + AdviE1® + 2 Advge,) +

q1 - (Advs g FP(AdVER +AdvEE) +27), wheregs is the number of the provers which are not cor-

rupted initially, ¢ is the number of the provers corrupted initiallydvcd® and Advyls ;- are equivocality

distance and binding distance for the equivocal commitrBRat Adveq™ and Advigig;,. are equivocality
sigma

distance and binding distance for the equivocal commitraert Adv>£7* and Adv>£™% are non-erasure
honest-verifier zero-knowledge distance and soundness distance for the non-erasure Sigma protocol.

R
Foll _— .
Proof. In order to prove that EXE Egimz ~ EXECWdS:’S%g, we use the similar proof strategy explored in

Lemma 5.1 We develop several bridge hybrid worlds betweenfags-hybrid world and the ideal world,

42

Protocol 75,gvzxk) in the Fors-Hybrid World

Proof stage: When partyP is invoked with inputProveSPZK, sid, P, z,w) by Z, it verifies thatsid = (V, sid")
for somesid’. If not, then ignore the input. Else, (&, w) € Ry, it computes’y « EQCcom(pkeqc, w;)
andC; — K& ()" mod n® wheren £ RND, K; & Zt,, m < Zi, and then sends message
(prover,, sid, Cp, C1) to partyV (throughZ).

When partyV is invoked with incomingorover, message, it randomly seledt§, < Z,, and sends
messagéverifier, sid, K3) to party P (throughZ2).

When partyP is invoked with incomingverifier; message, it computds «— K;Ks mod n?, E «—
K™¢" mod n?, a « prove,((z,Co, E), (w,n,{);r,) andc « COMcom(pkeom, a;) where¢ & Zr,
74,7 < RND, and sends messafrover.,, sid, K1, i1, =, F, c) to party P (throughZ2).

When partyV’ is invoked with incomingprover, message, it verifies if; = KX (Ml)"2 mod n? holds.
If the equation holds, then it randomly seleets™ {0, 1}%:, and sends messa@eerifiers, sid, e) to
party P (throughZ2).

When party P is invoked with incoming verifier, message, it computesz «—
proves((z, Co, E), (w,n,(),rq,€), and sends messag@rovers, sid,a,r,2) to party V' (through
2).

When partyV is invoked with incomingprover, message, it verifies = COMcom(pkcom,a;r) and
verify((z, Co, F),a, e, z) = 1; if both hold, then it returns messa@erifiedSVZK, sid, z) to Z.

Corruption: When party P is invoked with incoming (Corrupt,sid, P) by Z, it sends outgoing
(Corrupted, sid, history(P)) to Z.

Figure 18: Single-verifier zero-knowledge protoes|syzk) for relation Ry in the Ferg-hybrid world.

and define the ensemble of random variable€afoutput of each bridge hybrid worlds as Exﬁ(‘s Z

i =1,2,3, wherer, is the dummy protocol same as that in the ideal world. Next we prove é@(svm

~ EXECL' g ; ~ -+ ~ EXECI®g . ~ EXEC SVI‘;Zg In our sequence of games we introduce a
functlonallty called the “vault” WhICh gradually becomes from dummy SVZK functionafiyinto the

ideal functlonalltyfSVZK across a sequence of three steps. Note that we assume the protocol is based on
a single-verifier mixed commitment scheme which is based on the DCR assumption, and the underlying
commitmentsEQC andCOM are equivocal, andprove,, prove;, verify, simulate, reconstruct) is a
non-erasure Sigma protocol.

EXEC%&’Z. Here simulatosS; simulates exactly the protocek;syzk) in the Fors-hybrid model ex-
cept that all inputs/outputs of the parties of protoeglsyzk) in the Fcrs-hybrid model are from/to
the vaultF; instead of from/toZ.

The vaultF; is between the dummy partigd V' and the simulatoiS;; the vaultF; receives the
outputs from the dummy parties and forwards thenStd¢andS; will supply the messages as inputs
of the simulated parities of protocak,syzk) in the Fcrs-hybrid model);F; forwards the outputs
of the simulated parties ifi; to the dummy parties which are finally returned to the environnzent

Analysis:

Note thatS; restates the whole execution in thers-hybrid world. So we have EXE (SVZK) z =
EXEC!

7'('(17817

43

EXEij}S%Z. Here the vaultF,, operating like the vaulF;, forwards the messages between the dummy
parties and the simulat&,. Furthermore,F, records some information, like the ideal functional-
ity fé%\;fZK, into history(P): once receiving an inputProveSVZk, sid, P, z,w) from the dummy
user P, if (z,w) € Ry the vaultF; records(x,w) in history(P). The change in this step is
that 7, will “block” the real withessw and only send the statementto Ss, i.e. send message
(ProveSVZK, sid, P, z) t0 Ss.

S, is same ass; to simulate the wholérs-hybrid world except:S, simulates the party without
using the real witness which has been described in the ideal world simulatas; Buhulates party
V same as in thé&crgs-hybrid world; be more explicit whel® is corrupted S, will not extract the
witness for patching.

Analysis:

In this step,S, can make perfect equivocation except negligible distance, which m&arennot
distinguish the two worlds except negligible distance. Next we calculate the distance. The com-
mitmentsCy andc can be equivocated except probabilitgvel® + Advee™ given EQC andCOM are
equivocal commitment schemes, wheev.]® and Adve,™ are equivocality distances for the two
commitments. Under DCR assumption, the commitm@rdan always be equivocated, so here the
distance introduced i8dvq4.,. The underlying zero-knowledge proof of membership will introduce
Adv?E + Advg., whereAdv) 21 is the non-erasure honest-verifier zero-knowledge distance for the
non-erasure Sigma protocol, aAdvy,, is due to the fact that we use Daérg-Jurik’s encryption to
encrypt the witness. SEXEC]! o - — EXEC? g | < g3 - (AdVEL + Advio™ + Advi ™ + 2 -

Advq.r) Wheregs is the number of the provers which are not corrupted initially.

EXECf;}S&Z. Here F3 is same a§-“§VUZK andsSs is same as the ideal simulat8iwhich will be described
immediately after the proof. The difference between fehybrid world and theF;-hybrid world
is: in the case that some parByis corrupted, in theF,-hybrid world, when party verifies all the
equations, messad¥erifiedSVZK, sid, P, x) will be sent to dummyV (then to Z); while in the
Fs-hybrid world, when party” verifies all the equations§s needs to extract the witnessand patch
(x,w) to Fs, after verifying(z, w) € Ry, messagéVerifiedSVZK, sid, P, x) will be sent to dummy
V (then toZ2).

Analysis:

In the case that proveP is corrupted, the simulata$s will extract the witness and patch it into

the functionality after verifying the proof. Assume the underlying Sigma protocol with the equivo-
cal commitmentCOM have no error, if the prover is corrupted &y before the prover sends out the
prover, message, the environmefitcannot obtain an E-kei except negligible probabilitg—*,

which can be viewed as extraction error for the underlying single-verifier mixed commitment. Note
that if Z let the K be an E-key, thetrx cannot figure ouf<; to satisfy the two conditions as follows

at the same time(i) consistent with the commitmeidt;; (i) K; = K/K> mod n?, whereK; is
randomly selected. Still we need to consider a special case: when an honest/pmmis out the
prover, messageZ can “capture” the used E-key by computingk = K; K> mod n?; and then

Z corrupts the proveP and computes a commitmentfor a differentw, and sends out the modified
prover, message (note that can do this in the name of the corrupted user). Note ¢hais pro-

duced byP when it is honest, which meaii%, is a commitment based the real withessand also

note that the commitment is binding, and the Sigma protocol has no soundness error. The probability
to produce a valid proof for the “fakeZ and the realCy is Advy ;.-
Now we still need to consider that error of the underlying Sigma protocol with the equivocal com-
mitmentCOM. The proof idea here follows that iDpmOQ; please also refer to section 5 iNig03.

44

Define the evenkE that the pair(z, w) patched bySs such that(z, w) ¢ Ry. Notice that, if such
eventE does not occur, thef cannot distinguish the two worlds because the views of them have the
same distribution. Now we investigate the probability of the el&nt

When simulatoiSs accepts a proof for statementthenSs receives(a, r, z) for a corrupted prover
wherec = COMcom(pkcom, a;) andverify(z,a, e, z) = 1. Now rewind the state of the simulation

and let the simulato&s send a new challengg. Repeat this until receiving:’, r’, 2’), wherec =
COMcom(pkcom, a’; ') andverify(x,d’, €', 2’) = 1. When this happens, if # o, then there exists a
double opening of commitment valeei.e. ¢ = COMcom(pkcom, ;) = COMcom(pkeom,a’; r’). Else

if a = d/, ande # ¢/, then the membership soundness will not be satisfied. Elgesifi’ ande # ¢,
thenS; gives up. So for one successful protocol for each corrupted prover, the two worlds can be
distinguished with probability - (Adviom™,. =+ Adv2S™e),

binding sound

SO|EXECI2, - — EXECE 5 2| < q1 - (Advifsy, + v (Advism,, + Advisng) + 27%) where

q1 is the number of the provers which are corrupted initially.

Note that the vaulF; is exactly the functionalityFes,,. andSs is same asS in the ideal world. So

fé%\yZK 3
EXEC, 5% = EXECP® ¢ .

Ry
Based on all discussions above, we ob EV(ECEYSZE, - EXECfS:ZSVZK) 2| < g3+ (Adved®+Adveg™ +

AdVLER" + 2+ Advacr) + g1 (Advi g, + v+ (AdviRi, + AdvEETR) +274).

O]

The ideal world simulator S proceeds as follows.Here we give a full description of the ideal world
simulatorS.

Setup:

The simulatorS generates the CRS for each party, and keeps the trapdoor for himself: generate a Paillier
public key (n, g) along with the X-trapdooKp, q); generate an equivocal kég with the E-trapdoorrg
whereK = (7)™ mod n3; run (Pkeqes €keqe) < EQCgen(1?) and (pkcom, €kcom) < COMgen(17). Let

crs = <n7 g, K;pkeqc’pkcom> andr = <p7 q9; TK; ekeqc; ekcom>-

Simulation of the proof stage:

(1) When the dummy proveP receives an inpuProveSVZK, sid, P, z,w) from the environment, it
sends this message ®:,.; if (z,w) € Ry, thenFEY, . will record (z,w) in history(P) and send

(ProveSVZK, sid, P, z) to S. Once receiving this message froFé%\ﬁfZK, S simulates the party as follows:

o randomly seleck; < Z*,, i < Z, and compute’; = KK (7)™ mod n?;

o run(Cop, auteqc) < EQCfake(pkeqc, €keqc) Without using the equivocal trapdoek.,. for producing
Co, i.e. randomly selects,77 <~ RND, computeCy «— EQCcom(pkeqe, w; 1), and setauzeqe «—
<ekeqcaaaﬁ>

ThenS simulates the party’ to send messaggrover,, sid, Cp, C1) to the simulated verifieV” (through
the simulated?).

(11) If the simulatorS receives(Corrupt, sid, P) from Z after the partyP sending out the message
(provery, sid, Cp, C1), but before receiving the messagerifiery, sid, K»), S sendgCorrupt, sid, P)

to Fau,., and receivegCorrupted, sid, P, history(P)) from Fa ., wherehistory(P) as defined in

45

fg\}]ZK includesw. ThensS runsn «— EQCequivocate(pkeqe, Co, AU eqe, w), and returngw, INQ, f1,m) as
the internals taz2.

(2) WhenZz delivers messagerover,, sid, Cy, C7) from PtoV, S simulates the party easily: randomly
selectsky < Z:, and returns it to party’.

Note that there is no secret coins involved for the p&rtyso whenS receives the message of corrupting
V, no internals will be returned t8.

(3) When Z delivers messag@erifier, sid, K2) from V to P, S simulates the party:

e generatek” with equivocal trapdoot as follows: randomly seleetx é Z* and compute «—
(7x)" mod n?; then randomly seleaf < Z*, and computef’ — K*“(" mod n?; then compute

Ki—

K1 « K/K5 mod n?, and operCy into py « 7,2~ iy mod n.

e randomly select < {0, 1}, and run(a, Z, auzsigma) « simulate((z,Co, E), €).

e run(c, aueom) < COMfake(pkeom, ekcom) Without using equivocal trapdoek.,, for producinge,
i.e. compute: «— COMcom(pkcom, @;7), and S€tiuzcom «— (€kcom, @, T)-

ThenS simulates the party to return messag@rover,, sid, K1, u1, x, E,) to the partyl” (throughZ2).

(3%) If the simulatorS receives(Corrupt, sid, P) from Z after the partyP sending out therover,
message, and before receiving therifier, messageS sends(Corrupt, sid, P) to fﬁ;’ZK, and re-
ceives (Corrupted, sid, P, history(P)) from fé:ivUZK, where history(P) includesw. As in (1t), S
runsn «— EQCequivocate(pkeqe, Co, auTeqe, w). FurthermoreS uses the trapdoorx to compute¢
such that = K%*(¢" mod n? as below:¢ = (TK)m_meOd n Where@,fas used in(3); thenS runs
rq < reconstruct((z, Cy, E), a, Z, auTsigma, €, w); S returns(w, n, (, 4, 7) as the internals t&.

(4) When Z delivers messagéprover,, sid, K1, u1,x, E,c) from P to V, S simulates the party’ as
follows: verify if C; = KX1(41)"* mod n® and return(verifiers, sid, ¢) to the partyP. Note that the
simulatedV is an honest verifier andis the one selected (3).

Same as irf2) whensS receives the message of corruptiigno internals will be returned t3.

(5) When Z delivers messag@erifiers, sid, e) from V to P, S simulates the party:

o if e = ¢, which meand/ is honest, thenlet=a,z =z, r =7,
e else ife # €, which means/ is corrupted, then rufa, z, auzsgma) <« simulate((z, Co, E),e);
then runr < COMequivocate(pkcom, ¢, AUTcom, @).

ThensS simulatesP to send messag@rovers, sid, a,r, z) to V (throughZ).

(51) If the simulatorS receiveg Corrupt, sid, P) from Z after partyP sending out therover; message,
S sends(Corrupt, sid, P) to F4l,.., and receivegCorrupted, sid, U, history(P)) from F¥., where
history(P) includesw. Same as if3"), S obtains¢ andn. But S still needs to returm,. If verifier V' is
honestS uses the same method(B1); if verifier V' is not honestS runsr, < reconstruct((z, Co, £), a, 2,

AUZTsigma, €, w). Thens returns(w, n, ¢, r,) as the internals t&.

(6) When Z delivers messagéprovers, sid, a,r, z) from P to V, S simulates the party” to verify the
equations: = COMcom(pkcom, a;) andverify((x, Co, E), a, e, z) = 1. If both hold, then the simulata®
returns(ProveSVZK, sid, P, VerifierComplete) to F2¥,., andF il . returns(VerifiedSVZK, sid, P, z) to
dummyV, then toZ. If one of the two equations does not hold, tifereturns(ProveSVZK, sid, P, VerifierError)
to Fot ., andF4l, . returns(VerifiedSVZK, sid, P, L) to dummyV/, then toZ.

46

In the case thaP is corrupted,S uses the extractable trapdo@r; q) to decryptK andE If K isan
X-key, thenw can be extracted from¥ and the paiz, w) will be “patched” iNtOFY, . ; If Fol,. verifies
(z,w) € Ry, then it returns messad@erified, sid, P, z) to dummyV, then toZ; If (z,w) ¢ Ry, then
it returns messag@erified, sid, P, error) to dummyV, then toZ. If K is an E-key, thei® halts.

Remark 5.4. Depending on the properties of the statemetitat is proven, we remark that it is possible to
simplify the implementation ofFsyzk. In particular, ifz includes a commitment of the witnessthat is
equivocal based on the givens, then the commitment, that is made tav by the prover in the very first
communication flow of the protocol iRigure 17is unnecessary. Thus the commitment sch&g&may

be dropped entirely from the realization; in this settimgyill be playing the role ofy. Note that taking
advantage of such modification is done only for the sake of efficiency of the overall protocol (and in fact we
will employ in our efficient protocol instantiation iBection 6.

Realizing Fii5,. RegardingFas,,. we find that, rather surprisingly, our task for attaining an adaptive
secure UC blind signature is simpler since security against a static adversary suffices. The reason is that
in the UC blind signature security proof, the simulator knows the signing secret which means the witness
for .7-“ spzk 1S known by the simulator, and thus no equivocation of dishonestly simulated transcripts is ever
necessary! This behavior was explored by the authors in the general context of universally composable
zero-knowledge inKzZ07]; in the framework of that paper, we can say a blind signature protocol falls into
the class of protocols where a leaking versioﬂgﬁzK is sufficient for security and thuﬁﬁfm need be
realized only against static adversaries.

Similar to the realization QF&EJZK, for (z,w) € Rg, we have the prover commit the witnessnto C,
and then develop a Sigma protocol to show the consistency between the comnditenghthe statement
by performing a proof of language membership. But here we only need employ an extractable commitment
considering we only need to realiZels,,. against static adversary. Please refefigure 20for an SPZK
protocol against static adversary, wh&¥ is an extractable commitmentQM is an equivocal commit-
ment, and(prove,, proveg, verify, simulate) is a Sigma protocol for relatio®®’; as defined follows:

s ={(crs,z, E), (w,() | (z,w) € Rs A E = EXCcom(pkexc, w; ¢)}. The combination of the extractable

commitment with the above Sigma protocol is showirigure 19

Theorem 5.5. Given an extractable commitment scheiie, an equivocal commitment scheg®!, and a
Sigma pl’OtOCOKprovel,prove3, verify, simulate), the SPZK protocoks,spzx in Figure 20securely

reallzesJ-'SPZK in the Fcrs-hybrid model against static adversary with advantage+ gs) - (Adviig,, +
Adveo™ + AdVEE™®) £ go - v - (AdVES™, L + AdvTE™), wheregs is the number of the verifiers which are

binding sound
not corrupted initially,q; is the number of the verifiers corrupted initiallyy is the number of successful
protocols from the corrupted provedvyyiy:,, IS binding distance for the extractable commitmeKc,
Advg,™ and Adv“b?;jfghng are equivocality distance and binding distance for the equivocal committioent
AdvSIgma and Adv® ™ are honest-verifier zero-knowledge distance and soundness distance for the Sigma

sound
protocol

Rg
Proof. In order to prove that EXE%@?ZK% z R EXEijfSZg, we use the similar proof strategy explored in
Lemma 5.1 We develop several bridge hybrid worlds betweenfhags-hybrid world and the ideal world,
and define the ensemble of random variablegsfoutput of each bridge hybrid worlds as EXE;%_’Z,

i = 1,2, 3, wherer, is the dummy protocol same as that in the ideal world. Next we prove EXEC
=(SPZK)>
R

EXECfS z R EXECf ~ EXEC ngg In our sequence of games we introduce a
functlonallty called the “vault” WhICh gradually becomes from dummy SPZK functiondfityinto the

47

crs = (pkexc)

statement = (x) statement = (x)
witness = (w)

¢ < RND;

E — EXCCOm(pkeXCa w; C)

Tq,7 < RND

a +— provel((x, E), (w,C);7a)

e < {0, 1}t
z « proves((z, E), (w,(),Tq, €)

verify((z, E),a,e,2) =" 1

Figure 19: A combination of a committing step with a Sigma protocol for relatifp =
{(ers,z, E), (w,()| (x,w) € Rg N E = EXCcom(pkexc, w; ()} in the single-prover setting. HeBXCcom
is the committing algorithm for extractable commitment sche&x®

ideal functionality Fiis,, across a sequence of three steps. Note that we assume the protocol is based
on an extractable commitment scheme, and the underlying commit@®@hisnd COM are equivocal, and
(prove,,prove,, verify, simulate) is a Sigma protocol.

EXECQ’SLZ. Here simulatosS; simulates exactly the protocak;spzk) in the Fcrs-hybrid model ex-
cept that all inputs/outputs of the parties of protoeg|spzx) in the Fcrs-hybrid model are from/to
the vaultF; instead of from/toZ.

The vaultF; is between the dummy partigd V' and the simulatoS;; the vaultF; receives the
outputs from the dummy parties and forwards then§tg¢andS; will supply the messages as inputs
of the simulated parities of protocel; spzx) in the Fers-hybrid model);F; forwards the outputs of
the simulated parties i; to the dummy parties which are finally returned to the environngent

Analysis:
Note thatS; restates the whole execution in thegrs-hybrid world. So we have EXE Z(F;SPZK) =
EXECI! g .

EXECf57$27z. Here the vaultF,, operating like the vaulF;, forwards the messages between the dummy
parties and the simulat&,. Furthermore,F, records some information, like the ideal functional-
ity fé%PSZK, into history(P): upon receiving an inputProveSPZK, sid, V, z,w) from the dummy
party P, if (x,w) € Rg the vaultF,; records(V,z,w) in history(P). The change in this step
is that 7, will “block” the real withessw and only send the statementto Ss, i.e. send message
(ProveSPZK, sid, V, x) t0 Ss.

Ss is same as5; to simulate the wholécrs-hybrid world except:S, simulates the party’ without
using the real witness which has been described in the ideal world simulatas; Buhulates party

48

Protocol 75;spzk) in the Fcrs-Hybrid World

Proof stage: When partyP is invoked with inputProveSPZK, sid, V, z, w) by Z, it verifies thatsid = (P, sid")
for somesid’. If not, then ignore the input. Else, (if;, w) € Rg, it computestl « EXCcom(pkexe, w; ¢),
a « prove,((z, E), (w,();r,) andc « COMcom(pkeom, ;) where¢,r,,7 < RND, and then sends
messagéprover,, sid, x, E, ¢) to partyV (throughZ2).
When partyV is invoked with incomingrover, message, it randomly seleets™ {0, 1}, and sends
messagéverifiery, sid, ¢) to party P (throughZ).
When party P is invoked with incoming verifier; message, it computesz «
proves((z, E), (w, (), rq, €), and sends messagerover,, sid, a, r, z) to partyV (throughZ).
When partyV is invoked with incomingprover, message, it verifies = COMcom(pkcom,a;r) and
verify((z, E),a,e, z) = 1;if both hold, then it returns messa@jéerifiedSPZK, sid, x) to Z.

Corruption: When party P is invoked with incoming (Corrupt,sid, P) by Z, it sends outgoing
(Corrupted, sid, history(P)) to Z.

Figure 20: Single-prover zero-knowledge protoeglspzk) for relation Rg in the Fors-hybrid world.

V same as in thé&ccrgs-hybrid world; be more explicit wher® is corrupted S, will not extract the
witness for patching.

Analysis:

In this step,So can make perfect simulation except negligible distance: the commitnieigid-

ing except probabilityAdvyig,, 9ivenEXC is an extractable commitment, whekevyig,,. is hiding
distance; and commitmentis equivocal except probabilitkdve,™ givenCOM is an equivocal com-
mitment schemes, anlldv™ are equivocality distance; the underlying zero-knowledge proof of
membership will introduce distandedv’s™* whereAdv’#™ is the honest-verifier zero-knowledge
distance for the Sigma protocol. $EXEC!! s - — EXECI2 g | < (g1 + q3) - (Advi§,, +
Advg™ + Advzikgma) whereq; is the number of the verifiers which are not corrupted initially, and
the number of the verifiers corrupted initially.

EX chj,sg,z- HereFs is same asfsﬁfZK andSs is same as the ideal simulat®described before. The dif-
ference between thg,-hybrid world and theFs-hybrid world is: in the case that parfyis corrupted,
in the F,-hybrid world, when party” verifies all the equations, messagerifiedSPZK, sid, P, x)
will be sent to dummy/ (then to Z); while in the F3-hybrid world, when party/ verifies all the
equationsSs needs to extract the witnegsand patch it taFs, after verifying(z, w) € Rg, message
(VerifiedSPZK, sid, P, z) will be sent to dummy/ (then toZ).

Analysis:

The proof idea here follows that iDpmMOQ; please also refer to section 5 iNie03. In the case that
prover P is corrupted, the simulatds will extract the witness and patch it into the functionality after
verifying the proof. Define the evel that the pair(z, w) patched byS; such that(z, w) ¢ Rg.
Notice that, if such everlE does not occur, the& cannot distinguish the two worlds because the
views of them have the same distribution. Now we investigate the probability of theBvent

When simulatoiSs accepts a proof for statementthenSs receives(a, r, z) for a corrupted prover
wherec = COMcom(pkcom, a;r) andverify(z,a, e, z) = 1. Now rewind the state of the simulation

49

and let the simulato&s send a new challengg. Repeat this until receiving:’, r’, 2’), wherec =
COMcom(pkcom, a’; ') andverify(z,a’,e’,2’) = 1. When this happens, if # o/, then there exists

a double opening of commitment valagi.e. ¢ = COMcom(pkcom,a;) = COMcom(pkeom, a’;7’).

Else ifa = o/, ande # ¢/, then the membership soundness will not be satisfied. Else=fa’
ande # €', thenSs gives up. So for one successful protocol for the corrupted prover, the two
worlds can be distinguished with probability (Advio™,. — +AdvZemo). ThereforeJEXEij’S%Z -

binding sound
EXEij 55,2 < a2 v (Advigiiing +AdVITT) Whereg, is the number of successful protocols from
the corrupted prover.

Note that the vaulfF; is exactly the functionalityF25s,, andSs is same asS in the ideal world. So
EXchf%; = EXEC?, 2.

Based on all discussions above, we ob ED(ECZS}%;ZE — EXECf;(:ISDZK),Z < (q1+43) - (AdViiding +
AdvE™ + AdVEE™) + go - v - (AdvEST,, + AdVIE™Y).

binding sound

O

The ideal world simulator S proceeds as followsHere we give a full description of ideal world simulator.

Setup:
The simulatoiS generates the CRS for each party, and keeps the trapdoor for himselfikeun xkex.) <
EXCgen(11) and (pkeom, €kcom) < COMgen(11). Let crs = (pkexe, Pkcom) @NAT = (2kexce, €kcom)-

Simulation of the proof stage:
The simulation is only for static adversaries, and is much simpler than the one for adaptive adversaries.

(1) When the dummy proveP receives an inpufProveSPZK, sid, V, z,w) from the environmentZ, it
sends this message 85, if (z,w) € Rg, thenFgis, will “block” the witnessw: record(V, z, w) in
history(P) and sendProveSPZK, sid, V, x) to S. Once receiving this message frOFéﬁ.FZK, S simulates
the partyP as follows:

e randomly selecti, < RND, computeF « EXCcom(pkexe, @; ().

e randomly select < {0, 1}, and run(a, z, auzsigma) < simulate((z, F),€).

e randomly select < RND, and compute < COMcom(pkcom, @;7), and SELUT com — (€kcom, G, T).
ThenS simulates the party to send messagerover, sid, z, F, ¢) to the simulated verifieV” (through

the simulated?).

(2) When Z delivers messagéprover,, sid,z, E,c) from P to V, S simulates the party” to return
(verifiery, sid,e) to the partyP. Note that the simulatelf is an honest verifier ané is the one se-
lected in(1).

(3) When Z delivers messagererifiery, sid, e) from V to P, S simulates the party:

o if e = ¢, which meand/ is honest, thenlet=a,z =2z,r =7;

e elseife # €, which meand/ is corrupted initially, then rua, z, auzsgma) < simulate((z, E), e);
then runr < COMequivocate(pkeom, ¢, AUTcom, @).

50

ThenS simulatesP to send messagerover,, sid, a,r, z) to V (throughZ).

(4) When Z delivers messagéprover,, sid,a,r, z) from P to V, § simulates the party” to verify the
equationse = COMcom(pkcom, a;7) andverify((z, E), a,e,z) = 1. If both hold, then the simulata$
returns(ProveSPZK, sid, V, VerifierComplete) t0 Feisyy, andFas,, returns(VerifiedSPZK, sid, V,z) to
dummyV, then toZ. If one of the two equations does not haftketurns(ProveSPZK, sid, V, VerifierError)
t0 Fils, ., andFLs, . returns(VerifiedSPZK, sid, V, 1) to dummyV, then toZ.

In the case thaP is corrupted initially,S uses the extractable trapdogkt.,. to decryptFE into w and
“patches” the paitz, w) into Fasy. . If Fais, verifies(z, w) € Rg, thenitreturngVerifiedSPZK, sid, V, z)
to dummyV, then toZ; If (z,w) € Rg, then returnVerifiedSPZK, sid, V, error) to dummyV, then to
Z. If such decryption fails, the§ halts.

Protocol g, gpy in the Fers-Hybrid World

Proof stage: When partyP is invoked with inputProveSPZK, sid, V, z, w) by Z, it verifies thatsid = (P, sid")
for somesid’. If not, then ignore the input. Else, (if;, w) € Rg, it computestl « EXCcom(pkexe, w; ¢),
a « prove, ((z, E), (w,(); r,) andc « COMcom(pkeom, =, E, a;r) where¢, r,, r < RND, and then sends
messagéprover,, sid, c) to partyV (throughZ).

When partyV is invoked with incomingrover, message, it randomly seleets™ {0, 1}, and sends
messagéverifiery, sid, ¢) to party P (throughZ).

When party P is invoked with incoming verifier; message, it computesz —
proves((z, E), (w,(),rq,e), and sends messaggrover,, sid,z, E,a,r,z) to party V (through
Z).

When partyV is invoked with incomingprover, message, it verifies = COMcom(pkcom,a;r) and
verify((x, E),a,e,z) = 1;if both hold, then it returns messa@jéerifiedSPZK, sid, x) to Z.

Corruption: When party P is invoked with incoming (Corrupt, sid, P) by Z, it sends outgoing
(Corrupted, sid, history(P)) to Z.

Figure 21: Single-prover zero-knowledge proton:Q&SPZK) for relation Rg in the Fcrs-hybrid world.

Remark 5.6. In Figure 21 we present an alternative way of transforming the two-party protodebofre 19

into a UC protocol. While the UC protocol implementationFofiure 20is sufficient nevertheless there are
advantages in using the alternative implementation: in particular, the UC proto€adfe 21is more
conservative with respect to the information revealed by the prover party to a verifier party during the initial
two communication moves; while the overall number of rounds is the same between the two UC protocaols,
the second protocol, i.e. the oneRigure 21 has the advantage that it may be initiated earlier by a prover
that is acting also as a verifier in a more complex protocol interaction. In other words the advantage of the
second realization is its potential in reducing the number of rounds when two parties are bilaterally proving
to each other statements in zero-knowledge. This property (that we will take advantage of it later on in our
efficient construction) is demonstrated alsd-igure 26andFigure 27

Theorem 5.7. Given an extractable commitment scheii€, an equivocal commitment scheg, and a
Sigma protocolprove,, proves, verify, simulate), the SPZK protocoir{Z(SPZK) in Figure 21securely

eXC

realizesJ-"éRpsZK in the Fcrs-hybrid model against static adversary with advantage+ gs) - (Adviigi,g +

AdvE™ + AdVIE™) + g2 - v - (Advio,, ., + AdvES™), wheregs is the number of the verifiers which are

51

r

a1,az,a3 < Zy X~ Zp
W Z —YX
W - gﬁluazvibs - 3)’(\, - gX
2
d<z, 7,
d ——
A r
d—7Z,
b1 «— a1 +dmt d
by «— as + dt -
b3 «— asz + dst 0y «— X +dx
b1,b2,b3 Oy
Figure 22: ©%v-protocol, whereRy = {((crs, Figure 23: ©fs-protocol, whereRs = {((crs,
X, W), (m,t,s)) | W = g"ujoi}. X, W,Y,l,r),2) | Y = (Woh)#5 A X = g3}

not corrupted initially,q; is the number of the verifiers corrupted initially is the number of successful
protocols from the corrupted proveAdvyyiy,, iS binding distance for the extractable commitmeKc,

Adveg™ and Advﬁi’r‘fgmg are equivocality distance and binding distance for the equivocal committoent

AdvSIgma and Adv®®™ are honest-verifier zero-knowledge distance and soundness distance for the Sigma
protocol

Proof. The proof is similar to the proof ofheorem 5.5

6 Efficient UC Blind Signatures against Adaptive Adversaries

6.1 Overview

In this section, we demonstrate how it is possible to design an efficient instantiatidreofem 5.2 We

need three ingredients: (1) an equivocal lite blind signature scheme, (2) a UC-realization of the ideal func-
tionality fﬁ;’ZK, (3) a UC-realization of the ideal functionalltySPZK Regarding (1) we will employ

the lite blind signature scheme Bfgure 8that we proved it to be equivocal ifheorem 3.13 Regard-

ing the two ZK functionalities we will follow the design strategy outlined in the previous section. Recall
that Ry = {((¢rs,vk,u), (m, p1)) | u = Ibsi(crs,m;p1)} andRg = {((crs,vk,u,s), (sk,p2)) | s =
lbsa(crs, vk, u, sk; p2) A (vk, sk) € KEYPAIR}. Instantiating these relations for the protocolFadure 8

we obtain thatRy = {((ers, X, W), (m,t,s)) | W = g"uivit} and Rg = {((ers, X, W,Y, 1, 1), x)

|Y = (Wvll)ﬁ A X = g&}. Two efficient Sigma protocols?v and%#s for these relations are presented

in Figure 22for Ry; and inFigure 23for Rg, respectively.

Efficient instantiation of F47,... Based on the single-verifier UC zero-knowledge protocdfigure 18

in the prewous section, and considering the underlying equivocal lite blind signatkigure 8§ we can
realize F i3, efficiently: as discussed iRemark 5.4we can “borrow”W from the underlying lite blind
signature protocol as the equivocal commitment which saves some computation/communication; we will use
hashed Pedersen commitmeRefl9] to develop an efficient zero-knowledge proof of membership to bind

the witness in the relatioR;; and the one committed based on the mixed commitment (reféigiae 26
andFigure 27.

52

Corollary 6.1. Composing Sigma protocol Figure 22with Sigma protocol for relatiod((crs, E), (w, ())]
R

E = K"“(¢" mod n?}, we obtain SVZK protocol realizings., -

Efficient instantiation of ff;ZK. Based on the single-prover UC zero-knowledge protocdtigure 21
presented in the previous section, we instantiate the extractable commitment by Paillier encryption; we still
use the hashed Pedersen commitment to develop efficient zero-knowledge proof of membership to bind the
witness inRg to the witness committed within the extractable commitment.

Corollary 6.2. Composing Sigma protocol Figure 23with Sigma protocol for relatiof((crs, E), (w, ¢))]

E = EXCcom(pkexc, w;)}, we obtain SPZK protocol realizi

SPZK

against static adversary.

1bs,svzky 1bsy ,svzky
svzks svaks
svzky -
T svzka,spzk’;
lbsa,spzk, svzks,spzko
spzk, A
o
Figure 24: 8-move two side zero- Figure 25: 6-move two side zero-knowledge
knowledge proving for lite blind proving for lite blind signature, SVZK, and
signature, SVZK, and SPZK. SPZK. Herelbs, is committed insidespzk’;,

and will be opened untilpzk’s; except this dif-
ference,spzk’; andspzk’y are same aspzk,,
spzks in Figure 24

Communication rounds optimization. We can obtain an 8 moves blind signature protocol by putting the
designs for the two sides together (refeFtgure 24. However, based on the discussioRiemark 5.6n the
previous section, we can achieve a 6 moves protocol by carefully interleaving the communication transcripts
of the two sides (refer teigure 25. The final 6-move protocol is presented in the next subsection. Please
also refer tdrigure 26andFigure 27

6.2 Detailed Description

In this subsection, we give a detailed description of our UC blind signature construction. The common
reference stringers = {n,g;K;p, 91,92, G1,Ga, Gr, &, ¢, ug,v2; Q, G, g, ha,hs, H}. Here(n,g) is a
public key for Paillier encryptionK is a public key for an equivocal commitmenif, g1, g2, G1, G2, Gp,

&, 1, ug,v9) is a part of public key for Okamoto signaturg?, G, g, ho, hs, H) is Pedersen commitments
public key. The parameters generated as follows.

Common reference string generation.First, we generate parameters for Paillier encryptionplahdq

be random primes for which it holds # q, |p| = |q] and gcdpq, (p — 1)(q — 1)) = 1; letn «— pq,

andg — (1 + n); set(n,g) as a Paillier public key, andp,q) as the X-trapdoor. Second, randomly
selectry < Z, and computeK «— (TK)”2 mod n?; setK as an E-key, andy as the E-trapdoor. Third,

53

Crs = <n7g; K7p7 917927(@1’ GQvGT7é7¢7u2uv2; Q7 Gvgv h23 h37H>

vk = (X = g3) vk = (X = g)
msg = (m), m € Z, sk = (z)
Ky & 75 m & 2
Cl — KKl (ILLl)HQ mod n3
tys & Zps W — gitulvg!
Ch,W
Ky & 77
Ka

K «— K; K5 mod n?;

6 « (mt mod p) + t2% + (st mod p)2%~
Ag, By & 7

Ep «+ K% Ag)" mod n?

a; < £[0,2%0 T] =123

19 — a —+ LLQQN —+ 04322H

Ey — K?(By)" mod n?

W~ g uPvup?

M2 z ZQ; Wy «— H(Eg, /W)

Cy «— g“2h}?

(to be continued ifFigure 27)

(K1,p1),(Ee,C2)

(Ex,C3),du

C, =" KK (,ul)“2 mod n?
dy & {0,1}

r <& Zyst.x+r#0modp
% E i[0’2>\0+>\s+lp};
Ay, By & 75,1 & 7,

Y — (Wol)s7, Z — YX
X — g5

E, « g%(A;)" mod n?

E, « g¥(B,)" mod n?

143 L Zg; w3 «— H(Y, LhZ,X,Ez)
C3 «— gw3h§3

Figure 26: Blind signature generation protocol (part 1).

54

(continued fronfigure 26

by < a1 + dy - (mt mod p)
by — ag +dy -t

by < a3 + dy - (st mod p)
Fy — Bg(Ag)dU mod n

ds & {0,1}*s

w3 — H(Y,Z,T,Z,)AQEI)

03 _7 gW3h§3

E, €' 75, 6, € £[0,2% 0 AsHbpH]
95" =" XX

gle (F,)" =7 Ez(Ex)dS mod n?
Yo =7 Z(Woly—r)ds

fh LZP;§<—Y% mod p
a<—ng§T;ﬁ<—s+%modp

Vi = §(X)7 gl Vo = XThtrglh
o (s,a,B,V1,Va)
verify(crs,vk,m,o) =" 1

(b1,b2,b3,Fp) (Eg, W ,pu2),ds

(00, F2) (Y 1, Z,

b'e

s 17M3>

Wy — H(Eg,/W); Cy =7 g¥2hh?
Eg €' 7, W €' Gy

b; €7 £[0, 220 FAutbH] G =12 3
gllnulizvllm _? /Wde

K « K; K5 mod n?

N« by + 622" + bg,22N

K"(Fy)" =" Ey(Eg)? mod n?

5:6 — X + dS + T,

F, « B,(A,)% mod n

output(m; o)

Figure 27: Blind signature generation protocol (part 2).

55

let (G1,G2) be bilinear groups as defined 8ection 2.2.5 Randomly selectys & Go, Tugs Tvg & L,
computeus «— go"%, vy «— gy2, and sely; «— ¥(ga), u1 < P(uz) andvy «— (vz). Set(p, g1, g2, G1, G,
Gr, &,1,ug,v2) as the public information, and,,, 7,,) as the trapdoor. Fourth, we generate parameters for
a Pedersen-likeHed9] commitment scheme over an elliptic curve group:@et= (g) be a cyclic elliptic
curve group of prime orde®; selectr,,, T, < Zg and computéh, «— g™2, hs «— g™s; selectH from
a collision-resistent hash family?’, i.e. H «— ., such that : {0,1}* — Zg; set(Q, g, hs, h3, G, H)
as public information, andy,,, ™, as the trapdoor. Finally, set's = {n,g;K;p, g1, 92, G1, G2, Gr, &,
P, uz,v2;Q, G, g, ha, hs, H}, and discard the corresponding trapdoQysa; 7k; Tus s Tvs; Thys Ths |-
Notice that the collision hash function can be avoided at slight cost of our communication/computation
efficiency.

Next we present the details of the protocol (please also refBigiare 26and Figure 27. Note that
dy < p,ds < p,i.e. \y < €p, A\s < £y, andx > Ao + Ay + £, + 3, £, > 3k. Herel,, (,, g denote the
lengths ofp, n, Q.

Key generation:
(@) On input (KeyGen, sid), party S verifies thatsid = (S, sid’) for somesid’. If not, it ignores the
input. Else, partyS sends outgoing messag@etCRS, sid) to Fcrs and receives:rs. Then based on

parametersp, g1, 92, G1, Ga, G, €,1, ug, v2), party S runs (vk, sk) < gen(crs); sk = (z), vk = (X)

wherez & Zyp, X = g5. Definesig def sign(crs, vk, sk,-,-) as Okamoto signing algorithm (refer to

Section 2.2.) and definever def verify(crs,vk,-,-) as the corresponding verification algorithm. Then

records(sig, ver) in history(S), and outputgVerificationAlg, sid, ver).

Signature generation:
(b) On input(Sign, sid, m, ver') wheresid = (S, sid"), partyU sends outgoing messafgetCRS, sid) to
Fcrs and receivesrs; then record$Sign, sid, m,ver’,U) in history(U); randomly selectdy; < Zy,
andy; < Z¢, and compute€’; — KX (11)" mod n?; randomly selects, s < Z,, and compute$l —
gt vit; records(Ky, 1, t, s) in history(U), then sends outgoing messdgeer, sid, C;, W) to S.
(c) On the incomingiser; message, part§ randomly selectd(, — Z:,, then sends outgoing message
(signery, sid, K) to partyU.
(d) On the incomingsigner; message, party operates as follows:

K «— K; K5 mod n?;

0 — (mt mod p) + t2% + (st mod p)22*; Ag, By < Z%; Eg — K?(Ag)" mod n?;

a; & 4]0, 20 vt g =1,2,310 — a1 +a2" + as22s;

Ey « KY(Bg)" mod n%, W « g'u{*v{?;

o & Zg; wa — H(Ey, W) Co — g¥>h}?;
Then partyl records(Ay, By, a1, az, as, u2), and sends outgoing messdgeers, sid, (K1, pu1), (Eg, Ca))
to partyS.
(e) On the incomingiser, message, party operates as follows:

C, =" KK (ul)”2 mod n3; dyy < {0, 1} v;

r & Z,stax+r#0modp; x & £[0,20F s+ A B S 7x 1 & 7,

Y — (Wol)#e; Z — YX;A)A(AHQQC; E, «— g"(A,)" mod n2; E, «— gX(B,)" mod n;

ps < Zq; ws — H(Y, 1,1, Z, X, E,); C3 — g“*ht?;
Then recordg(r, x, Az, Bz, 1) with PID U in history(S), and sends outgoing messa@e gner,, sid,
(E;,C3),dy) to partyU.
(f) On the incomingsigner, message, partyy operates as follows:

56

by «— a1 +dy - (mt mod p); by «— as+dy-t; b — as+ dy - (st mod p);

Fy « By(Ag)™ mod n; dg < {0,1}*s;
Then sends outgoing messa@eers, sid, (b1, b, b3, Fp), (Eg, W, u2),dg) to partyS.
(g) On the incomingisers message, party operates as follows:

Wy — H(Ee, W\) Cy =" g*2hh?; .

Eg € 755, W € Gy; by € £[0,200 v tbH1] 4y = 1,23, ghubeols =7 Wi,

K «— K1K5 mod n2; n — by + 622" + b322n; Kn(Fg)n =7 EQ(Eg)dU mod n2;
8y — X +ds -z, Fp «— B(A,)% mod n;

Then sends outgoing messdgeégners, sid, (05, Fy), (Y, 1,7, 2,)?, EB, us3)) to partyU, and output$Signature,
sid, U, completed) to Z; If one of the above checks fails, outpitsignature, sid, U, L) to Z.

(h) On the incomingsigner; message, party operates as follows:

w3 — H(Y,I,T,Z\,)?,Em); Cs =" g“sh}?;
By €7 L 6, € [0, 200 As T4 1] gfe =7 X xds; gda (F)0 =" E,(E,)% mod n2; Yo =" Z(Woly —")ds;
Foh & Ly YTE™dP XTgI™ s L mod p; Vi G(X)T gl Vi e X Fhtrgfrh

Now letso « (¢, a, 3, V1, V5), and ifver’(m, o) = 1, outputs(Signature, sid, m, o), and records f, h)

in history(U); else output§Signature, sid, 1) to Z.

Signature verification:
(i) On input (Verify, sid, m,o,ver’), party V outputs(Verified, sid, m,ver'(m, o)), and records the
current history imistory(V).

Corruption:
() On input(Corrupt, sid, J), party J outputs(Corrupted, sid, J, history(J)).

6.3 Efficiency

Choice of parameter lengths.Define the length of each parametem, Q is ¢, ¢,, £ respectively and
should be selected so that the following are satisfied: (i) The 2SDH assumption holds over the bilinear group
parameterp, g1, g2, G1, G2, G, &1, us2,v9), (i) The discrete-logarithm (DLOG) assumption holds over

the elliptic curve cyclic groug, (iii) The DCR assumption holds ové;,. Based on the present state

of the art with respect to the solvability of the above problems, a possible choice of the parameters is for
example/, = 171 bits, £, = 1024 bits, /o = 171 bits. Notice that we should avoid using elliptic curves that
have smalp + 1 divisors andp — 1 divisors apart fron2, which suffer from a recent attack on SDH-related
assumptions by Cheohe0§.

Communication efficiency.In this section, we count how many communication bits we need to generate a
UC blind signature. We count the six flows as:

flowl: 3¢, +¢,

flow2: 2¢,

flow3: 20, + n + 20, + Lo

flowd: 20, +{lg+ Au

flow5: 3(\g + v+ 4y + 1)+ 6y + 20, +0, +Llg + s

flow6: (Ao + As+ L€y + 1) + 4y + 50, + 20, + Lo
Based on the parametersy = A\y = A\g = 80bits, £, = 171bits, £, = 1024bits, (g = 171bits, xk =
341bits, and each element &, is with length of/,, we can compute the whole communication which is
about22.3 Kbits, i.e. less thag Kbytes.

57

Signature length. The length of signature = (¢, a, 8, V1, Va) is: €, +6 - £, + £y + £, + 6 - £, = 15(, =
2565bits, i.e. abouR.6 Kbits. Here using the families of curves iBILS04], we use groufs; where each
element isl 71bits and grouffzs where each elemefitx 171bits.

6.4 Security

Based orirheorem 5.2n the previous section and two corollari€grollary 6.1andCorollary 6.2 in this
section, we can obtain

Corollary 6.3. Under the DCR assumption, the DLOG assumption, and the 2SDH assumption, and assum-
ing existence of collision resistent hash function, the blind signature protaggkq) in Figure 26and
Figure 27securely realizesgsiq in the Fors-hybrid model.

Remark 6.4. The proof ofCorollary 6.3is very similar to the proof oTheorem 5.2The only difference is
that we instantiate the underlying equivocal lite blind signature and the ZK protocols with concrete protocols.
Here we calculate the distance introduced if we replaggc with the blind signature protocek; gsiq)
in Figure 26andFigure 27in the Fcrg-hybrid model.
Let ¢; be the number of the users which are corrupted initiajlybe the number of valid message-
signature pairs obtained from a corrupted sigrgrbe the number of the users which are not corrupted
initially. Recall that the proof o€orollary 6.3can follow the proof ofTheorem 5.&tep by step.

¢ In the first step in the proof, we just restate the whole execution in the CRS hybrid world. So there is
no distance introduced. Note that now CRS includes the CRS for the underlying equivocal lite blind
signature and the CRS for SVZK and SPZK protocols.

¢ In the second step in the proof, consider that we instanfig{gk with a concrete SVZK protocol in
the CRS model. When a user is corrupted initially, the simulator needs to extnatbich is used by
the corrupted user, and “patch” it intBgsi. Note that now we cannot patch suehperfectly. The
probability that the patcheah does not equal the: for the signature includes two parts:

— due to the underlying three move proof based on Pedersen commitments, wAibhis, +
Advermt + 2770 ; hereAdvq, is the DLOG advantage over the group which Pedersen commit-
ment based, anddv¢ is the advantage for collision-resistant hash functignand2-*v is
the soundness error.

— due to the fact that the UC commitment key, iféis an E-key anan cannot be extracted, which
is2 tn:
So for each user who is corrupted initially, the distanc&d8gi,s + Advernr + 2=t 4 2= Au,
Together in this step, the distance introduceg is(Advaiog + Adverns + 27 + 2720).

¢ In the third step we introduce the unforgeability distance:

— the underlying equivocal lite blind signature will introduce distaAde,.q, Which is the 2SDH
advantage over bilinear group&, G2); note that we instantiate the equivocal lite blind signa-
ture with the one irFigure 8whose lite-unforgability is based on the 2SDH assumption.

— still once the signing secret is revealed, the adversary of course can forge signatures; we instanti-
ate Fspzk With a concrete SPZK protocol which introduce distaAde ., +27*°; hereAdvge,
is the DCR advantage because we use Paillier encryption to encrypt the signing sec2et’and
is the zero-knowledge distance.

58

So together in this step, the distance introduceig,.q, + (¢1 + ¢3) - (Advge + 2720).

Similar to the second step, in the fourth step, consider we instaifiigtg with a concrete SPZK
protocol. When signer is corrupted at the some point, for every user request, the simulator needs to
extract the signing secretand patch it intaFgsic. Note that now such patching is not perfect. The
probability that the patcheddoes not equal the real one includes only one part: due to the three move
proof based on Pedersen commitments, Whicdkdi&iiog + Adverns + 27*s. Note that this is slightly
different from the second step where UC commitment is used; here only Paillier encryption which is
an extractable commitment is used, andan always be extracted. So this step introduces distance

qo - (Advdlog + Adverns + 2_>‘5).

In the last step, we need to equivocate users who are not corrupted initially. The equivocation includes
equivocating the underlying lite blind signature and reconstruct the internals for the SVZK protocol.
Consider that the underlying equivocal lite blind signature is unconditionally equivocal, which will
not introduce any distance. Note that under the DCR assumption, with the equivocal trapdoor, we
can construct the internal state for the SVZK protocol; this introduces distadhcg,. Note also that

once the SVZK protocol is not perfectly zero-knowledge, we will not equivocate the underlying lite
blind signature and the SVZK protocol perfectly; this introduces distaabg., + 3 - 27, where

Advg,: is the DCR advantage because we use the Badadurik encryption to encrypt, and3- 220

is the zero-knowledge distance.

So this step introduces distangg: (2 - Advge, + 3 - 2770).

So the whole distance is:
<Q1 . (Advdlog + Achrhf + 2_&1 + 2—)\[}))

+ (Advasan + (g1 + g3) - (Advger +271))
+ (g2 - (Advaiog + Adverne +2725)) + (g3 - (2 - Advaer + 3 - 2770))

which is Advasan + (g1 + 3¢3) - Advaer + (g1 + q2) - (AdVdiog + Adverns) + @1 - 275 +q1 - 27N + o -
2728 4 (qy + 4g3) - 277,

Acknowledgments

We would like to thank Jesper Nielsen for helpful discussions.

References

[Abe01] Masayuki Abe. A secure three-move blind signature scheme for polynomially many signatures.

In Birgit Pfitzmann, editorEUROCRYPT 20Q1lvolume 2045 ofLecture Notes in Computer
Sciencepages 136-151. Springer, 2001.

[ADRO2] Jee Hea An, Yevgeniy Dodis, and Tal Rabin. On the security of joint signature and encryption.

In Lars R. Knudsen, editoEUROCRYPT 20Q2/0lume 2332 ofLecture Notes in Computer
Sciencepages 83-107. Springer, 2002.

[ANNO6] Michel Abdalla, Chanathip Namprempre, and Gregory Neven. On the (im)possibility of blind

message authentication codes. In David Pointcheval, e@BiRSA 2006volume 3860 of
Lecture Notes in Computer Scienpages 262—-279. Springer, 2006.

59

[AO00]

[AOO01]

[BBS04]

[Bea96]

[BLS04]

[BNPSO03]

[Bol03]

[Can01]

[Can04]

[Can05]

[CDS94]

[Cha82]

[Che06]

[CKWO04]

Masayuki Abe and Tatsuaki Okamoto. Provably secure partially blind signatures. In Mihir
Bellare, editor, CRYPTO 2000volume 1880 ofLecture Notes in Computer Scienqeages
271-286. Springer, 2000.

Masayuki Abe and Miyako Ohkubo. Provably secure fair blind signatures with tight revocation.
In Colin Boyd, editorASIACRYPT 20Q¥olume 2248 otecture Notes in Computer Science
pages 583-602. Springer, 2001.

Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew K.
Franklin, editor, CRYPTO 2004volume 3152 ofLecture Notes in Computer Sciengeages
41-55. Springer, 2004.

Donald Beaver. Adaptive zero knowledge and computational equivocation (extended abstract).
In STOC 1996pages 629-638. ACM, 1996.

Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil palriGgyp-
tology, 17(4):297-319, 2004.

Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko. The one-
more-RSA-inversion problems and the security of Chaum’s blind signature sclie@wyptol-

ogy, 16(3):185-215, 2003. The preliminary version entitled as “The power of RSA inversion
oracles and the security of Chaum’s RSA-based blind signature scheme” appeared in Financial
Cryptography 2001, Springer-Verlag(LNCS 2339).

Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the
gap-Diffie-Hellman-group signature scheme. In Yvo Desmedt, edtdC 2003 volume 2567
of Lecture Notes in Computer Scienpages 31-46. Springer, 2003.

Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
FOCS 2001pages 136-145. IEEE Computer Society, 2001.

Ran Canetti. Universally composable signature, certification, and authenticaticfSHW
2004 pages 219-235. IEEE Computer Society, 2004. Full versidmttat//eprint.
iacr.org/2003/239/

Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In Cryptology ePrint Archive, Report 2000/06December 2005. Latest version [tp:
/leprint.iacr.org/2000/067/

Ronald Cramer, lvan Dandgd, and Berry Schoenmakers. Proofs of partial knowledge and
simplified design of withess hiding protocols. In Yvo Desmedt, ed@&YPTO 1994volume
839 ofLecture Notes in Computer Scienpages 174-187. Springer, 1994.

David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L. Rivest,
and Alan T. Sherman, editor€RYPTO 1982pages 199—-203. Plemum Press, 1982.

Jung Hee Cheon. Security analysis of the strong Diffie-Hellman problenEUROCRYPT
2006 volume 4004 ot.ecture Notes in Computer Scienpages 1-11. Springer, 2006.

Jan Camenisch, Maciej Koprowski, and Bogdan Warinschi. Efficient blind signatures without
random oracles. In Carlo Blundo and Stelvio Cimato, edit®SN 2004 volume 3352 of
Lecture Notes in Computer Scienpages 134-148. Springer, 2004.

60

http://eprint.iacr.org/2003/239/
http://eprint.iacr.org/2003/239/
http://eprint.iacr.org/2000/067/
http://eprint.iacr.org/2000/067/

[CLO4]

[CLOS02]

[Dam88]

[DamO00]

[DH76]

[DJO1]

[DNO2]

[Fis06]

[GMRS8]

[GOS06]

[HKKLO7]

[JLO97]

[Kim04]

Jan Camenisch and Anna Lysyanskaya. Signhature schemes and anonymous credentials from
bilinear maps. In Matthew K. Franklin, editdZRYPTO 2004volume 3152 ol ecture Notes
in Computer Scienggages 56—72. Springer, 2004,

Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-
party and multi-party secure computation. 3TOC 2002pages 494-503. ACM, 2002. Full
version athttp://www.cs.biu.ac.il/ ~lindell/PAPERS/uc-comp.ps

Ivan Damgrd. Payment systems and credential mechanisms with provable security against
abuse by individuals. In Shafi Goldwasser, edi@RYPTO 1988volume 403 olecture Notes
in Computer Scienggages 328—-335. Springer, 1988.

Ivan Damgard. Efficient concurrent zero-knowledge in the auxiliary string mode EWRO-
CRYPT 2000volume 1807 ofLecture Notes in Computer Sciengages 418—-430. Springer,
2000.

Whitfield Diffie and Martin E. Hellman. New directions in cryptographigEE Trans. Inform.
Theory pages 644—-654, 1976.

lvan Damgird and Mats Jurik. A generalisation, a simplification and some applications of
Paillier’s probabilistic public-key system. In Kwangjo Kim, editBlKC 2001 volume 1992 of
Lecture Notes in Computer Scienpages 119-136. Springer, 2001.

Ivan Damgard and Jesper Buus Nielsen. Perfect hiding and perfect binding universally com-
posable commitment schemes with constant expansion factor. In Moti Yung, €&R¥PTO
2002 volume 2442 ot ecture Notes in Computer Scienpages 581-596. Springer, 2002. Full
version athttp://www.brics.dk/RS/01/41/BRICS-RS-01-41.pdf

Marc Fischlin. Round-optimal composable blind signatures in the common reference string
model. INCRYPTO 2006volume 4117 olecture Notes in Computer Sciengages 60-77.
Springer-Verlag, 2006. Full version attp://www.minicrypt.cdc.informatik.
tu-darmstadt.de/publications/fischlin.blind-sigs.2006.pdf

Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message atta8k&M J. Comput.17(2):281-308, 1988.

Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for NP.
In Serge Vaudenay, editoEUROCRYPT 20Q6volume 4004 of_ecture Notes in Computer
Science pages 339-358. Springer, 2006. Full versiomi#://www.brics.dk/ ~jol
NIZKJournal3.pdf

Carmit Hazay, Jonathan Katz, Chiu-Yuen Koo, and Yehuda Lindell. Concurrently-secure
blind signatures without random oracles or setup assumptions. TAG 2007 2007.

To appear. Available ahttp://www.cs.biu.ac.il/ ~lindell/PAPERS/blind
sigs-TCCO7.ps

Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of blind digital signatures (extended
abstract). In Burton S. Kaliski Jr., editagRYPTO 1997volume 1294 of_ecture Notes in
Computer Scienggages 150-164. Springer, 1997.

Kwangjo Kim. Lessons from Internet voting during 2002 FIFA WorldCup Korea/Japan(TM).
In DIMACS Workshop on Electronic Voting — Theory and Pract&@o4.

61

http://www.cs.biu.ac.il/~lindell/PAPERS/uc-comp.ps
http://www.brics.dk/RS/01/41/BRICS-RS-01-41.pdf
http://www.minicrypt.cdc.informatik.tu-darmstadt.de/publications/fischlin.blind-sigs.2006.pdf
http://www.minicrypt.cdc.informatik.tu-darmstadt.de/publications/fischlin.blind-sigs.2006.pdf
http://www.brics.dk/~jg/NIZKJournal3.pdf
http://www.brics.dk/~jg/NIZKJournal3.pdf
http://www.cs.biu.ac.il/~lindell/PAPERS/blind_sigs-TCC07.ps
http://www.cs.biu.ac.il/~lindell/PAPERS/blind_sigs-TCC07.ps

[KZ06]

[KZ07]

[Lin03]

Aggelos Kiayias and Hong-Sheng Zhou. Concurrent blind signatures without random oracles.
In Roberto De Prisco and Moti Yung, edito&CN 2006volume 4116 of ecture Notes in Com-
puter Sciencgpages 49—-62. Springer, 20Q@tp://eprint.iacr.org/2005/435/

Aggelos Kiayias and Hong-Sheng Zhou. Trading static for adaptive security in universally
composable zero-knowledge. IBALP 2007 2007. To appear.

Yehuda Lindell. Bounded-concurrent secure two-party computation without setup assumptions.
In STOC 2003pages 683—692. ACM, 2003. Full versiorhétp://www.cs.biu.ac.il/
~lindell/lPAPERS/conc2party-upper.ps

[LRSW99] Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf. Pseudonym systems. In

[Nie03]

[Oka92]

[Oka06]

[0089]

[Paiog]

[Ped91]

[P0i98]

[PS96]

[PS97]

Howard M. Heys and Carlisle M. Adams, editoBglected Areas in Cryptography 1998lume
1758 ofLecture Notes in Computer Scienpages 184-199. Springer, 1999.

Jesper Buus Nielsen. On protocol security in the cryptographic mddisisertation Series
DS-03-8, BRICS2003. http://www.brics.dk/DS/03/8/BRICS-DS-03-8.pdf

Tatsuaki Okamoto. Provably secure and practical identification schemes and corresponding
signature schemes. In Ernest F. Brickell, edi@RYPTO 1992volume 740 ofLecture Notes
in Computer Scien¢ggages 31-53. Springer, 1992.

Tatsuaki Okamoto. Efficient blind and partially blind signatures without random oracles. In Shai
Halevi and Tal Rabin, editor§,CC 2006 volume 3876 of_ecture Notes in Computer Science
pages 80—99. Springer, 2006. An extended versibitt@at/eprint.iacr.org/2006/

102/ .

Tatsuaki Okamoto and Kazuo Ohta. Divertible zero knowledge interactive proofs and commu-
tative random self-reducibility. In Jean-Jacques Quisquater and Joos Vandewalle, &dlitors,
ROCRYPT 19890lume 434 of_ecture Notes in Computer Scienpages 134-148. Springer,
1989.

Pascal Palillier. Public-key cryptosystems based on composite degree residuosity classes. In
Jacques Stern, editUROCRYPT 199%olume 1592 ot ecture Notes in Computer Science
pages 223-238. Springer, 1999.

Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing.
In Joan Feigenbaum, edit@RYPTO 1991volume 576 of_ecture Notes in Computer Science
pages 129-140. Springer, 1991.

David Pointcheval. Strengthened security for blind signatures. In Kaisa Nyberg, Edite6)-
CRYPT 1998volume 1403 of_ecture Notes in Computer Sciengages 391-405. Springer,
1998.

David Pointcheval and Jacques Stern. Provably secure blind signature schemes. In Kwangjo
Kim and Tsutomu Matsumoto, editorASIACRYPT 1996volume 1163 ofLecture Notes in
Computer Scienggages 252—-265. Springer, 1996.

David Pointcheval and Jacques Stern. New blind signatures equivalent to factorization (ex-
tended abstract). I8CS 1997pages 92—-99. ACM, 1997.

62

http://eprint.iacr.org/2005/435/
http://www.cs.biu.ac.il/~lindell/PAPERS/conc2party-upper.ps
http://www.cs.biu.ac.il/~lindell/PAPERS/conc2party-upper.ps
http://www.brics.dk/DS/03/8/BRICS-DS-03-8.pdf
http://eprint.iacr.org/2006/102/
http://eprint.iacr.org/2006/102/

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind sig-
natures.J. Cryptology 13(3):361-396, 2000.

[Sho04] Victor Shoup. Sequences of games: A tool for taming complexity in security proofs. 2004.
http://shoup.net/papers/games.pdf

[Wat05] Brent Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer,
editor, EUROCRYPT 20Q5volume 3494 of_ecture Notes in Computer Sciengmages 114—
127. Springer, 2005.

63

http://shoup.net/papers/games.pdf

	Table of contents
	Introduction
	Our Results

	Preliminaries
	The Universal Composibility Framework
	Signatures
	Signature Scheme (SIG) and Signature Functionality FSIG
	Bilinear Groups
	Camenisch-Lysyanskaya Signature
	Waters Signature
	Okamoto Signature
	Blind Signature Schemes

	Encryptions
	Paillier Encryption
	Linear Encryption

	Commitments
	Non-Interactive Zero-Knowledge
	Sigma Protocols
	Other Primitives

	Equivocal Lite Blind Signatures
	Our Basic Building Block: Lite Blind Signatures
	Lite Blind Signature Constructions
	Generic Construction
	Construction based on Camenisch-Lysyanskaya Signature and Linear Encryption
	Construction based on Waters Signature
	Construction based on Okamoto Signature

	Equivocal Blind Signatures

	UC Blind Signatures Definition
	Design Methodology for Adaptively Secure UC Blind Signatures
	Generic Construction in the (FCRS,FSVZK,FSPZK)-Hybrid World
	Implementation Strategies for FSVZK and FSPZK

	Efficient UC Blind Signatures against Adaptive Adversaries
	Overview
	Detailed Description
	Efficiency
	Security

