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Abstract

We study the design of practical blind signatures in the universal composability (UC) setting against
adaptive adversaries. We introduce a new property for blind signature schemes that is fundamental for
managing adaptive adversaries: anequivocal blind signatureis a blind signature protocol where a sim-
ulator can construct the internal state of the client so that it matches a simulated transcript even after
a signature was released. We present a general construction methodology for building practical adap-
tively secure blind signatures: the starting point is a 2-move “lite blind signature”, a lightweight 2-party
signature protocol that we formalize and implement both generically as well as number theoretically:
formalizing a primitive as “lite” means that the adversary is required to show all private tapes of adver-
sarially controlled parties; this enables us to conveniently separate zero-knowledge (ZK) related security
requirements from the remaining security properties in the primitive’s design methodology. We then fo-
cus on the exact ZK requirements for building blind signatures. To this effect, we formalize two special
ZK ideal functionalities, single-verifier-ZK (SVZK) and single-prover-ZK (SPZK) and we investigate
the requirements for realizing them in a commit-and-prove fashion as building blocks for adaptively se-
cure UC blind signatures. SVZK can be realized without relying on a multi-session UC commitment; as
a result, we realize SVZK in a very efficient manner using number theoretic mixed commitments while
employing a constant size common reference string and without the need to satisfy non-malleability.
Regarding SPZK we find the rather surprising result that realizing it only for static adversaries is suf-
ficient to obtain adaptive security for UC blind signatures. This important observation simplifies blind
signature design substantially as one can realize SPZK very efficiently in a commit-and-prove fashion
using merely an extractable commitment.

We instantiate all the building blocks of our design methodology efficiently thus presenting the first
practical UC blind signature that is secure against adaptive adversaries in the common reference string
model. In particular, we present (1) a lite equivocal blind signature protocol that is based on elliptic
curves and the 2SDH assumption of Okamoto, (2) efficient implementations of SPZK, SVZK for the
required relations. Our construction also takes advantage of a round optimization method we discuss
and it results in a protocol that has an overall communication overhead of as little as 3Kbytes, employing
six communication moves and a constant length common reference string. We also present alternative
implementations for our equivocal lite blind signature thus demonstrating the generality of our approach.

Finally we count the exact cost of realizing blind signatures with our protocol design by presenting
the distance between theFBSIG-hybrid world and theFCRS-hybrid world as a function of environment
parameters. The distance calculation is facilitated by a basic lemma we prove about structuring UC
proofs that may be of independent interest.
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1 Introduction

A blind signature is a cryptographic primitive that was proposed by Chaum [Cha82]; it is a digital signature
scheme where the signing algorithm is substituted by a two-party protocol between a user (or client) and a
signer (or server). The signing protocol’s functionality is that the user can obtain a signature on a message
that she selects in a blind fashion, i.e., without the signer being able to extract some useful information about
the message from the protocol interaction. At the same time the existential unforgeability property of digital
signatures should hold, i.e., after the successful termination of a number ofn corrupted user instantiations,
an adversary should be incapable of generating signatures for(n+ 1) distinct messages.

A blind signature is a very useful privacy primitive that has many applications in the design of electronic-
cash schemes, the design of electronic voting schemes as well as in the design of anonymous credential
systems. Since the initial introduction of the primitive, a number of constructions have been proposed
[Dam88, OO89, Oka92, PS96, JLO97, PS97, Poi98, PS00, AO00, Abe01, AO01, BNPS03, Bol03, CKW04,
KZ06, Oka06] based on different intractability assumptions and security models with various communica-
tion and time complexities. The first formal treatment of the primitive in a stand-alone model and assuming
random oracles (RO) was given by Pointcheval and Stern in [PS96].

Blind signatures is in fact one of the few complex cryptographic primitives (beyond digital signatures
and public-key encryption) that has been implemented in real-world Internet settings (e.g., in the Votopia
[Kim04] voting system) and thus the investigation of more realistic attack models for blind signatures is of
pressing importance. Juels, Luby and Ostrovsky [JLO97] presented a formal treatment of blind signatures
that included the possibility for an adversary to launch attacks that use arbitrary concurrent interleaving of
either user or signer protocols. Still, the design of schemes that satisfied such stronger modelling proved
somewhat elusive. In fact, Lindell [Lin03] showed that unbounded concurrent security for blind signatures
is impossible under a simulation-based security definition without any setup assumption; more recently in
[HKKL07], the generic feasibility of blind signatures without setup assumptions was shown but using a
game-based security formulation.

With respect to practical provably secure schemes (which is the focus of the present work), assum-
ing random oracles or some setup assumption, various efficient constructions were proposed: for example,
[BNPS03, Bol03] presented efficient two-move constructions in the RO model, while [KZ06, Oka06] pre-
sented efficient constant-round constructions without random oracles employing a common reference string
(CRS) model (i.e., when a trusted setup function initializes all parties’ inputs) that withstand concurrent
attacks. While achieving security under concurrent attacks is an important property for the design of use-
ful blind signatures, a blind signature scheme may still be insecure for a certain deployment. Game-based
security definitions [PS96, JLO97, CKW04, KZ06, Oka06, HKKL07] capture properties that are intuitively
desirable. But the successive extensions of definitions in the literature and the differences between the vari-
ous models in fact exemplify the following: on the one hand capturing all desirable properties of a complex
cryptographic primitive such as a blind signature is a difficult task, while on the other, even if such prop-
erties are attained, a “provably secure” blind signature may still be insecure if deployed within a larger
system. For this reason, it is important to consider the realization of practical blind signatures under a gen-
eral simulation-based security formulation such as the one provided in the Universal Composability (UC)
framework of Canetti [Can01] that enables us to formulate cryptographic primitives so that they remain
secure under arbitrary deployments and interleavings of protocol instantiations.

In the UC setting, against static adversaries, it was shown how to construct blind signatures in the CRS
model [Fis06] with two moves of interaction. Moreover, one can construct blind signatures in the CRS model
secure against adaptive adversaries using the [CLOS02] secure two party computation compiler. None of
these protocols are practical and it is currently unknown whether it is possible to build practical UC blind
signature protocols using either methodology.
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While generic feasibility results are important in understanding the requirements of a cryptographic
primitive, it is equally important to study the exact requirements of building simulation-based provably
secure blind signatures that are practical.

1.1 Our Results

In this work we study the design of practical blind signatures in the UC framework against adaptive ad-
versaries. We emphasize that by “practical” we mean the following: (i) protocol design with a constant
number of rounds, (ii) a choice of session scope that is consistent with how a blind signature would be im-
plemented in practice, in particular a multitude of clients should be supported within a single session, (iii)
a trusted setup string that is of constant length in the number of parties within a session, (iv) making exact
measurements for communication, time complexity as well as tightness of security reductions, (v) avoiding,
if possible, cryptographic primitives that are “per-bit”, such as bit-commitment, where one has to spend a
communication length ofΩ(l) wherel is a security parameter per bit of private input.

We present the following results:

Equivocal blind signatures. We introduce a new property for blind signatures, called equivocality that is
fundamental for proving security against adaptive adversaries. An equivocal blind signature allows a simu-
lator to construct the internal state of a client including all random tapes so that a simulated communication
transcript can open to any given message; this capability should hold trueevenafter a signature correspond-
ing to the simulated transcript has been released from the protocol. Equivocality strictly strengthens the
notion of blindness as typically defined in game-based security formulations of blind signatures.

New methodology for building UC blind signatures. We present a general methodology for designing
practical UC blind signatures. Our starting point is the new notion of alite blind signature: this is a “light
weight” blind signature protocol that we put forth that has a simple game-based security modelling and is
intended to be relatively easy to instantiate. The idea behind lite blind signatures is that security properties
should hold under the condition that the adversary “deposits” the private tapes of the parties he controls. This
“open-all-private-tapes” approach simplifies the blind signature definitions substantially and allows one to
separate security properties that relate to zero-knowledge compared to other necessary properties for blind
signatures. Note that this is not an honest-but-curious type of adversarial formulation as the adversary is not
required to be honestly simulating corrupted parties; in particular, the adversary may deviate from honest
protocol specifications as long as he can present private tapes that match his communication transcripts.

We present four instantiations of a lite blind signature, one that is based on generic cryptographic prim-
itives and three that are number theoretic: (1) based on the LRSW assumption [LRSW99] and the DLDH
assumption [BBS04], (2) the CDH assumption [DH76] and (3) the 2SDH assumption [Oka06]. We then
extend lite blind signatures with the equivocality definition and we prove the conditions under which the lite
blind signature protocols we presented above are equivocal (with the exception of the DLDH scheme).

Using an equivocal lite blind-signature as a fundamental building block, we illustrate a general protocol
design strategy that allows one to produce a blind-signature secure against adaptive adversaries in the UC
setting when coupled with an appropriate pair of ZK-functionalities. The formulation of the appropriate ZK-
functionalities that are required for building blind signatures is an important part of our design approach. In
particular these functionalities turn out to be simplifications of the standard multi-session ZK functionality
FMZK that restrict the multi-sessions to occur either from many provers to a single verifier (we call this
FSVZK) or from a single prover to many verifiers (we call thisFSPZK). Note that we adopt the assumption
that in each blind signature session there is a single signer and a multitude of users and verifiers (this is
consistent with the notion that a blind-signature signer is a server within a larger system and is expected
that the number of such servers would be very small compared to a much larger population of users and
verifiers).
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Study of the exact ZK requirements for UC blind signatures.We study the exact requirements for adap-
tive security of UC blind signatures in terms of realizing the two necessary ZK functionalities. Our findings
enable much more practical instantiations of these functionalities compared to realizing them “generically”
based on existing UC-ZK formulations. First, we show thatFSVZK can be realized in a commit-and-prove
fashion using a commitment scheme that does not require non-malleability (while such property is essential
for general UC commitments). We proceed to realizeFSVZK using mixed commitments [DN02, Nie03]
with only a constant length common reference string (as opposed to linear in the number of parties). Sec-
ond, rather surprisingly, we find that the functionalityFSPZK that will be employed by the signer need
only be realized against static adversaries for our blind signature scheme to satisfy adaptive security! This
enables a much more efficient realization design forFSPZK as we can implement it using merely an ex-
tractable commitment and a Sigma protocol. The intuition behind this result is that in a blind signature the
signer is not interested in hiding his input in the same way that the user is: this can be seen by the fact
that the verification-key itself leaks a lot of information about the signing-key to the adversary/environment,
thus, using a full-fledged zero-knowledge instantiation is an overkill from the signer’s point of view; this
phenomenon was studied in the context of zero-knowledge in [KZ07].

Practical implementation and calculating the cost of UC security.Based on our methodology and the
ZK investigation above we present the firstpracticalblind signature protocol that is universally composable
and secure against adaptive adversaries. In particular, our construction is based on the 2SDH assumption
and builds upon the lite blind signature derived from [Oka06]. We first prove that this protocol is equivocal
unconditionally. Then, using our general methodology for building adaptively secure UC blind signatures
we pair this lite blind signature with two efficient instantiations forFSVZK andFSPZK realized as described
above. Our final protocol employs a CRS that is of constant length, it needs 6 moves of interaction and has a
total communication overhead of only 3 KBytes. Our protocol also utilizes a round reduction technique that
we introduce that enables us to save two communication moves. We then investigate the concrete security of
our blind signature protocol and we show that if one substitutes an instance of an idealFBSIG box with our
protocol instantiation, this will incur at mostAdv2sdh+(q1+3q3) ·Advdcr+(q1+q2) ·(Advdlog+Advcrhf)+
q1 ·2−`n +q1 ·2−λU +q2 ·2−λS +(q1 +4q3) ·2−λ0 computational advantage, whereq1, q2, q3 are parameters
specified in the adversarial environment such that:q1 is the number of the users which are corrupted initially,
q2 is the number of valid message-signature pairs obtained from a corrupted signer, andq3 is the number of
the users not corrupted initially. Note that theAdv functions correspond to the computational advantage that
the adversary has in breaking the subcomponents of our construction and are defined inSection 2.

Proof strategy. This distance calculation between theFBSIG-hybrid world and theFCRS-hybrid world is
based on a specific structuring of the UC security proof that relies on a stepwise refinement of an initial
dummy functionality that is gradually made to resembleFBSIG. We present this as a general proof strategy
for UC security proofs and we show a general lemma that helps structure such proofs and count their distance
in a systematic way (refer toLemma 5.1); we note that while this has no bearing on the security of the
construction, we feel it makes a UC proof easier to understand as the final simulator would be comprised of
different “simulator layers” that correspond to the stepwise refinements of the initial dummy functionality
toFBSIG.

Notations: a r← RND denotes randomly selectinga in its domain;negl() denotes negligible function;poly()
denotes polynomial function.
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2 Preliminaries

2.1 The Universal Composibility Framework

Defining the security in the universal composibility framework includes the following steps: we first specify
an ideal functionality, which describes the desired behavior of the protocol by using a trusted party; then we
prove that a particular protocol operating in the real world securely realizes this ideal functionality. Below,
we give a brief description of the framework. See [Can05] for more details.
Authenticated communication.We assume an asynchronous, authenticated, public network, without guar-
anteed delivery of messages. More precisely, the adversary is allowed to delay a message indefinitely, and
to change the contents of the message, as long as the sender is corrupted at the time of delivery (even if the
sender was uncorrupted at the time of transmission).
Corruptions strategy.There are two corruption strategies, static corruption and adaptive corruption. In the
static case, the adversary corrupts parties only at the onset of the computation; in the adaptive case, the
adversary chooses which parties to corrupt as the computation evolves. Once the adversary corrupts a party,
it learns all its internal information, including the private input, the communication history, and the random
bits used. Once they are corrupted, the behavior of the parties is arbitrary.
The real-world model.The real-world model is defined as a system of interactive Turing machines (ITMs)
including the execution of a protocolπ, an adversaryA, and an environmentZ with input z, where the
adversary represents all adversarial activities against the protocol execution, and the environment represents
all other protocols instances and adversaries. The environmentZ is activated first, then the adversaryA is
invoked byZ. The parties in an instance of protocolπ can be invoked byZ with an input message, or by
A with an incoming communication message. Once the adversary is activated, it may deliver a message to
some party by writing this message to the party’s incoming communication tape, or corrupt a party if the
environment allows it, or report some information toZ. Once a party is activated, it follows its code and
possibly writes outputs on the subroutine output tape ofZ, or writes outgoing messages on the incoming
communication tape ofA, or invokes other ITM instances as subroutines by providing inputs to them and
receiving outputs from them. Finally, the environment will output one bit and halt. Let EXECπ,A,Z denote
the ensemble of random variables describingZ ’s output when interacting with adversaryA and parties
running protocolπ, on a security parameterλ, assuming uniformly-chosen random tapes for all entities.
The ideal-world model.Security of protocols is defined via comparing the real-world execution to an ideal-
world process. We introduce an ideal functionalityF into the ideal-world process to capture the desired
functionality of the given task. The ideal-world process involves an ideal functionalityF , an ideal-world
adversary (also known as the simulator)S, an environmentZ with input z, and a set of dummy parties.
The ideal functionality can be seen as a “joint subroutine” of the dummy parties. As in the real model, the
environmentZ is always activated first, and then activates either the adversaryS or some dummy party by
writing an input. If the simulatorS is activated, then it activates the ideal functionalityF by delivering a
message, or reports some information toZ. When a dummy party is activated by an input message fromZ,
it forwards the input message toF . Based on its program and the inputs,F generates its outputs. Corruption
of parties is captured as a request from the simulatorS to the functionalityF . Let EXECFπd,S,Z denote the
ensemble of random variables describingZ ’s output after interacting withS andF , on a security parameter
λ, and assuming uniformly-chosen random tapes for all entities.
Securely realizing an ideal functionality.In the UC framework, a protocolπ securely realizes an ideal
functionality F if for any real-world adversaryA there exists an ideal-world simulatorS such that no
environmentZ, on any input, can tell with non-negligible probability whether it is interacting withA and
parties runningπ in the real world, or withS, F and dummy parties in the ideal world. More precisely, the
two distribution ensembles are indistinguishable, i.e. EXECF

πd,S,Z ≈ EXECπ,A,Z .
Security with respect to the dummy adversary.Instead of quantifying over all possible adversariesA, Canetti
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[Can05] shows that it suffices to require the simulatorS to simulate a very simple adversary, called “dummy
adversary”, for anyZ. Here dummy adversary just delivers the messages between the environmentZ and
the parties. NowZ fully controls over the communication. We will ignoreA and let EXECπ,Z denote the
ensemble of random variables describingZ ’s output whenA is dummy.

The hybrid model.The hybrid model with a functionalityF is similar to the real-world model, with the
addition that the parties may invoke an unbounded number ofF subroutines. Each copy ofF is identified
via a unique session identifier (SID). Let EXECFπ,A,Z denote the ensemble of random variables describing
the output ofZ, after interacting withA and parties running protocolπ in theF-hybrid model. Assume now
that protocol% securely realizesF . The composed protocolπ% is constructed by replacing the first input to
F in π by an invocation of a new copy of%, with fresh random tapes, the same SID, and with the contents
of that message as input; each subsequent message to that copy ofF is replaced with an activation of the
corresponding copy of%, with the contents of that message as new input to%.
The composition theorem.In its general form, the composition theorem basically says that if% securely
realizesF in the G-hybrid model for some functionalityG, then an execution of the composed protocol
π%, running in theG-hybrid model, “emulates” an execution of protocolπ in theF-hybrid model. That
is, for any adversaryA in theG-hybrid model there exists an adversaryS in theF-hybrid model such that
no environmentZ can tell with non-negligible probability whether it is interacting withA andπ% in the
G-hybrid model or it is interacting withS andπ in theF-hybrid model, i.e. EXECGπ%,A,Z ≈ EXECFπ,S,Z .

2.2 Signatures

2.2.1 Signature SchemeΣ(SIG) and Signature FunctionalityFSIG

Goldwasser et al. [GMR88] first introduced the security notion of existential forgeability against chosen
message attacks (EU-CMA), for digital signatures.

Definition 2.1 (EU-CMA Signature Schemes).A signature schemeΣ(SIG) = 〈gen, sign, verify〉 is
called EU-CMA if the following properties hold for any negligible functionnegl(·), and all large enough
values of the security parameterλ,
Completeness:For any messagem ∈M,

Pr[(vk, sk)← gen(1λ); rnd r← RND;σ ← sign(vk, sk,m, rnd); 0← verify(vk,m, σ)] ≤ negl(λ).

Consistency:For anym ∈ M, the probability thatgen(1λ) generates〈vk, sk〉 and verify(vk,m, σ)
generates two different outputs in two independent invocations is smaller thannegl(λ).
Unforgeability: For any PPT forgerF ,

Pr[(vk, sk)← gen(1λ); (m,σ)← F sign(vk,sk,·,·)(vk);
1← verify(vk,m, σ) andF never askedsign(vk, sk, ·, ·) to signm] ≤ negl(λ).

Canetti[Can05] defines the signature functionalityFSIG in Figure 1and proves the theorem below, where
signature protocolπΣ(SIG) presented inFigure 2is transformed fromΣ(SIG).

Theorem 2.2. Σ(SIG) is EU-CMA⇔ πΣ(SIG) securely realizesFSIG.

2.2.2 Bilinear Groups

Let G1,G2 be two groups of prime orderp so that (i)G1 = 〈g1〉 andG2 = 〈g2〉; (ii) ψ : G2 → G1 is an
isomorphism withψ(g2) = g1 and (iii) ê : G1 ×G2 → GT is a bilinear map. We remark that in some cases
it can be thatG1 = G2 (and in this caseψ2 would be the identity mapping). LetG1 = 〈g1〉, G2 = 〈g2〉
groups as above with|G1| = |G2| = p; a bilinear map is a map̂e s.t. for all(u, v) ∈ G1 ×G2 it holds that
ê(ax, by) = ê(a, b)xy andê(g1, g2) 6= 1.
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Functionality FSIG

Key generation: Upon receiving(KeyGen, sid) from partyS, verify thatsid = (S, sid ′) for somesid ′. If not,
then ignore the input. Else, forward(KeyGen, sid) to the adversaryS.

Upon receiving(Algorithms, sid , sig, ver) from the adversaryS, record〈sig, ver〉 in history(S) and
output(VerificationAlg, sid , ver) to partyS, wheresig is a signing algorithm, andver is a verification
algorithm.

Signature generation: Upon receiving (Sign, sid ,m) from party S where sid = (S, sid ′), let σ =
sig(m, rnd) where some random coinsrnd may be used, and verify thatver(m,σ) = 1. If so,
then output(Signature, sid ,m, σ) to partyS, and record〈m,σ, rnd〉 into history(S). Else, output
(Signature, sid , error) to partyS and halt.

Signature verification: Upon receiving(Verify, sid ,m, σ, ver′) from party V , wheresid = (S, sid ′), do:
if ver′ = ver, the signerS is not corrupted,ver(m,σ) = 1, andm is not recorded, then output
(Verified, sid , error) to partyV and halt. Else, output(Verified, sid ,m, ver′(m,σ)) to partyV .

Corruption: Upon receiving(Corrupt, sid , J) from the adversaryS, return(Corrupted, sid , history(J)) to
S.

Figure 1: Signature functionalityFSIG.

2.2.3 Camenisch-Lysyanskaya Signature

Camenisch and Lysyanskaya [CL04] proposed a digital signature scheme which is EU-CMA secure under
the LRSW assumption. The LRSW was first introduced by Lysyanskaya et al. [LRSW99].

Definition 2.3 (LRSW Assumption). Given the bilinear group parameters(p, g,G1,GT , ê). LetX,Y ∈
G1, X ← gx, Y ← gy and defineOX,Y () to be an oracle that, on input a valuem ∈ Zp, it outputs a triple
〈a, b, c〉 such thatb = ay, andc = ax+mxy wherea

r← G1. Then, for all PPT adversariesA,

AdvAlrsw
def= Pr

[
x, y ∈ Zp;X = gx;Y = gy; (m, a, b, c)← AOX,Y ()(X,Y ) :

m 6∈ Q ∧m ∈ Zp ∧m 6= 0 ∧ a ∈ G1 ∧ b = ay ∧ c = ax+mxy

]
≤ negl(λ),

whereQ is the set of queries thatA made toOX,Y ().

Next we introduce Camenisch-Lysyanskaya signature.

Key generation:generate the bilinear group parameter(p,G1,GT , g, ê); then choosex, y
r← Zp, and com-

puteX = gx andY = gy; set signing key assk = 〈x, y〉 and verification key asvk = 〈p,G1,GT , g, ê;X,Y 〉.
Signature generation:on input messagem, signing keysk = 〈x, y〉, and verification keyvk = 〈p,G,GT , g,
ê; X,Y 〉, choose a randoma ∈ G1, and output the signatureσ = 〈a, ay, ax+mxy〉.
Signature verification:on input verification keyvk = 〈p,G1,GT , g, ê;X,Y 〉, messagem, and signature
σ = 〈a, b, c〉, check whether the verification equationsê(a, Y ) = ê(g, b) andê(X, a) · ê(X, b)m = ê(g, c)
hold.

2.2.4 Waters Signature

Waters proposed a signature scheme [Wat05] which is EU-CMA secure under the CDH assumption over
groupG1.
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Protocol πΣ(SIG)

Key generation: When partyS is invoked with (KeyGen, sid) by Z, it verifies thatsid = (S, sid ′) for
somesid ′; If not, it ignores the input; Otherwise, it runs(vk, sk) ← gen(1λ), lets the signing al-
gorithm sig = sign(vk, sk, ·, ·) and the verification algorithmver = verify(vk, ·, ·), and outputs
(VerificationAlg, sid , ver) toZ.

Signature generation: When partyS is invoked with(Sign, sid ,m) by Z wheresid = (S, sid ′), it setsσ ←
sig(m, rnd) where some random coinsrnd may be used, and outputs(Signature, sid ,m, σ) toZ.

Signature verification: When partyV is invoked with(Verify, sid ,m, σ, ver′) byZ wheresid = (S, sid ′), it
outputs(Verified, sid ,m, ver′(m,σ)) toZ.

Corruption: When partyJ is invoked with(Corrupt, sid , J) byZ, it returns(Corrupted, sid , history(J)) to
Z.

Figure 2: Signature protocolπΣ(SIG).

Definition 2.4 (Computational Diffie-Hellman (CDH) Assumption). Let G1 be a cyclic group of prime
orderp. The CDH problem defined as follows: giveng, ga, gb ∈ G1, outputgab ∈ G1. The CDH assumption
suggests that any PPT algorithmA solving the CDH problem has negligible probability, i.e.

AdvAcdh = Pr
[
g ∈ G1; a, b ∈ Zp : A(g, ga, gb) = gab

]
≤ negl(λ).

Next, we introduce Waters signature.

Key generation:Randomly selectα
r← Zp, and select generatorsg, g2, v, u1, . . . , un ∈ G1 and setg1 ← gα.

Set verification keyvk = 〈g, g1, g2, v, u1, . . . , un〉 and secret keysk = 〈gα
2 〉.

Signature generation:Letm be then-bit message to be signed,mj is thejth bit of m. SignerS randomly
selectsr

r← Zp and computeσ1 ← gα
2 (v

∏n
j=1 u

mj

j )r andσ2 ← gr. The signature form is σ ← 〈σ1, σ2〉.
Signature verification:Given public keyvk = 〈g, g1, g2, v, u1, . . . , un〉, messagem, and signatureσ =
〈σ1, σ2〉, check that̂e(σ1, g)/ê(σ2, v

∏n
j=1 u

mj

j ) = ê(g1, g2). If they hold, then the verification is valid;
otherwise invalid.

2.2.5 Okamoto Signature

In our construction, we will use the signature recently proposed in section 5 in [Oka06], which is based on
bilinear groups, and is EU-CMA secure underq-2SDH assumption.

Definition 2.5 (2-Variable Strong Diffie-Hellman (2SDH) Assumption).Let (G1,G2) be bilinear groups
defined as above. Theq-2SDH problem in(G1,G2) is defined as follows: given a(3q+4)-tuple〈g1, g2, w2 ←

gx
2 , u2 ← gy

2 , g
y+b1
x+a1
2 , . . . , g

y+bq
x+aq

2 , a1, . . . , aq, b1, . . . , bq〉 as input, output〈ς ← g
y+d
fx+c

1 , α ← gfx+r
2 , d, V1, V2〉

wherea1, . . . , aq, b1, . . . , bq, d, f, r ∈ Zp;w1 ← ψ(w2), ς, V1 ∈ G1; α, V2 ∈ G2; andê(ς, α) = ê(g1, u2g
d
2),

ê(V1, α) = ê(w1, w2) · ê(g1, V2), d 6∈ {b1, . . . , bq}. Theq-2SDH assumption suggests that any PPT algo-
rithmA solving theq-2SDH problem has negligible success probability, i.e.
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AdvA2sdh
def=

∣∣∣∣∣∣∣∣∣
x, y ∈ Zp; g2 ∈ G2; g1 ← ψ(g2);w2 ← gx

2 ;u2 ← gy
2 ;

a1, . . . , aq, b1, . . . , bq ∈ Zp; c1 ← g
y+b1
x+a1
2 , . . . , cq ← g

y+bq
x+aq

2 ;
(ς, α, d, V1, V2)← A(g1, g2, w2, u2, a1, . . . , aq, b1, . . . , bq, c1, . . . , cq) :

ê(ς, α) = ê(g1, u2g
d
2) ∧ ê(V1, α) = ê(w1, w2) · ê(g1, V2) ∧ d 6∈ {b1, . . . , bq}

∣∣∣∣∣∣∣∣∣ ≤ negl(λ).

Next we briefly introduce Okamoto signature.

Key generation:Randomly selectg2, u2, v2
r← G2 and setg1 ← ψ(g2), u1 ← ψ(u2) andv1 ← ψ(v2).

Randomly selectx
r← Zp and computeX ← gx

2 ∈ G2. Setvk = 〈g1, g2, u2, v2, X〉 and secret key
sk = 〈x〉.
Signature generation:Letm ∈ Zp be the message to be signed. SignerS randomly selectsr ands from Zp

s.t. x + r 6≡ 0 mod p; and computeς ← (gm
1 u1v

s
1)

1
fx+r , α ← gfx+r

2 , V1 ← ψ(X)
1
f gh

1 , V2 ← X
fh+ r

f grh
2 ,

wheref, r, s, h
r← Zp. The signature form is σ = 〈ς, α, s, V1, V2〉.

Signature verification:Given verification keyvk = 〈g1, g2, u2, v2, X〉, messagem, and signatureσ =
〈ς, α, s, V1, V2〉, check thatm, s ∈ Zp, ς, V1 ∈ G1, α, V2 ∈ G2, ς 6= 1, α 6= 1 andê(ς, α) = ê(g1, gm

2 u2v
s
2),

ê(V1, α) = ê(ψ(X), X) · ê(g1, V2). If they hold, then the verification is valid; otherwise invalid.

2.2.6 Blind Signature Schemes

Definition 2.6 (Blind Signature Scheme).A blind digital signature schemeΣ(BSIG) is a five-tuple, con-
sisting of two interactive Turing machinesS,U , whereS denotes the signer, andU the user, and three
algorithmsCRSgen, gen, verify as follows:

- CRSgen(1λ) is a probabilistic polynomial time CRS generation algorithm which takes as an input a
security parameterλ and outputs a pair〈crs, τ〉 of CRS and its trapdoor.

- gen(crs) is a probabilistic polynomial time key generation algorithm which takes as an inputcrs and
outputs a pair(vk, sk) of public and secret keys.

- S andU are a pair of probabilistic interactive Turing machines with the following tapes: a read-only
public input tape, a read-only secret input tape, a write-only public output tape, a write-only secret
output tape, a read/write secret work tape, a read-only secret random tape, and incoming/outgoing
communication tapes. They are both givencrs, vk on their public input tapes. AdditionallyS is given
sk on his secret input tape andU is given messagem on his secret input tape, where the length of
all inputs must be polynomial in the security parameterλ. BothU andS engage in the interactive
protocol of some polynomial number of rounds. At the end of this protocolS outputs eithercompleted
or⊥ andU outputs either(m,σ) or⊥.

- verify(crs, vk,m, σ) is a deterministic polynomial time algorithm, which outputs1 or 0. For any
messagem, and for all(crs, τ)← CRSgen(1λ) and(vk, sk)← gen(crs), if bothS andU follow the
protocol then ifS outputscompleted and the output of the user is(m,σ) thenverify(crs, vk,m, σ) =
1.

Note that in the plain model,CRSgen is not employed, and now the blind signature schemeΣ(BSIG)
consists of〈gen, S, U, verify〉.

When partyS and partyU are same, i.e.S = U , a blind signature schemeΣ(BSIG) will collapse to a
plain signature schemeΣ(SIG) = 〈gen, sign, verify〉. Heregen andverify are same as that defined in
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Σ(BSIG), andsign is the signature generation algorithm which can be used to generate signatureσ for m:
σ ← sign(vk, sk,m, rnd) wherernd r← RND (such algorithm is immediately from the collapse ofS,U
into a single unit).

A secure blind signature scheme has the following two properties:

Unforgeability. A one-more forgery adversary against the blind signature is a PPT machineA which is
givencrs andvk wherecrs ← CRSgen(1λ) and(vk, sk)← gen(crs), engages inL = poly(λ) interactions
with the signer in concurrent and interleaving fashion, and terminates by returning`message-signature pairs
(m1, σ1), ..., (m`, σ`) wheremi 6= mj , 1 ≤ i 6= j ≤ `. We define the advantage ofA by AdvA,L

unforge(λ) =
Pr[(verify(crs, vk,mi, σi) = 1, 1 ≤ i ≤ `) ∧ (` > L)] and we say that the blind signature scheme is
unforgeable if for all PPTA and for all polynomialL, AdvA,L

unforge(λ) ≤ negl(λ).
Blindness. A blindness distinguisher adversary against the blind signature is a PPT machineA which is
given crs wherecrs ← CRSgen(1λ), outputs two messages and the verification key〈m0,m1, vk〉, en-
gages in two honest user instantiations in concurrent and interleaving fashion with inputs〈crs, vk,mb〉 and
〈crs, vk,m1−b〉, respectively, where bitb is hidden; next if both user instantiations terminate successfully
and output two valid signatures〈σ0, σ1〉, thenA is supplied with〈σ0, σ1〉, elseA is supplied with〈⊥,⊥〉;
finallyA terminates by returning a bitb∗. We define the advantage ofA by AdvAblind(λ) = |Pr[b∗ = b]− 1

2 |,
and say that the blind signature scheme satisfies the blindness property if for all PPTA, AdvAblind(λ) ≤
negl(λ).

Remark 2.7. We will revisit the security model later on in this paper. We only mention the above notions
to illustrate the current understanding of the properties of blind signature in a game-based modeling. The
definition here is following the definitions in [Oka06] and [HKKL07]. In [JLO97], the unforegeability defi-
nition is stronger than the definition above: the adversary is required to supply different message-signature
pairs, i.e. (m1, σ1), ..., (m`, σ`) where(mi, σi) 6= (mj , σj), 1 ≤ i 6= j ≤ `; and the blindness definition
is weaker than the definition here: the adversarial signer is not allowed to generate the verification keyvk,
and the key-pair(vk, sk) is generated honestly, i.e.(vk, sk) ← gen(crs). In [Fis06], the blindness defini-
tion is same as here, and the unforgeability definition is the stronger version as in [JLO97]. In [KZ06], the
unforgeability is same as here, and the blindness definition is the weaker version as in [JLO97].

2.3 Encryptions

2.3.1 Paillier Encryption

Here we give a brief description of Paillier encryption [Pai99]. Paillier encryption has been proven seman-
tically secure if and only if the Decisional Composite Residuosity (DCR) assumption is true.

Key generation:let p andq be random primes for whichp, q > 2, p 6= q, |p| = |q| and gcd(pq, (p− 1)(q−
1)) = 1; let n = pq, d = lcm(p− 1, q− 1), K = d−1 mod n, andg = (1+ n); the public key ispk = 〈n, g〉
while the secret key issk = 〈p, q〉.
Encryption: the plaintext set isZn; given a plaintextm, choose a randomζ ∈ Z∗

n, and let the ciphertext be
c = gmζn mod n2.

Decryption:given a ciphertextc, observe thatcdK = gm·dK ·ζn·dK = gm·ζK mod n ·ζn·dK mod nd = gm mod n ·
ζ0 mod nd = gm = 1 +mn mod n2. Thus, it is possible to recoverm = (cdK mod n2)−1

n mod n.

Definition 2.8 (Decisional Composite Residuosity Assumption).There is no PPT distinguisherA for n-th
residues modulon2, i.e.

AdvAdcr
def=

∣∣ Pr[y ∈ Z∗
n2 ; z ← yn mod n2 : A(z) = 1]− Pr[z ∈ Z∗

n2 : A(z) = 1]
∣∣ ≤ negl(λ).
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Damg̊ard and Jurik [DJ01] generalize Paillier encryption from modularn2 to modularns+1 wheres ∈ N.
They also show that the extension is based on the DCR assumption above.

2.3.2 Linear Encryption

Boneh et al. [BBS04] proposed a variant of ElGamal encryption, called, Linear Encryption that is suitable
for groups over which the DDH assumption fails.

Key generation:the public keypk is a triple of generatorst, v, w ∈ G1 and the secret keysk is the exponents
x, y ∈ Zp such thattx = vy = w.

Encryption:to encrypt a messagem ∈ G1, choose random valuesa, b ∈ Zp, and output the triple(ta, vb,m·
wa+b).
Decryption:given an encryption(T, V,W ), we recover the plaintextm as followsm = W

T x·V y .

The Linear encryption is based on the Decision Linear Diffie-Hellman assumption, which was first
introduced by Boneh et al. [BBS04]. With g ∈ G1 as above, along with arbitrary generatorst,v, andw of
G1, consider the following problem:

Definition 2.9 (Decision Linear Diffie-Hellman Assumption). Given t, v, w, tα, vβ, wγ ∈ G1 as input,
there is no PPT adversaryA can distinguish with non-negligible probability thatα+ β = γ, i.e.

AdvAdldh
def=

∣∣∣∣ Pr[t, v, w ∈ G1, α, β ∈ Zp : A(t, v, w, tα, vβ, wα+β) = 1]
− Pr[t, v, w, χ,∈ G1, α, β ∈ Zp : A(t, v, w, tα, vβ, χ) = 1]

∣∣∣∣ ≤ negl(λ).

2.4 Commitments

A commitment scheme includes following algorithms: a PPT algorithmgen that produces the committing
keypk; a PPT committing algorithmcom that based onpk commits a plaintextm to a commitment valuec,
i.e. c ← com(pk,m; ζ) whereζ is randomly selected, and〈m, ζ〉 is the opening (“decommitment”) value;
a polynomial time verification algorithmver that checks if the opening value〈m, ζ〉 is consistent to the
commitment valuec.

Definition 2.10 (Commitment Scheme).Σ(COM) = 〈gen, com, ver〉 is a commitment scheme if the
following properties hold:

Completeness:For allpk ← gen(1λ), for allm ∈M, for anyζ
r← RND, ver(pk, com(pk,m; ζ),m, ζ) = 1.

Binding: For all PPT adversariesA,

AdvAbinding
def= Pr[pk ← gen(1λ); (c,m1, ζ1,m2, ζ2)← A(pk) :

ver(pk, c,m1, ζ1) = ver(pk, c,m2, ζ2) = 1 ∧m1 6= m2] ≤ negl(λ).

Hiding: For all PPT adversaryA,

AdvAhiding
def=

∣∣∣∣∣∣∣∣
Pr

[
pk ← gen(1λ); (m1,m2)← A(pk);
ζ1

r← RND; c1 ← com(pk,m1; ζ1) : A(c1) = 1

]
−Pr

[
pk ← gen(1λ); (m1,m2)← A(pk);
ζ2

r← RND; c2 ← com(pk,m2; ζ2) : A(c2) = 1

]
∣∣∣∣∣∣∣∣ ≤ negl(λ).

Next we define equivocal commitment schemes and extractable commitment schemes.
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Definition 2.11 (Equivocal Commitment). Σ(EQC) = 〈gen, com, ver, fake, equivocate〉 is an equiv-
ocal commitment scheme ifgen(1λ) outputs a key pair〈pk, ek〉, and ifgen1 is the algorithm returning only
the first element of the output ofgen then〈gen1, com, ver〉 is a commitment scheme as well as the following
property holds.

Equivocality: If for any PPT distinguisherA we have

AdvAeq
def=

∣∣∣∣∣ Pr[(pk, ek)← gen(1λ) : A bOpk,ek(pk) = 1]
−Pr[(pk, ek)← gen(1λ) : AOpk(pk) = 1]

∣∣∣∣∣ ≤ negl(λ).

The oracles are defined as follows:Ôpk,ek on querym ∈M returns(c, ζ), where(c, aux)← fake(pk, ek)
andζ ← equivocate(pk, c, aux,m); Opk on querym ∈ M returns(c, ζ), wherec← com(pk,m; ζ) and
ζ

r← RND.

Definition 2.12 (Extractable Commitment). Σ(EXC) = 〈gen, com, ver, extract〉 is an extractable com-
mitment scheme ifgen(1λ) outputs a key pair〈pk, xk〉, and ifgen1 is the algorithm returning only the first
element of the output ofgen then〈gen1, com, ver〉 is a commitment scheme as well as the following prop-
erty holds.

Extractability: For all (pk, xk)← gen(1λ), for allm ∈M and for anyζ
r← RND, there exists an extraction

algorithmextract such thatextract(pk, xk, com(pk,m; ζ)) = m.

2.5 Non-Interactive Zero-Knowledge

Here we briefly introduce non-interactive zero-knowledge schemes. The reader can refer to e.g., [GOS06]
for a more detailed discussion. LetR be an efficiently computable binary relation. For pairs(x,w) ∈ R we

call x the statement andw the witness. LetLR be the language consisting of statements inR, i.e. LR
def=

{x|∃w s.t. (x,w) ∈ R}. An NIZK scheme includes following algorithms: a PPT algorithmgen producing
a CRScrs together with a trapdoorτ ; a PPT algorithmprove that takes as inputcrs and(x,w) ∈ R and
outputs a proof$; a polynomial time algorithmverify takes as input(crs, x,$) and outputs1 if the proof
is valid and0 otherwise.

Definition 2.13 (Non-Interactive Zero-Knowledge (NIZK) Scheme).Σ(NIZK) = 〈gen, prove, verify,
simulate〉 is an NIZK scheme for the relationR if the following properties hold:

Completeness:For any(x,w) ∈ R,

Pr[(crs, τ)← gen(1λ); ζ r← RND;$ ← prove(crs, x, w; ζ) : verify(crs, x,$) = 0] ≤ negl(λ).

Soundness:For all PPT adversaryA,

Pr[(crs, τ)← gen(1λ); (x,$)← A(crs) : x 6∈ LR ∧ verify(crs, x,$) = 1] ≤ negl(λ).

Zero-knowledge:If for any PPT distinguisherA we have∣∣∣∣∣ Pr[(crs, τ)← gen(1λ) : A bOcrs,τ (crs) = 1]
−Pr[(crs, τ)← gen(1λ) : AOcrs (crs) = 1]

∣∣∣∣∣ ≤ negl(λ).

The oracles are defined as follows:Ôcrs,τ on query(x,w) ∈ R returns$, where($, aux)← simulate(crs,
τ, x); Ocrs on query(x,w) ∈ R returns$, where$ ← prove(crs, x, w; ζ) andζ

r← RND.

Next we define non-erasure NIZK schemes.
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Definition 2.14 (Non-Erasure NIZK (NENIZK)). Σ(NENIZK) = 〈gen, prove, verify, simulate,
reconstruct〉 is a non-erasure NIZK scheme if〈gen, prove, verify, simulate〉 is an NIZK scheme
and the following property holds.

Non-erasure zero-knowledge:If for any PPT distinguisherA we have∣∣∣∣∣ Pr[(crs, τ)← gen(1λ) : A bOcrs,τ (crs) = 1]
−Pr[(crs, τ)← gen(1λ) : AOcrs (crs) = 1]

∣∣∣∣∣ ≤ negl(λ).

The oracles are defined as follows:̂Ocrs,τ on query(x,w) ∈ R returns($, ζ), where ($, aux) ←
simulate(crs, τ, x) andζ ← reconstruct(crs, x,$, aux,w);Ocrs on query(x,w) ∈ R returns($, ζ),
where$ ← prove(crs, x, w; ζ) andζ

r← RND.

2.6 Sigma Protocols

In this subsection we introduce Sigma protocols, [CDS94]. Informally, a Sigma-protocol is a three move
public randomness protocol (cf.Figure 3) with a honest verifier zero-knowledge property and a special
soundness property. In our formulation of Sigma-protocols below we will formalize soundness only to
satisfy membership consistency (rather than knowledge extraction).

P V

statement = 〈x〉 statement = 〈x〉
witness = 〈w〉

ra
r← RND

a← prove1(x,w; ra)
a

−−−−−−−−−−−−−−−−−−−−→

e
r← {0, 1}`e

e
←−−−−−−−−−−−−−−−−−−−−

z ← prove3(x,w, ra, e)
z

−−−−−−−−−−−−−−−−−−−−→
verify(x, a, e, z) =? 1

Figure 3: Three move public randomness protocol for relationR. Here`e is the length of the challengee.

Definition 2.15 (Sigma Protocol).A Sigma protocol for the relationR is a tuple〈prove1, prove3, verify,
simulate〉, where〈prove1, prove3, verify〉 is a three-move public randomness protocol,simulate is a
PPT algorithm, and where the following properties hold:

Completeness:For any(x,w) ∈ R,

Pr[ra
r← RND; a← prove1(x,w; ra); z ← prove3(x,w, ra, e) : verify(x, a, e, z) = 0] ≤ negl(λ).

Special membership soundness:For all PPT adversariesA = (A1,A2), for any statementx,

AdvAsound
def= Pr

[
e

r← {0, 1}`e ; (a, aux)← A1(x); z ← A2(e, aux)) :
verify(x, a, e, z) = 1 ∧ x 6∈ LR

]
≤ negl(λ).
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Honest-verifier zero-knowledge:For any PPT distinguisherA and for any(x,w) ∈ R, we have

AdvAzk
def=

∣∣∣∣∣∣∣∣
Pr

[
ra

r← RND; a← prove1(x,w; ra); e
r← {0, 1}`e ;

z ← prove3(x,w, ra, e) : A(x,w, a, e, z) = 1

]
−Pr

[
e

r← {0, 1}`e ; (a, z, aux)← simulate(x, e) :
A(x,w, a, e, z) = 1

]
∣∣∣∣∣∣∣∣ ≤ negl(λ).

Next we will introduce the non-erasure property for Sigma protocols.

Definition 2.16 (Non-erasure sigma protocol).A non-erasure Sigma protocol for relationR is a tuple
〈prove1, prove3, verify, simulate, reconstruct〉, where〈prove1, prove3, verify, simulate〉 is a
Sigma protocol,reconstruct is a PPT algorithm, and the following property also holds:

Non-erasure honest-verifier zero-knowledge:For any PPT distinguisherA and any(x,w) ∈ R, we have

AdvAnezk
def=

∣∣∣∣∣∣∣∣
Pr

[
ra

r← RND; a← prove1(x,w; ra); e
r← {0, 1}`e ;

z ← prove3(x,w, ra, e) : A(x,w, a, e, z, ra) = 1

]
−Pr

[
e

r← {0, 1}`e ; (a, z, aux)← simulate(x, e);
ra ← reconstruct(x, a, z, w, e, aux) : A(x,w, a, e, z, ra) = 1

]
∣∣∣∣∣∣∣∣ ≤ negl(λ).

We note that the zero-knowledge formulated above is weak (honest verifier) and thus unsuitable for
many settings. Nevertheless, there are generic methods of transforming a honest-verifier zero-knowledge
protocol to one that satisfies zero-knowledge in more reasonable adversarial settings. For example, Damgård
showed how one can use an equivocal commitment to extend a Sigma protocol to achieve concurrent zero-
knowledge in the CRS model [Dam00]. Please refer to section 2.9 of Nielsen’s PhD thesis [Nie03] for a
wonderful explanation of Sigma protocol.

2.7 Other Primitives

Here we present some other definitions that will be useful in the sequel.

Definition 2.17 (Collision Resistent Hash Function Family).Let H be a finite family of functions such
that∀H ∈ H , we haveH : {0, 1}∗ → ZQ. We sayH is a collision resistent hash function family if for
any PPT adversaryA,

AdvAcrhf
def= Pr[H ←H ;x, y ← A(1λ, program(H)) : H(x) = H(y) ∧ x 6= y] ≤ negl(λ).

whereprogram(H) denotes an implementation ofH.

Definition 2.18 (Discrete Logarithm (DLOG) Assumption). Let G be a cyclic group of prime orderp
wherep is at leastλ-bits. The DLOG problem defined as follows: giveng,ga ∈ G, outputa ∈ Zp. The
DLOG assumption suggests that any PPT algorithmA solving the DLOG problem has negligible probability,
i.e.

AdvAdlog
def= Pr

[
g ∈ G; a r← Zp : A(g,ga) = a

]
≤ negl(λ).
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3 Equivocal Lite Blind Signatures

3.1 Our Basic Building Block: Lite Blind Signatures

A signature generation protocol is a tuple〈CRSgen, gen, lbs1, lbs2, lbs3, verify〉 whereCRSgen is a com-
mon reference string generation algorithm,gen is a key-pair generation algorithm,lbsi, i = 1, 2, 3, comprise
a two-move signature generation protocol between the userU and the signerS as described inFigure 4and
verify is a signature verification algorithm. A lite blind signature is a signature generation protocol that
satisfies correctness as well as two security properties,lite-unforgeabilityandlite-blindness, defined below.
The motivation for lite blind signature is to simplify the security properties by requiring the adversary to
play the security games with “open tapes”.

U S

CRS = 〈crs〉 CRS = 〈crs〉
VerificationKey = 〈vk〉 VerificationKey = 〈vk〉
Plaintext = 〈m〉 SigningKey = 〈sk〉
ρ1

r← RND

u← lbs1(crs, vk,m; ρ1)
u

−−−−−−−−−−−−−−−−−−−−→ ρ2
r← RND

s← lbs2(crs, vk,u, sk; ρ2)

ρ3
r← RND

s
←−−−−−−−−−−−−−−−−−−−−

σ ← lbs3(crs, vk,m, ρ1,u, s; ρ3)

Figure 4: Outline of a two-move signature generation protocol.

We note thatCRSgen is not employed in any of the security properties of a lite blind signature and thus it
may be just a length parameter in a certain instantiation of the primitive. Nevertheless, we include it, since a
lite blind signature is a basic building block in our design methodology and a common reference string will
be used by subsequent extensions of the lightweight primitive (in particular in the definition of equivocality
that will be given inSection 3.3).

Definition 3.1 (Completeness).A signature generation protocol as inFigure 4is correct if for all(crs, τ)←
CRSgen(1λ), for all (vk, sk) ← gen(crs), for all ρ1, ρ2, ρ3

r← RND, computeu ← lbs1(crs, vk,m; ρ1),
s← lbs2(crs, vk,u, sk; ρ2), andσ ← lbs3(crs, vk,m, ρ1,u, s; ρ3), thenverify(crs, vk,m, σ) = 1.

Note that the above completeness is very easy to be generalize to probabilistic case as in [Can05].
Lite-unforgeability that we define below suggests informally that if we “collapse” thelbs1, lbs2 proce-

dures into a single algorithm this will result to a procedure that combined withlbs3 will be equivalent to the
signing algorithm of an unforgeable digital signature in the sense of [GMR88]. Recall that lite-unforgeability
is much weaker compared to regular unforgeability of blind signatures (as defined e.g., in [JLO97, Fis06])
since it requires from the adversary to provide the input to an “honest” simulation of the user (as opposed to
letting the adversary impersonate user instantiations himself).

Definition 3.2 (Lite-unforgeability). A signature generation protocol as inFigure 4is lite-unforgeable if

for all PPTA = (A1,A2) and for anyL = poly(λ), we haveAdvA,L
luf (λ) ≤ negl(λ), whereAdvA,L

luf (λ) def=
Pr[ExpLUF

A,L (λ) = 1] and the experimentExpLUF
A,L (λ) is defined below:

15



ExperimentExpLUF
A,L (λ)

(crs, τ)← CRSgen(1λ); (vk, sk)← gen(crs); state := ∅; k := 0;
while k < L

(mk, ρ1,k, state)← A1(state, crs, vk);
sk ← lbs2(crs, vk, lbs1(crs, vk,mk; ρ1,k), sk; ρ2,k); ρ2,k

r← RND;
state← state||sk; k ← k + 1;

(m1, σ1, . . . ,m`, σ`)← A2(state);
if ` > L, andverify(crs, vk,mi, σi) = 1 for all 1 ≤ i ≤ `, andmi 6= mj for all 1 ≤ i 6= j ≤ `

then return1 else return0.

We remark that lite-unforgeability is only required in the standard sense (as in [GMR88]) and not in its
strong flavor where the adversary can win the game even if he forges a signature for a message he has already
seen [ADR02]. It is straightforward to extend the formulation of lite-unforgeability of blind signatures to
capture this stronger flavor of digital signature unforgeability.

We proceed to the second property of a lite blind signature: lite-blindness; this property is designed
similar to the strong blindness property of the primitive (as e.g., in [Oka06, ANN06], adversarial key gen-
erations are allowed); but even with the adversary selecting the key-pair, the lite-blindness property is still
much weaker than strong blindness since it requires from the adversary to provide the signing key at some
point to an “honest” simulation of the signer; also this property is restricted in the two-move setting. Infor-
mally in a lite-blindness attack, the adversary selects two messages and verification key; the two messages
may be swapped according to a challenge bitb and the adversary receives the communication from two
honest users employing the two messages (swapped according tob). The adversary then, may provide some
feedback and his private tape used for this feedback including the signing secret and the random coins; in
case that the provided signing secret is consistent to the verification key and the private tape is consistent to
the feedback, and the adversary’s communication to the two honest users results in two valid signatures, the
adversary is also provided access to the two signatures (in a predetermined order). The adversary wins the
game if he manages to guess the challenge bit.

Definition 3.3 (Lite-blindness). A signature generation protocol as inFigure 4satisfies lite-blindness if for

all PPTA = (A1,A2,A3), we haveAdvAlb(λ) ≤ negl(λ), whereAdvAlb(λ) def=
∣∣Pr[ExpLB

A (λ) = 1]− 1
2

∣∣
and the experimentExpLB

A (λ) is defined below:

ExperimentExpLB
A (λ)

(crs, τ)← CRSgen(1λ);
(m0,m1, vk, state)← A1(crs);
b

r← {0, 1};
u0 ← lbs1(crs, vk,mb; ρ1,0); ρ1,0

r← RND;
u1 ← lbs1(crs, vk,m1−b; ρ1,1); ρ1,1

r← RND;
(s0, s1, ρ2,0, ρ2,1, sk, state)← A2(state,u0,u1);
if (vk, sk) 6∈ KEYPAIR or s0 6= lbs2(crs, vk,u0, sk; ρ2,0) or s1 6= lbs2(crs, vk,u1, sk; ρ2,1),

set(σ0, σ1)← (⊥,⊥);
σb ← lbs3(crs, vk,mb, ρ1,0,u0, s0; ρ3,0); ρ3,0

r← RND;
σ1−b ← lbs3(crs, vk,m1−b, ρ1,1,u1, s1; ρ3,1); ρ3,1

r← RND;
if verify(crs, vk,m0, σ0) 6= 1 or verify(crs, vk,m1, σ1) 6= 1, set(σ0, σ1)← (⊥,⊥);
b∗ ← A3(state, σ0, σ1);
if b∗ = b, then return1;

Here KEYPAIR denotes the relation of verification-key and signing-key as defined by the key generation
algorithm.
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3.2 Lite Blind Signature Constructions

Lite blind signatures are simpler than full-fledged blind signatures (in the sense e.g., of [PS00, JLO97]) and
thus can be more readily instantiated. In this subsection, first we present a generic construction, and then
we present three concrete number theoretic constructions.

3.2.1 Generic Construction

For the first scheme, refer to the signature generation protocol inFigure 5, theCRSgen algorithm produces
crs = 〈pkeqc, pkexc, crsnizk〉; EQC is a commitment scheme with committing keypkeqc andEQCcom is its
committing algorithm;EXC is a commitment scheme with committing keypkexc andEXCcom is its com-
mitting algorithm;NIZK is an NIZK argument scheme with CRScrsnizk whereNIZKprove is the proof
generation algorithm andNIZKverify is the proof verification algorithm. Thegen algorithm produces
a key-pair〈vk, sk〉 for a signature schemeSIG whereSIGsign is the signature generation algorithm and

SIGverify is the corresponding verification algorithm. The languageLR
def= {x|(x,w) ∈ R} where

R
def= {(crs, vk, E,m), (u, s, ρ1, ρ3) |u = EQCcom(pkeqc,m; ρ1) ∧ SIGverify(vk,u, s) = 1 ∧ E =

EXCcom(pkexc,u, s; ρ3)}. Theverify algorithm given a messagem and signatureσ operates as follow:
parseσ intoE and$, and check thatNIZKverify((crs, vk, E,m), $) =? 1.

crs = 〈pkeqc, pkexc, crsnizk〉
U S

VerificationKey = 〈vk〉 VerificationKey = 〈vk〉
Plaintext = 〈m〉 SigningKey = 〈sk〉
ρ1

r← RND; u← EQCcom(pkeqc,m; ρ1)
u

−−−−−−−−−−→ ρ2
r← RND

SIGverify(vk,u, s) =? 1
s

←−−−−−−−−−− s← SIGsign(vk, sk,u; ρ2)

ρ3, ρ4
r← RND; E ← EXCcom(pkexc,u, s; ρ3)

$ ← NIZKprove((crs, vk, E,m), (u, s, ρ1, ρ3); ρ4

: u = EQCcom(pkeqc,m; ρ1) ∧ SIGverify(vk,u, s) = 1
∧E = EXCcom(pkexc,u, s; ρ3))

σ ← E||$
verify(crs, vk,m, σ) =? 1
output(m;σ)

Figure 5: A generic signature generation protocol.

Theorem 3.4. The two-move signature generation protocol inFigure 5is a lite blind signature as follows:
it satisfies lite-unforgeability provided thatSIG is EU-CMA secure,EQC is binding,EXC is extractable, and
NIZK satisfies soundness; and it satisfies lite-blindness provided thatEQC andEXC are hiding, andNIZK is
zero-knowledge.

Proof. (I) (sketch) AssumeA is a lite-unforgeability adversary. We construct algorithmB to attack the
signature schemeSIG to produce a forgery. Note thatB is givenvk, and is allowed to query the signing
oracle withui and obtainsi such thatSIGverify(vk,ui, si) = 1. B’s goal is to obtain a pair〈u∗, s∗〉 where
u∗ is not queried.
B runs a copy ofA inside, and suppliesA with crs andvk; note thatA is allowed to query(mi, ρ1,i)

whereui = EQCcom(pkeqc,mi; ρ1,i); given such query,B queries his signing oracle withui, obtainssi and
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then gives suchsi to A, whereSIGverify(vk,ui, si) = 1. At some point,A produces a pair〈m∗, σ∗〉
whereσ∗ = E∗||$∗, andNIZKverify(crs, vk, E∗,m∗;$∗) = 1. Under the soundness of NIZK, there ex-
ist 〈u∗, s∗, ρ∗1, ρ∗3〉 such that((crs, vk, E∗,m∗), (u∗, s∗, ρ∗1, ρ

∗
3)) ∈ R. Given that commitment schemeEQC

is binding, we have only negligible probability to findm′
i 6= mi such thatui = EQCcom(pkeqc,mi; ρ1,i) =

EQCcom(pkeqc,m
′
i; ρ

′
1,i). Thereforem∗ cannot be based on any queriedui. By using the extractable trapdoor

xkexc of commitment schemeEXC, B can extractu∗ ands∗ fromE. Note thatSIGverify(vk,u∗, s∗) = 1,
andu∗ has never been queried,B can obtain a forgery〈u∗, s∗〉 for SIG.

(II) Note that the lite-blindness is implied byProposition 3.10andTheorem 3.11below.

3.2.2 Construction based on Camenisch-Lysyanskaya Signature and Linear Encryption

Lite blind signature construction that we present inFigure 6uses the LRSW assumption [LRSW99] and the
DLDH assumption [BBS04] and is based on the blind signature that appeared in [KZ06]. Thegen algorithm
producesvk = 〈p, g,G1,GT , ê;X,Y 〉 andsk = 〈x, y〉, and theverify algorithm given a messagem and
signatureσ = 〈a, b, c〉, responds as follows: check thatê(a, Y ) = ê(g, b) andê(X, a)ê(X, b)m = ê(g, c).

U S
vk = 〈p, g,G1,GT , ê;X,Y 〉 vk = 〈p, g,G1,GT , ê;X,Y 〉
msg = 〈m〉,m ∈ Zp sk = 〈x, y〉

ζ
r← RND

(PKU , SKU )← genLE(1λ, ζ)
PKU = 〈t, v, w〉, SKU = 〈δ, ξ〉
k, l

r← Zp; θ
r← G1

T ← tk; V ← vl; W ← θmwk+l

PKU ,〈θ,T,V,W 〉
−−−−−−−−−−−−−−−−−−−−→

α′, k′, l′
r← Zp

a′ ← θα′ ; b′ ← θyα′

T ′ ← T xyα′tk
′α′ ; V ′ ← V xyα′vl′α′

W ′ ←W xyα′θxα′wk′α′+l′α′

a′,b′,T ′,V ′,W ′

←−−−−−−−−−−−−−−−−−−−−

α
r← Zp

a← (a′)α; b← (b′)α; c←
(

W ′

T ′δV ′ξ

)α

σ ← 〈a, b, c〉
output(m;σ)

Figure 6: Lite blind signature protocol based on [KZ06]. HeregenLE is Linear Encryption key generation.

Theorem 3.5. The two-move protocol ofFigure 6 is a lite blind signature as follows: it satisfies lite-
unforgeability under the LRSW assumption; and it satisfies lite-blindness under the DLDH assumption.

Proof. (I) (sketch) For lite-unforgeability, we can follow the unforgeability proof in [KZ06]. AssumeA is
a lite-unforgeability adversary. We construct algorithmB to break the LRSW assumption.

Note thatB is givenvk = 〈p, g,G1,GT , ê;X,Y 〉, and is allowed to query the oracleOX,Y (as defined
in the LRSW assumption) withmi and obtainσi = 〈ai, bi, ci〉 such thatverify(vk,mi, σi) = 1. B’s
goal is to obtain a pair〈m∗, σ∗〉 wherem∗ is not queried.B runs a copy ofA inside, and suppliesA
with vk; note thatA now may query with(mi, ρ1,i) whereρ1,i = 〈ζi, ki, li, θi〉; B can “recover” the key
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pair 〈PKU , SKU 〉. Given such query,B queries his oracleOX,Y with mi, obtainsσi = 〈ai, bi, ci〉 where
verify(vk,mi, σi) = 1, and then computea′i ← ai, b′i ← bi, W ′

i ← ciw
k′+l′ , T ′i ← tk

′
, V ′

i ← vl′ , where
k′, l′

r← Zp. B returns〈a′i, b′i,W ′
i , T

′
i , V

′
i 〉 toA. At some point,A produces a pair〈m∗, σ∗〉 wherem∗ has

never been queried toOX,Y , andσ∗ = 〈a∗, b∗, c∗〉, verify(vk,m∗, σ∗) = 1. B outputs such pair, and this
breaks the LRSW assumption.

(II) (sketch) For lite-blindness, we follow the blindness proof in [KZ06]. The proof idea is when the adver-
sary initials two user instantiations with two messages and verification key(m0,m1, vk), the simulator as
in the lite-blindness definition, gives the verification key to two users, and randomly selectsb

r← {0, 1} and
also supplies, say, the left user withmb and the right user withm1−b.

Notice that the involved Linear Encryption is CPA-secure based on the DLDH assumption, there is only
negligible probability that the adversary can detect if the simulator simulates the two user instantiations with
random messages, i.e. the two messagesm0,m1 will not be used, or not.

At some point, the adversary will reply the two users following signer response function; and the adver-
sary also returns the random coins used and the signing key. If the simulator verify the random coins and the
signing key are consistent, then the simulator uses the signing key to produces two valid signatures〈σ0, σ1〉
for 〈m0,m1〉 and returns〈σ0, σ1〉 to the adversary; otherwise simulator returns〈⊥,⊥〉 to the adversary. At
this point the simulator finishes the simulation with the adversary and finally the adversary is required to
guess the coinsb. Note that in the interactions between the user instantiations and the adversary, coinsb is
not used. So the adversary cannot win the game under the DLDH assumption.

3.2.3 Construction based on Waters Signature

In Figure 7we present a lite blind signature〈CRSgen, gen, lbs1, lbs2, lbs3, verify〉 that uses the CDH as-
sumption and is based on Waters’ digital signature scheme [Wat05]. Note that our lite blind signature
construction here is based on the blind signature construction in [Oka06] (refer to section 10, page 31 in
[Oka06]). In this setting theCRSgen algorithm producescrs = 〈p,G1,GT , ê, g, g2, v, u1, . . . , un〉, thegen
algorithm produces a key-pairvk = 〈g1〉 whereg1 = gα, sk = 〈gα

2 〉, and theverify algorithm given an
n-bit messagem and signatureσ = 〈σ1, σ2〉, responds as follow: check thatê(σ1, g)/ê(σ2, v

∏n
j=1 u

mj

j ) =
ê(g1, g2).

Remark 3.6. We remark that Waters’ signature scheme is not secure without any restriction of messagem.
For somem satisfiesv

∏n
j=1 u

mj

j = 1, the signature form is σ = 〈σ1, σ2〉, whereσ1 = gα
2 andσ2 = gr for

some randomly selectedr
r← Zp. Note thatσ1 = sk, and a signature for suchm will reveal the signing key!

The blind signature scheme based on Waters signature in [Oka06] also suffers similar attack. An adver-
sarial user may select anm such thatv

∏n
j=1 u

mj

j = 1 and the user based on suchm computesW = 1 and
sendsW to an honest signer; the signer will returnY1 = gα

2W
r andY2 = gr wherer is randomly selected.

Note thatY1 = gα
2W

r = gα
2 which is the signing key!

A simple way to avoid such attack is to check ifm satisfiesv
∏n

j=1 u
mj

j = 1, and refuse to produce
signature for such “bad” message. But this will change the message space of the signature scheme.

An alternative way is to require thatp > 2λp+n whereλp = Ω(log2 λ). This requirement will not allow
the adversary to selectm such thatv

∏n
j=1 u

mj

j = 1 except negligible probability. Fromv
∏n

j=1 u
mj

j = 1,
we can haveτv +

∑n
j=1 τujmj = 0, wherev = gτv , u1 = gτu1 , . . . , un = gτun . Notice that given the length

of m is n bits, there are at most2n potentialm satisfiesτv +
∑n

j=1 τujmj = 0. Also notice thatτv ∈ Zp

has2λp+n potential values. So the probability thatτv +
∑n

j=1 τujmj = 0 holds is 2n

2λp+n , i.e. 1
2λp

, which is
negligible.

In our lite blind signature construction based on Waters’ signature, we require thatp > 2λp+n. Still we
require thatW 6= 1 to avoid the adversarial selection oft = 0.
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crs = 〈p,G1,GT , ê, g, g2, v, u1, . . . , un〉
U S

vk = 〈g1 = gα〉 vk = 〈g1 = gα〉
msg = 〈m〉 sk = 〈gα

2 〉

t
r← Zp; W ← (v

∏n
j=1 u

mj

j )t
W

−−−−−−−−−−−−−−−−−−−−→ W 6=? 1

r
r← Zp

s
r← Zp

Y1,Y2
←−−−−−−−−−−−−−−−−−−−− Y1 ← gα

2W
r; Y2 ← gr

σ1 ← Y1(v
∏n

j=1 u
mj

j )s; σ2 ← Y t
2 g

s

σ ← 〈σ1, σ2〉
verify(crs, vk,m, σ) =? 1
output(m;σ)

Figure 7: Signature generation protocol based on Waters digital signature [Wat05]. Herem isn-bit message,
andmj is thejth bit of m, andp > 2λp+n whereλp = Ω(log2 λ).

Theorem 3.7. The two-move protocol ofFigure 7 is a lite blind signature as follows: it satisfies lite-
unforgeability under the CDH assumption; and it satisfies lite-blindness unconditionally.

Proof. (I) The proof idea of lite-unforgeability is similar to the proof for Waters IBE (refer to page 5,
in [Wat05]). Note that here the lite blind signature will not suffer the attack inRemark 3.6. AssumeA
is a lite-unforgeability adversary. We construct algorithmB to break the CDH assumption by inputting
〈g,A = ga, B = gb〉 and outputtinggab.

AssumeA at most queriesq times. B first setsl = 4q, randomly selectsk
r← {0, . . . , n}, and ran-

domly selectsw, x1, . . . , xn
r← Zl, z, y1, . . . , yn

r← Zp. For n-bit messagem, defineF (m) = (p −
kl) + w +

∑n
j=1 xjmj and J(m) = z +

∑n
j=1 yjmj , wheremj is the jth bit of m. Now B gives

〈g, g1, g2, v, u1, . . . , un〉 toA whereg1 = A, g2 = B, v = gp−kl+w
2 gz, uj = g

xj

2 g
yj for j = 1, . . . , n.

NowA queries the lite-unforgeability signing oracle with〈m, t〉. HereW = (v
∏n

j=1 u
mj

j )t. B should

reply with 〈Y1, Y2〉 in the form of 〈ga
2(v

∏n
j=1 u

mj

j )rt, gr〉, or in the form of 〈ga
2(v

∏n
j=1 u

mj

j )r, gr/t〉,
wherer is randomly selected. Note that nowv

∏n
j=1 u

mj

j = 1 holds with only negligible probability

based on the discussion inRemark 3.6. So, we can computeY1 = g
−J(m)/F (m)
1 (v

∏n
j=1 u

mj

j )r, and

Y2 = g
−1/(F (m)t)
1 gr/t. Let r̂ = r − a/F (m). ThenY1 = ga

2(v
∏n

j=1 u
mj

j )br, andY2 = gbr/t which is a
valid response. This finishes the simulation of signing oracle.

When the adversary outputs a valid message-signature pair,m∗ and σ∗ = 〈σ∗1, σ∗2〉, whereσ∗1 =

ga
2(v

∏n
j=1 u

m∗
j

j )er andσ∗2 = ger for somer̃. If F (m∗) 6= 0, aborts. OtherwiseF (m∗) = 0, and we can

extractga
2 which isgab; this finishes the proof.

(II) We ignore the proof of lite-blindness which is implied byProposition 3.10andTheorem 3.12below.

3.2.4 Construction based on Okamoto Signature

In Figure 8we present a lite blind signature〈CRSgen, gen, lbs1, lbs2, lbs3, verify〉 that uses the 2SDH
assumption and is based on Okamoto’s digital signature scheme [Oka06]. Note that our lite blind signature
construction here is based on the blind signature construction in [Oka06] (refer to section 6, page 16 in
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[Oka06]). In this setting theCRSgen algorithm producescrs = 〈p, g1, g2,G1,G2,GT , ê, ψ, u2, v2〉, thegen
algorithm produces a key-pairvk = 〈X〉, sk = 〈x〉 such thatX = gx

2 , and theverify algorithm given
a messagem and signatureσ = 〈ς, α, β, V1, V2〉, responds as follow: check thatm,β ∈ Zp, ς, V1 ∈ G1,
α, V2 ∈ G2, ς 6= 1, α 6= 1 andê(ς, α) = ê(g1, gm

2 u2v
β
2 ), ê(V1, α) = ê(ψ(X), X) · ê(g1, V2).

crs = 〈p, g1, g2,G1,G2,GT , ê, ψ, u2, v2〉
U S

vk = 〈X = gx
2 〉 vk = 〈X = gx

2 〉
msg = 〈m〉,m ∈ Zp sk = 〈x〉

t, s
r← Zp; W ← gmt

1 ut
1v

st
1

W
−−−−−−−−−−−−−−−−−−−−→

r, l
r← Zp s.t.x+ r 6= 0

f, h
r← Zp; ς ← Y

1
ft mod p

Y,l,r
←−−−−−−−−−−−−−−−−−−−− Y ← (Wvl

1)
1

x+r

α← Xfgfr
2 ; β ← s+ l

t mod p
V1 ← ψ(X)

1
f gh

1 ; V2 ← Xfh+rgfrh
2

σ ← 〈ς, α, β, V1, V2〉
verify(crs, vk,m, σ) =? 1
output(m;σ)

Figure 8: Signature generation protocol based on Okamoto digital signature [Oka06].

Theorem 3.8. The two-move protocol ofFigure 8 is a lite blind signature as follows: it satisfies lite-
unforgeability under the 2SDH assumption; and it satisfies lite-blindness unconditionally.

Proof. (I) For lite-unforgeability, we can follow similarly the unforgeability proof of Okamoto signature
(refer to the proof of theorem 2, page 14, in [Oka06]). AssumeA is a lite-unforgeability adversary. We
construct algorithmB to break the 2SDH assumption.

We consider two types of forgers, Type-1 forger and Type-2 forger. Let〈p, g1, g2,G1,G2,GT , ê, ψ, u2, v2, X〉
be the verification key for the forgerA andv2 = gz

2 . NowA queries with〈mi, ti, si〉 and is responded with
〈Yi, li, ri〉 for i = 1, . . . , L. The two types of forgers are:

• Type-1 forger: outputs a forgery〈m∗, σ∗〉whereσ∗ = 〈ς∗, α∗, β∗, V ∗
1 , V

∗
2 〉, andm∗+β∗z 6≡ mi+βiz

for i = 1, . . . , L.

• Type-2 forger: outputs a forgery〈m∗, σ∗〉whereσ∗ = 〈ς∗, α∗, β∗, V ∗
1 , V

∗
2 〉, andm∗+β∗z ≡ mi+βiz

for i = 1, . . . , L.

B operates as follows:

1. B is given〈g1, g2, A,B,C1, . . . , CL, a1, . . . , aL, b1, . . . , bL〉 whereA = gx
2 , B = gy

2 , Ci = g
y+bi
x+ai ,

i = 1, . . . , L.

2. B randomly selectsctype ∈ {1, 2}.

3. If ctype = 1: B randomly selectsz ∈ Zp, andB setsX ← A = gx
2 , u2 ← B = gy

2 , andv2 ←
gz
2 ; B then gives〈g1, g2, u2, v2, X〉 to A as the verification key. WhenA queries with〈mi, ti, si〉,
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B computesβi ← bi−mi
z , ri ← ai, ς ← ψ(Ci) = g

y+bi
x+ai
1 = g

mi+y+βiz

x+ri
i , andYi ← ςtii , li ←

ti(βi − si). ThenB returns〈Yi, li, ri〉. WhenA outputs a successful forgery〈m∗, σ∗〉 whereσ∗ =
〈ς∗, α∗, β∗, V ∗

1 , V
∗
2 〉, B checksm∗ + β∗z 6≡ mi + βiz for all i = 1, . . . , L. If not,B outputsfailure

and aborts. ElseB setsb∗ ← m∗ + β∗z, and outputs〈ς∗, α∗, b∗, V ∗
1 , V

∗
2 〉.

4. If ctype = 2: B randomly selectsx′, y′ ∈ Zp and computesX ← gx′
2 , u2 ← gy′

2 , v2 ← A = gx
2 . B then

gives〈g1, g2, u2, v2, X〉 toA as the verification key. The simulation of signing oracle can be achieved
sinceB knowsx′. WhenA outputs a successful forgery〈m∗, σ∗〉 whereσ∗ = 〈ς∗, α∗, β∗, V ∗

1 , V
∗
2 〉,

B computesz∗ ← mi−m∗

β∗−βi
for all i = 1, . . . , L such thatβi 6= β∗, and checks whetherA = gz∗

2 .

If it holds, z∗ = x. B then outputs〈ς, α, d, V1, V2〉 wherec, d, η
r← Zp, ς ← (ψ(B))

1
x+c g

d
x+d

1 =

(ψ(g2)y)
1

x+c g
d

x+d

1 = (gy
1)

1
x+c g

d
x+d

1 = g
y+d
x+c

1 , α ← gc
2, V1 ← ψ(A)gη

1 , V2 ← Aη+cgcη
2 . Note that if

m∗ + β∗x = mi + βix andβ∗ 6= βi for somei ∈ {1, . . . , L}. Thenx = mi−m∗

β∗−βi
.

This completes the description ofB.

(II) We ignore the proof of lite-blindness which is implied byProposition 3.10andTheorem 3.13.

3.3 Equivocal Blind Signatures

In this subsection, we introduce a new property,equivocality, for blind signature schemes. For simplicity
we will only consider the property over two-move protocols following the skeleton ofFigure 4. We call a
lite blind signature scheme with the equivocality property as anequivocal lite blind signature scheme.

Informally an equivocal blind signature scheme is accompanied by a simulator procedureI which can
produce communication transcripts without using the plaintextm and furthermore can “explain” the com-
munication transcripts to any adversarially selectedm even after the signatureσ for m has been generated.
Considering that in the equivocality definition,m need not be used to produce communication transcripts,
we can prove that equivocality implies lite-blindness. Thus an equivocal lite blind signature needs to sat-
isfy only two properties: equivocality and lite-unforgeability. The property of equivocal blind signatures
parallels the property of equivocal commitments [Bea96] or zero-knowledge with state reconstruction, cf.
[GOS06]. We define the property formally below (cf.Figure 9).

Definition 3.9 (Equivocality). We say a lite blind signature scheme is equivocal if there exists an interactive
machineI = (I1, I2), such that for all PPTA, we haveAdvAeq(λ) ≤ negl(λ),

AdvAeq(λ) def=
∣∣∣∣ Pr[(crs, τ)← CRSgen(1λ) : AUsers(crs,·)(crs) = 1]

−Pr[(crs, τ)← CRSgen(1λ) : AI(crs,τ,·)(crs) = 1]

∣∣∣∣ ,
where oracleUsers(crs, ·) operates as:

- Upon receiving message(i,m, vk) from A, select ρ1
r← RND and computeu ←

lbs1(crs, vk,m; ρ1), record〈i,m, vk,u, ρ1〉 into history, and return message(i,u) toA.
- Upon receiving message(i, s, ρ2, sk) fromA, if there exists a record〈i,m, vk,u, ρ1〉 in history

and(vk, sk) ∈ KEYPAIR ands = lbs2(crs, vk,u, sk; ρ2), then selectρ3
r← RND and compute

σ ← lbs3(crs, vk,m, ρ1,u, s; ρ3); if verify(crs, vk,m, σ) = 1, then update〈i,m, vk,u, ρ1〉 in
history into 〈i,m, vk,u, σ, ρ1, ρ3〉, and returnA with message(i, σ); otherwise returnA with
message(i,⊥).

- Upon receiving message(i, open), returnA with message(i, history).
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Users Aeq

(crs, τ)← CRSgen(1λ)
crs

−−−−−−−−−−−−−−−−−−−−−→
message m and verification key vk
←−−−−−−−−−−−−−−−−−−−−−

User(m)
signing protocol⇐===================⇒

deposit private tape
←−−−−−−−−−−−−−−−−−−−−−

verify the private tape

return signature
−−−−−−−−−−−−−−−−−−−−−→

corrupt /return tape⇐===================⇒

I Aeq

(crs, τ)← CRSgen(1λ)
crs

−−−−−−−−−−−−−−−−−−−−−→
message m and verification key vk
←−−−−−−−−−−−−−−−−−−−−−

I1
signing protocol⇐===================⇒

deposit private tape
←−−−−−−−−−−−−−−−−−−−−−

verify the private tape

Signer
signing protocol⇐==========⇒

return signature
−−−−−−−−−−−−−−−−−−−−−→

I2
corrupt /return tape⇐===================⇒

Figure 9: The two worlds an equivocality adversary is asked to distinguish inDefinition 3.9.

and oracleI(crs, τ, ·) operates as:
- Upon receiving message(i,m, vk) from A, run (u, aux) ← I1(crs, τ, vk), record〈i,m, vk,

u, aux〉 into temp, and return message(i,u) toA.
- Upon receiving message(i, s, ρ2, sk) from A, if there exists a record〈i,m, vk,u, aux〉

in temp and (vk, sk) ∈ KEYPAIR and s = lbs2(crs, vk,u, sk; ρ2), then selectγ
r←

RND and computeσ ← sign(crs, vk, sk,m, γ), and update〈i,m, vk,u〉 in temp into
〈i,m, vk,u, aux; s, sk, ρ2;σ, γ〉, and return message(i, σ) to A; otherwise returnA with mes-
sage(i,⊥).

- Upon receiving message(i, open), if there exists a record〈i,m, vk,u, aux〉 in temp then
run ρ1 ← I2(i, temp) and record〈i,m, vk,u, ρ1〉 into history, and returnA with mes-
sage(i, history); if there exists a record〈i,m, vk,u, aux; s, sk, ρ2;σ, γ〉 in temp, then run
(ρ1, ρ3) ← I2(i, temp) and record〈i,m, vk,u, σ, ρ1, ρ3〉 into history, and returnA with mes-
sage(i, history).
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Proposition 3.10.Consider a tuple〈CRSgen, gen, lbs1, lbs2, lbs3, verify〉, cf. Figure 4, that satisfies equiv-
ocality. Then it necessarily also satisfies lite-blindness.

Proof. (sketch) Here we show equivocality implies lite-blindness, which means if there is no equivocality
attacker, then there is no lite-blindness attacker. So we need to construct an equivocality attackerAeq based
on a lite-blindness attackerAlb. Next we give a description of such construction inFigure 10.
Aeq obtainscrs from his oracle, i.e. the oracleUsers(crs, ·) or the oracleI(crs, τ, ·); thenAeq gives

suchcrs toAlb and obtains two messagesm0,m1 and verification keyvk fromAlb. NowAeq flips a coinb
and initials two query/response sessions with his oracle: query withmb and obtainu0, and query withm1−b

and obtainu1.
ThenAeq sendsAlb with u0 and u1 and obtains response(s0, s1, ρ2,0, ρ2,1, sk). Aeq verifies the

response, and if the response fromAlb is valid, Aeq initials two sessions with his oracle: query with
(s0, ρ2,0, sk) and obtainσb, and query with(s1, ρ2,1, sk) and obtainσ1−b.

If both σ0 andσ1 are produced, thenAeq sends them toAlb and obtainsAlb’s guess of random bitb. If
Alb’s guess is correct, thenAeq outputs1, otherwise0.

Notice that in the case thatAeq is interacting with his oracleI(crs, τ, ·), u0 andu1 are not computed
based onm0 or m1, soAlb has only probability1/2 to figure out the bitb. In the case thatAeq is in-
teracting with his oracleUsers(crs, ·), Alb can figure out the bitb with probability 1/2 + ε whereε is
non-negligible becauseAlb is a successful lite-blindness attacker. Now we can computeAdv

Aeq
eq = ε which

is non-negligible.

Equivocality is in fact a strict strengthening of the lite-blindness property: for example the lite blind
signature inSection 3.2.2satisfies lite-blindness but is not equivocal due to the employment of an encryption
of the message in the first step of the signature generation protocol. Next we show the lite blind signature
constructions inSection 3.2.1, Section 3.2.3andSection 3.2.4are equivocal, respectively.

Theorem 3.11. The two-move signature generation protocol described inFigure 5 is equivocal provided
thatEQC is equivocal,EXC is hiding, andNIZK is non-erasure zero-knowledge.

Proof. Here we prove the lite blind signature inFigure 3.11satisfies equivocality defined inDefinition 3.9.
Generate(crs, τ) ← CRSgen(1λ); herecrs = 〈pkeqc, pkexc, crsnizk〉, τ = 〈ekeqc, τnizk〉 whereekeqc is the
equivocal key for commitment schemeEQC andτnizk is the trapdoor for state reconstruction ofNIZK. Send
crs toA.

For completeness, we first describe how oracleUsers(crs, ·) operates.

- Upon receiving message(i,m, vk) fromA, selectρ1
r← RND and computeu← EQCcom(pkeqc,m; ρ1),

record〈i,m, vk,u, ρ1〉 into history, and return message(i,u) toA.

- Upon receiving message(i, s, ρ2, sk) from A, if there exists a record〈i,m, vk,u, ρ1〉 in history
and (vk, sk) ∈ KEYPAIR and s = SIGsign(vk, sk,u; ρ2), then selectρ3, ρ4

r← RND and com-
puteE ← EXCcom(pkexc,u, s; ρ3), and$ ← NIZKprove((crs, vk, E,m), (u, s, ρ1, ρ3); ρ4 : u =
EQCcom(pkeqc,m; ρ1) ∧ SIGverify(vk,u, s) = 1 ∧ E = EXCcom(pkexc,u, s; ρ3)) and setσ ←
E||$. If verify(crs, vk,m, σ) = 1, then update〈i,m, vk,u, ρ1〉 in history into 〈i,m, vk,u, σ, ρ1, ρ3,
ρ4〉, and returnA with message(i, σ); otherwise returnA with message(i,⊥).

- Upon receiving message(i, open), returnA with message(i, history).

Next we constructI(crs, τ, ·).
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Aeq
crs

−−−−−−−−−−−→ Alb

crs
−−−−−−−−−−−→

b
r← {0, 1}

m0,m1,vk
←−−−−−−−−−−−

(0,mb,vk)
←−−−−−−−−−−−

(0,u0)
−−−−−−−−−−−→

(1,m1−b,vk)

←−−−−−−−−−−−
(1,u1)

−−−−−−−−−−−→
u0

−−−−−−−−−−−→
u1

−−−−−−−−−−−→

(vk, sk) ∈? KEYPAIR
s0,s1,ρ2,0,ρ2,1,sk

←−−−−−−−−−−−
s0 =? lbs2(crs, vk,u0, sk; ρ2,0)

(0,s0,ρ2,0,sk)

←−−−−−−−−−−− s1 =? lbs2(crs, vk,u1, sk; ρ2,1)
(1,s1,ρ2,0,sk)

←−−−−−−−−−−−
(0,σb)

−−−−−−−−−−−→
(1,σ1−b)

−−−−−−−−−−−→ if σb = ⊥ or σ1−b = ⊥

then set(σ0, σ1)← (⊥,⊥)
σ0,σ1

−−−−−−−−−−−→
b∗

←−−−−−−−−−−−
1/0

←−−−−−−−−−−− b =? b∗

Figure 10: Construction of equivocality attacker from lite-blindness attacker.

- Upon receiving message(i,m, vk) fromA, run(u, aux)← I1(crs, τ, vk), i.e. compute(u, stateeqc)←
EQCfake(pkeqc, ekeqc), and record〈i,m, vk,u, stateeqc〉 into temp, and return message(i,u) toA;
hereEQCfake is an algorithm of producing a fake commitment based onEQC’s committing keypkeqc.

- Upon receiving message(i, s, ρ2, sk) fromA, if there exists a record〈i,m, vk,u, stateeqc〉 in temp
and(vk, sk) ∈ KEYPAIR ands = SIGsign(vk, sk,u; ρ2); then computeσ ← E||$, whereE ←
EXCcom(pkexc,u, s; ρ3) and($, statenizk)← NIZKsimulate((crs, vk, E,m), τnizk) andρ3

r← RND.
Update〈i,m, vk,u, stateeqc〉 in temp into 〈i,m, vk,u, stateeqc; s, sk, ρ2;E,$, ρ3, statenizk〉, and
return message(i, σ) toA; otherwise returnA with message(i,⊥); hereNIZKsimulate is used to
produce a simulated proof forNIZK.

- Upon receiving message(i, open),

– if there exists a record〈i,m, vk,u, stateeqc〉 in temp then runρ1 ← I2(i, temp), i.e. compute
ρ1 ← EQCequivocate(pkeqc,u, stateeqc,m); and record〈i,m, vk,u, ρ1〉 into history, and
returnA with message(i, history); hereEQCequivocate is equivocation algorithm associated
with the equivocal commitmentEQC;
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– if there exists a record〈i,m, vk,u, stateeqc; s, sk, ρ2;E,$, ρ3, statenizk〉 in temp, then run
ρ4 ← I2(i, temp), i.e. computeρ1 ← EQCequivocate(pkeqc,u, stateeqc,m) and com-
pute ρ4 ← NIZKreconstruct((crs, vk, E,m), $, statenizk, (u, s, ρ1, ρ3)), and then record
〈i,m, vk,u, σ, ρ1, ρ3, ρ4〉 intohistory, and returnAwith message(i, history); hereNIZKreconstruct
is state reconstruction algorithm associated withNIZK.

In the interaction with oracleUsers(crs, ·), or with oracleI(crs, τ, ·), 〈ρ1, ρ3, ρ4〉 have the same dis-
tributions. Based on the construction ofI we know that in the two experimentsu has exactly the same
distributions, and$ andE cannot be distinguished based on the zero-knowledge property ofNIZK and
hiding property ofEXC respectively. ThereforeA will output 1 with the same probability except negligible
probability in the two interactions.

Theorem 3.12. The two-move signature generation protocol described inFigure 7 is equivocal (uncondi-
tionally).

Proof. Here we prove the lite blind signature based on Waters signature satisfies equivocality defined in
Definition 3.9. Generate(crs, τ) ← CRSgen(1λ); herecrs = 〈p,G1,GT , ê, g, g2, v, u1, . . . , un〉, τ =
〈τv, τu1 , . . . , τun〉 such thatv = gτv , u1 = gτu1 , . . . , un = gτun . Sendcrs toA.

For completeness, we first describe oracleUsers(crs, ·).

- Upon receiving message(i,m, vk) from A, wherevk = 〈g1 = gα〉 selectt
r← Zp and compute

W ← (v
∏n

j=1 u
mj

j )t, record(i,m, vk,W, t) into memoryhistory, and return message(i,W ) toA.

- Upon receiving message(i, 〈Y1, Y2〉, sk, r) fromA, wheresk = 〈gα
2 〉, if there exists a record(i,m, vk,

W, t) in history andê(sk, g) = ê(g2, g1), then computeσ ← 〈σ1, σ2〉whereσ1 ← Y1(v
∏n

j=1 u
mj

j )s,

σ2 ← Y t
2 g

s, ands
r← Zp. If verify(crs, vk,m, σ) = 1, then update(i,m, vk,W, t) in history into

(i,m, vk,W, 〈σ1, σ2〉, 〈t, s〉), and returnA with message(i, σ); otherwise returnA with message
(i,⊥).

- Upon receiving message(i, open), returnA with message(i, history).

Next we constructI(crs, τ, ·).

- Upon receiving message(i,m, vk) fromA, run (W,aux) ← I1(crs, τ, vk) as: selectn-bit random

messagẽm, select̃t
r← Zp, computeW = (v

∏n
j=1 u

emj

j )et, and record(i,m, vk,W, τ, 〈m̃, t̃〉) into
temp, and return message(i,W ) toA.

- Upon receiving message(i, 〈Y1, Y2〉, sk, r) fromA, if there exists a record(i,m, vk,W, τ, 〈m̃, t̃〉) in
temp andê(sk, g) = ê(g1, g2) andY1 = sk ·W r andY2 = gr, then computeσ ← 〈σ1, σ2〉, where
σ1 ← sk · (v

∏n
j=1 u

mj

j )bt andσ2 ← gbt and t̂
r← Zp. Update(i,m, vk,W, τ, 〈m̃, t̃〉) in temp into

(i,m, vk,W, τ, 〈m̃, t̃〉; 〈Y1, Y2〉, sk, r; 〈σ1, σ2〉, t̂), and return message(i, σ) toA; otherwise returnA
with message(i,⊥).

- Upon receiving message(i, open),

– if there exists a record(i,m, vk,W, τ, 〈m̃, t̃〉) in temp then runt ← I2(i, temp) as: computet
from (τv +

∑n
j=1 τujmj)t = (τv +

∑n
j=1 τujm̃j)t̃ and record(i,m, vk,W, t) into history, and

returnA with message(i, history);
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– if there exists a record(i,m, vk,W, τ, 〈m̃, t̃〉; 〈Y1, Y2〉, sk, r; 〈σ1, σ2〉, t̂) in temp, then run(t, s)←
I2(i, temp) as: computet based on equation(τv +

∑n
j=1 τujmj)t = (τv +

∑n
j=1 τujm̃j)t̃, com-

putes based on equation̂t = rt + s, and we havet ← (τv+
Pn

j=1 τuj emj)et
(τv+

Pn
j=1 τuj mj)

, ands ← t̂ − rt, and

record(i,m, vk,W, σ, 〈t, s〉) into history, and returnA with message(i, history).

We defineE as the event that upon receiving message(i, open), the coins cannot be reconstructed by
the oracleI(crs, τ, ·). If eventE does not occur, then the adversary cannot distinguish the interaction with
the oracleUsers(crs, ·) and the interaction with the oracleI(crs, τ, ·) because the adversary’s views have
the same distribution. Next we still need to argue that the probability of the eventE is negligible.

Based on the discussion inRemark 3.6, there is only negligible probability thatv
∏n

j=1 u
mj

j = 1, i.e.
τv +

∑n
j=1 τujmj = 0. SoI(crs, τ, ·) can reconstructt, s except negligible probability, which means the

eventE can happen with only negligible probability. Therefore the adversaryA cannot distinguish the
interaction with the oracleUsers(crs, ·) and with the oracleI(crs, τ, ·). This completes the proof.

Theorem 3.13. The two-move signature generation protocol described inFigure 8 is equivocal (uncondi-
tionally).

Proof. Here we prove the lite blind signature based on Okamoto signature satisfies equivocality defined
in Definition 3.9. Generate(crs, τ) ← CRSgen(1λ); herecrs = 〈p, g1, g2,G1,G2,GT , ê, ψ, u2, v2〉, τ =
〈τu1 , τv1〉 such thatu1 = g

τu1
1 , v1 = g

τv1
1 . Sendcrs toA.

For completeness we first describe the oracleUsers(crs, ·).

- Upon receiving message(i,m, vk) from A, wherevk = 〈X〉 selectt, s
r← Zp and computeW ←

gmt
1 ut

1v
st
1 , record(i,m, vk,W, 〈t, s〉) into memoryhistory, and return message(i,W ) toA.

- Upon receiving message(i, 〈Y, l, r〉, sk) fromA, wheresk = 〈x〉, if there exists a record(i,m, vk,W,
〈t, s〉) in history andgx

2 = X, then computeσ ← 〈ς, α, β, V1, V2〉 whereς ← Y
1
ft , α ← Xfgfr

2 ,

β ← s+ l
t , V1 ← ψ(X)

1
f gh

1 , V2 ← Xfh+rgfrh
2 , andf, h

r← Zp. If verify(crs, vk,m, σ) = 1, then
update(i,m, vk,W, 〈t, s〉) in history into (i,m, vk,W, 〈ς, α, β, V1, V2〉, 〈t, s〉, 〈f, h〉), and returnA
with message(i, σ); otherwise returnA with message(i,⊥).

- Upon receiving message(i, open), returnA with message(i, history).

Next we constructI(crs, τ, ·).

- Upon receiving message(i,m, vk) fromA, run (W,aux) ← I1(crs, τ, vk) as: select̃m, t̃, s̃
r← Zp,

and computeW ← g emet1 uet1ves
et

1 , record(i,m, vk,W, τ, 〈m̃, t̃, s̃〉) into temp, and return message(i,W )
toA.

- Upon receiving message(i, 〈Y, l, r〉, sk) fromA, check whether the following conditions:

– Y 6= 1

– there exists a record(i,m, vk,W, τ, 〈m̃, t̃, s̃〉) in temp wheregx
2 = X andY = (Wvl

1)
1

x+r

hold,
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then computeσ ← 〈ς, α, β, V1, V2〉, whereς ← (gm
1 u1v

β
1 )

1
bfx+br , α← g

bfx+br
2 , V1 ← ψ(X)

1
bf g
bh
1 , V2 ←

X
bfbh+ br

bf gbrbh2 , andβ, f̂ , r̂, ĥ
r← Zp. If verify(crs, vk,m, σ) = 1 then update(i,m, vk,W, τ, 〈m̃, t̃, s̃〉)

in temp into (i,m, vk,W, τ, 〈m̃, t̃, s̃〉; 〈Y, l, r〉, sk; 〈ς, α, β, V1, V2〉, 〈f̂ , r̂, ĥ〉), and return message
(i, σ) toA; otherwise returnA with message(i,⊥).

- Upon receiving message(i, open),

– if there exists a record(i,m, vk,W, τ, 〈m̃, t̃, s̃〉) in temp then obtain〈t, s〉 ← I2(i, temp) where
I2 is defined as: selectt

r← Zp and computes from (m+ τu2 + sτv2)t = (m̃+ τu2 + s̃τv2)t̃, i.e.

s ← (em+τu2+esτv2 )et−(m+τu2 )t
τv2 t , and record(i,m, vk,W, 〈t, s〉) into history, and returnA with

message(i, history);
– if there exists a record(i,m, vk,W, τ, 〈m̃, t̃, s̃〉; 〈Y, l, r〉, sk; 〈ς, α, β, V1, V2〉, 〈f̂ , r̂, ĥ〉) in temp,

then run(〈t, s〉, 〈f, h〉)← I2(i, temp) as:

∗ computet, s based on equations(m + τu2 + sτv2)t = (m̃ + τu2 + s̃τv2)t̃ andβ = s + l
t ;

and we havet← (em+τu2+esτv2 )et+τv2 l
m+τu2+βτv2

, ands← β − l m+τu2+βτv2

(em+τu2+esτv2 )et+τv2 l
;

∗ computef based on equation̂fx + r̂ = f(x + r), and computeh based on equation
x
bf + ĥ = x

f + h; and we havef ← bfx+br
x+r andh← x

bf + ĥ− x(x+r)
bfx+br ;

and record(i,m, vk,W, σ, 〈t, s〉, 〈f, h〉) into history, and returnA with message(i, history).

We defineE as the event that upon receiving message(i, open), the coins cannot be reconstructed by
the oracleI(crs, τ, ·). If eventE does not occur, then the adversary cannot distinguish the interaction with
the oracleUsers(crs, ·) and the interaction with the oracleI(crs, τ, ·) because the adversary’s views have
the same distribution. Next we still need to argue that the probability of the eventE is negligible.

• In the case thatA expects(i,m, vk,W, 〈t, s〉):

– I(crs, τ, ·) can reconstruct〈t, s〉 except thatt = 0; note thatt is randomly selected fromZp and
Pr[t r← Zp : t = 0] = 1/p which is negligible.

• In the case thatA expects(i,m, vk,W, σ, 〈t, s〉, 〈f, h〉):

– t can be reconstructed except thatm+ τu2 + βτv2 = 0; note thatβ is randomly selected from
Zp afterI(crs, τ, ·) receivingm fromA, andPr[β r← Zp : m+ τu2 + βτv2 = 0] = 1/p which
is negligible;

– whent has been reconstructed,s can always be reconstructed because(m̃+ τu2 + s̃τv2)t̃+ τv2 l 6=
0; by contradiction, if(m̃+ τu2 + s̃τv2)t̃+ τv2 l = 0, thenWvl

1 = 1 which meansY = 1; how-
ever whenY = 1, message(i,⊥) will be returned, and no effort for constructing the coins now;
(the reason of excludingY = 1 is that in the oracleUsers(crs, ·), whenς = 1, no signature will

be generated;ς = Y
1
ft , which means whenY = 1 no signature will be produced.)

– note thatf(x + r) 6= 0; otherwise in oracleUsers(crs, ·), α = Xfgfr
2 = g

f(x+r)
2 = 1, and no

signature will be generated. Sox + r 6= 0 andf̂x + r̂ 6= 0 andf can always be reconstructed,
andh can be reconstructed when̂f 6= 0; notice thatf̂ is randomly selected fromZp, and
Pr[f̂ r← Zp : f̂ = 0] = 1/p which is negligible;

Based on the argument above, the eventE can happen with only negligible probability; so the adversary
A cannot distinguish the interactions with the oracleUsers(crs, ·) and with the oracleI(crs, τ, ·).
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4 UC Blind Signatures Definition

We formulate our blind signature ideal functionalityFBSIG in Figure 11. A previous formalization of the
blind signature primitive in the UC setting was given by [Fis06]. We would like to point out that our
formalization is based onFSIG as given in [Can05] while Fischlin’s is based onFSIG in [Can04]; there is
a number of other (small) differences that we review in this section. One other difference is that ourFBSIG

does not require strong unforgeability from the underlying signing mechanism; this makes the presentation
more general as strong unforgeability is not necessary for many applications of the blind signature primitive.
We explain inRemark 4.4how it is possible to readily modify ourFBSIG to cover the strong unforgeability
property.

As defined inDefinition 2.6, a blind signature scheme is a tupleΣ(BSIG) = 〈CRSgen, gen, U, S, verify〉
whereU, S is an interactive protocol between the user and the signer. In each round of the protocol the user
and the signer exchange messages denoted asUserMsgi,SignerMsgi (note thatU, S may extend to many
rounds). Given such protocol we can also define asign algorithm by collapsing the interactive protocol
U, S into a non-interactive algorithm (that simulates both parties). Given such a scheme each party in the
UC-framework will execute a programπΣ(BSIG) that is described inFigure 12.

Definition 4.1. A blind signature schemeΣ(BSIG) = 〈CRSgen, gen, U, S, verify〉 is UC-secure in the
CRS model ifπΣ(BSIG) realizes the ideal functionalityFBSIG of Figure 11in theFCRS-hybrid world, where
FCRS is an implementation of theCRSgen algorithm as given in the specification of the scheme.

We note that each party that acts as a user in our framework is programmed to ask for a single sig-
nature; we make this choice without loss of generality and for the sake of keeping the description of the
scheme simple. We prove that if a blind signature protocol securely realizesFBSIG, then the scheme is
also secure in the security model for blind signatures that was proposed on the concurrent security model of
[Oka06, HKKL07] (cf. Section 2.2.6andRemark 2.7. Recall that the definitions cover regular version of
unforgeability and strong version of blindness.).

The theorem below is a sanity-check that shows that the ideal functionality we propose is consistent with
some of the previous modelling attempts. Naturally the intention is that realizing the ideal functionality goes
much beyond the satisfaction of such previous game-based definitions. Still establishing results as the one
below is important and non-trivial due to the fact that ideal functionalities interact with the ideal-world
adversary substantially something that may (if they are badly designed) lead to disparities with game-based
definitions.

Theorem 4.2. If Σ(BSIG) can realize ourFBSIG in Figure 11, then it is secure in the blind signature
security model of [Oka06, HKKL07].

Proof. The general plan of the proof is as follows: we first assumeΣ(BSIG) is not secure according to
one of the previous definitions. Then we construct an environmentZ so that for allS it can distinguish the
interaction withπΣ(BSIG), from the interaction with the ideal world adversaryS andFBSIG.

(I) We first assume that there is a successful forgerF for Σ(BSIG).ThenZ internally runs an instance of
F . The environmentZ invokes partyS with (KeyGen, sid), and gives the returned verification algorithm
ver to F .

When the simulatedF outputsuser1 message on behalf of some partyU ,Z creates partyU ; it corrupts
partyU and forces it to send an outgoinguser1 message (throughZ) to partyS; whenF outputs auseri

message wherei > 1, Z forces partyU to send theuseri message to partyS; when the corrupted party
U receives an incomingsignerj message,Z forwards it to the simulatedF . Z usescounter1 to count
the number of successful finalsigner messages from the partyS. Z usescounter2 to count the number
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Functionality FBSIG

Key generation: Upon receiving(KeyGen, sid) from partyS, verify thatsid = (S, sid ′) for somesid ′. If not,
ignore the input. Else, forward(KeyGen, sid) to the adversaryS.

Upon receiving(Algorithms, sid , sig, ver) from the adversaryS, record〈sig, ver〉 in history(S), and
output(VerificationAlg, sid , ver) to partyS, wheresig is a signing algorithm, andver is a verification
algorithm.

Signature generation: Upon receiving(Sign, sid ,m, ver′) from partyU 6= S, wheresid = (S, sid ′), record
〈m, ver′〉 in history(U), and send(Sign, sid , U, ver′) to the adversaryS.

Upon receiving(Signature, sid , U,SignerComplete) from the adversaryS, whereU is a user that has
requested a signature, output(Signature, sid , U, completed) to partyS, and record〈U, completed〉 in
history(S).
Upon receiving(Signature, sid , U,UserComplete) from the adversaryS, whereU is a user that has
requested a signature, do: ifS is honest andver 6= ver′, output (Signature, sid ,⊥) to partyU and
halt. Else, use the information in bothhistory(U) andhistory(S) to obtain a valid signature: compute
σ ← sig(m, rnd) with the required random coinsrnd , and verify thatver′(m,σ) = 1; if so, output
(Signature, sid ,m, σ) to partyU , and record〈σ, rnd , done〉 into history(U) together with〈m, ver′〉
insidehistory(U). Else, output(Signature, sid , error) to partyU and halt.

Upon receiving(Signature, sid , U,SignerError) from the adversaryS, whereU is a user that has re-
quested a signature, output(Signature, sid , U,⊥) to partyS and halt.

Upon receiving(Signature, sid , U,UserError) from the adversaryS, whereU is a user that has requested
a signature, output(Signature, sid ,⊥) to partyU and halt.

Signature verification: Upon receiving(Verify, sid ,m, σ, ver′) from party V , wheresid = (S, sid ′), do:
if ver′ = ver, the signerS is not corrupted,ver(m,σ) = 1, and there is noU such thatm is
recorded withdone in history(U), then output(Verified, sid , error) to partyV and halt. Else, out-
put (Verified, sid ,m, ver′(m,σ)) to partyV .

Corruption: Upon receiving(Corrupt, sid , J) from S, return(Corrupted, sid , history(J)) to S. HereJ can
be partyU or partyS. Furthermore:

- after receiving(Corrupt, sid , U), upon receiving(Patch, sid , U,m) from the adversaryS, and no
〈U, completed〉 was recorded inhistory(S), then replace the old message〈m, ver′〉 in history(U)
with 〈m, ver′〉; once a subsequent(Signature, sid , U,SignerComplete) is received fromS, record
done in history(U) and〈U, completed〉 in history(S);

- after receiving(Corrupt, sid , S), upon receiving(Patch, sid , S, sig) from the adversaryS, then
replacesig in history(S) with sig.

Figure 11: Blind signature functionalityFBSIG.
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Blind Signature Protocol πΣ(BSIG)

CRS generation: crs ← CRSgen(1λ) whereλ is the security parameter.

Key generation: When partyS is invoked with input(KeyGen, sid) by Z, it verifies thatsid = (S, sid ′)
for somesid ′; If not, it ignores the input; Otherwise, it runs(vk, sk) ← gen(crs), lets the ver-
ification algorithm ver = verify(crs, vk, ·, ·), records〈sk, vk〉 in history(S), and sends output
(VerificationAlg, sid , ver) toZ.

Signature generation: When partyU is invoked with input(Sign, sid ,m, ver′) byZ wheresid = (S, sid ′) and
U 6= S, it computesUserMsg1 where some random coinsrndU,1 may be used, records〈m, ver′, rndU,1〉
in history(U), and sends outgoing(user1, sid ,UserMsg1) to partyS (throughZ). If party U cannot
computeUserMsg1, then sends output(Signature, sid ,⊥) toZ.

When partyU is invoked with incoming(signeri, sid ,SignerMsgi) from party S, where sid =
(S, sid ′), it computesUserMsgi+1 where some random coinsrndU,i+1 may be used, records〈rndU,i+1〉
in history(U), and sends outgoing(useri+1, sid ,UserMsgi+1) to party S. If U cannot compute
UserMsgi+1, then sends output(Signature, sid ,⊥) toZ.

When partyS is invoked with incoming(useri, sid ,UserMsgi) from partyU , wheresid = (S, sid ′), it
computesSignerMsgi where some random coinsrndS,i may be used, records〈rndS,i, U〉 in history(S),
and sends outgoing(signeri, sid ,SignerMsgi) to partyU . If S cannot computeSignerMsgi, then sends
output(Signature, sid , U,⊥) toZ.

When partyS is invoked with incoming(userlast, sid ,UserMsglast), which is the last user message from
partyU , wheresid = (S, sid ′), it computesSignerMsglast where some random coinsrndS,last may be
used, records〈rndU,last, U〉 in history(S), and sends outgoing(signerlast, sid ,SignerMsglast) to party
U , and sends output(Signature, sid , U, completed) toZ. If partyS cannot computeSignerMsglast, then
sends output(Signature, sid , U,⊥) toZ.

When partyU is invoked with incoming(signerlast, sid ,SignerMsglast), which is the last signer message
from partyS, wheresid = (S, sid ′), it computes signatureσ form where some random coinsrndU,last+1

may be used, records〈σ, rndU,last+1〉 in history(U). It verifies thatver′(m,σ) = 1; if so, sends output
(Signature, sid ,m, σ) toZ; if not, sends output(Signature, sid ,⊥) toZ.

Signature verification: When partyV is invoked with input(Verify, sid ,m, σ, ver′) by Z where sid =
(S, sid ′), it sends output(Verified, sid ,m, ver′(m,σ)) toZ.

Corruption: When party J is invoked with incoming (Corrupt, sid , J) by Z, it sends outgoing
(Corrupted, sid , history(J)) toZ. HereJ can be partyU or partyS.

Figure 12: Blind signature protocolπΣ(BSIG).
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of (Signature, sid , U, completed) messages obtained from partyS (as this party returns this value to the
subroutine output tape ofZ). When the simulatedF outputs a number of, sayL, forged message-signature
pairs,Z activatesL verifiers with(Verify, sid , m̂i, σ̂i, ver), wherei = 1, . . . , L; the verifiers will return
1 for the successful forged pairs.Z usescounter3 to count the number of1’s. If Z finds thatcounter3 ≤
counter2 it returns 0 otherwise it returns 1.

In the real world, becauseF is a successful forger, with non-negligible probability,Z will observe
counter3 > counter1. Moreover, note thatcounter1 = counter2 will hold in the real world, which is
based on the fact: when partyS sends his last outgoingsigner message to partyU , he also sends output
(Signature, sid , U, completed) to Z. It follows that whenZ operates in the real world it returns 1 with
non-negligible probability.

Next we turn to the ideal world. In the verification stage, when a verifier receives(Verify, sid , m̂i, σ̂i, ver),
he will forward such message toFBSIG, andFBSIG will check if the message is a forgery using the infor-
mation he possesses. Based on the definition ofFBSIG, such check will returnver(m̂i, σ̂i) to the verifier,
as longm̂i is recorded withdone. In case the message is not recorded withdone the two possible an-
swers fromFBSIG would be(Verified, sid, m̂i, σ̂i, 0) and(Verified, sid, m̂i, σ̂i, error). It follows that
counter1 will be incremented only due to messages recorded withdone. Given that all users are corrupted
on start there is only one possibility that a message is recorded withdone within FBSIG: S has patched the
particular message into some corrupted user instance insideFBSIG. Note that while unlimited patching is
allowed (and observe thatS may be capable of obtaining unlimited numbers of forged signatures) a message
is recorded withdone byFBSIG only after a message(Signature, sid, U,SignerComplete) is received by
S. The environment tracks the(Signature, sid, U,SignerComplete) messages intocounter2 thus we can
be certain that in the ideal world it would be impossible to havecounter3 > counter2. It follows that in
the ideal world,counter3 ≤ counter2; thus it follows that the environment always returns 0 and it is a
distinguisher between the real and the ideal world for any implementation ofS.

(II) Next assume there is a successful blindness distinguisherD for Σ(BSIG). ThenZ internally runs
an instance ofD. SuchD can be viewed as a signer insideZ. WhenD outputs the verification algo-
rithm ver and two messages〈m0,m1〉, Z activates two partiesUL andUR with (Sign, sid ,mb, ver) and
(Sign, sid ,m1−b, ver), respectively, whereb

r← {0, 1} is randomly chosen byZ.
SubsequentlyZ relays all messages communicated between the partyD and the two user protocols.

Next if Z obtains two valid responses(Signature, sid ,mb, σb), (Signature, sid ,m1−b, σ1−b) from the
two partiesUL andUR respectively,Z returns the two message-signature pairs〈m0, σ0;m1, σ1〉 to D.
OtherwiseZ returns〈⊥;⊥〉 toD. FinallyD returnsb∗ as the guess of the random coinb which is chosen
byZ. HereZ returnsb∗ =? b.

Consider now thatD is a successful blindness distinguisher forΣ(BSIG); in the real world,D will
guess the coinb with non-negligible advantage. However, in the ideal world, no matter how the simulatorS
is implemented we observe that the bitb remains secured inZ and the ideal functionalityFBSIG does not
communicate any information related tob to S. Moreover, even ifS jams one of the user instantiations the
environmentZ following its program will only return〈⊥;⊥〉 to the distinguisher; it follows that the coinsb
are independent fromD andS, and even an unboundedD cannot guess suchb with probability better than
1/2. It follows thatZ is a distinguisher between the real and the ideal worlds.

Remark 4.3. We can easily modify the functionalityFBSIG in Figure 11to incorporate Canetti’sFSIG in
[Can05] as a special case (refer toFigure 1in page7) by adding the following subitem into “Signature
generation” item inFBSIG.

Upon receiving(Sign, sid ,m) from partyS wheresid = (S, sid ′), letσ = sig(m, rnd) where some
random coinsrnd may be used, and verify thatver(m,σ) = 1. If so, output(Signature, sid ,m, σ)
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to partyS, and record〈m,σ, rnd , done〉 into history(S). Else, output(Signature, sid ,⊥) to party
S and halt.

Remark 4.4. The ideal functionalityFBSIG in Figure 11does not cover strong unforgeability. It is simple
to modify it so that the property can be achieved.

We have to incorporate the following modifications in the program of the ideal functionality inFigure 11.
First, we need stricter check in the signature verification stage, i.e.(m,σ) is not recorded withdone:

Upon receiving(Verify, sid ,m, σ, ver′) from partyV , wheresid = (S, sid ′), do: if ver′ = ver,
the signerS is not corrupted,ver(m,σ) = 1, and (m,σ) is not recorded withdone, then output
(Verified, sid , error) to partyV and halt. Else, output(Verified, sid ,m, ver′(m,σ)) to partyV .

Second, when the user is corrupted, the functionality expects that the ideal adversary will patch(m,σ), not
onlym as before.

- after receiving(Corrupt, sid , U), upon receiving(Patch, sid , U,m, σ) from the adversaryS,
and no〈U, completed〉 was recorded inhistory(S), then replace the old message〈m, ver′〉
in history(U) with 〈m,σ, ver′〉; once a subsequent(Signature, sid , U,SignerComplete) is
received from theS, recorddone in history(U) and〈U, completed〉 in history(S);

5 Design Methodology for Adaptively Secure UC Blind Signatures

In this section we will present our design methodology for constructing UC-blind signatures secure against
adaptive adversaries, i.e the protocol obtained by our method can UC-realize the blind signature functionality
FBSIG (refer to Figure 11). Our design reveals the exact components required for designing UC blind
signatures in the adaptive security setting. In our construction we will employ a lite blind signature and we
will operate in a hybrid world where the following ideal functionalities exist:FCRS,FRU

SVZK,F
RS
SPZK; FCRS

will be an appropriate common reference string functionality; on the other hand,FRU
SVZK,F

RS
SPZK will be two

differentzero-knowledge functionalities that are variations of the standard multi-session ZK functionality:
(1)FRU

SVZK is the “single verifier zero-knowledge functionality for the relationRU ” defined inFigure 13and,
(2)FRS

SPZK is the “single-prover zero-knowledge functionality for the relationRS” defined inFigure 14.
These two functionalities differ from the multi-session zero-knowledge ideal functionalityFMZK (i.e.

F̂ZK in figure 7, page 49, in [CLOS02]) in the following manner:FSVZK assumes that there is only a
single verifier that potentially many provers wish to prove to it a certain type of statements; on the other
hand,FSPZK assumes that only a single prover exists that potentially wishes to convince many verifiers
regarding a certain type of statement. Our setting is different from previous UC-formulations of ZK where
multiple provers wish to convince multiple verifiers at the same time; while we could use such stronger
primitives in our design, recall that we are interested in the simplest possible primitives that can instantiate
our methodology as these highlight minimum sufficient requirements for blind signature design in the UC
setting. Moreover, recall that in a single blind signature session we have a single signer interacting with
many users.

5.1 Generic Construction in the(FCRS,FSVZK,FSPZK)-Hybrid World

We proceed next to describe our generic construction. InFigure 15, we describe a UC blind signature
protocol in the(FCRS,FRU

SVZK,F
RS
SPZK)-hybrid world that is based on an equivocal lite blind signature pro-

tocol. The relations parameterized with the ZK functionalities areRU = {((crs, vk,u), (m, ρ1)) | u =
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Functionality FR
SVZK

FR
SVZK is parameterized by a binary relationR.

Proof stage: Upon receiving(ProveSVZK, sid , Pi, x, w) from partyPi, verify that sid = (V, sid ′) for some
sid ′. If not, then ignore the input. Else, if(x,w) ∈ R then record〈x,w〉 into history(Pi), and forward
(ProveSVZK, sid , Pi, x) to the adversaryS.

Upon receiving (ProveSVZK, sid , Pi,VerifierComplete) from the adversary S, output
(VerifiedSVZK, sid , Pi, x) to partyV . Else, if receiving(ProveSVZK, sid , Pi,VerifierError) from the
adversaryS, output(VerifiedSVZK, sid , Pi,⊥) to partyV and halt.

Corruption: Upon receiving (CorruptProverSVZK, sid , Pi) from the adversary S, return S
(CorruptedProverSVZK, sid , history(Pi)).
After the successful corruption ofPi, upon receiving(PatchSVZK, sid , Pi, x

′, w′) from the adversary
S, if (x′, w′) ∈ R and no output(VerifiedSVZK, sid , Pi, ...) was returned to partyV yet, then output
(VerifiedSVZK, sid , Pi, x

′) to partyV . Else, if(x′, w′) 6∈ R and no output(VerifiedSVZK, sid , Pi, ...)
was returned to partyV yet, then output(VerifiedSVZK, sid , Pi, error) to partyV and halt.

Figure 13: Single-verifier zero-knowledge functionalityFR
SVZK.

Functionality FR
SPZK

FR
SPZK is parameterized by a binary relationR.

Proof stage: Upon receiving(ProveSPZK, sid , Vi, x, w) from partyP , verify that sid = (P, sid ′) for some
sid ′. If not, then ignore the input. Else, if(x,w) ∈ R then record〈Vi, x, w〉 in history(P ), and forward
(ProveSPZK, sid , Vi, x) to the adversaryS.

Upon receiving (ProveSPZK, sid , Vi,VerifierComplete) from the adversary S, output
(VerifiedSPZK, sid , Vi, x) to partyVi. Else, if receiving(ProveSPZK, sid , Vi,VerifierError) from the
adversaryS, output(VerifiedSPZK, sid , Vi,⊥) to partyVi and halt.

Corruption: Upon receiving (CorruptProverSPZK, sid) from the adversary S, return S
(CorruptedProverSPZK, sid , history(P )).
After the corruption has occurred successfully, upon receiving(PatchSPZK, sid , Vi, x

′, w′) from the
adversaryS, if (x′, w′) ∈ R and no output(VerifiedSPZK, sid , Vi, ...) was returned to partyVi

yet, then output(VerifiedSPZK, sid , Vi, x
′) to party Vi. Else, if (x′, w′) 6∈ R and no output

(VerifiedSPZK, sid , Vi, ...) was returned to partyVi yet, then output(VerifiedSPZK, sid , Vi, error)
to partyVi and halt.

Figure 14: Single-prover zero-knowledge functionalityFR
SPZK.
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lbs1(crs, vk,m; ρ1)} andRS = {((crs, vk,u, s), (sk, ρ2)) | s = lbs2(crs, vk,u, sk; ρ2) ∧ (vk, sk) ∈
KEYPAIR}. We remark that the protocol inFigure 15is non-interactive; due to the usage of the ideal
functionalitiesFRU

SVZK andFRS
SPZK all the communication the users and the signer is relayed through the

ideal functionalities.

Protocol πΣ(BSIG) in the (FCRS,FRU

SVZK,F
RS

SPZK)-Hybrid Model

CRS generation: crs ← CRSgen(1λ) whereλ is the security parameter.

Key generation: When partyS is invoked with input(KeyGen, sid) by Z, it verifies thatsid = (S, sid ′) for
somesid ′; If not, it ignores the input; Otherwise, it runs(vk, sk) ← gen(crs), lets the verification
algorithmver = verify(crs, vk, ·, ·), and sends output(VerificationAlg, sid , ver) toZ.

Signature generation: On input (Sign, sid ,m, ver′) by Z where sid = (S, sid ′), the party U ob-
tains vk′ from ver′, selects randomρ1 and computesu ← lbs1(crs, vk′,m; ρ1) and sends
(ProveSVZK, sid , U, (crs, vk′,u), (m, ρ1)) toFRU

SVZK whereFRU

SVZK is parameterized by the relationRU .

Upon receiving(VerifiedSVZK, sid , U, (crs, vk′,u)) fromFRU

SVZK, the partyS verifiesvk′ = vk. If not,
then the partyS outputs(Signature, sid , U,⊥) to Z. Else the partyS selects randomρ2 and computes
s ← lbs2(crs, vk′,u, sk; ρ2) and sends(ProveSPZK, sid , U, (crs, vk′,u, s), (sk, ρ2)) to FRS

SPZK where
FRS

SPZK is parameterized by the relationRS ; and outputs(Signature, sid , U, completed) toZ.

Upon receiving(VerifiedSVZK, sid , U,⊥) from FRU

SVZK, the partyS outputs(Signature, sid , U,⊥) to
Z.

Upon receiving (VerifiedSPZK, sid , U, (crs, vk′,u, s)) from FRS

SPZK, the party U selects random
ρ3 and computesσ ← lbs3(crs, vk′,m, ρ1,u, s; ρ3), and verifiesver′(m,σ) = 1; if so, outputs
(Signature, sid ,m, σ) toZ; if not, outputs(Signature, sid ,⊥) toZ.

Upon receiving(VerifiedSPZK, sid , U,⊥) fromFRU

SVZK, the partyU outputs(Signature, sid ,⊥) toZ.

Signature verification: When partyV is invoked with input(Verify, sid ,m, σ, ver′) by Z where sid =
(S, sid ′), it outputs(Verified, sid ,m, ver′(m,σ)) toZ.

Corruption: When party J is invoked with incoming (Corrupt, sid , J) by Z, it sends outgoing
(Corrupted, sid , history(J)) toZ. HereJ can be partyU or partyS.

Figure 15: Blind signature protocolπΣ(BSIG) in the(FCRS,FRU
SVZK,F

RS
SPZK)-hybrid model based on a lite-

blind signature scheme〈CRSgen, gen, lbs1, lbs2, lbs3, verify〉.

Next we will prove a theorem that the blind signature protocol inFigure 15can realize functionality
FBSIG. Before we prove the theorem, we introduce a useful lemma as below which will help us to organize
the proof. Note that we can extend such lemma to general setting.

Lemma 5.1. Assume that

(1) ∃S1,∀Z, EXEC
FCRS,FRU

SVZK,FRS
SPZK

πΣ(BSIG),Z = EXECF1
πd,S1,Z , whereF1 is dummy blind signature functionality

(cf. Figure 16);

(2) for Si, ∃Si+1, ∀Z,
∣∣∣EXECFi

πd,Si,Z − EXECFi+1

πd,Si+1,Z

∣∣∣ ≤ εi, where1 ≤ i ≤ 4;

(3) F5 = FBSIG.

Then we have∃S5, ∀Z,

∣∣∣∣EXEC
FCRS,FRU

SVZK,FRS
SPZK

πΣ(BSIG),Z − EXECFBSIG
πd,S5,Z

∣∣∣∣ ≤∑4
i=1 εi.
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Dummy Blind Signature Functionality F1

Key generation: Upon receiving(KeyGen, sid) from partyS, verify thatsid = (S, sid ′) for somesid ′. If not,
ignore the input. Else, forward(KeyGen, sid) to the adversaryS.

Upon receiving(VerificationAlg, sid , ver) from the adversaryS, recordver in history(S), and output
(VerificationAlg, sid , ver) to partyS, wherever is a verification algorithm.

Signature generation: Upon receiving(Sign, sid ,m, ver′) from partyU 6= S, wheresid = (S, sid ′), record
〈m, ver′〉 in history(U), and send(Sign, sid , U,m, ver′) to the adversaryS.

Upon receiving(Signature, sid , S, U, completed) from the adversaryS, whereU is a user that has
requested a signature, output(Signature, sid , U, completed) to partyS, and record〈U, completed〉 in
history(S).
Upon receiving(Signature, sid , U,m, σ) from the adversaryS, whereU is a user that has requested
a signature, output(Signature, sid ,m, σ) to partyU , and record〈σ, done〉 next to 〈m, ver′〉 inside
history(U).

Upon receiving(Signature, sid , S, U,⊥) from the adversaryS, whereU is a user that has requested a
signature, output(Signature, sid , U,⊥) to partyS and halt.

Upon receiving(Signature, sid , U,⊥) from the adversaryS, whereU is a user that has requested a sig-
nature, output(Signature, sid ,⊥) to partyU and halt.

Signature verification: Upon receiving(Verify, sid ,m, σ, ver′) from partyV , wheresid = (S, sid ′), send
(Verify, sid , V,m, σ, ver′) to the adversaryS.

Upon receiving(Verified, sid , V,m, φ) from the adversaryS, output(Verified, sid ,m, φ) to partyV .

Corruption: Upon receiving(Corrupt, sid , J) from S, return(Corrupted, sid , history(J)) to S. HereJ can
be partyU or partyS.

Figure 16: Dummy blind signature functionalityF1 in Lemma 5.1.

Proof. The proof is straightforward. Consider∃S1, ∀Z, EXEC
FCRS,FRU

SVZK,FRS
SPZK

πΣ(BSIG),Z = EXECF1
πd,S1,Z ; For

this S1, there existsS2, for all Z,
∣∣∣EXECF1

πd,S1,Z − EXECF2
πd,S2,Z

∣∣∣ ≤ ε1; So we can have∃S2, ∀Z,∣∣∣∣EXEC
FCRS,FRU

SVZK,FRS
SPZK

πΣ(BSIG),Z − EXECF2
πd,S2,Z

∣∣∣∣ ≤ ε1. Similarly,∃S5, ∀Z,

∣∣∣∣EXEC
FCRS,FRU

SVZK,FRS
SPZK

πΣ(BSIG),Z − EXECF5
πd,S5,Z

∣∣∣∣
≤ ε1 + · · ·+ ε4. Note thatF5 = FBSIG. We complete the proof.

Theorem 5.2. Given a signature generation protocol that is an equivocal lite blind signature, the protocol
πΣ(BSIG) in Figure 15securely realizesFBSIG in the(FCRS,FRU

SVZK, F
RS
SPZK)-hybrid model with advantage

Advlbs
eq + Advlbs

luf , whereAdvlbs
eq andAdvlbs

luf are the equivocality distance and lite-unforgeability distance for
the underlying lite blind signature.

Proof. In order to prove that EXEC
FCRS,FRU

SVZK,FRS
SPZK

πΣ(BSIG),Z ≈ EXECFBSIG
πd,S,Z , we use the proof strategy explored

in Lemma 5.1. We develop several bridge hybrid worlds between the(FCRS,FRU
SVZK,F

RS
SPZK)-hybrid world

and the ideal world, and define the ensemble of random variables ofZ ’s output of each bridge hybrid worlds
as EXECFi

πd,Si,Z , i = 1, 2, . . . , 5, whereπd is the dummy protocol same as that in the ideal world. Next we

prove EXEC
FCRS,FRU

SVZK,FRS
SPZK

πΣ(BSIG),Z ≈ EXECF1
πd,S1,Z ≈ · · · ≈ EXECF5

πd,S5,Z ≈ EXECFBSIG
πd,S,Z . In our sequence
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of games we introduce a sequence of functionalities called “vault” which gradually becomes from dummy
blind signature functionalityF1 into the ideal functionalityFBSIG = F5 across a sequence of five steps.
At same time the corresponding simulator becomes fromS1 into ideal world simulatorS = S5. We also
explicitly present the construction ofS after the proof.

Note that we assume the underlying lite blind signature satisfies both lite-unforgeability and equivocality.

EXECF1
πd,S1,Z . Here the vaultF1, i.e. the dummy blind signature functionality, is between the dummy

partiesS,U, V and the simulatorS1; the vaultF1 just forwards the messages between the dummy
parties andS1, and at same time does some “basic” recording. Please refer toFigure 16.

The simulatorS1 simulates exactly the protocolπΣ(BSIG) in the (FCRS, FRU
SVZK,F

RS
SPZK)-hybrid

model except that all inputs/outputs of the parties of protocolπΣ(BSIG) in the(FCRS,FRU
SVZK,F

RS
SPZK)-

hybrid model are from/to the vaultF1 instead of from/toZ.

Analysis:

Note thatS1 restates the whole execution in the(FCRS,FRU
SVZK,F

RS
SPZK)-hybrid world. So we have

EXEC
FCRS,FRU

SVZK,FRS
SPZK

πΣ(BSIG),Z = EXECF1
πd,S1,Z .

EXECF2
πd,S2,Z . Here the vaultF2, operating like the vaultF1, forwards the messages between the dummy

parties and the simulatorS2, and records some basic information. Furthermore,F2 needs to deal with
the patching form as that inFBSIG: if there is no〈U, completed〉 in history(S), the vaultF2 will
store the patchedm into history(U) (note that if there is old〈m, ver′〉 in history(U), then replace
the oldm with this patchedm); now if receives message(Signature, sid , U, completed) from S2,
thenF2 stores a markdone into history(U).

S2 is same asS1 to simulate the whole(FCRS,FRU
SVZK,F

RS
SPZK)-hybrid world except: in the case that

the user is corrupted,Z sends((crs, vk,u), (m, ρ1)) toFRU
SVZK on the behalf of the corrupted userU ;

if ((crs, vk,u), (m, ρ1)) ∈ RU , thenS2 patchesm intoF2.

Analysis:

This is a preparation step for the next step and the modification has no effect onZ ’s output. So
EXECF1

πd,S1,Z = EXECF2
πd,S2,Z .

EXECF3
πd,S3,Z . Here, we modify the signature verification and we use the same one used in the ideal world.

Now the vaultF3 will be in charge of the verification: when receiving(Verify, sid ,m, σ, ver′) from
the dummy verifierV , if ver′ = ver, the signerS is not corrupted,ver(m,σ) = 1, andm is not
recorded withdone in the table, thenF3 outputs(Verified, sid , error) to the dummy partyV and
halts, otherwise(Verified, sid ,m, ver′(m,σ)) will be returned to the dummyV . From now on the
Verify andVerified messages will not appear between the simulatorS3 and the vaultF3.

Analysis:

We defineE as the event that in theF2-hybrid world, the signer has generated the verification
algorithm ver, and some partyV is activated with a verification request(Verify, sid,m, σ, ver),
wherever(m,σ) = 1, andS is honest at this moment, andm has not been signed. Note that
eventE can also be defined in theF3-hybrid world. The only difference between the two worlds,
i.e. theF2-hybrid world and theF3-hybrid world, is the verification stage. If eventE does not
occur, then EXECF2

πd,S2,Z = EXECF3
πd,S3,Z . Based on the difference lemma (refer to [Sho04]),

|EXECF2
πd,S2,Z − EXECF3

πd,S3,Z | ≤ Pr[E]. Now we still need to argue thatPr[E] is negligible.
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We now construct an algorithmB to output(k + 1) message-signature pairs afterk queries to the
signing oracle. Here the algorithmB is supplied with a verification keyvk and is allowed to access to
the signing oracle as defined in the lite-unforgeability model.

B runs a simulatedS2 and a simulatedF2. Note that now the simulatorS2 has to simulate partyS
without knowing the signing keysk.

1. WhenZ activates some partyS with input (KeyGen, sid) with sid = (S, sid′) for somesid′,

B returnsver to Z, wherever
def= verify(crs, vk, ·, ·). Note thatvk is from the input ofB as

described before.

2. When the simulatedS receives(VerifiedSVZK, sid , U, (crs, vk′,u)) fromFRU
SVZK, in the case

thatvk′ = vk, S2 needs to simulateFRS
SPZK to send(ProveSPZK, sid , U, (crs, vk,u, s)) to Z.

HoweverS2 cannot produces by itself because nowS2 does not have the signing keysk. Note
thatS2 simulatesFRU

SVZK and〈m, ρ1〉 can always be obtained;S2 queries the signing oracle with
〈m, ρ1〉 and obtainss.

3. After finishing the above step, the simulatorS2 letsFRS
SPZK send(ProveSPZK, sid , U, (crs, vk,u, s))

toZ. In the case that the user is honest, the user will produce signatureσ for m; B records such
(m,σ) pairs. In the case that the user is corrupted,B computesσ = lbs3(crs, vk,m, ρ1,u, s; ρ3)
by randomly selectingρ3; B records(m,σ).

4. WhenZ activates some partyV with input (Verify, sid,m, σ, ver′), B checks whether(m,σ)
is a forgery, i.e. ifver′ = ver, ver′(m,σ) = 1, andm has never been queried to the signing
oracle. If(m,σ) is a forgery,B outputs the pair and all recorded pairs, say the number isk, and
halts. IfS2 is asked byZ to corrupt the signer thenB halts.

Note that whenever the eventE occurs, algorithmB can produce a successful one-more forgery.

ThereforePr[E] = Advlbs
luf . So, we have

∣∣∣EXECF2
πd,S2,Z − EXECF3

πd,S3,Z

∣∣∣ ≤ Advlbs
luf .

EXECF4
πd,S4,Z . Here we let the simulatorS4 send the vaultF4 the pair〈sig, ver〉 in the key generation, i.e.
S4 sends(Algorithms, sid , sig, ver) toF4. Now the vaultF4 records〈sig, ver〉 into history(S).

In the case that the signer is corrupted, insideS4, whenZ sends((crs, vk,u, s), (sk, ρ2)) to FRS
SPZK

on behalf of the corrupted signerS, S4 definessig
def= sign(crs, vk, sk, ·, ·) and patchessig intoF4.

NowF4 deals with the patching forsig as inFBSIG: record the patchedsig into history(S); if there
is old sig, then replace the oldsig with this patchedsig.

Analysis:

This is a preparation step for the next step and the modification has no effect onZ ’s output. So
EXECF3

πd,S3,Z = EXECF4
πd,S4,Z .

EXECF5
πd,S5,Z . When the vaultF5 receives(Sign, sid ,m, ver′) from each dummy userU , F5 “blocks” m

and sends(Sign, sid , U, ver′) to S5; nowS5 will simulate the userU without the realm (as opposed
to the realm used inS4). Note that the underlying lite blind signature is equivocal, so nowS5 can
obtain some “help” from the machineI = (I1, I2) which is defined inDefinition 3.9. Please refer to
a full description of the simulator immediately after the proof. Here we only give the difference from
the previous simulatorS4:

Once receiving(Signature, sid , U, ver′) fromF5, S5 runsI1 with trapdoorτ andvk′ and obtainsu
with some auxiliary information, i.e.(u, aux)← I1(crs, τ, vk′), wherevk′ is obtained fromver′; S5
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records〈U, vk′,u, aux〉 into temp. ThenS5 will simulateFRU
SVZK to send(ProveSVZK, sid , U, (crs, vk′,u))

toZ.

If Z corruptsU afterZ receives(ProveSVZK, sid , U, (crs, vk′,u)) from FRU
SVZK, S5 corrupts the

dummyU and obtains its inputm fromF5; thenS5 recordsm into temp together with〈U, vk′,u, aux〉,
and runsρ1 ← I2(U, temp). S5 returnsZ 〈m, ρ1〉 as the internal state ofU .

If Z corruptsU afterZ ’s receiving(Signature, sid ,m, σ), S5 corrupts the dummyU and obtains
〈m,σ, γ〉 fromF5; thenS5 records〈s, sk, ρ2〉 and〈m,σ, γ〉 into temp together with〈U, vk′,u, aux〉;
note that ifS is not corrupted,〈s, sk, ρ2〉 is produced by the simulatedS, and if S is corrupted,
〈s, sk, ρ2〉 can be obtained fromZ. NowS5 runs(ρ1, ρ3) ← I2(U, temp) and returnsZ 〈m, ρ1, ρ3〉
as the internal state ofU .

Analysis:

AssumeZ can distinguish the two worlds, theF4-hybrid world and theF5-hybrid world, with non-
negligible probability. We can construct an attackerE to break the equivocality property of the under-
lying lite blind signature with the same probability.

First, we defineEO whereE is obtained by modifying theF4-hybrid world with certain operations
with querying oracleO:

• WhenZ sends(Sign, sid ,m, ver′) to a dummy userU , nowE queriesO with (U,m, vk) and
receives(U,u); S4 simulatesFRU

SVZK to send(ProveSVZK, sid , (crs, vk,u)) toZ;

• WhenZ returnsVerifierComplete to FRU
SVZK which is simulated insideS4, S4 simulates the

honest signerS to computes ← lbs2(crs, vk,u, sk; ρ2) whereρ2 is randomly chosen; thenS4

simulatesFRS
SPZK to send(ProveSPZK, sid , (crs, vk, s)) toZ; if Z returnsVerifierComplete to

FRS
SPZK, thenE queriesO with (U, s, ρ2, sk) and receives(U, σ); E returns(Signature, sid ,m, σ)

toZ on behalf of the dummy user.

When the signer is corrupted,Z may send(ProveSPZK, sid , (crs, vk, s), (sk, ρ2)) to FRS
SPZK

which is simulated insideS4, if ((crs, vk, s), (sk, ρ2)) ∈ RS thenS4 patchessk to F4; now E
queriesO with (U, s, ρ2, sk) and receives signatureσ, and returns the signature toZ on behalf
of the dummy user.

• Once receiving(Corrupt, sid , U) fromZ, S4 needs to return the internal state ofU toZ; now
E queriesO with (U, open) and obtains the internal state;S4 then returns the internal state toZ.

Observe thatEUsers(crs,·) is exactly theF4-hybrid world, andEI(crs,τ,·) is exactly theF5-hybrid world.
If Z can distinguish the two worlds, thenE can break the equivocality of the underlying lite blind

signature. So we obtain
∣∣∣EXECF4

πd,S4,Z − EXECF5
πd,S5,Z

∣∣∣ ≤ Advlbs
eq .

Note that the vaultF5 is exactly the functionalityFBSIG andS5 is same asS in the ideal world. So
EXECFBSIG

πd,S,Z = EXECF5
πd,S5,Z .

Based on all discussions above, we obtain

∣∣∣∣EXECFBSIG
πd,S,Z − EXEC

FCRS,FRU
SVZK,FRS

SPZK
πΣ(BSIG),Z

∣∣∣∣ ≤ Advlbs
luf+Advlbs

eq ,

whereAdvlbs
luf is the lite-unforgeability advantage,Advlbs

eq is the equivocality advantage.

The construction of the ideal world simulator S. Based on the gradual modification of the simulator
in the proof above, we finally obtain the ideal functionalityS. Here we explicitly give the description of
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the simulatorS. To make the description clearer, we also give description of the dummy parties and the
functionality.

Setup:
The simulatorS generates the CRS for each party internally simulated, and keeps the trapdoor for himself:
(crs, τ) ← CRSgen(1λ). Define two relationsRU = {((crs, X,W ), (m, t, s)) | W = gmt

1 ut
1v

st
1 } and

RS = {((crs, X,W, Y, l, r), x) | Y = (Wvl
1)

1
x+r ∧X = gx

2}.

Simulation of key generation:

(1) In the ideal world, when the dummy signerS receives an input(KeyGen, sid) from the environment
Z, it sends this message toFBSIG. The functionalityFBSIG then forwards(KeyGen, sid) to the simulator
S. Once receiving this message fromFBSIG, S lets the simulated copy of the partyS run (vk, sk) ←
gen(crs), defines the signing algorithmsig

def= sign(crs, vk, sk, ·, ·) and the verification algorithmver
def=

verify(crs, vk, ·, ·); thenS sends message(Algorithms, sid , sig, ver) to FBSIG. Now the functionality
FBSIG will record〈sig, ver〉 in history(S), and send(VerificationAlg, sid , ver) to the dummy signerS,
and then to the environmentZ.
(1+) Now if S receives(Corrupt, sid , S) fromZ, returns〈sig, ver〉 toZ. Note that in this stage no signature
has been generated, and no involved random coins will be sent toZ whenS is corrupted.

Since this point,Z may play the corruptedS with different 〈vk, sk〉 and some random coinsρ2 to
respond to each different user request message. Note that in the future when the corruptedS (controlled
by Z) wants to respond to the user’s request(VerifiedSVZK, sid , U, (crs, vk,u)) from FRU

SVZK, it needs
to send(ProveSPZK, sid , U, (crs, vk,u, s), (sk, ρ2)) toFRS

SPZK, wheres = lbs2(crs, vk,u, sk; ρ2). When
FRS

SPZK returns(VerifiedSPZK, sid , U, (crs, vk,u, s)) to the userU , i.e. ((crs, vk,u, s), (sk, ρ2)) ∈ RS ,

the simulatorS can obtain(sk, ρ2) and definesig
def= sign(crs, vk, sk, ·, ·) and patchsig intoFBSIG. Note

that without this patching,Z may distinguish the two worlds based on the output ofU .

Simulation of signature generation:
Here we need to simulate the userU and the signerS. The simulation of the partyU is very complicated,
while that of partyS is simple. The main reason is that: the realm is withheld byFBSIG and the simulator
S has to simulateU without suchm, and when partyU is corrupted the simulatorS has to equivocate the
generated transcripts; while the signing algorithmsig has been known by the simulator, and the partyS can
be simulated honestly. Notice that though the realm is not given,S can access to machineI = (I1, I2)
defined inDefinition 3.9because the underlying lite blind signature is equivocal. We give details below.

(2) When the dummy userU receives an input(Sign, sid ,m, ver′) from the environmentZ, it sends
this message toFBSIG, FBSIG records〈m, ver′〉 in history(U) and forwards(Sign, sid , ver′, U) to the
simulatorS. Once receiving this message fromFBSIG, S obtainsvk′ from ver′ and runs(u, aux) ←
I1(crs, τ, vk′), record〈U, vk′,u, aux〉 into temp. ThenS simulatesFRU

SVZK to send the message(ProveSVZK,
sid , U, (crs, vk′,u)) toZ.
(2+) Now if the simulatorS receives(Corrupt, sid , U) from Z (i.e. afterZ received theProveSVZK
message). The simulatorS reconstructs the simulated userU ’s internal state〈m, ρ1〉 as follows:S sends
theCorrupt message toFBSIG and obtains the inputm of the dummyU , and addsm into temp, and then
runsρ1 ← I2(U, temp). S returns〈m, ρ1〉 toZ.

Since this point,Z may play the corruptedU with differentm and some random coinsρ1, and the
corruptedU sends(ProveSVZK, sid , (crs, vk′,u), (m, ρ1)) to theFRU

SVZK whereu = lbs1(crs, vk′,m; ρ1).
WhenFRU

SVZK returns(VerifiedSVZK, sid , U, (crs, vk′,u)) to the simulated signerS, i.e. ((crs, vk′,u), (m, ρ1))
∈ RU , the simulatorS will patchm intoFBSIG. Note that without this patching,Z may distinguish the two
worlds based on the signature verification: valid signature form will be rejected in the ideal world.
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(3) WhenZ returns(ProveSVZK, sid , U,VerifierError) toFRU
SVZK, FRU

SVZK sends(ProveSVZK, sid , U,⊥) to
the simulatedS, andS now sends(Signature, sid , U,SignerError) to FBSIG; whenFBSIG receives this
message, it will output(Signature, sid , U,⊥) to the dummy partyS, then toZ. Else whenZ returns
(ProveSVZK, sid , U,VerifierComplete) to FRU

SVZK, FRU
SVZK sends(ProveSVZK, sid , U, (crs, vk′,u)) to the

simulatedS, now S randomly selectsρ2 and computess ← lbs2(crs, vk′, u, sk; ρ2), andS now sends
(Signature, sid , U,SignerComplete) toFBSIG; whenFBSIG receives this message, it records〈U, completed〉
in history(S) and outputs(Signature, sid , U, completed) to the dummy partyS, then toZ. At the
same timeS sends(ProveSPZK, sid , U, (crs, vk′,u, s), (sk, ρ2)) toFRS

SPZK andFRS
SPZK sends(ProveSPZK,

sid , U, (crs, vk′,u, s)) toZ.
(3+) Now if the simulatorS receives(Corrupt, sid , S) fromZ (i.e.Z received theProveSPZK message);
S directly returns the(sk, ρ2) as the internal state of the simulated signerS toZ.

In the future,Z may supply the corruptedS with different key-pair〈vk, sk〉, and different random coins
ρ2 for different user request as discussed in(1+).

(4) WhenZ returns(ProveSPZK, sid , U,VerifierError) toFRS
SPZK, FRS

SPZK sends(ProveSPZK, sid , U,⊥) to
the simulatedU , S will send(Signature, sid , U,UserError) toFBSIG; whenFBSIG receives this message,
it will output (Signature, sid ,⊥) to the dummy partyU , then toZ. Else whenZ returns(ProveSPZK, sid ,
U,VerifierComplete) to FRS

SPZK, FRS
SPZK sends(ProveSPZK, sid , U, (crs, vk′,u, s)) to the simulatedU ,

thenU randomly selects̃ρ3 and computes̃σ ← lbs3(crs, vk′,u, s, m̃, ρ̃1; ρ̃3); if ver′(crs, m̃, σ̃) = 1,
thenS now sends(Signature, sid , U,UserComplete) to FBSIG; now FBSIG will select γ and use the
recordedsig to computeσ ← sig(m, γ), record〈σ, γ, done〉 next to〈m, ver′〉 insidehistory(U), and out-
put (Signature, sid ,m, σ) to the dummy userU , then toZ. If ver′(crs, m̃, σ̃) 6= 1, thenS now sends
(Signature, sid , U,UserError) to FBSIG, and nowFBSIG sends(Signature, sid ,⊥) to the dummyU ,
then toZ.
(4+) Now if the simulatorS receives(Corrupt, sid , U) from Z (i.e. the dummyU has outputted a valid
signatureσ for m). S reconstructs the simulated userU ’s internal state〈m, ρ1, ρ3〉 as follows:S sends the
Corrupt message toFBSIG and obtainsm,σ, γ of the dummyU , and then records〈s, sk, ρ2〉 and〈m,σ, γ〉
into temp, and runs(ρ1, ρ3)← I2(U, temp). S returns〈m, ρ1, ρ3〉 toZ.

(5) If the signer is corrupted at the beginning, i.e. no(KeyGen, sid) was sent out fromZ, in futureZ may
play the corruptedS with different 〈vk, sk〉 and some random coinsρ2 to respond to each different user
request message as in(1+).

(6) If the user is corrupted at the beginning, i.e. no(Sign, sid ,m, ver′) was sent out fromZ toU , in future
Z may play the corruptedU with differentm and some random coinsρ1 as in(2+).

Simulation of signature verification:

(7) When the dummy verifierV receives an input(Verify, sid ,m, σ, ver′) from the environmentZ, it sends
this message toFBSIG, andFBSIG will check if the input consists of forgery. Ifver′ = ver wherever is from
history(U), the signerS is not corrupted,ver′(m,σ) = 1, andm is not marked with adone, thenFBSIG

outputs(Signature, sid ,⊥) to partyU and halts; Else, it outputs(Signature, sid , ver′(m,σ)) to partyU .

5.2 Implementation Strategies forFSVZK andFSPZK

In this section, we discuss the special circumstances that apply in realizing our ZK functionalities.

RealizingFRU
SVZK. The functionalityFRU

SVZK will be realized against adaptive adversaries; we will proceed as
follows: first given(x,w) ∈ RU , we will have the prover commit the witnessw intoC, and then we design
a non-erasure Sigma protocol to show the consistency of the witness between the commitmentC and the
statementx by performing a proof of language membership. The commitment scheme that we will employ
is tuned to our “single-verifier” setting and is based on the mixed commitment primitive of [DN02, Nie03].
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Please refer to an SVZK protocol inFigure 18whereEQC andCOM are two equivocal commitment schemes,
and〈prove1, prove3, verify, simulate, reconstruct〉 is a non-erasure Sigma protocol for relationR′

U

defined as follows:R′
U = {((crs, x, C0, E), (w, η, ζ)) | (x,w) ∈ RU ∧ E = Kwζn mod n2 ∧ C0 =

EQCcom(pkeqc, w; η)}. The combination of the commitment with the above Sigma protocol is shown in
Figure 17.

crs = 〈n, g;K; pkeqc〉

P V

statement = 〈x〉 statement = 〈x〉
witness = 〈w〉

η
r← RND;

C0 ← EQCcom(pkeqc, w; η)
K1

r← Z∗
n2 ; µ1

r← Z∗
n;

C1 ← KK1(µ1)n
2

mod n3
C0,C1

−−−−−−−−−−→

K2
r← Z∗

n2

K ← K1K2 mod n2
K2

←−−−−−−−−−−

ζ
r← Z∗

n;
E ← Kwζn mod n2

ra
r← RND

a← prove1((x,C0, E), (w, η, ζ); ra)
K1,µ1,E,a

−−−−−−−−−−→ C1 =? KK1(µ1)n
2

mod n3

e
r← {0, 1}`e

e
←−−−−−−−−−−

z ← prove3((x,C0, E), (w, η, ζ), ra, e)
z

−−−−−−−−−−→
verify((x,C0, E), a, e, z) =? 1

Figure 17: A combination of a committing step with a non-erasure Sigma protocol for relationR′
U =

{((crs, x, C0, E), (w, η, ζ)) | (x,w) ∈ RU ∧ E = Kwζn mod n2 ∧ C0 = EQCcom(pkeqc, w; η)} in the
single-verifier setting. HereEQCcom is the committing algorithm for equivocal commitment schemeEQC.

Theorem 5.3. Given two equivocal commitment schemesEQC andCOM, and a non-erasure Sigma protocol
〈prove1, prove3, verify, simulate, reconstruct〉, the SVZK protocolπΣ(SVZK) in Figure 18securely

realizesFRU
SVZK in theFCRS-hybrid model with advantageq3 · (Adveqc

eq +Advcom
eq +Advsigma

nezk +2 ·Advdcr)+
q1 ·(Adveqc

binding+ν(Advcom
binding+Advsigma

sound)+2−`n), whereq3 is the number of the provers which are not cor-
rupted initially, q1 is the number of the provers corrupted initially,Adveqc

eq andAdveqc
binding are equivocality

distance and binding distance for the equivocal commitmentEQC, Advcom
eq andAdvcom

binding are equivocality

distance and binding distance for the equivocal commitmentCOM, Advsigma
nezk andAdvsigma

sound are non-erasure
honest-verifier zero-knowledge distance and soundness distance for the non-erasure Sigma protocol.

Proof. In order to prove that EXECFCRS
πΣ(SVZK),Z ≈ EXEC

FRU
SVZK

πd,S,Z , we use the similar proof strategy explored in
Lemma 5.1. We develop several bridge hybrid worlds between theFCRS-hybrid world and the ideal world,
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Protocol πΣ(SVZK) in the FCRS-Hybrid World

Proof stage: When partyP is invoked with input(ProveSPZK, sid , P, x, w) byZ, it verifies thatsid = (V, sid ′)
for somesid ′. If not, then ignore the input. Else, if(x,w) ∈ RU , it computesC0 ← EQCcom(pkeqc, w; η)
andC1 ← KK1(µ1)n

2
mod n3 whereη

r← RND, K1
r← Z∗

n2 , µ1
r← Z∗

n, and then sends message
(prover1, sid, C0, C1) to partyV (throughZ).

When partyV is invoked with incomingprover1 message, it randomly selectsK2
r← Z∗

n2 , and sends
message(verifier1, sid,K2) to partyP (throughZ).

When partyP is invoked with incomingverifier1 message, it computesK ← K1K2 mod n2, E ←
Kwζn mod n2, a ← prove1((x,C0, E), (w, η, ζ); ra) and c ← COMcom(pkcom, a; r) whereζ

r← Z∗
n,

ra, r
r← RND, and sends message(prover2, sid,K1, µ1, x, E, c) to partyP (throughZ).

When partyV is invoked with incomingprover2 message, it verifies ifC1 = KK1(µ1)n
2

mod n3 holds.
If the equation holds, then it randomly selectse

r← {0, 1}`e , and sends message(verifier2, sid, e) to
partyP (throughZ).

When party P is invoked with incoming verifier2 message, it computesz ←
prove3((x,C0, E), (w, η, ζ), ra, e), and sends message(prover3, sid, a, r, z) to party V (through
Z).

When partyV is invoked with incomingprover3 message, it verifiesc = COMcom(pkcom, a; r) and
verify((x,C0, E), a, e, z) = 1; if both hold, then it returns message(VerifiedSVZK, sid, x) toZ.

Corruption: When party P is invoked with incoming (Corrupt, sid , P ) by Z, it sends outgoing
(Corrupted, sid, history(P )) toZ.

Figure 18: Single-verifier zero-knowledge protocolπΣ(SVZK) for relationRU in theFCRS-hybrid world.

and define the ensemble of random variables ofZ ’s output of each bridge hybrid worlds as EXECFi
πd,Si,Z ,

i = 1, 2, 3, whereπd is the dummy protocol same as that in the ideal world. Next we prove EXECFCRS
πΣ(SVZK),Z

≈ EXECF1
πd,S1,Z ≈ · · · ≈ EXECF3

πd,S3,Z ≈ EXEC
FRU

SVZK
πd,S,Z . In our sequence of games we introduce a

functionality called the “vault” which gradually becomes from dummy SVZK functionalityF1 into the
ideal functionalityFRU

SVZK across a sequence of three steps. Note that we assume the protocol is based on
a single-verifier mixed commitment scheme which is based on the DCR assumption, and the underlying
commitmentsEQC andCOM are equivocal, and〈prove1, prove3, verify, simulate, reconstruct〉 is a
non-erasure Sigma protocol.

EXECF1
πd,S1,Z . Here simulatorS1 simulates exactly the protocolπΣ(SVZK) in theFCRS-hybrid model ex-

cept that all inputs/outputs of the parties of protocolπΣ(SVZK) in theFCRS-hybrid model are from/to
the vaultF1 instead of from/toZ.

The vaultF1 is between the dummy partiesP, V and the simulatorS1; the vaultF1 receives the
outputs from the dummy parties and forwards them toS1 (andS1 will supply the messages as inputs
of the simulated parities of protocolπΣ(SVZK) in theFCRS-hybrid model);F1 forwards the outputs
of the simulated parties inS1 to the dummy parties which are finally returned to the environmentZ.

Analysis:

Note thatS1 restates the whole execution in theFCRS-hybrid world. So we have EXECFCRS
πΣ(SVZK),Z =

EXECF1
πd,S1,Z .
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EXECF2
πd,S2,Z . Here the vaultF2, operating like the vaultF1, forwards the messages between the dummy

parties and the simulatorS2. Furthermore,F2 records some information, like the ideal functional-
ity FRU

SVZK, into history(P ): once receiving an input(ProveSVZK, sid , P, x, w) from the dummy
userP , if (x,w) ∈ RU the vaultF2 records〈x,w〉 in history(P ). The change in this step is
that F2 will “block” the real witnessw and only send the statementx to S2, i.e. send message
(ProveSVZK, sid , P, x) to S2.

S2 is same asS1 to simulate the wholeFCRS-hybrid world except:S2 simulates the partyP without
using the real witness which has been described in the ideal world simulator. ButS2 simulates party
V same as in theFCRS-hybrid world; be more explicit whenP is corrupted,S2 will not extract the
witness for patching.

Analysis:

In this step,S2 can make perfect equivocation except negligible distance, which meansZ cannot
distinguish the two worlds except negligible distance. Next we calculate the distance. The com-
mitmentsC0 andc can be equivocated except probabilityAdveqc

eq + Advcom
eq givenEQC andCOM are

equivocal commitment schemes, whereAdveqc
eq andAdvcom

eq are equivocality distances for the two
commitments. Under DCR assumption, the commitmentE can always be equivocated, so here the
distance introduced isAdvdcr. The underlying zero-knowledge proof of membership will introduce
Advsigma

nezk +Advdcr whereAdvsigma
nezk is the non-erasure honest-verifier zero-knowledge distance for the

non-erasure Sigma protocol, andAdvdcr is due to the fact that we use Damgård-Jurik’s encryption to
encrypt the witness. So|EXECF1

πd,S1,Z − EXECF2
πd,S2,Z | ≤ q3 · (Adveqc

eq + Advcom
eq + Advsigma

nezk + 2 ·
Advdcr) whereq3 is the number of the provers which are not corrupted initially.

EXECF3
πd,S3,Z . HereF3 is same asFRU

SVZK andS3 is same as the ideal simulatorS which will be described
immediately after the proof. The difference between theF2-hybrid world and theF3-hybrid world
is: in the case that some partyP is corrupted, in theF2-hybrid world, when partyV verifies all the
equations, message(VerifiedSVZK, sid , P, x) will be sent to dummyV (then toZ); while in the
F3-hybrid world, when partyV verifies all the equations,S3 needs to extract the witnessw and patch
〈x,w〉 toF3, after verifying(x,w) ∈ RU , message(VerifiedSVZK, sid , P, x) will be sent to dummy
V (then toZ).

Analysis:

In the case that proverP is corrupted, the simulatorS3 will extract the witness and patch it into
the functionality after verifying the proof. Assume the underlying Sigma protocol with the equivo-
cal commitmentCOM have no error, if the prover is corrupted byZ before the prover sends out the
prover2 message, the environmentZ cannot obtain an E-keyK except negligible probability2−`n ,
which can be viewed as extraction error for the underlying single-verifier mixed commitment. Note
that ifZ let theK be an E-key, thenZ cannot figure outK1 to satisfy the two conditions as follows
at the same time:(i) consistent with the commitmentC1; (ii) K1 = K/K2 mod n2, whereK2 is
randomly selected. Still we need to consider a special case: when an honest proverP sends out the
prover2 message,Z can “capture” the used E-keyK by computingK = K1K2 mod n2; and then
Z corrupts the proverP and computes a commitmentE for a differentŵ, and sends out the modified
prover2 message (note thatZ can do this in the name of the corrupted user). Note thatC0 is pro-
duced byP when it is honest, which meansC0 is a commitment based the real witnessw; and also
note that the commitment is binding, and the Sigma protocol has no soundness error. The probability
to produce a valid proof for the “fake”E and the realC0 is Adveqc

binding.

Now we still need to consider that error of the underlying Sigma protocol with the equivocal com-
mitmentCOM. The proof idea here follows that in [Dam00]; please also refer to section 5 in [Nie03].
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Define the eventE that the pair〈x̂, ŵ〉 patched byS3 such that(x̂, ŵ) 6∈ RU . Notice that, if such
eventE does not occur, thenZ cannot distinguish the two worlds because the views of them have the
same distribution. Now we investigate the probability of the eventE.

When simulatorS3 accepts a proof for statementx, thenS3 receives〈a, r, z〉 for a corrupted prover
wherec = COMcom(pkcom, a; r) andverify(x, a, e, z) = 1. Now rewind the state of the simulation
and let the simulatorS3 send a new challengee′. Repeat this until receiving〈a′, r′, z′〉, wherec =
COMcom(pkcom, a

′; r′) andverify(x, a′, e′, z′) = 1. When this happens, ifa 6= a′, then there exists a
double opening of commitment valuec, i.e. c = COMcom(pkcom, a; r) = COMcom(pkcom, a

′; r′). Else
if a = a′, ande 6= e′, then the membership soundness will not be satisfied. Else, ifa = a′ ande 6= e′,
thenS3 gives up. So for one successful protocol for each corrupted prover, the two worlds can be
distinguished with probabilityν · (Advcom

binding + Advsigma
sound).

So|EXECF2
πd,S2,Z − EXECF3

πd,S3,Z | ≤ q1 · (Adveqc
binding + ν · (Advcom

binding + Advsigma
sound) + 2−`n) where

q1 is the number of the provers which are corrupted initially.

Note that the vaultF3 is exactly the functionalityFRU
SVZK andS3 is same asS in the ideal world. So

EXEC
FRU

SVZK
πd,S,Z = EXECF3

πd,S3,Z .

Based on all discussions above, we obtain

∣∣∣∣EXEC
FRU

SVZK
πd,S,Z − EXECFCRS

πΣ(SVZK),Z

∣∣∣∣ ≤ q3 ·(Adveqc
eq +Advcom

eq +

Advsigma
nezk + 2 · Advdcr) + q1 · (Adveqc

binding + ν · (Advcom
binding + Advsigma

sound) + 2−`n).

The ideal world simulator S proceeds as follows.Here we give a full description of the ideal world
simulatorS.

Setup:
The simulatorS generates the CRS for each party, and keeps the trapdoor for himself: generate a Paillier
public key 〈n, g〉 along with the X-trapdoor〈p, q〉; generate an equivocal keyK with the E-trapdoorτK
whereK = (τK)n

2
mod n3; run (pkeqc, ekeqc) ← EQCgen(1λ) and(pkcom, ekcom) ← COMgen(1λ). Let

crs = 〈n, g;K; pkeqc, pkcom〉 andτ = 〈p, q; τK; ekeqc, ekcom〉.

Simulation of the proof stage:

(1) When the dummy proverP receives an input(ProveSVZK, sid , P, x, w) from the environmentZ, it
sends this message toFRU

SVZK; if (x,w) ∈ RU , thenFRU
SVZK will record 〈x,w〉 in history(P ) and send

(ProveSVZK, sid , P, x) toS. Once receiving this message fromFRU
SVZK, S simulates the partyP as follows:

• randomly select̃K1
r← Z∗

n2 , µ̃1
r← Z∗

n, and computeC1 = K
eK1(µ̃1)n

2
mod n3;

• run (C0, auxeqc)← EQCfake(pkeqc, ekeqc) without using the equivocal trapdoorekeqc for producing
C0, i.e. randomly select̃w, η̃

r← RND, computeC0 ← EQCcom(pkeqc, w̃; η̃), and setauxeqc ←
〈ekeqc, w̃, η̃〉

ThenS simulates the partyP to send message(prover1, sid , C0, C1) to the simulated verifierV (through
the simulatedZ).

(1+) If the simulatorS receives(Corrupt, sid , P ) from Z after the partyP sending out the message
(prover1, sid , C0, C1), but before receiving the message(verifier1, sid ,K2),S sends(Corrupt, sid , P )
to FRU

SVZK, and receives(Corrupted, sid , P, history(P )) from FRU
SVZK, wherehistory(P ) as defined in
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FRU
SVZK includesw. ThenS runsη ← EQCequivocate(pkeqc, C0, auxeqc, w), and returns〈w, K̃1, µ̃1, η〉 as

the internals toZ.

(2)WhenZ delivers message(prover1, sid , C0, C1) fromP toV ,S simulates the partyV easily: randomly
selectsK2

r← Z∗
n2 and returns it to partyP .

Note that there is no secret coins involved for the partyV . So whenS receives the message of corrupting
V , no internals will be returned toZ.

(3) WhenZ delivers message(verifier1, sid ,K2) from V to P , S simulates the partyP :

• generateK with equivocal trapdoorτK as follows: randomly selectτK
r← Z∗

n and computeK ←
(τK)n mod n2; then randomly select̃ζ

r← Z∗
n, and computeE ← K ewζ̃n mod n2; then compute

K1 ← K/K2 mod n2, and openC1 into µ1 ← τ
eK1−K1

K µ̃1 mod n.

• randomly select̃e
r← {0, 1}`e , and run(ã, z̃, auxsigma)← simulate((x,C0, E), ẽ).

• run (c, auxcom)← COMfake(pkcom, ekcom) without using equivocal trapdoorekcom for producingc,
i.e. computec← COMcom(pkcom, ã; r̃), and setauxcom ← 〈ekcom, ã, r̃〉.

ThenS simulates the partyP to return message(prover2, sid ,K1, µ1, x, E, c) to the partyV (throughZ).

(3+) If the simulatorS receives(Corrupt, sid , P ) from Z after the partyP sending out theprover2

message, and before receiving theverifier2 message,S sends(Corrupt, sid , P ) to FRU
SVZK, and re-

ceives(Corrupted, sid , P, history(P )) from FRU
SVZK, wherehistory(P ) includesw. As in (1+), S

runs η ← EQCequivocate(pkeqc, C0, auxeqc, w). FurthermoreS uses the trapdoorτK to computeζ
such thatE = Kwζn mod n2 as below:ζ = (τK) ew−w ζ̃ mod n wherew̃, ζ̃ as used in(3); thenS runs
ra ← reconstruct((x,C0, E), ã, z̃, auxsigma, ẽ, w); S returns〈w, η, ζ, ra, r̃〉 as the internals toZ.

(4) WhenZ delivers message(prover2, sid ,K1, µ1, x, E, c) from P to V , S simulates the partyV as
follows: verify if C1 = KK1(µ1)n

2
mod n3 and return(verifier2, sid , ẽ) to the partyP . Note that the

simulatedV is an honest verifier and̃e is the one selected in(3).
Same as in(2) whenS receives the message of corruptingV , no internals will be returned toZ.

(5) WhenZ delivers message(verifier2, sid , e) from V to P , S simulates the partyP :

• if e = ẽ, which meansV is honest, then leta = ã, z = z̃, r = r̃;

• else if e 6= ẽ, which meansV is corrupted, then run(a, z, auxsigma) ← simulate((x,C0, E), e);
then runr ← COMequivocate(pkcom, c, auxcom, a).

ThenS simulatesP to send message(prover3, sid , a, r, z) to V (throughZ).

(5+) If the simulatorS receives(Corrupt, sid , P ) fromZ after partyP sending out theprover3 message,
S sends(Corrupt, sid , P ) to FRU

SVZK, and receives(Corrupted, sid , U, history(P )) from FRU
SVZK, where

history(P ) includesw. Same as in(3+), S obtainsζ andη. But S still needs to returnra. If verifier V is
honest,S uses the same method in(3+); if verifier V is not honest,S runsra ← reconstruct((x,C0, E), a, z,
auxsigma, e, w). ThenS returns〈w, η, ζ, ra〉 as the internals toZ.

(6) WhenZ delivers message(prover3, sid , a, r, z) from P to V , S simulates the partyV to verify the
equationsc = COMcom(pkcom, a; r) andverify((x,C0, E), a, e, z) = 1. If both hold, then the simulatorS
returns(ProveSVZK, sid , P,VerifierComplete) toFRU

SVZK, andFRU
SVZK returns(VerifiedSVZK, sid , P, x) to

dummyV , then toZ. If one of the two equations does not hold, thenS returns(ProveSVZK, sid , P,VerifierError)
toFRU

SVZK, andFRU
SVZK returns(VerifiedSVZK, sid , P,⊥) to dummyV , then toZ.
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In the case thatP is corrupted,S uses the extractable trapdoor〈p, q〉 to decryptK andE. If K is an
X-key, thenw can be extracted fromE and the pair〈x,w〉 will be “patched” intoFRU

SVZK; If FRU
SVZK verifies

(x,w) ∈ RU , then it returns message(Verified, sid , P, x) to dummyV , then toZ; If (x,w) 6∈ RU , then
it returns message(Verified, sid , P, error) to dummyV , then toZ. If K is an E-key, thenS halts.

Remark 5.4. Depending on the properties of the statementx that is proven, we remark that it is possible to
simplify the implementation ofFSVZK. In particular, ifx includes a commitment of the witnessw that is
equivocal based on the givencrs, then the commitmentC0 that is made tow by the prover in the very first
communication flow of the protocol inFigure 17is unnecessary. Thus the commitment schemeEQC may
be dropped entirely from the realization; in this setting,x will be playing the role ofC0. Note that taking
advantage of such modification is done only for the sake of efficiency of the overall protocol (and in fact we
will employ in our efficient protocol instantiation inSection 6).

Realizing FRS
SPZK. RegardingFRS

SPZK we find that, rather surprisingly, our task for attaining an adaptive
secure UC blind signature is simpler since security against a static adversary suffices. The reason is that
in the UC blind signature security proof, the simulator knows the signing secret which means the witness
for FRS

SPZK is known by the simulator, and thus no equivocation of dishonestly simulated transcripts is ever
necessary! This behavior was explored by the authors in the general context of universally composable
zero-knowledge in [KZ07]; in the framework of that paper, we can say a blind signature protocol falls into
the class of protocols where a leaking version ofFRS

SPZK is sufficient for security and thusFRS
SPZK need be

realized only against static adversaries.
Similar to the realization ofFRU

SVZK, for (x,w) ∈ RS , we have the prover commit the witnessw intoC,
and then develop a Sigma protocol to show the consistency between the commitmentC and the statementx
by performing a proof of language membership. But here we only need employ an extractable commitment
considering we only need to realizeFRS

SPZK against static adversary. Please refer toFigure 20for an SPZK
protocol against static adversary, whereEXC is an extractable commitment,COM is an equivocal commit-
ment, and〈prove1, prove3, verify, simulate〉 is a Sigma protocol for relationR′

S as defined follows:
R′

S = {(crs, x, E), (w, ζ) | (x,w) ∈ RS ∧ E = EXCcom(pkexc, w; ζ)}. The combination of the extractable
commitment with the above Sigma protocol is shown inFigure 19.

Theorem 5.5. Given an extractable commitment schemeEXC, an equivocal commitment schemeCOM, and a
Sigma protocol〈prove1, prove3, verify, simulate〉, the SPZK protocolπΣ(SPZK) in Figure 20securely

realizesFRS
SPZK in theFCRS-hybrid model against static adversary with advantage(q1 + q3) · (Advexc

hiding +
Advcom

eq + Advsigma
zk ) + q2 · ν · (Advcom

binding + Advsigma
sound), whereq3 is the number of the verifiers which are

not corrupted initially,q1 is the number of the verifiers corrupted initially,q2 is the number of successful
protocols from the corrupted prover,Advexc

binding is binding distance for the extractable commitmentEXC,
Advcom

eq andAdvcom
binding are equivocality distance and binding distance for the equivocal commitmentCOM,

Advsigma
zk andAdvsigma

sound are honest-verifier zero-knowledge distance and soundness distance for the Sigma
protocol.

Proof. In order to prove that EXECFCRS
πΣ(SPZK),Z ≈ EXEC

FRS
SPZK

πd,S,Z , we use the similar proof strategy explored in
Lemma 5.1. We develop several bridge hybrid worlds between theFCRS-hybrid world and the ideal world,
and define the ensemble of random variables ofZ ’s output of each bridge hybrid worlds as EXECFi

πd,Si,Z ,

i = 1, 2, 3, whereπd is the dummy protocol same as that in the ideal world. Next we prove EXECFCRS
πΣ(SPZK),Z

≈ EXECF1
πd,S1,Z ≈ · · · ≈ EXECF3

πd,S3,Z ≈ EXEC
FRS

SPZK
πd,S,Z . In our sequence of games we introduce a

functionality called the “vault” which gradually becomes from dummy SPZK functionalityF1 into the
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crs = 〈pkexc〉

P V

statement = 〈x〉 statement = 〈x〉
witness = 〈w〉

ζ
r← RND;

E ← EXCcom(pkexc, w; ζ)
ra, r

r← RND
a← prove1((x,E), (w, ζ); ra)

E,a
−−−−−−−−−−→

e
r← {0, 1}`e

e
←−−−−−−−−−−

z ← prove3((x,E), (w, ζ), ra, e)
z

−−−−−−−−−−→
verify((x,E), a, e, z) =? 1

Figure 19: A combination of a committing step with a Sigma protocol for relationR′
S =

{(crs, x, E), (w, ζ) | (x,w) ∈ RS ∧ E = EXCcom(pkexc, w; ζ)} in the single-prover setting. HereEXCcom
is the committing algorithm for extractable commitment schemeEXC.

ideal functionalityFRS
SPZK across a sequence of three steps. Note that we assume the protocol is based

on an extractable commitment scheme, and the underlying commitmentsEQC andCOM are equivocal, and
〈prove1, prove3, verify, simulate〉 is a Sigma protocol.

EXECF1
πd,S1,Z . Here simulatorS1 simulates exactly the protocolπΣ(SPZK) in theFCRS-hybrid model ex-

cept that all inputs/outputs of the parties of protocolπΣ(SPZK) in theFCRS-hybrid model are from/to
the vaultF1 instead of from/toZ.

The vaultF1 is between the dummy partiesP, V and the simulatorS1; the vaultF1 receives the
outputs from the dummy parties and forwards them toS1 (andS1 will supply the messages as inputs
of the simulated parities of protocolπΣ(SPZK) in theFCRS-hybrid model);F1 forwards the outputs of
the simulated parties inS1 to the dummy parties which are finally returned to the environmentZ.

Analysis:

Note thatS1 restates the whole execution in theFCRS-hybrid world. So we have EXECFCRS
πΣ(SPZK),Z =

EXECF1
πd,S1,Z .

EXECF2
πd,S2,Z . Here the vaultF2, operating like the vaultF1, forwards the messages between the dummy

parties and the simulatorS2. Furthermore,F2 records some information, like the ideal functional-
ity FRS

SPZK, into history(P ): upon receiving an input(ProveSPZK, sid , V, x, w) from the dummy
party P , if (x,w) ∈ RS the vaultF2 records〈V, x, w〉 in history(P ). The change in this step
is thatF2 will “block” the real witnessw and only send the statementx to S2, i.e. send message
(ProveSPZK, sid , V, x) to S2.

S2 is same asS1 to simulate the wholeFCRS-hybrid world except:S2 simulates the partyP without
using the real witness which has been described in the ideal world simulator. ButS2 simulates party
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Protocol πΣ(SPZK) in the FCRS-Hybrid World

Proof stage: When partyP is invoked with input(ProveSPZK, sid , V, x, w) byZ, it verifies thatsid = (P, sid ′)
for somesid ′. If not, then ignore the input. Else, if(x,w) ∈ RS , it computesE ← EXCcom(pkexc, w; ζ),
a ← prove1((x,E), (w, ζ); ra) and c ← COMcom(pkcom, a; r) whereζ, ra, r

r← RND, and then sends
message(prover1, sid, x,E, c) to partyV (throughZ).

When partyV is invoked with incomingprover1 message, it randomly selectse
r← {0, 1}`e , and sends

message(verifier1, sid, e) to partyP (throughZ).

When party P is invoked with incoming verifier1 message, it computesz ←
prove3((x,E), (w, ζ), ra, e), and sends message(prover2, sid, a, r, z) to partyV (throughZ).

When partyV is invoked with incomingprover2 message, it verifiesc = COMcom(pkcom, a; r) and
verify((x,E), a, e, z) = 1; if both hold, then it returns message(VerifiedSPZK, sid, x) toZ.

Corruption: When party P is invoked with incoming (Corrupt, sid , P ) by Z, it sends outgoing
(Corrupted, sid, history(P )) toZ.

Figure 20: Single-prover zero-knowledge protocolπΣ(SPZK) for relationRS in theFCRS-hybrid world.

V same as in theFCRS-hybrid world; be more explicit whenP is corrupted,S2 will not extract the
witness for patching.

Analysis:

In this step,S2 can make perfect simulation except negligible distance: the commitmentsE is hid-
ing except probabilityAdvexc

hiding givenEXC is an extractable commitment, whereAdvexc
hiding is hiding

distance; and commitmentc is equivocal except probabilityAdvcom
eq givenCOM is an equivocal com-

mitment schemes, andAdvcom
eq are equivocality distance; the underlying zero-knowledge proof of

membership will introduce distanceAdvsigma
zk whereAdvsigma

zk is the honest-verifier zero-knowledge
distance for the Sigma protocol. So|EXECF1

πd,S1,Z − EXECF2
πd,S2,Z | ≤ (q1 + q3) · (Advexc

hiding +

Advcom
eq + Advsigma

zk ) whereq1 is the number of the verifiers which are not corrupted initially, andq3
the number of the verifiers corrupted initially.

EXECF3
πd,S3,Z . HereF3 is same asFRS

SPZK andS3 is same as the ideal simulatorS described before. The dif-
ference between theF2-hybrid world and theF3-hybrid world is: in the case that partyP is corrupted,
in theF2-hybrid world, when partyV verifies all the equations, message(VerifiedSPZK, sid , P, x)
will be sent to dummyV (then toZ); while in theF3-hybrid world, when partyV verifies all the
equations,S3 needs to extract the witnessw and patch it toF3, after verifying(x,w) ∈ RS , message
(VerifiedSPZK, sid , P, x) will be sent to dummyV (then toZ).

Analysis:

The proof idea here follows that in [Dam00]; please also refer to section 5 in [Nie03]. In the case that
proverP is corrupted, the simulatorS3 will extract the witness and patch it into the functionality after
verifying the proof. Define the eventE that the pair(x̂, ŵ) patched byS3 such that(x̂, ŵ) 6∈ RS .
Notice that, if such eventE does not occur, thenZ cannot distinguish the two worlds because the
views of them have the same distribution. Now we investigate the probability of the eventE.

When simulatorS3 accepts a proof for statementx, thenS3 receives〈a, r, z〉 for a corrupted prover
wherec = COMcom(pkcom, a; r) andverify(x, a, e, z) = 1. Now rewind the state of the simulation
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and let the simulatorS3 send a new challengee′. Repeat this until receiving〈a′, r′, z′〉, wherec =
COMcom(pkcom, a

′; r′) andverify(x, a′, e′, z′) = 1. When this happens, ifa 6= a′, then there exists
a double opening of commitment valuec, i.e. c = COMcom(pkcom, a; r) = COMcom(pkcom, a

′; r′).
Else if a = a′, ande 6= e′, then the membership soundness will not be satisfied. Else, ifa = a′

and e 6= e′, thenS3 gives up. So for one successful protocol for the corrupted prover, the two
worlds can be distinguished with probabilityν ·(Advcom

binding +Advsigma
sound). Therefore,|EXECF2

πd,S2,Z−
EXECF3

πd,S3,Z | ≤ q2 ·ν · (Advcom
binding +Advsigma

sound) whereq2 is the number of successful protocols from
the corrupted prover.

Note that the vaultF3 is exactly the functionalityFRS
SPZK andS3 is same asS in the ideal world. So

EXEC
FRS

SPZK
πd,S,Z = EXECF3

πd,S3,Z .

Based on all discussions above, we obtain

∣∣∣∣EXEC
FRS

SPZK
πd,S,Z − EXECFCRS

πΣ(SPZK),Z

∣∣∣∣ ≤ (q1 +q3) ·(Advexc
hiding +

Advcom
eq + Advsigma

zk ) + q2 · ν · (Advcom
binding + Advsigma

sound).

The ideal world simulator S proceeds as follows.Here we give a full description of ideal world simulator.

Setup:
The simulatorS generates the CRS for each party, and keeps the trapdoor for himself: run(pkexc, xkexc)←
EXCgen(1λ) and(pkcom, ekcom)← COMgen(1λ). Let crs = 〈pkexc, pkcom〉 andτ = 〈xkexc, ekcom〉.

Simulation of the proof stage:
The simulation is only for static adversaries, and is much simpler than the one for adaptive adversaries.

(1) When the dummy proverP receives an input(ProveSPZK, sid , V, x, w) from the environmentZ, it
sends this message toFRS

SPZK; if (x,w) ∈ RS , thenFRS
SPZK will “block” the witnessw: record〈V, x, w〉 in

history(P ) and send(ProveSPZK, sid , V, x) to S. Once receiving this message fromFRS
SPZK, S simulates

the partyP as follows:

• randomly select̃w, ζ̃
r← RND, computeE ← EXCcom(pkexc, w̃; ζ̃).

• randomly select̃e
r← {0, 1}`e , and run(ã, z̃, auxsigma)← simulate((x,E), ẽ).

• randomly select̃r
r← RND, and computec← COMcom(pkcom, ã; r̃), and setauxcom ← 〈ekcom, ã, r̃〉.

ThenS simulates the partyP to send message(prover1, sid , x, E, c) to the simulated verifierV (through
the simulatedZ).

(2) WhenZ delivers message(prover1, sid , x, E, c) from P to V , S simulates the partyV to return
(verifier1, sid , ẽ) to the partyP . Note that the simulatedV is an honest verifier and̃e is the one se-
lected in(1).

(3) WhenZ delivers message(verifier1, sid , e) from V to P , S simulates the partyP :

• if e = ẽ, which meansV is honest, then leta = ã, z = z̃, r = r̃;

• else ife 6= ẽ, which meansV is corrupted initially, then run(a, z, auxsigma)← simulate((x,E), e);
then runr ← COMequivocate(pkcom, c, auxcom, a).
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ThenS simulatesP to send message(prover2, sid , a, r, z) to V (throughZ).

(4) WhenZ delivers message(prover2, sid , a, r, z) from P to V , S simulates the partyV to verify the
equationsc = COMcom(pkcom, a; r) andverify((x,E), a, e, z) = 1. If both hold, then the simulatorS
returns(ProveSPZK, sid , V,VerifierComplete) toFRS

SPZK, andFRS
SPZK returns(VerifiedSPZK, sid , V, x) to

dummyV , then toZ. If one of the two equations does not hold,S returns(ProveSPZK, sid , V,VerifierError)
toFRS

SPZK, andFRS
SPZK returns(VerifiedSPZK, sid , V,⊥) to dummyV , then toZ.

In the case thatP is corrupted initially,S uses the extractable trapdoorxkexc to decryptE into w and
“patches” the pair〈x,w〉 intoFRS

SPZK. If FRS
SPZK verifies(x,w) ∈ RS , then it returns(VerifiedSPZK, sid , V, x)

to dummyV , then toZ; If (x,w) 6∈ RS , then return(VerifiedSPZK, sid , V, error) to dummyV , then to
Z. If such decryption fails, thenS halts.

Protocol π′Σ(SPZK) in the FCRS-Hybrid World

Proof stage: When partyP is invoked with input(ProveSPZK, sid , V, x, w) byZ, it verifies thatsid = (P, sid ′)
for somesid ′. If not, then ignore the input. Else, if(x,w) ∈ RS , it computesE ← EXCcom(pkexc, w; ζ),
a← prove1((x,E), (w, ζ); ra) andc← COMcom(pkcom, x, E, a; r) whereζ, ra, r

r← RND, and then sends
message(prover1, sid, c) to partyV (throughZ).

When partyV is invoked with incomingprover1 message, it randomly selectse
r← {0, 1}`e , and sends

message(verifier1, sid, e) to partyP (throughZ).

When party P is invoked with incoming verifier1 message, it computesz ←
prove3((x,E), (w, ζ), ra, e), and sends message(prover2, sid, x,E, a, r, z) to party V (through
Z).

When partyV is invoked with incomingprover2 message, it verifiesc = COMcom(pkcom, a; r) and
verify((x,E), a, e, z) = 1; if both hold, then it returns message(VerifiedSPZK, sid, x) toZ.

Corruption: When party P is invoked with incoming (Corrupt, sid , P ) by Z, it sends outgoing
(Corrupted, sid, history(P )) toZ.

Figure 21: Single-prover zero-knowledge protocolπ′Σ(SPZK) for relationRS in theFCRS-hybrid world.

Remark 5.6. In Figure 21, we present an alternative way of transforming the two-party protocol ofFigure 19
into a UC protocol. While the UC protocol implementation ofFigure 20is sufficient nevertheless there are
advantages in using the alternative implementation: in particular, the UC protocol ofFigure 21is more
conservative with respect to the information revealed by the prover party to a verifier party during the initial
two communication moves; while the overall number of rounds is the same between the two UC protocols,
the second protocol, i.e. the one inFigure 21, has the advantage that it may be initiated earlier by a prover
that is acting also as a verifier in a more complex protocol interaction. In other words the advantage of the
second realization is its potential in reducing the number of rounds when two parties are bilaterally proving
to each other statements in zero-knowledge. This property (that we will take advantage of it later on in our
efficient construction) is demonstrated also inFigure 26andFigure 27.

Theorem 5.7. Given an extractable commitment schemeEXC, an equivocal commitment schemeCOM, and a
Sigma protocol〈prove1, prove3, verify, simulate〉, the SPZK protocolπ′Σ(SPZK) in Figure 21securely

realizesFRS
SPZK in theFCRS-hybrid model against static adversary with advantage(q1 + q3) · (Advexc

hiding +
Advcom

eq + Advsigma
zk ) + q2 · ν · (Advcom

binding + Advsigma
sound), whereq3 is the number of the verifiers which are

51



U S

a1, a2, a3
r← Zp

Ŵ ← ga1
1 ua2

1 v
a3
1

cW
−−−−−−→

d
r← Zp

d
←−−−−−−

b1 ← a1 + dmt
b2 ← a2 + dt
b3 ← a3 + dst

b1,b2,b3
−−−−−−→

Figure 22: ΣRU -protocol, whereRU = {((crs,
X,W ), (m, t, s)) | W = gmt

1 ut
1v

st
1 }.

U S

χ
r← Zp

Ẑ ← Y χ

X̂ ← gχ
2

bZ, bX
←−−−−−−

d
r← Zp

d
−−−−−−→

δx ← χ+ dx
δx

←−−−−−−

Figure 23: ΣRS -protocol, whereRS = {((crs,
X,W, Y, l, r), x) | Y = (Wvl

1)
1

x+r ∧X = gx
2}.

not corrupted initially,q1 is the number of the verifiers corrupted initially,q2 is the number of successful
protocols from the corrupted prover,Advexc

binding is binding distance for the extractable commitmentEXC,
Advcom

eq andAdvcom
binding are equivocality distance and binding distance for the equivocal commitmentCOM,

Advsigma
zk andAdvsigma

sound are honest-verifier zero-knowledge distance and soundness distance for the Sigma
protocol.

Proof. The proof is similar to the proof ofTheorem 5.5.

6 Efficient UC Blind Signatures against Adaptive Adversaries

6.1 Overview

In this section, we demonstrate how it is possible to design an efficient instantiation ofTheorem 5.2. We
need three ingredients: (1) an equivocal lite blind signature scheme, (2) a UC-realization of the ideal func-
tionality FRU

SVZK, (3) a UC-realization of the ideal functionalityFRS
SPZK. Regarding (1) we will employ

the lite blind signature scheme ofFigure 8that we proved it to be equivocal inTheorem 3.13. Regard-
ing the two ZK functionalities we will follow the design strategy outlined in the previous section. Recall
thatRU = {((crs, vk,u), (m, ρ1)) | u = lbs1(crs,m; ρ1)} andRS = {((crs, vk,u, s), (sk, ρ2)) | s =
lbs2(crs, vk,u, sk; ρ2) ∧ (vk, sk) ∈ KEYPAIR}. Instantiating these relations for the protocol ofFigure 8
we obtain thatRU = {((crs, X,W ), (m, t, s)) | W = gmt

1 ut
1v

st
1 } andRS = {((crs, X,W, Y, l, r), x)

| Y = (Wvl
1)

1
x+r ∧X = gx

2}. Two efficient Sigma protocolsΣRU andΣRS for these relations are presented
in Figure 22for RU and inFigure 23for RS , respectively.

Efficient instantiation of FRU
SVZK. Based on the single-verifier UC zero-knowledge protocol inFigure 18

in the previous section, and considering the underlying equivocal lite blind signature inFigure 8, we can
realizeFRS

SVZK efficiently: as discussed inRemark 5.4, we can “borrow”W from the underlying lite blind
signature protocol as the equivocal commitment which saves some computation/communication; we will use
hashed Pedersen commitment [Ped91] to develop an efficient zero-knowledge proof of membership to bind
the witness in the relationRU and the one committed based on the mixed commitment (refer toFigure 26
andFigure 27).
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Corollary 6.1. Composing Sigma protocol inFigure 22with Sigma protocol for relation{((crs, E), (w, ζ))|
E = Kwζn mod n2}, we obtain SVZK protocol realizingFRU

SVZK.

Efficient instantiation of FRS
SPZK. Based on the single-prover UC zero-knowledge protocol inFigure 21

presented in the previous section, we instantiate the extractable commitment by Paillier encryption; we still
use the hashed Pedersen commitment to develop efficient zero-knowledge proof of membership to bind the
witness inRS to the witness committed within the extractable commitment.

Corollary 6.2. Composing Sigma protocol inFigure 23with Sigma protocol for relation{((crs, E), (w, ζ))|
E = EXCcom(pkexc, w; ζ)}, we obtain SPZK protocol realizingFRS

SPZK against static adversary.

U S

lbs1,svzk1
−−−−−−−−−−→

svzk2
←−−−−−−−−−−

svzk3
−−−−−−−−−−→

svzk4
←−−−−−−−−−−

svzk5
−−−−−−−−−−→

lbs2,spzk1
←−−−−−−−−−−

spzk2
−−−−−−−−−−→

spzk3
←−−−−−−−−−−

Figure 24: 8-move two side zero-
knowledge proving for lite blind
signature, SVZK, and SPZK.

U S

lbs1,svzk1
−−−−−−−−−−→

svzk2
←−−−−−−−−−−

svzk3
−−−−−−−−−−→

svzk4,spzk′1
←−−−−−−−−−−

svzk5,spzk2
−−−−−−−−−−→

spzk′3
←−−−−−−−−−−

Figure 25: 6-move two side zero-knowledge
proving for lite blind signature, SVZK, and
SPZK. Herelbs2 is committed insidespzk′1,
and will be opened untilspzk′3; except this dif-
ference,spzk′1 and spzk′3 are same asspzk1,
spzk3 in Figure 24.

Communication rounds optimization. We can obtain an 8 moves blind signature protocol by putting the
designs for the two sides together (refer toFigure 24). However, based on the discussion inRemark 5.6in the
previous section, we can achieve a 6 moves protocol by carefully interleaving the communication transcripts
of the two sides (refer toFigure 25). The final 6-move protocol is presented in the next subsection. Please
also refer toFigure 26andFigure 27.

6.2 Detailed Description

In this subsection, we give a detailed description of our UC blind signature construction. The common
reference stringcrs = {n, g;K; p, g1, g2,G1,G2,GT , ê, ψ, u2, v2;Q,G,g,h2,h3,H}. Here 〈n, g〉 is a
public key for Paillier encryption;K is a public key for an equivocal commitment;〈p, g1, g2,G1,G2,GT ,
ê, ψ, u2, v2〉 is a part of public key for Okamoto signature;〈Q,G,g,h2,h3,H〉 is Pedersen commitments
public key. The parameters generated as follows.

Common reference string generation.First, we generate parameters for Paillier encryption: letp andq
be random primes for which it holdsp 6= q, |p| = |q| and gcd(pq, (p − 1)(q − 1)) = 1; let n ← pq,
and g ← (1 + n); set 〈n, g〉 as a Paillier public key, and〈p, q〉 as the X-trapdoor. Second, randomly
selectτK

r← Zn and computeK ← (τK)n
2

mod n3; setK as an E-key, andτK as the E-trapdoor. Third,
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crs = 〈n, g;K; p, g1, g2,G1,G2,GT , ê, ψ, u2, v2;Q,G,g,h2,h3,H〉

U S

vk = 〈X = gx
2 〉 vk = 〈X = gx

2 〉
msg = 〈m〉,m ∈ Zp sk = 〈x〉

K1
r← Z∗

n2 ; µ1
r← Z∗

n;
C1 ← KK1(µ1)n

2
mod n3

t, s
r← Zp; W ← gmt

1 ut
1v

st
1

C1,W
−−−−−−−−−−−−−−−−−−−−→

K2
r← Z∗

n2

K2
←−−−−−−−−−−−−−−−−−−−−

K ← K1K2 mod n2;
θ ← (mt mod p) + t2κ + (st mod p)22κ

Aθ, Bθ
r← Z∗

n

Eθ ← Kθ(Aθ)n mod n2

ai
r← ±[0, 2λ0+λU+`p ], i = 1, 2, 3

ϑ← a1 + a22κ + a322κ

Êθ ← Kϑ(Bθ)n mod n2

Ŵ ← ga1
1 ua2

1 v
a3
1

µ2
r← ZQ; ω2 ← H(Êθ, Ŵ )

C2 ← gω2hµ2
2

〈K1,µ1〉,〈Eθ,C2〉
−−−−−−−−−−−−−−−−−−−−→

C1 =? KK1(µ1)n
2

mod n3

dU
r← {0, 1}λU

r
r← Zp s.t.x+ r 6≡ 0 mod p

χ
r← ±[0, 2λ0+λS+`p ];

Ax, Bx
r← Z∗

n, l
r← Zp

Y ← (Wvl
1)

1
x+r , Ẑ ← Y χ

X̂ ← gχ
2

Ex ← gx(Ax)n mod n2

Êx ← gχ(Bx)n mod n2

µ3
r← ZQ; ω3 ← H(Y, l, r, Ẑ, X̂, Êx)

C3 ← gω3hµ3
3

〈Ex,C3〉,dU

←−−−−−−−−−−−−−−−−−−−−

(to be continued inFigure 27)

Figure 26: Blind signature generation protocol (part 1).
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U S

(continued fromFigure 26)

b1 ← a1 + dU · (mt mod p)
b2 ← a2 + dU · t
b3 ← a3 + dU · (st mod p)
Fθ ← Bθ(Aθ)dU mod n

dS
r← {0, 1}λS

〈b1,b2,b3,Fθ〉,〈 bEθ,cW,µ2〉,dS

−−−−−−−−−−−−−−−−−−−−→

ω2 ← H(Êθ, Ŵ ); C2 =? gω2hµ2
2

Eθ ∈? Z∗
n2 ,W ∈? G1

bi ∈? ±[0, 2λ0+λU+`p+1], i = 1, 2, 3
gb1
1 u

b2
1 v

b3
1 =? ŴW dU

K ← K1K2 mod n2

η ← b1 + b22κ + b322κ

Kη(Fθ)n =? Êθ(Eθ)dU mod n2

δx ← χ+ dS · x,
Fx ← Bx(Ax)dS mod n

〈δx,Fx〉,〈Y,l,r,bZ, bX, bEx,µ3〉
←−−−−−−−−−−−−−−−−−−−−

ω3 ← H(Y, l, r, Ẑ, X̂, Êx)
C3 =? gω3hµ3

3

Ex ∈? Z∗
n2 , δx ∈? ±[0, 2λ0+λS+`p+1]

gδx
2 =? X̂XdS

gδx(Fx)n =? Êx(Ex)dS mod n2

Y δx =? Ẑ(Wvl
1Y

−r)dS

f, h
r← Zp; ς ← Y

1
ft mod p

α← Xfgfr
2 ; β ← s+ l

t mod p
V1 ← ψ(X)

1
f gh

1 ; V2 ← Xfh+rgfrh
2

σ ← 〈ς, α, β, V1, V2〉
verify(crs, vk,m, σ) =? 1
output(m;σ)

Figure 27: Blind signature generation protocol (part 2).
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let (G1,G2) be bilinear groups as defined inSection 2.2.5. Randomly selectg2
r← G2, τu2 , τv2

r← Zp,
computeu2 ← g

τu2
2 , v2 ← g

τv2
2 , and setg1 ← ψ(g2), u1 ← ψ(u2) andv1 ← ψ(v2). Set〈p, g1, g2,G1,G2,

GT , ê, ψ, u2, v2〉 as the public information, and〈τu2 , τv2〉 as the trapdoor. Fourth, we generate parameters for
a Pedersen-like [Ped91] commitment scheme over an elliptic curve group: letG = 〈g〉 be a cyclic elliptic
curve group of prime orderQ; selectτh2 , τh3

r← ZQ and computeh2 ← gτh2 , h3 ← gτh3 ; selectH from
a collision-resistent hash familyH , i.e. H ← H , such thatH : {0, 1}∗ → ZQ; set〈Q,g,h2,h3,G,H〉
as public information, andτh2 , τh3 as the trapdoor. Finally, setcrs = {n, g;K; p, g1, g2,G1,G2,GT , ê,
ψ, u2, v2;Q,G,g,h2,h3,H}, and discard the corresponding trapdoors{p, q; τK; τu2 , τv2 ; τh2 , τh3}.

Notice that the collision hash function can be avoided at slight cost of our communication/computation
efficiency.

Next we present the details of the protocol (please also refer toFigure 26andFigure 27). Note that
dU < p, dS < p, i.e. λU < `p, λS < `p, andκ > λ0 + λU + `p + 3, `n ≥ 3κ. Here`p, `n, `Q denote the
lengths ofp, n, Q.

Key generation:
(a) On input (KeyGen, sid), party S verifies thatsid = (S, sid ′) for somesid ′. If not, it ignores the
input. Else, partyS sends outgoing message(GetCRS, sid) to FCRS and receivescrs. Then based on
parameters〈p, g1, g2,G1,G2,GT , ê, ψ, u2, v2〉, partyS runs(vk, sk) ← gen(crs); sk = 〈x〉, vk = 〈X〉
wherex

r← Zp, X = gx
2 . Definesig

def= sign(crs, vk, sk, ·, ·) as Okamoto signing algorithm (refer to

Section 2.2.5), and definever
def= verify(crs, vk, ·, ·) as the corresponding verification algorithm. Then

records〈sig, ver〉 in history(S), and outputs(VerificationAlg, sid , ver).

Signature generation:

(b) On input(Sign, sid ,m, ver′) wheresid = (S, sid ′), partyU sends outgoing message(GetCRS, sid) to
FCRS and receivescrs; then records(Sign, sid ,m, ver′, U) in history(U); randomly selectsK1

r← Z∗
n2

andµ1
r← Z∗

n, and computesC1 ← KK1(µ1)n
2

mod n3; randomly selectst, s
r← Zp, and computesW ←

gmt
1 ut

1v
st
1 ; records〈K1, µ1, t, s〉 in history(U), then sends outgoing message(user1, sid , C1,W ) to S.

(c) On the incominguser1 message, partyS randomly selectsK2
r← Z∗

n2 , then sends outgoing message
(signer1, sid ,K2) to partyU .

(d) On the incomingsigner1 message, partyU operates as follows:

K ← K1K2 mod n2;
θ ← (mt mod p) + t2κ + (st mod p)22κ; Aθ, Bθ

r← Z∗
n; Eθ ← Kθ(Aθ)n mod n2;

ai
r← ±[0, 2λ0+λU+`p ], i = 1, 2, 3; ϑ← a1 + a22κ + a322κ;

Êθ ← Kϑ(Bθ)n mod n2; Ŵ ← ga1
1 ua2

1 v
a3
1 ;

µ2
r← ZQ; ω2 ← H(Êθ, Ŵ ); C2 ← gω2hµ2

2 ;

Then partyU records〈Aθ, Bθ, a1, a2, a3, µ2〉, and sends outgoing message(user2, sid , 〈K1, µ1〉, 〈Eθ, C2〉)
to partyS.

(e) On the incominguser2 message, partyS operates as follows:

C1 =? KK1(µ1)n
2

mod n3; dU
r← {0, 1}λU ;

r
r← Zp s.t.x+ r 6≡ 0 mod p; χ r← ±[0, 2λ0+λS+`p ]; Ax, Bx

r← Z∗
n; l

r← Zp;
Y ← (Wvl

1)
1

x+r ; Ẑ ← Y χ; X̂ ← gχ
2 ; Ex ← gx(Ax)n mod n2; Êx ← gχ(Bx)n mod n2;

µ3
r← ZQ; ω3 ← H(Y, l, r, Ẑ, X̂, Êx); C3 ← gω3hµ3

3 ;

Then records〈r, χ,Ax, Bx, l〉 with PID U in history(S), and sends outgoing message(signer2, sid ,
〈Ex, C3〉, dU ) to partyU .

(f ) On the incomingsigner2 message, partyU operates as follows:
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b1 ← a1 + dU · (mt mod p); b2 ← a2 + dU · t; b3 ← a3 + dU · (st mod p);
Fθ ← Bθ(Aθ)dU mod n; dS

r← {0, 1}λS ;

Then sends outgoing message(user3, sid , 〈b1, b2, b3, Fθ〉, 〈Êθ, Ŵ , µ2〉, dS) to partyS.

(g) On the incominguser3 message, partyS operates as follows:

ω2 ← H(Êθ, Ŵ ); C2 =? gω2hµ2
2 ;

Eθ ∈? Z∗
n2 ,W ∈? G1; bi ∈? ±[0, 2λ0+λU+`p+1], i = 1, 2, 3; gb1

1 u
b2
1 v

b3
1 =? ŴW dU ;

K ← K1K2 mod n2; η ← b1 + b22κ + b322κ; Kη(Fθ)n =? Êθ(Eθ)dU mod n2;
δx ← χ+ dS · x; Fx ← Bx(Ax)dS mod n;

Then sends outgoing message(signer3, sid , 〈δx, Fx〉, 〈Y, l, r, Ẑ, X̂, Êx, µ3〉) to partyU , and outputs(Signature,
sid , U, completed) toZ; If one of the above checks fails, outputs(Signature, sid , U,⊥) toZ.

(h) On the incomingsigner3 message, partyU operates as follows:

ω3 ← H(Y, l, r, Ẑ, X̂, Êx); C3 =? gω3hµ3
3 ;

Ex ∈? Z∗
n2 ; δx ∈? ±[0, 2λ0+λS+`p+1]; gδx

2 =? X̂XdS ; gδx(Fx)n =? Êx(Ex)dS mod n2; Y δx =? Ẑ(Wvl
1Y

−r)dS ;

f, h
r← Zp; ς ← Y

1
ft mod p; α← Xfgfr

2 ; β ← s+ l
t mod p; V1 ← ψ(X)

1
f gh

1 ; V2 ← Xfh+rgfrh
2 ;

Now letsσ ← 〈ς, α, β, V1, V2〉, and ifver′(m,σ) = 1, outputs(Signature, sid ,m, σ), and records〈f, h〉
in history(U); else outputs(Signature, sid ,⊥) toZ.

Signature verification:
(i) On input (Verify, sid ,m, σ, ver′), party V outputs(Verified, sid ,m, ver′(m,σ)), and records the
current history inhistory(V ).

Corruption:
(j) On input(Corrupt, sid , J), partyJ outputs(Corrupted, sid , J, history(J)).

6.3 Efficiency

Choice of parameter lengths.Define the length of each parameterp, n, Q is `p, `n, `Q respectively and
should be selected so that the following are satisfied: (i) The 2SDH assumption holds over the bilinear group
parameter〈p, g1, g2,G1,G2,GT , ê, ψ, u2, v2〉, (ii) The discrete-logarithm (DLOG) assumption holds over
the elliptic curve cyclic groupG, (iii) The DCR assumption holds overZ∗

n2 . Based on the present state
of the art with respect to the solvability of the above problems, a possible choice of the parameters is for
examplè p = 171 bits,`n = 1024 bits,`Q = 171 bits. Notice that we should avoid using elliptic curves that
have smallp+ 1 divisors andp− 1 divisors apart from2, which suffer from a recent attack on SDH-related
assumptions by Cheon [Che06].

Communication efficiency.In this section, we count how many communication bits we need to generate a
UC blind signature. We count the six flows as:

flow1: 3`n + `p
flow2: 2`n
flow3: 2`n + `n + 2`n + `Q
flow4: 2`n + `Q + λU

flow5: 3(λ0 + λU + `p + 1) + `n + 2`n + `p + `Q + λS

flow6: (λ0 + λS + `p + 1) + `n + 5`p + 2`n + `Q
Based on the parameters:λ0 = λU = λS = 80bits, `p = 171bits, `n = 1024bits, `Q = 171bits, κ =
341bits, and each element inG1 is with length of`p, we can compute the whole communication which is
about22.3 Kbits, i.e. less than3 Kbytes.
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Signature length.The length of signatureσ = 〈ς, α, β, V1, V2〉 is: `p + 6 · `p + `p + `p + 6 · `p = 15`p =
2565bits, i.e. about2.6 Kbits. Here using the families of curves in [BLS04], we use groupG1 where each
element is171bits and groupG2 where each element6× 171bits.

6.4 Security

Based onTheorem 5.2in the previous section and two corollaries,Corollary 6.1andCorollary 6.2, in this
section, we can obtain

Corollary 6.3. Under the DCR assumption, the DLOG assumption, and the 2SDH assumption, and assum-
ing existence of collision resistent hash function, the blind signature protocolπΣ(BSIG) in Figure 26and
Figure 27securely realizesFBSIG in theFCRS-hybrid model.

Remark 6.4. The proof ofCorollary 6.3is very similar to the proof ofTheorem 5.2. The only difference is
that we instantiate the underlying equivocal lite blind signature and the ZK protocols with concrete protocols.

Here we calculate the distance introduced if we replaceFBSIG with the blind signature protocolπΣ(BSIG)

in Figure 26andFigure 27in theFCRS-hybrid model.
Let q1 be the number of the users which are corrupted initially;q2 be the number of valid message-

signature pairs obtained from a corrupted signer;q3 be the number of the users which are not corrupted
initially. Recall that the proof ofCorollary 6.3can follow the proof ofTheorem 5.2step by step.

• In the first step in the proof, we just restate the whole execution in the CRS hybrid world. So there is
no distance introduced. Note that now CRS includes the CRS for the underlying equivocal lite blind
signature and the CRS for SVZK and SPZK protocols.

• In the second step in the proof, consider that we instantiateFSVZK with a concrete SVZK protocol in
the CRS model. When a user is corrupted initially, the simulator needs to extractm which is used by
the corrupted user, and “patch” it intoFBSIG. Note that now we cannot patch suchm perfectly. The
probability that the patchedm does not equal them for the signature includes two parts:

– due to the underlying three move proof based on Pedersen commitments, which isAdvdlog +
Advcrhf + 2−λU ; hereAdvdlog is the DLOG advantage over the group which Pedersen commit-
ment based, andAdvcrhf is the advantage for collision-resistant hash functionH; and2−λU is
the soundness error.

– due to the fact that the UC commitment key, i.e.K is an E-key andm cannot be extracted, which
is 2−`n ;

So for each user who is corrupted initially, the distance isAdvdlog + Advcrhf + 2−`n + 2−λU .

Together in this step, the distance introduced isq1 · (Advdlog + Advcrhf + 2−`n + 2−λU ).

• In the third step we introduce the unforgeability distance:

– the underlying equivocal lite blind signature will introduce distanceAdv2sdh which is the 2SDH
advantage over bilinear groups(G1,G2); note that we instantiate the equivocal lite blind signa-
ture with the one inFigure 8whose lite-unforgability is based on the 2SDH assumption.

– still once the signing secret is revealed, the adversary of course can forge signatures; we instanti-
ateFSPZK with a concrete SPZK protocol which introduce distanceAdvdcr +2−λ0 ; hereAdvdcr

is the DCR advantage because we use Paillier encryption to encrypt the signing secret; and2−λ0

is the zero-knowledge distance.

58



So together in this step, the distance introduced isAdv2sdh + (q1 + q3) · (Advdcr + 2−λ0).

• Similar to the second step, in the fourth step, consider we instantiateFSPZK with a concrete SPZK
protocol. When signer is corrupted at the some point, for every user request, the simulator needs to
extract the signing secretx and patch it intoFBSIG. Note that now such patching is not perfect. The
probability that the patchedx does not equal the real one includes only one part: due to the three move
proof based on Pedersen commitments, which isAdvdlog + Advcrhf + 2−λS . Note that this is slightly
different from the second step where UC commitment is used; here only Paillier encryption which is
an extractable commitment is used, andx can always be extracted. So this step introduces distance
q2 · (Advdlog + Advcrhf + 2−λS ).

• In the last step, we need to equivocate users who are not corrupted initially. The equivocation includes
equivocating the underlying lite blind signature and reconstruct the internals for the SVZK protocol.
Consider that the underlying equivocal lite blind signature is unconditionally equivocal, which will
not introduce any distance. Note that under the DCR assumption, with the equivocal trapdoor, we
can construct the internal state for the SVZK protocol; this introduces distanceAdvdcr. Note also that
once the SVZK protocol is not perfectly zero-knowledge, we will not equivocate the underlying lite
blind signature and the SVZK protocol perfectly; this introduces distanceAdvdcr + 3 · 2−λ0 , where
Advdcr is the DCR advantage because we use the Damgård-Jurik encryption to encryptm, and3·2−λ0

is the zero-knowledge distance.

So this step introduces distanceq3 · (2 · Advdcr + 3 · 2−λ0).

So the whole distance is:(
q1 · (Advdlog + Advcrhf + 2−`n + 2−λU )

)
+

(
Adv2sdh + (q1 + q3) · (Advdcr + 2−λ0)

)
+

(
q2 · (Advdlog + Advcrhf + 2−λS )

)
+

(
q3 · (2 · Advdcr + 3 · 2−λ0)

)
which isAdv2sdh + (q1 + 3q3) · Advdcr + (q1 + q2) · (Advdlog + Advcrhf) + q1 · 2−`n + q1 · 2−λU + q2 ·
2−λS + (q1 + 4q3) · 2−λ0 .
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