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Abstract. We construct two simple families of two-message (n, 1)-oblivious
transfer protocols based on degree-t homomorphic cryptosystems with commu-
nication of respectively 1+dn/te and 3+dn/(t+1)e ciphertexts. The construc-
tion of both families relies on efficient cryptocomputable conditional disclosure
of secret protocols. The currently most interesting case t = 2 can be based on
the Boneh-Goh-Nissim cryptosystem. We use the new protocols to reduce the
communication of virtually any existing oblivious transfer protocols by propos-
ing a new communication-efficient generic transformation from computationally-
private information retrieval protocols to oblivious transfer protocols.
Keywords. Computationally-private information retrieval, conditional disclo-
sure of secrets, oblivious transfer.

1 Introduction

In an (n, 1)-oblivious transfer protocol for `-bit strings, (n, 1)-OT`, Alice on input
0 ≤ σ ≤ n − 1 retrieves the σth element of Bob’s database D = (D0, . . . , Dn−1)
where Di ∈ {0, 1}`. One requires that Alice obtains no information about any Dj for
j 6= σ, and that Bob obtains no information about σ. It is well-known that by gen-
eral reductions, one can base both two-party computation and multi-party computation
on (2, 1)-OT. (n, 1)-OT is a cornerstone of many handcrafted cryptographic protocols.
Thus, it is important to construct efficient (n, 1)-OT protocols that would be efficient
for values of n ranging from n = 2 to say n = 220. The currently most communication-
efficient (n, 1)-OT protocols for large n were proposed in [Lip05,GR05], while some of
the most communication-efficient (2, 1)-OT protocols were proposed in [AIR01,LL07].

New linear protocols. We propose two new families SimpleOTt and ExtOTt, for t ≥
1, of linear-communication (n, 1)-OT` protocols. Both families rely on a cryptosystem
that enables to cryptocompute (i.e., compute-on-ciphertexts) degree-t polynomials with
coefficients from ZN ∪ {?} where ? denotes a pseudorandom element of the plaintext
group ZN . We call such a cryptosystem degree-t homomorphic. The case t = 1 includes
additively homomorphic public-key cryptosystems like Paillier [Pai99], and the case
t = 2 includes the BGN cryptosystem [BGN05].
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Table 1. Comparison of different instantiations of ExtOT, SimpleOT with the protocols
from [AIR01,LL07]. Here, k denotes the length of ciphertexts in bits; the values of |pk| and
k depend on the underlying cryptosystem.

Protocol Alice’s comm. Bob’s comm. Max ` Cryptosystem CDS eq.
Previous instantiations
[AIR01] = SimpleOT1 |pk| + k nk ≤ 64 Mult. hom. (6)
[LL07] = SimpleOT1 |pk| + k nk ≤ 430 Add. hom. (6)
New instantiations
SimpleOT2 |pk| + k dn/2ek ≤ 60 BGN (6)
ExtOT1 |pk| + 2k nk ≤ 430 Add. hom. (5)
ExtOT2 |pk| + 3k dn/3ek ≤ 60 BGN (4)
Generic, hypothetical instantiations for t > 2

SimpleOTt |pk| + k dn/tek ? Hypothetical for t > 2 (6)
ExtOTt |pk| + 3k dn/(t + 1)ek ? Hypothetical for t > 2 (4)

Wlog, assume that t | n. Then, (n, 1)-SimpleOTt is a parallel repetition of
n/t copies of an atomic (t, 1)-SimpleOTt protocol that use a common secret/public
key pair. They also share Alice’s first message that consists of the public key and
of an encryption of Alice’s index σ. In every single instance of (t, 1)-SimpleOTt,
Bob cryptocomputes his reply as a single encryption of the sum of two polyno-
mials cpt−1

i (σ) and SimpleCDSt
i(σ), where the first polynomial takes care of the

correctness and the second polynomial implements conditional disclosure of secrets
(CDS, [AIR01,BGN05,LL07]) to guarantee Bob’s privacy. More precisely, cpt

i(σ)
is the unique degree-t polynomial such that cpt

i(σ) = Dσ if bσ/tc = i, and
SimpleCDSt

i(j) is a degree-t polynomial such that SimpleCDSt
i(j) = 0 for bj/tc = i

and SimpleCDSt
i(j) = ? for bj/tc 6= i. Thus, cpt

i(σ) + SimpleCDSt
i(σ) is equal to Dσ

if bσ/tc = i, and to ?, otherwise. In particular, SimpleOT1 corresponds to the (n, 1)-OT
protocols from [AIR01,LL07].

The protocol (n, 1)-ExtOTt is similarly composed from atomic (t + 1, 1)-ExtOTt

protocols. Here, however, Bob’s reply is a sum of cpt
i(σ) and of a CDS polynomial

ExtCDS′i(σ) if t = 1, and of a CDS polynomial ExtCDSt
i(σ) if t > 1. Because of the

use of cpt
i(σ), the number of atomic protocols is decreased to dn/(t+1)e. However, the

corresponding CDS polynomials are more complicated and require Bob to communi-
cate 2 ciphertexts per atomic protocol (if t = 1), or Alice to communicate 3 ciphertexts
(if t > 1). The basic reason behind the added complexity is that there is no degree-t
polynomial f such that f(j) = 0 for bj/(t+1)c = i and f(j) = ? for bj/(t+1)c 6= i.

Given the state of the art on existing degree-t homomorphic cryptosystems and
efficient CDS protocols, one can instantiate the protocols SimpleOTt and ExtOTt with
t = 1 or t = 2 as summarized in Table 1. Thus, the new protocols are communication-
efficient even when n is small, say n = 2 or n = 3. See Sect. 3 for more comparison.

New sublinear protocols. The most communication-efficient known sublinear (n, 1)-
OT protocols are constructed by combining a communication-efficient CPIR pro-
tocol such as [Lip05,GR05] with a linear (n, 1)-OT protocol from [AIR01,LL07].



The communication of the combined protocols is decreased when the protocols
from [AIR01,LL07] are replaced with either SimpleOT2 or ExtOT2. In the case of
the only known CPIR protocol with log-communication [GR05], this replacement de-
creases slightly the communication of the combined protocol. In the case of the CPIR
protocol from [Lip05], for small `, the transformed oblivious transfer protocol is not
only more secure but also more communication-efficient than Lipmaa’s original CPIR
protocol. We also point out that the existence of degree-2 cryptosystem with efficient
decryption would imply the second log-communication oblivious transfer protocol.

Caveats. The proposed two-message protocols are secure only if the plaintext group or-
der N has no small prime divisors. This means that if the group order is composite (like
in the case of existing additively homomorphic cryptosystems or the BGN cryptosys-
tem) then one can either rely on the PKI model or say use Lenstra’s ECM algorithm to
detect small divisors of N . See [LL07] for a discussion. This is not a problem if N is
prime, e.g., if we rely on lifted Elgamal.

Notation. For a set S, U(S) denotes the uniform distribution on it. Elements of the
secret key are colored like this, elements of the public key are colored like this, (secret)
plaintexts and randomizers are colored like this and ciphertexts are colored like this.

Road-map. In Sect. 2, we give necessary preliminaries. In Sect. 3, we describe the
protocols SimpleOTt and ExtOTt. In Sect. 4, we describe a generic transformation of
any (n, 1)-CPIR protocol to a (n, 1)-OT protocol with a comparable communication.
In Sect. 5, we discuss related work.

2 Preliminaries

Bilinear groups. Let G and GT be two multiplicative cyclic groups of order N where
N = pq ∈ Z and p, q are k-bit primes for some fixed security parameter k ∈ Z+,
e : G × G → GT is a bilinear map, and for some fixed generator g of G, e(g, g) is a
generator of GT . We assume that group operations and e are all efficiently computable.
Let G be a bilinear group generation algorithm that outputs such a tuple (p, q, G, GT , e).
[BGN05] suggest the following example. Pick large primes p < q and let N = pq.
Find the smallest ` so P = `N − 1 is prime and equal to 2 modulo 3. Consider the
points on the elliptic curve y2 = x3 + 1 over FP . This curve has P + 1 = `N points,
so it has a subgroup G of order N . We let GT be the order N subgroup of F∗P 2 and
e : G × G → GT be the modified Weil pairing from [BF03]. We assume that k is a
constant and work in the concrete security framework.

Public-key cryptosystems. A public-key cryptosystem is a tuple (K, E ,D) of algo-
rithms with (possibly public-key dependent) plaintext space M, randomizer space R
and ciphertext space C, such that G generates a random secret/public key pair (sk, pk),
Epk(m; r) = c encrypts a plaintext m ∈ M to a ciphertext c ∈ C by using randomizer



r ∈ R, and Dsk(c) = m decrypts a ciphertext c ∈ C to a plaintext m ∈ M. One
requires that for any (sk, pk) ∈ G and for any m ∈ M, r ∈ R, Dsk(Epk(m; r)) = m.
A public-key cryptosystem is (τ, ε)-IND-CPA secure if for a freshly generated pub-
lic/secret key pair (sk, pk), any τ -time adversaryA can distinguish random encryptions
of any two plaintext messages m1,m2, even chosen by himself, with probability ≤ ε.
(The probability is also taken over the choice of the keys.)

Additively homomorphic public-key cryptosystems. A public-key cryptosystem is
additively homomorphic if M = (ZN ,+, 0) for some integer N , (C, ·, 1) is a finite
cyclic group, and if Dsk(Epk(m1; r1)Epk(m2; r2)) = m1 + m2 for any m1,m2, r1, r2.
In addition, we require that Epk(m; r)·Epk(0;U(R)) = Epk(m;U(R)) for any m, r; this
enables to perform efficient rerandomization. There are many well-known additively
homomorphic public-key cryptosystems, see e.g., [Pai99,DJ01].

Disclose-if-equal. For an additively homomorphic cryptosystem, given an encryption
c = Epk(m; r) of some m, one can compute c1 ← cU(ZN )hU(R) = Epk(m; r)U(ZN ) ·
Epk(0;U(R)) = Epk(U(ZN ) ·m;U(R)). If gcd(m,N) = 1 (resp., gcd(m,N) > 1)
then c1 = Epk(U(ZN );U(R)) is a random encryption of a random value from ZN

(resp., in some nontrivial subgroup of ZN ). Laur and Lipmaa [LL07] defined a a pro-
tocol that forces c1 to be an encryption of a (statistically) pseudorandom value of ZN

for any m. Briefly, in the implementation of the Laur-Lipmaa protocol, one redefines ?
(the “formal random element of ZN ”) to be the equal to

U(M) + 2` · U(2` · ZbN/2`c) (1)

Because the distribution of ? changes only slightly, we will still formally interpret ? as
being a uniformly random plaintext.

In a disclose-if-equal protocol, Alice on input a obtains Bob’s input b1 if a = b2

for Bob’s second input b2, otherwise Alice obtains ?. In the Laur-Lipmaa disclose-if-
equal protocol, given a random encryption of a, Bob computes a random encryption of
?(b2 − a) + b1. Alice recovers the answers modulo 2` with ` < p − 1 − ε, where p is
the smallest prime divisor of N and 2−ε is the desired privacy level of honest Bob.

BGN cryptosystem and degree-t homomorphic cryptosystems. The BGN cryp-
tosystem [BGN05] is defined as follows. The algorithm K runs G to generate
(p, q, G, GT , e). Let N ← pq. Pick generators g, u ← U(G) and let h ← uq. Out-
put public key pk← (N, G, GT , e, g, h) and private key sk← p. To encrypt a message
m ∈ Z2` where 2` < q with public key pk, pick a random r ← R := ZN and compute
Epk(m; r) ← gmhr ∈ G. To decrypt a ciphertext c using the private key sk, compute
first cp = (gmhr)p = (gp)m and then recover m by computing the discrete logarithm
of cp on base gp. This can be done in time O(2`/2) and thus one must take say ` < 64 or
` = O(log k). Set g1 ← e(g, g) and h1 ← e(g, h) where g1 has order N and h1 has or-
der q. Define associated cryptosystem (E>,D>) in group GT , with E>pk(m; r) := gm

1 hr
1

where D> is defined as the discrete logarithm of E>pk(m; r)p on base gp
1 .



Given BGN encryptions of any m1,m2, one can compute a BGN encryption
of m1 + m2 as Epk(m1)Epk(m2), and an associated BGN encryption of m1m2 as
e(Epk(m1), Epk(m2)). In particular, E>pk(m; r) ≡ e(Epk(m; r), g). Thus, given BGN
encryptions of any m1, . . . ,mt, one can compute associated BGN encryptions of

E>pk(f(m1, . . . ,mt)) (2)

for any quadratic polynomial f ∈ (ZN ∪ {?})[M1, . . . ,Mt]. This generalizes the
computations that one can do in the case of additively homomorphic cryptosystems,
where the set of computable functions is restricted to linear polynomials f ∈ (ZN ∪
{?})[M1, . . . ,Mt]. We call a cryptosystem degree-t homomorphic if one can simi-
larly compute (associated) encryptions of type Eq. (2) for any degree-t polynomial
f ∈ (ZN ∪ {?})[M1, . . . ,Mt].

In the case of the BGN cryptosystem one does not need interpret ? as in Eq. (1)
because of the inefficient decryption of the BGN: for Alice to be able to make use of
incorrectly submitted inputs, she would need to be able to compute arbitrary discrete
logarithms in the group of order p. However, this is just a byproduct of the inefficient
decryption procedure of the BGN cryptosystem and thus should not be taken granted.

Conditional disclosure of secrets. During a conditional disclosure of secrets (CDS)
protocol [AIR01,BGN05,LL07], Alice obtains Bob’s secret exactly iff her own input
belongs to some publicly specified set of valid inputs; if Alice’s input is incorrect then
Alice obtains usually a value that is statistically close to a uniformly random plaintext.
There exist several general approaches of constructing CDS protocols that are crypto-
computable given a degree-t homomorphic cryptosystem. In particular, efficient cryp-
tocomputable CDS protocols for many tasks, based on cryptosystems with t = 1 and
t = 2, were respectively proposed in [AIR01,LL07] and [BGN05].

Oblivious transfer. Assume that Alice has an input σ ∈ {0, . . . , n− 1} and Bob has
a database D = (D0, . . . , Dn−1) where Di ∈ {0, 1}`. In an (n, 1)-oblivious trans-
fer protocol for `-bit strings, (n, 1)-OT`, Alice obtains Dσ and no additional informa-
tion, and Bob obtains no information about σ. We only consider two-message oblivious
transfer protocols. An oblivious transfer protocol is correct when in the case of honest
parties, Alice receives Dσ . An oblivious transfer protocol is (τ, ε1)-private for Alice
if for any two indices σ1, σ2, even chosen by Bob himself, a τ -time Bob cannot dis-
tinguish the first messages of Alice that correspond to σ1, σ2. An oblivious transfer
protocol is ε2-private for Bob if there exists an unbounded simulator that, only given
access to the first message of Alice and Bob’s database element Dσ , generates Bob’s
second message from the distribution that is ε2 close to Bob’s response in the real
protocol to Alice’s first message. An oblivious transfer protocol is (τ, ε1, ε2)-relaxed-
secure if it is correct, (τ, ε1)-private for Alice and ε2-private for Bob. An (τ, ε1)-secure
(n, 1)-computationally-private information retrieval (CPIR) protocol is the same as a
(τ, ε1; 1)-relaxed secure oblivious transfer protocol.



3 New Families of Oblivious Transfer Protocols

Assume that we have an underlying cryptosystem where one can compute degree-t
polynomials on ciphertexts. We call such a cryptosystem degree-t homomorphic. For
example, t = 1 in the case of additively homomorphic public-key cryptosystems and
t = 2 in the case of the BGN cryptosystem. We next propose two families ExtOTt

and SimpleOTt of linear-communication (n, 1)-OT protocols that use the properties
of a degree-t cryptosystem to decrease the number of communicated ciphertexts to
3 + dn/(t + 1)e and 1 + dn/te, respectively

Underlying idea of ExtOTt. Wlog, assume that (t + 1) | n. The basic idea of the
first new protocol, that we call (n, 1)-ExtOT, is simple. Alice first generates a new key
pair for the degree-t homomorphic cryptosystem. She sends to Bob the new public key
with a random encryption of σ. Given that, for every 0 ≤ i ≤ n/(t + 1) − 1, Bob
cryptocomputes the polynomial cpt

i(σ) + ExtCDSt
i(σ), where cpt

i(σ) and ExtCDSt
i(σ)

are two degree-t polynomials that take care of protocols’s correctness and Bob’s privacy
respectively. More precisely, cpt

i is the unique degree-t polynomial, such that cpt
i(σ) =

Dσ if bσ/(t + 1)c = i. For example,

cp1
i (σ) =D2i((2i + 1)− σ) + D2i+1(σ − 2i) ,

cp2
i (σ) =D3i((3i + 1)− σ)((3i + 2)− σ)/2 + D3i+1(σ − 3i)((3i + 2)− σ)+

D3i+2(σ − 3i)(σ − (3i + 1))/2 .

Second, ExtCDSt
i(σ) is a degree-t polynomial such that ExtCDSt

i(σ) = 0 if bσ/(t +
1)c = i, and ExtCDSt

i(σ) = ? otherwise. That is, ExtCDSt
i implements a cryptocom-

putable conditional disclosure of secrets protocol. Therefore, cpt
i(σ) + ExtCDSt

i(σ) is
equal to Dσ if dσ/(t + 1) = ie, and to ? otherwise.

A minor complication here is that such polynomial would have degree t + 1. To
overcome this issue, we let Alice to send to Bob three encryptions of (σ2, σ1, σ0), where

σ2 ← bσ/(t+1)c , σ1 ← b(σ mod (t+1))/tc , σ0 ← (σ mod (t+1)) mod t .
(3)

From these encryptions, Bob can cryptocompute an encryption of σ = (t + 1)σ2 +
tσ1 + σ0. E.g., if σ = 14 and t = 4 then σ2 = 2, σ1 = 1, and σ1 = 0. We now define

ExtCDSt
i(σ2, σ1, σ0) := ?(σ2−i)+?(σ1−1)σ1+?(σ0−t)(σ0−(t−1)) · · ·σ0+?σ1σ0 .

(4)
Clearly, ExtCDSt

i is a degree-t polynomial with the required properties, i.e.,
ExtCDSt

i(σ2, σ1, σ0) = 0 if dσ/(t + 1)e = i and ExtCDSt
i(σ2, σ1, σ0) = ?, otherwise.

After that, Bob returns all n/(t+1) ciphertexts to Alice who decrypts the bσ/(t+1)cth
ciphertext and reduces the result modulo 2`. Thus, if 0 ≤ σ ≤ n−1 then Alice retrieves
Dσ , and if σ 6∈ {0, . . . , n− 1} then Alice retrieves a close-to-uniformly random value.

The case t = 1 is different. In this case, we are not aware of a protocol with commu-
nication of O(1) + dn/2e ciphertexts. The main problem is that the CDS protocol for
showing that x ∈ {0, 1} by methods of [LL07] requires Bob to send two ciphertexts to



Alice, because there is no way to check that σ0 ∈ {0, 1} by using a single linear poly-
nomial. Instead, we transfer cp1

i twice, where the first time Alice obtains the answer if
σ0 = 0 and in the second time Alice obtains the answer if σ0 = 1; this corresponds
to the protocols of [AIR01,LL07]. More precisely, assume that 2 | n. In ExtOT1, Al-
ice transfers to Bob one public key and two ciphertexts of σ1 = bσ/2c and σ0 = σ
mod 2. For every 0 ≤ i ≤ n/2 − 1, Bob forwards to Alice random encryption of the
vector (cp1

i (σ), cp1
i (σ)) + ExtCDS′i(σ1, σ0), where

ExtCDS′i(σ1, σ0) := (? · (σ1 − i) + ? · σ0, ? · (σ1 − i) + ? · (σ0 − 1)) . (5)

Thus, the communication of ExtOT1 is 1 public-key and 2 + n ciphertexts.

Description of (n, 1)-ExtOT2. We now follow up with a precise definition of the
(n, 1)-ExtOTt protocol. We only give an implementation in the case t = 2, i.e., when
one uses the BGN cryptosystem. The general case is a straightforward extension.

Let (K, E ,D) be the BGN cryptosystem. Assume Alice’s private input is 0 ≤ σ ≤
n− 1 and Bob’s private input is D = (D0, . . . , Dn−1). Fix ` < log2 p such that doing
O(2`/2) steps is feasible; for example, ` := 64.1 Wlog, assume that 3 | n. Denote by B
the distribution U(ZN ) + 2` · U(ZbN/2`c). The protocol description follows:

1. Alice runs K to generate a new secret/public key pair (sk, pk). She stores sk. She
computes a2 ← Epk(σ2;U(R)), a1 ← Epk(σ1;U(R)) and a0 ← Epk(σ0;U(R)),
for σi computed according to Eq. (3), and sends (pk, a2, a1, a0) to Bob.

2. If a2, a1 or a0 is not a valid ciphertext then Bob rejects. Otherwise, Bob computes
a← a3

2a
2
1a0, and a vector of ciphertexts b = (b1, . . . , bn/3), where

gi ←e(a2/Epk(i; 0), g)B · e(a1/Epk(1; 0), a1)B · e(a0/Epk(1; 0), a0)B · e(a1, a0)B ,

bi ←e(Epk(3i− 2; 0)/a, Epk(3i− 1; 0)/a)D3i/2·
e(a/Epk(3i; 0), Epk(3i− 2; 0)/a)D3i−1 ·

e(a/Epk(3i; 0), a/Epk(3i− 1; 0))D3i−2/2 · gi · hU(R)
1

for i ∈ {1, . . . , n/3}, and sends b to Alice.
3. Alice outputs e← D>pk(bbσ/3c) mod 2`.

Note that during his computation, Bob can several times reuse all the values of Epk(i; 0),
for i ∈ {0, . . . , n/3}.

Theorem 1. Assume that the BGN cryptosystem is (τ, ε2)-IND-CPA secure, that the
public key is correctly generated, and that ` < log2 p− log2 n− ε2 where N = pq and
p < q. Then the (n, 1)-ExtOT2 protocol is (τ −O(1), 3ε1; ε2)-relaxed-secure.

Proof. CORRECTNESS: clearly, if aj is generated correctly for j ∈ {0, 1, 2}, then bi is
a random associated encryption of a message distributed according to Xi := cp2

i (σ) +

1 For the decryption to be polynomial-time in n, one needs that ` = O(log n). However, in
practical applications n is too small for the asymptotic notion to start to become relevant.



ExtCDS2
i (σ2, σ1, σ0). Clearly, if σ = 3σ2 + 2σ1 + σ0 ∈ {3i, 3i + 1, 3i + 2} then

e ≡ Dσ (mod 2`).
ALICE’S PRIVACY: the only thing Bob sees is 3 ciphertexts (together with a fresh

public key pk). Therefore, Alice’s privacy follows directly from the IND-CPA security
of the BGN cryptosystem.

BOB’S PRIVACY: we need to construct a simulator that on inputs
(pk, Dσ, a2, a1, a0) solely, where pk is a random public key and σ ← Dsk(a3

2a
2
1a0),

computes a second round message that has almost the same distribution as b, i.e.,
that it is a random associated encryption of Xi. Simulator does the following. It
rejects if any of ai is not a valid ciphertexts. If σ 6∈ {0, . . . , n− 1} then it outputs
a random associated encryption of U(ZN ). Because of the results of [LL07], this is
statistically ε2-close to the random associated encryption of Xi. If σ ∈ {0, . . . , n− 1}
then the simulator outputs a random associated encryption of Dσ . Clearly, in this case
simulator’s output has distribution Xi. ut

Note that (n, 1)-ExtOT is secure only when one assumes that the public key is correctly
generated. More precisely, one needs that the smallest prime divisor of N is sufficiently
large, see [LL07]. This assumption can modeled by saying that this protocol is secure in
the PKI model, or by letting Alice to prove once in zero knowledge that the public key
is correct and then using the same public key in many instances of (n, 1)-ExtOT. Yet
another possibility is to use Lenstra’s ECM algorithm to verify that N does not have
small prime factors. These and other remedies are thoroughly discussed in [LL07].

Alternative family SimpleOT. We will next give a short description of the alternative
family SimpleOT of (n, 1)-OT` protocols. In SimpleOTt, Bob cryptocomputes polyno-
mials cpt−1

i (σ) + SimpleCDSt
i(σ), where cpt−1

i is as defined before and SimpleCDSt
i

is another, simpler, CDS polynomial. More precisely, assume that t | n. In SimpleOTt,
Alice transfers a new public key and a random encryption of σ, and Bob replies with
n/t random encryptions of cpt

i(σ) + SimpleCDSt
i(σ), where

SimpleCDSt
i(σ) := ?(σ − ti) · · · · · (σ − (ti + t− 1)) (6)

for 0 ≤ i ≤ n/t− 1.
Therefore, in SimpleOTt, Alice transfers 1 public key and 1 ciphertext, while

Bob transfers dn/te ciphertexts (as opposed to 3 and dn/(t + 1)e ciphertexts in the
case of ExtOT). Clearly, SimpleOT1 corresponds to the oblivious transfer protocol
from [AIR01,LL07]. The only other current instantiation is SimpleOT2 when coupled
with the BGN cryptosystem. To the best of our knowledge, if ` ≤ 64, SimpleOT2 is the
most communication-efficient available (2, 1)-OT` protocol, having the total commu-
nication of 1 public key and 2 ciphertexts.

Comparison. In the case t = 1, the underlying cryptosystem must be additively ho-
momorphic. One can use either the lifted Elgamal (that has inefficient decryption) or
say the Paillier [Pai99] or the Damgård-Jurik [DJ01]. Then, SimpleOT1 corresponds
resp. to the Aiello-Ishai-Reingold protocol [AIR01] or to the Laur and Lipmaa proto-
col [LL07], while ExtOT1 is a related but slightly less efficient protocol. Compared to



the case t = 2, the case t = 1 benefits from the existence of a wide variety of additively
homomorphic public-key cryptosystems, shorter public keys, and efficient decryption
that makes it possible to obliviously transfer long strings with say ` ≥ 400. On the
other hand, the number of transferred ciphertexts is larger than in the case of t = 2.
Moreover, the ciphertexts of existing additively homomorphic cryptosystems are twice
longer than the ciphertexts of the BGN cryptosystem. On the other hand, the ciphertexts
of lifted Elgamal are shorter than the ciphertexts of the BGN cryptosystem.

In the case of t = 2, one uses a degree-2 homomorphic cryptosystem, e.g., the
Boneh-Goh-Nissim cryptosystem [BGN05]. Compared to t = 1, one now transfers
less ciphertexts. Additionally, because these instantiations operate on the ciphertexts
of the BGN cryptosystem, they can be used in conjunction with other protocols that
rely on the BGN cryptosystem; such applications include efficient non-interactive zero-
knowledge proofs from [GOS06]. On the other hand, one is currently restricted to the
BGN cryptosystem that has longer public keys, compared to existing additively ho-
momorphic public-key cryptosystems, and inefficient decryption that only allows to
efficiently transfer strings with say ` ≤ 64.

From the communication-efficiency view-point, when neglecting the length of the
public key and assuming that ` is small, for n ≤ 15, the most efficient new protocol
is (n, 1)-SimpleOT2, while for n > 15, the most efficient protocol is (n, 1)-ExtOT2.
Note that in many common applications of oblivious transfer, the public key is shared
with other protocols and thus does not incur a communication overhead.

4 Sublinear Oblivious Transfer

A common methodology to construct (n, 1)-OT protocols is to first construct a
communication-efficient (n, 1)-CPIR protocol and then apply an efficient transfor-
mation to transfer it to a comparably efficient (n, 1)-OT protocol. Examples of
communication-efficient (n, 1)-CPIR protocols include [Lip05,GR05]. A typical trans-
formation was proposed in [AIR01] and later refined in [LL07] to work with ex-
isting additively homomorphic cryptosystems. Next, we generalize the approach
of [AIR01,LL07].

We now describe a new transformation based on ExtOTt for t > 1; the transforma-
tion based on SimpleOTt is similar. Wlog, assume that (t+1) | n. Recall that during the
ExtOTt protocol, Bob first constructs a database of n/(t + 1) ciphertexts, such that the
ith ciphertext encrypts Dσ if bσ/(t + 1)c = i, and ?, otherwise. Then Bob transfers the
whole database of ciphertexts to Alice. Instead, we can use in parallel any two-message
(n/(t+1), 1)-CPIR protocol so that Alice will only obtain the bσ/(t+1)cth ciphertext
(or possibly more). The resulting transformed protocol is clearly relaxed-secure: first,
because ExtOTt is relaxed-secure even if Alice sees all intermediate ciphertexts, the
composed protocol is also relaxed-secure. Second, Bob only sees the first messages of
Alice of both protocols and thus the composed protocols preserves Alice’s privacy iff
both ExtOTt and the used CPIR protocol preserve Alice’s privacy.

In general, let Π1 be the ExtOTt (or say the SimpleOTt) protocol, and let Π2

be an arbitrary CPIR protocol. We denote the transformed protocol by Π2 ◦ Π1, the
case Π1 = SimpleOT1 corresponds to the transformation proposed in [AIR01,LL07].



Clearly, if Π1 on database elements of length ` has the first message of C1(n, `) bits and
the second message of C2(n, `) ciphertexts, and Π2 on database elements of length k
has communication of C3(n, k) bits, then the transformed protocol Π2◦Π1 has commu-
nication of C1(n, `) + C3(C2(n, `), k) bits. Here, k is the length of ciphertexts in bits.
Thus, Π2 ◦ SimpleOT1 has communication of |pk|+ d2 log2 Ne+ C3(n, d2 log2 Ne),
where |pk| = dlog2 Ne ≈ 1024 bits. On the other hand, Π2 ◦ ExtOTt has communica-
tion of |pk|+ 3dlog2 Ne+ C3(dn/(t + 1)e, dlog2 Ne), where |pk| is somewhat longer
compared to the case of SimpleOT1.

If Π2 is the Gentry-Ramzan CPIR protocol [GR05] with communication O(log2 n+
`) then the total communication of Π2 ◦ SimpleOT1 is |pk| + O(log2 n + 2 log2 N).
In this case, the total communication of Π2 ◦ ExtOTt is not significantly different un-
less t is large. On the other hand, the communication decrease is significant in the
case of less communication-efficient CPIR protocols. Recall that Lipmaa’s (n, 1)-CPIR
protocol [Lip05]—when used on top of the Damgård-Jurik cryptosystem [DJ01]—has
communication of ( 1

2 · log2
2 n + (s + 3/2) · log2 n + s)k bits, where k = dlog2 Ne.

Thus, applying Lipmaa’s CPIR protocol on the ExtOT2-transformed database of n/3
ciphertexts results in the protocol Π2 · ExtOT2 that has communication complexity
(3(s + 1) + 1

2 · log2
2(n/3) + ((s + 1) + 3/2) · log2(n/3) + (s + 1))k = ( 1

2 log2
2 n +

(s + 5
2 − log2 3) log2 n + (4− log2 3)s + 4 + 5/2 · log2 3 + 1

2 · log2
2 3)k. This means

that—assuming that the strings to be transferred are short—the ExtOT2-transformation
actually reduces the communication of Lipmaa’s original CPIR protocol, on top of in-
creasing its security.

Recursive ExtOTt. We can recursively apply ExtOTt to itself. Bob’s original database
has n items, each of ` bits. intermediate database, generated by ExtOTt has dn/(t+1)e
ciphertexts, each of dlog2 Ne bits. One can next apply the (dn/(t + 1)e, 1)-ExtOTt

protocol ξ := dlog2 N/`e times to retrieve all dlog 2Ne bits of the dn/(t + 1)eth inter-
mediate ciphertext. Continuing, in the level r recursion, Alice sends 1 public key and
3r ciphertexts and Bob sends ξr−1 · dn/(t + 1)r−1e ciphertexts.

Interestingly, if there existed a degree-2 homomorphic cryptosystem with ξ = 2
then this recursive construction would result in a O(log n) communication (n, 1)-OT
protocol. More precisely, r ← (lnn − ln 6 + ln ln 1.5)/ ln 1.5 would result in the op-
timal communication of (3 ln n + 3 − 3 ln 6 + 3 ln ln 1.5)/ ln 1.5 ≈ 5.1 log2 n − 12.5
ciphertexts. The same asymptotic result holds whenever ξ < t, while the optimal case
for ξ ≥ t is just the trivial one with r = 1.

5 Related Work

Boneh, Goh and Nissim [BGN05] considered the application of degree-2 homomorphic
cryptosystems to construct efficient oblivious transfer protocols. They proposed two
essentially different (n, 1)-OT protocols. Both protocols handle D as a two-dimensional
square Dij . Alice’s query is a pair of coordinates (σ1, σ2) to this square. The first OT
protocol assumes that ` = 1 and requires communication O(

√
n · k), where k is the

security parameter (the length of ciphertexts in bits). Here, Alice sends 2
√

n encryptions



of Boolean values xi, yj , where xσ1 = yσ2 = 1 and xi = yj = 0, otherwise. Bob
cryptocomputes the formula ∨Dij

(xi ∧ yj).
In the second OT protocol, ` = O(log n) as in (n, 1)-ExtOT. Alice generates two

polynomials p1, p2 such that pi(a) = 1 for a = σi and pi(a) = 0 for other values of
a ∈ [

√
n], and sends their coordinates to Bob. Bob cryptocomputes the encryption of∑

i,j p1(i)p2(j)Dij . Alice recovers from it Dσ1,σ2 in time O(2`/2) = O(nO(1)).
Finally, one uses communication-balancing techniques to lower the communica-

tion. The database is viewed as comprising of n1/3 chunks, each chunk contain-
ing n2/3 entires, where Alice is interested in retrieving entry (I, J,K) of D. Alice
sends Bob the coefficients of two polynomials p1(x) and p2(x) of degree 3

√
n − 1

such that p1(i) = p2(i) = 0 on 0 ≤ i < 3
√

n except for p1(I) = p2(J) = 1.
Bob uses the encryption scheme’s homomorphic properties to compute encryptions of
DI,J,k =

∑
0≤i,j< 3√n p1(i)p2(j)Di,j,k for 0 ≤ k < 3

√
n. Bob sends the 3

√
n result-

ing ciphertexts to Alice who decrypts the Kth entry. Recursively applying this scheme
results in a communication complexity O(nεk) for any ε > k [BGN05].

The essential differences, compared to our solutions, are: (n, 1)-ExtOT2 requires
Alice to send three ciphertexts and Bob to send dn/3e ciphertexts, while the protocols
of [BGN05] that correspond to one-dimensional case require Alice to send n cipher-
texts and Bob to send one ciphertext. This means that (n, 1)-ExtOT2 is approximately
3 times more communication-efficient than the one-dimensional BGN protocols. More-
over, one can combine ExtOTt and SimpleOTt with an arbitrary existing sublinear
computationally-private information retrieval protocol to construct an almost as effi-
cient oblivious transfer protocol. The oblivious transfer protocols from [BGN05] do
not seem to share this property. In the case of protocols of [BGN05] it seems that one
can only use standard communication-balancing techniques that are not in par with the
state-of-the art methods of [Lip05,GR05].

Open problems and acknowledgments. Constructing a degree-2 homomorphic cryp-
tosystem with efficient decryption is a major open problem. As we showed in Sect. 4,
such a cryptosystem would make it possible to construct another (n, 1)-OT protocol
with O(log n) communication. Constructing degree-t, for t > 2, homomorphic cryp-
tosystems is another well-known open problem. A more specific open problem posed
by this paper is to construct a degree-1 homomorphic cryptosystem based (n, 1)-OT
protocol (e.g., a more efficient version of ExtOT1) with communication O(1) + n/2.

We would like to thank Jens Groth for helpful comments. This paper was started
while the author was visiting the Chinese University of Hong Kong, we would like to
thank Victor K. Wei for generous support.
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