
New Communication-Efficient Oblivious Transfer
Protocols Based on Pairings

*** Second public draft, June 9, 2007 ***

Helger Lipmaa

University College London, UK

Abstract. We construct two simple families of two-message(n, 1)-oblivious
transfer protocols based on degree-t homomorphic cryptosystems with the com-
munication of respectively1 + dn/te and3 + dn/(t + 1)e ciphertexts. The con-
struction of both families relies on efficient cryptocomputable conditional disclo-
sure of secret protocols; the way this is done may be of independent interest. The
currently most interesting caset = 2 can be based on the Boneh-Goh-Nissim
cryptosystem. We show how to reduce the communication of virtually any ex-
isting oblivious transfer protocols by proposing a new related communication-
efficient generic transformation from computationally-private information re-
trieval protocols to oblivious transfer protocols.
Keywords. Computationally-private information retrieval, conditional disclo-
sure of secrets, homomorphic encryption, oblivious transfer.

1 Introduction

In an(n, 1)-oblivious transfer protocol,(n, 1)-OT, Alice on input0 ≤ σ < n retrieves
theσth element of Bob’s databaseD = (D0, . . . , Dn−1). One requires that Alice ob-
tains no information about anyDj for j 6= σ, and that Bob obtains no information about
σ. It is well-known that by general reductions, one can base both two-party computa-
tion and multi-party computation on(2, 1)-OT. Efficient(n, 1)-OT is a cornerstone of
many handcrafted cryptographic protocols. Thus, it is important to construct(n, 1)-OT
protocols that are efficient for values ofn ranging fromn = 2 to sayn = 220. The
currently most communication-efficient(n, 1)-OT protocols for largen were proposed
in [Lip05,GR05], while some of the most communication-efficient(2, 1)-OT protocols
were proposed in [AIR01,LL07].

New linear protocols. We first propose two new familiesOT1t andOT2t, for t ≥ 1,
of linear-communication(n, 1)-OT protocols. Later in the paper we use these families
to construct sublinear(n, 1)-OT protocols. Both families rely on a cryptosystem that
enables to cryptocompute (that is, compute-on-ciphertexts) degree-t polynomials with
coefficients fromZN ∪ {?} where? denotes a pseudorandom element of the plaintext
groupZN . We call such a cryptosystemdegree-t homomorphic. The caset = 1 includes
additively homomorphic cryptosystems like the Paillier [Pai99], and the caset = 2
includes the BGN cryptosystem [BGN05].
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Table 1. Comparison of different instantiations ofOT2, OT1 with the protocols
from [AIR01,LL07]. Here,|c| denotes the length of ciphertexts in bits;|pk| and|c| depend on the
underlying cryptosystem

Protocol Alice’s comm. Bob’s comm.Max ` PKC |c| CDS eq.

Previous instantiations
[AIR01] = OT11 |pk| + |c| n|c| ≤ 64 Mult. hom. 160 (6)
[LL07] = OT11 |pk| + |c| n|c| ≤ 680 Add. hom. 1536 (6)
New instantiations
OT12 |pk| + |c| dn/2e|c| ≤ 64 BGN 1536 (6)
OT21 |pk| + 2|c| n|c| ≤ 680 Add. hom. 1536 (5)
OT22 |pk| + 3|c| dn/3e|c| ≤ 64 BGN 1536 (4)
Generic, hypothetical instantiations fort > 2

OT1t |pk| + |c| dn/te|c| ? ? ? (6)
OT2t |pk| + 3|c| dn/(t + 1)e|c| ? ? ? (4)

Wlog, assume thatt | n. We also assume that the database elements are`-bit long.
Then,(n, 1)-OT1t is a parallel repetition ofn/t copies of an atomic(t, 1)-OT1t pro-
tocol that use a common secret/public key pair. They also share Alice’s first message
that consists of the public key and of an encryption of Alice’s indexσ. In every sin-
gle instance of(t, 1)-OT1t, Bob cryptocomputes his reply as a single encryption of the
sum of two polynomialsCorrectt−1

i (σ) andCDS1t
i(σ), where the first polynomial takes

care of the correctness and the second polynomial implements conditional disclosure of
secrets (CDS, [AIR01,BGN05,LL07]) to guarantee Bob’s privacy.

More precisely, Correctti(σ) is the unique degree-t polynomial such that
Correctti(σ) = Dσ if bσ/tc = i, and CDS1t

i(σ) is a degree-t polynomial such
that CDS1t

i(σ) = 0 for bσ/tc = i and CDS1t
i(σ) = ? for bσ/tc 6= i. Thus,

Correctti(σ)+CDS1t
i(σ) is equal toDσ if bσ/tc = i, and to?, otherwise. In particular,

OT11 corresponds to the(n, 1)-OT protocols from [AIR01,LL07].

The protocol(n, 1)-OT2t is similarly composed from atomic(t + 1, 1)-OT2t pro-
tocols. Here, however, Bob’s reply is a sum ofCorrectti(σ) and of a CDS polynomial
CDS2′i(σ) if t = 1, and of a CDS polynomialCDS2t

i(σ) if t > 1. Because of the use of
Correctti(σ), the number of atomic protocols is decreased todn/(t + 1)e. However, the
corresponding CDS polynomials are more complicated and require Bob to communi-
cate2 ciphertexts peratomicprotocol (if t = 1), or Alice to communicate3 ciphertexts
(if t > 1). The basic reason behind the added complexity is that there is no degree-t
polynomialf such thatf(σ) = 0 for bσ/(t+1)c = i andf(σ) = ? for bσ/(t+1)c 6= i.

Given the state of the art on existing degree-t homomorphic cryptosystems and
efficient CDS protocols, one can instantiate the protocolsOT1t andOT2t with t = 1 or
t = 2 as summarized in Table 1. (Here, the increase of|c| to 1536 in factorization-based
schemes takes into account the recent advances in factoring.) Thus, the new protocols
are communication-efficient even whenn is small, sayn = 2 or n = 3. See Sect. 3 for
more comparison.
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New sublinear protocols. The most communication-efficient known sublinear
(n, 1)-OT protocols are constructed by combining a communication-efficient(n, 1)-
computationally-private information retrieval (CPIR) protocol such as [Lip05,GR05]
with a linear(n, 1)-OT protocol from [AIR01,LL07], i.e., withOT11. For ` < 264,
the communication of the combined protocols decreases ifOT11 is replaced with
either OT12 or OT22. In the case of the only known CPIR protocol with log-
communication [GR05], this replacement decreases slightly the communication of the
combined protocol. In the case of Lipmaa’s CPIR protocol from [Lip05], for small
`, the transformed oblivious transfer protocol is not only more secure but also more
communication-efficient than Lipmaa’s original CPIR protocol. We also point out that
the existence of degree-2 cryptosystem with efficient decryption would imply the sec-
ond log-communication oblivious transfer protocol.

General remarks. Apart from presenting the concrete protocols, the current paper
has a few more contributions. First, it defines a clean methodology for cryptocomput-
ing protocols, where Bob’s answer is a sum of two polynomials, one of which takes
care of the correctness and the second one takes care of Bob’s privacy by using recent
advances in defining efficient cryptocomputable protocols for conditional disclosure
of secrets [LL07]. Second, we provide a precise complexity analysis of the oblivious
transfer protocols from [BGN05].

Caveats. The proposed two-message protocols are secure only if the plaintext group
orderN of the underlying cryptosystem has no small prime divisors. This means that
if the group order is composite (like in the case of existing additively homomorphic
cryptosystems or the BGN cryptosystem) then one can either rely on the PKI model,
use zero-knowledge proofs or correctness, or say use Lenstra’s ECM algorithm to detect
small divisors ofN . See [LL07] for a discussion. This is not a problem ifN is prime,
for example, if we rely on lifted Elgamal. More relevantly, this is also not a problem if
the cryptosystem does not have efficient decryption as it is the case with the BGN: in
the case of BGN, one only has to verify that the smallest prime divisorp of N is large
enough so that doingO(

√
p) operations is infeasible.

Notation. For a setS, U(S) denotes the uniform distribution on it. Elements of the
secret key are colored like this, elements of the public key are colored like this, (secret)
plaintexts and randomizers are colored like this and ciphertexts are colored like this.

Road-map. In Sect. 2, we give necessary preliminaries. In Sect. 3, we describe the
protocolsOT1t and OT2t. In Sect. 4, we describe a generic transformation of any
(n, 1)-CPIR protocol to a(n, 1)-OT protocol with a comparable communication. In
Sect. 5, we discuss related work.

2 Preliminaries

Composite order bilinear groups. Let G andGT be two multiplicative cyclic groups
of order N whereN = pq ∈ Z and p, q are λ-bit primes for some fixed security
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parameterλ ∈ Z+, e : G × G → GT is a bilinear map, and for some fixed generator
g of G, e(g, g) is a generator ofGT . We assume that group operations ande are all
efficiently computable. LetG be a bilinear group generation algorithm that outputs such
a tuple(p, q, G, GT , e). [BGN05] suggest the following example. Pick large primes
p < q and letN = pq. Find the smallest̀ so P = `N − 1 is prime and equal to2
modulo3. Consider the points on the elliptic curvey2 = x3 + 1 overFP . This curve
hasP + 1 = `N points, so it has a subgroupG of orderN . We letGT be the orderN
subgroup ofF∗P 2 ande : G×G→ GT be the modified Weil pairing from [BF03].

Let (p, q, G, GT , e)← G(λ). For an adversaryA, defineAdvSD(A), the advantage
of A in solving thesubgroup decision problem[BGN05] as

AdvSD(G,GT ,e)(A) :=|Pr[x← G : A(pq, G, GT , e, x) = 1]|−
|Pr[x← G : A(pq, G, GT , e, xq) = 1]| .

That is, the task ofA is to distinguish random elements ofG from random elements
of its orderp subgroup. We say that(G, GT , e) is a (τ, ε)-SD groupif for any τ -time
adversaryA, AdvSD(G,GT ,e)(A) ≤ ε.

Public-key cryptosystems. A public-key cryptosystem is a tuple(K, E ,D) of algo-
rithms with (possibly public-key dependent) plaintext spaceM, randomizer spaceR
and ciphertext spaceC, such thatG generates a random secret/public key pair(sk, pk),
Epk(m; r) = c encrypts a plaintextm ∈M to a ciphertextc ∈ C by using a randomizer
r ∈ R, andDsk(c) = m decrypts a ciphertextc ∈ C to a plaintextm ∈ M. One
requires that for any(sk, pk) ∈ G and for anym ∈ M, r ∈ R, Dsk(Epk(m; r)) = m.
A public-key cryptosystem is(τ, ε)-IND-CPA secureif for a freshly generated pub-
lic/secret key pair(sk, pk), anyτ -time adversaryA can distinguish random encryptions
of any two plaintext messagesm1,m2, even chosen by himself, with probability≤ ε.
(The probability is also taken over the choice of the keys.)

Additively homomorphic public-key cryptosystems. A public-key cryptosystem is
additively homomorphicif M = (ZN ,+, 0) for some integerN , (C, ·, 1) is a finite
cyclic group, and if

Dsk(Epk(m1; r1) · Epk(m2; r2)) = m1 + m2

for any m1,m2, r1, r2. In addition, we require thatEpk(m; r) · Epk(0;U(R)) =
Epk(m;U(R)) for any m, r; this enables to perform efficient rerandomization. There
are many well-known additively homomorphic public-key cryptosystems, see for ex-
ample, [Pai99,DJ01].

Disclose-if-equal. For an additively homomorphic cryptosystem, given an encryp-
tion c = Epk(m; r) of some m, one can computec1 ← c? · Epk(0;U(R)) =
Epk(? · m;U(R)). If gcd(m,N) = 1 (resp.,gcd(m,N) > 1) and? = U(ZN ) then
c1 = Epk(U(ZN );U(R)) is a random encryption of a random value fromZN (resp.,
in some nontrivial subgroup ofZN ). In a disclose-if-equalprotocol, Alice on inputa
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obtains Bob’s inputb1 if a = b2 for Bob’s second inputb2, otherwise Alice obtains?.
In a simple disclose-if-equal protocol [AIR01,LL07], given a random encryption ofa,
Bob computes a random encryption of

? · (b2 − a) + b1 (1)

and returns it to Alice. However, this protocol is not secure by itself: ifb2 − a is a non-
trivial divisor of N , then because? · (b2 − a) belongs to a non-trivial subgroup ofZN ,
Alice can obtain partial information aboutb1 [LL07]. This means that if decryption is
inefficient, then this disclose-if-equal protocol is computationally private for Bob un-
der the subgroup decision assumption. Otherwise, one should use the disclose-if-equal
protocol of [LL07] that forcesc1 to be an encryption of a (statistically) pseudorandom
value ofZN for anym 6= 0, while c1 is an encryption of0 if m = 0. Denote bỹZN the
setZN enhanced by all possible formal random elements that are computable by Bob.
Thus, given an additively homomorphic cryptosystem, Bob can cryptocompute linear
polynomialsf ∈ Z̃N [M1, . . . ,Mt]

The BGN cryptosystem and degree-t homomorphic cryptosystems. The BGN
cryptosystem is defined as follows [BGN05]. The algorithmK runs G to generate
(p, q, G, GT , e). Let N ← pq. Pick generatorsg, u ← U(G) and leth ← uq. Out-
put public keypk← (N, G, GT , e, g, h) and private keysk← p. To encrypt a message
m ∈ Z2` where2` < q with public keypk, pick a randomr ← R := ZN and compute
Epk(m; r) ← gmhr ∈ G. To decrypt a ciphertextc using the private keysk, compute
first cp = (gmhr)p = (gp)m and then recoverm by computing the discrete logarithm
of cp on basegp. This can be done in timeO(2`/2) and thus one must take say` < 64
or ` = O(log λ). Setg1 ← e(g, g) andh1 ← e(g, h), clearly g1 has orderN and
h1 has orderq. Define the associated BGN cryptosystem(Ea,Da) in groupGT , with
Ea

pk(m; r) := gm
1 hr

1 whereDa is defined as the discrete logarithm ofEa
pk(m; r)p on base

gp
1 .

Given BGN encryptions of anym1,m2, one can compute a BGN encryption of
m1 + m2 as Epk(m1) · Epk(m2), and an associated BGN encryption ofm1m2 as
e(Epk(m1), Epk(m2)). In particular,

Ea
pk(m; r) = e(Epk(m; r), g) .

Thus, given BGN encryptions of anym1, . . . ,mt, and using the disclose-if-equal pro-
tocol of Eq. 1, one can compute associated BGN encryptions of

Ea
pk(f(m1, . . . ,mt)) (2)

for any quadratic polynomialf ∈ Z̃N [M1, . . . ,Mt]. This generalizes the computations
that one can do in the case of additively homomorphic cryptosystems.

We call a cryptosystemdegree-t homomorphicif one can cryptocompute (associ-
ated) encryptions of type Eq. (2) for any degree-t polynomialf ∈ Z̃N [M1, . . . ,Mt],
given encryptions ofMi. Thus,t = 1 in the case of additively homomorphic public-key
cryptosystems andt = 2 in the case of the BGN cryptosystem.
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Conditional disclosure of secrets.During a conditional disclosure of secrets (CDS)
protocol (see, for example, [AIR01,BGN05,LL07]), Alice obtains Bob’s secret exactly
iff her own input belongs to some publicly specified set of valid inputs; if Alice’s input
is incorrect then Alice obtains usually a value that is statistically close to a uniformly
random plaintext. There exist several general approaches of constructing CDS protocols
that are cryptocomputable given a degree-t homomorphic cryptosystem. In particular,
efficient cryptocomputable CDS protocols for many tasks fort = 1 andt = 2 were
respectively proposed in [AIR01,LL07] and [BGN05]; such protocols are usually based
on disclose-if-equal subprotocols.

Oblivious transfer. Assume that Alice has an inputσ ∈ {0, . . . , n− 1} and Bob has a
databaseD = (D0, . . . , Dn−1) whereDi ∈ {0, 1}`. In an(n, 1)-oblivious transfer pro-
tocol for `-bit strings,(n, 1)-OT`, Alice obtainsDσ and no additional information, and
Bob obtains no information aboutσ. We only consider two-message oblivious transfer
(OT) protocols. An OT protocol iscorrectwhen in the case of honest parties, Alice re-
ceivesDσ. An OT protocol is(τ, ε1)-private for Aliceif for any two indicesσ1, σ2, even
chosen by Bob himself, aτ -time Bob cannot distinguish the first messages of Alice that
correspond toσ1, σ2. An OT protocol isstatistically ε2-private (resp., computation-
ally (τ2, ε2)-private) for Bobif there exists an unbounded simulator that, only given
access to the first message of Alice and Bob’s database elementDσ, generates Bob’s
second message from the distribution that is statisticallyε2-close to (resp., computa-
tionally (τ2, ε2)-indistinguishable from) Bob’s response in the real protocol to Alice’s
first message. An OT protocol isstatistically (resp., computationally)(τ1, ε1; τ2, ε2)-
relaxed-secureif it is correct,(τ1, ε1)-private for Alice and statistically (resp., compu-
tationally)(τ2, ε2)-private for Bob. A statistically (resp., computationally)(τ, ε)-secure
(n, 1)-computationally-private information retrieval (CPIR) protocolis the same as a
statistically (resp., computationally)(τ, ε; poly(λ), 1)-relaxed-secure OT protocol.

3 New Families of Oblivious Transfer Protocols

We next propose two familiesOT2t andOT1t of linear-communication(n, 1)-OT pro-
tocols that use the properties of a degree-t cryptosystem to decrease the number of
communicated ciphertexts to3 + dn/(t + 1)e and1 + dn/te, respectively. Sect. 4 uses
these linear protocols to construct sublinear protocols.

Underlying idea of OT2t. Wlog, assume that(t + 1) | n. The basic idea of the first
new protocol, that we call(n, 1)-OT2, follows. Alice first generates a new key pair
for a degree-t homomorphic cryptosystem. She sends to Bob the new public key with
a random encryption ofσ. Given that, for every0 ≤ i < n/(t + 1), Bob crypto-
computes the polynomialCorrectti(σ) + CDS2t

i(σ), whereCorrectti(σ) andCDS2t
i(σ)

are two degree-t polynomials that take care of protocol’s correctness and Bob’s pri-
vacy respectively. More precisely,Correctti is the unique degree-t polynomial, such that
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Correctti(σ) = Dσ if bσ/(t + 1)c = i. For example,

Correct1i (σ) =((2i + 1)− σ) ·D2i + (σ − 2i) ·D2i+1 ,

Correct2i (σ) =
1
2
· ((3i + 1)− σ)((3i + 2)− σ) ·D3i+

(σ − 3i)((3i + 2)− σ) ·D3i+1+
1
2
· (σ − 3i)(σ − (3i + 1)) ·D3i+2 .

Second,CDS2t
i(σ) is a degree-t polynomial such that

CDS2t
i(σ)

{
0 , bσ/(t + 1)c = i ,

CDS2t
i(σ) = ? , otherwise .

That is,CDS2t
i implements a cryptocomputable conditional disclosure of secrets pro-

tocol. Therefore,Correctti(σ) + CDS2t
i(σ) is equal toDσ if dσ/(t + 1) = ie, and to?

otherwise.
A “minor” complication here is that such a polynomialCDS2 must have degreet+1

while we need a degree-t polynomial. To overcome this issue, we let Alice to send to
Bob three encryptions of(σ2, σ1, σ0), where

σ2 ←bσ/(t + 1)c , σ1 ← b(σ mod (t + 1))/tc , σ0 ← σ mod t . (3)

E.g., if σ = 14 andt = 4 thenσ2 = 2, σ1 = 1, andσ1 = 0. From these encryptions,
Bob can cryptocompute an encryption ofσ = (t + 1)σ2 + tσ1 + σ0. We now redefine

CDS2t
i(σ2, σ1, σ0) := ? ·(σ2 − i) + ? · (σ1 − 1)σ1 + ? ·

t−1∏
i=0

(σ0 − i) + ? · σ1σ0 .

(4)

Clearly, CDS2t
i is a degree-t polynomial with the required properties, that is,

CDS2t
i(σ2, σ1, σ0) = 0 if dσ/(t + 1)e = i andCDS2t

i(σ2, σ1, σ0) = ?, otherwise.
After that, Bob returns alln/(t+1) ciphertexts to Alice who decrypts thebσ/(t+1)cth
ciphertext. Thus, if0 ≤ σ < n then Alice retrievesDσ, and ifσ 6∈ {0, . . . , n− 1} then
Alice retrieves a close-to-uniformly random value.

The caset = 1 is different. In this case, we are not aware of a protocol with the
communication ofdn/2e+O(1) ciphertexts. The main problem is that the CDS protocol
for showing thatx ∈ {0, 1} by methods of [LL07] requires Bob to sendtwociphertexts
to Alice, because there is no way to check thatσ0 ∈ {0, 1} by using a single linear
polynomial. Instead, as in [LL07], we transferCorrect1i twice, where the first time Alice
obtains the answer ifσ0 = 0 and in the second time Alice obtains the answer ifσ0 = 1;
this corresponds to the protocols of [AIR01,LL07]. More precisely, assume that2 | n.
In OT21, Alice transfers to Bob one public key and two ciphertexts ofσ1 = bσ/2c and
σ0 = σ mod 2. For every0 ≤ i < n/2, Bob forwards to Alice random encryption of
the vector(Correct1i (σ),Correct1i (σ)) + CDS2′i(σ1, σ0), where

CDS2′i(σ1, σ0) := (? · (σ1 − i) + ? · σ0, ? · (σ1 − i) + ? · (σ0 − 1)) . (5)

Thus, the communication ofOT21 is 1 public key andn + 2 ciphertexts.
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Full description of (n, 1)-OT22. We now follow up with a precise definition of the
(n, 1)-OT2t protocol. We only give an implementation in the caset = 2 and assume
that one uses the BGN cryptosystem. The general case is a straightforward extension.

Let (K, E ,D) be the BGN cryptosystem with plaintext group orderN ; let p be the
smallest prime divisor ofN . Assume Alice’s private input is0 ≤ σ < n and Bob’s
private input isD = (D0, . . . , Dn−1). Fix ` < log2 p such that doingO(2`/2) steps
is feasible; for example,̀ := 64. (For the decryption to be polynomial-time inn, one
needs that̀ = O(log n). However, in practical applicationsn is too small for the
asymptotic notion to start to become relevant.) Wlog, assume that3 | n. The protocol
description follows:

1. Alice runsK to generate a new secret/public key pair(sk, pk). She storessk. She
computesc2 ← Epk(σ2;U(R)), c1 ← Epk(σ1;U(R)) andc0 ← Epk(σ0;U(R)),
for σi computed according to Eq. (3), and sends(pk, c2, c1, c0) to Bob.

2. If c2, c1 or c0 is not a valid ciphertext then Bob rejects. Otherwise, Bob computes
c ← c3

2c
2
1c0, di ← Epk(i; 0) for i ∈ {1, . . . , n}, and a vector of ciphertextsb =

(b1, . . . , bn/3), where

gi ←e(c2/di, g)U(ZN ) · e(c1/d1, c1)U(ZN ) · e(c0/d1, c0)U(ZN ) · e(c1, c0)U(ZN ) ,

bi ←e(d3i−2/a, d3i−1/a)D3i/2 · e(a/d3i, d3i−2/a)D3i−1 ·

e(a/d3i, a/d3i−1)D3i−2/2 · gi · hU(R)
1

for i ∈ {1, . . . , n/3}, and sendsb to Alice.
3. Alice outputsDa

pk(bbσ/3c), or “reject” if decryption is not successful.

Theorem 1. Assume that the BGN cryptosystem is(τpkc, εpkc)-IND-CPA secure,
(G, GT , e) is a (τg, εg)-SD group, that the public key is correctly generated with
N = pq and p < q, and that` = O(log n) � log2 p. Then the(n, 1)-OT22 proto-
col is computationally(τpkc −O(1), 3εpkc; τg, εg)-relaxed-secure.

Proof. CORRECTNESS: clearly, if cj is generated correctly forj ∈ {0, 1, 2}, then
bi is a random associated encryption of a message distributed according toXi :=
Correct2i (σ)+CDS22

i (σ2, σ1, σ0). Clearly, ifσ = 3σ2+2σ1+σ0 ∈ {3i, 3i + 1, 3i + 2}
thene = Dσ.

ALICE’ S PRIVACY: the only thing Bob sees is3 ciphertexts (together with a fresh
public keypk). Therefore, Alice’s privacy follows directly from the IND-CPA security
of the BGN cryptosystem.

BOB’ S PRIVACY: we need to construct a simulator that on inputs(pk, Dσ, c2, c1, c0)
solely, wherepk is a random public key andσ ← Dsk(c3

2c
2
1c0), computes a second

round message that has almost the same distribution asb, that is, it is a random associ-
ated encryption ofXi. Simulator does the following. It rejects if any ofci is not a valid
ciphertext. First, ifσ 6∈ {0, . . . , n− 1}, then it outputs a random associated encryption
of a random element fromU(ZN ). On the other hand, in this case,Xi is a random el-
ement of eitherZN or of some nontrivial subgroup ofZN (e.g., whenσ1 = p). Thus,
Xi andU(ZN ) are computationally(τg, εg)-indistinguishable by the subgroup decision
assumption. Second, ifσ ∈ {0, . . . , n− 1} then the simulator outputs a random associ-
ated encryption ofDσ. Clearly, in this case simulator’s output has distributionXi. ut
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An alternative family OT1. We will next give a short description of an alternative
family OT1 of (n, 1)-OT` protocols. InOT1t, Bob cryptocomputes polynomials

Correctt−1
i (σ) + CDS1t

i(σ) ,

whereCorrectt−1
i is as defined before andCDS1t

i is another, simpler, CDS polynomial.
More precisely, assume thatt | n. In OT1t, Alice transfers a new public key and a
random encryption ofσ, and Bob replies withn/t random encryptions ofCorrectti(σ)+
CDS1t

i(σ), where

CDS1t
i(σ) := ? ·

t−1∏
j=0

(σ − (ti + j)) (6)

for 0 ≤ i ≤ n/t− 1.
Therefore, inOT1t, Alice transfers1 public key and1 ciphertext, while Bob trans-

fersdn/te ciphertexts (as opposed to3 anddn/(t+1)e ciphertexts in the case ofOT2t).
Clearly,OT11 corresponds to the oblivious transfer protocol from [AIR01,LL07]. The
only other current instantiation isOT12 when coupled with the BGN cryptosystem. To
the best of our knowledge, if̀ ≤ 64 and one disregards the length of the public key
and ciphertexts thenOT12 is the most communication-efficient available(2, 1)-OT`

protocol, having the total communication of1 public key and2 ciphertexts.

On the use of disclose-if-equal.Whenever the cryptosystem has efficient decryption,
one must use the disclose-if-equal protocol of [LL07]. In this case, one must assume
that` < log2 p− log2 n− ε, where2−ε is the desired statistical privacy-level of Bob.

Comparison. In the caset = 1, the underlying cryptosystem must be additively ho-
momorphic. One can use either the lifted Elgamal (that has inefficient decryption) or
say the Paillier [Pai99] or the Damgård-Jurik [DJ01]. Then,OT11 corresponds resp. to
the Aiello-Ishai-Reingold protocol [AIR01] or to the Laur and Lipmaa protocol [LL07],
while OT21 is a related but slightly less efficient protocol. Compared to the caset = 2,
the caset = 1 benefits from the existence of a wide variety of additively homomor-
phic public-key cryptosystems, shorter public keys, and efficient decryption that makes
it possible to obliviously transfer long strings with say` ≥ 680. On the other hand,
the number of transferred ciphertexts is larger than in the case oft = 2. Moreover, the
ciphertexts of existing additively homomorphic cryptosystems are twice longer than
the ciphertexts of the BGN cryptosystem. On the other hand, the ciphertexts of lifted
elliptic-curve-based Elgamal are shorter than the ciphertexts of the BGN cryptosystem.

In the caset = 2, one uses a degree-2 homomorphic cryptosystem, for example,
the Boneh-Goh-Nissim cryptosystem [BGN05]. Compared tot = 1, one now transfers
less ciphertexts. On the other hand, one is currently restricted to the BGN cryptosystem
that has longer public keys, compared to existing additively homomorphic public-key
cryptosystems, and inefficient decryption that only allows to efficiently transfer strings
with say` ≤ 64.

From the communication-efficiency view-point, if neglecting the length of the pub-
lic key and assuming that̀ is small, forn ≤ 15, the most efficient new protocol is
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(n, 1)-OT12, while for n > 15, the most efficient protocol is(n, 1)-OT22. In many
common applications of oblivious transfer, the public key is shared with other proto-
cols and thus does not incur a communication overhead.

Note that both(n, 1)-OT2 and(n, 1)-OT1 are secure only if one assumes that the
public key is correctly generated. As in the case of protocols based on known additively
homomorphic public-key cryptosystems, one needs that the smallest prime divisor of
N is sufficiently large, see [LL07]. This assumption can modeled by saying that this
protocol is secure in the PKI model, or by letting Alice to prove once in zero knowledge
that the public key is correct and then using the same public key in many instances of
the protocol. Yet another possibility is to use Lenstra’s ECM algorithm to verify thatN
does not have small prime factors. These and other remedies are thoroughly discussed
in [LL07]. In the case of the BGN, because it does not have efficient decryption, it is
sufficient to verify that the smallest prime divisorp of N is larger than say2160.

4 Sublinear Oblivious Transfer

A common methodology to construct(n, 1)-OT protocols is to first construct a
communication-efficient(n, 1)-CPIR protocol and then apply an efficient transfor-
mation to transfer it to a comparably efficient(n, 1)-OT protocol. Examples of
communication-efficient(n, 1)-CPIR protocols include [Lip05,GR05]. A typical trans-
formation was proposed in [AIR01] and later refined in [LL07] to work with ex-
isting additively homomorphic cryptosystems. Next, we generalize the approach
of [AIR01,LL07].

We now describe a new transformation based onOT2t for t > 1; the transformation
based onOT1t is similar. Wlog, assume that(t + 1) | n. Recall that during theOT2t

protocol, Bob first constructs a database ofn/(t + 1) ciphertexts, such that theith
ciphertext encryptsDσ if bσ/(t + 1)c = i, and?, otherwise. Then Bob transfers the
whole database of ciphertexts to Alice. Instead, we can use in parallelanytwo-message
(n/(t+1), 1)-CPIR protocol so that Alice will obtain thebσ/(t+1)cth ciphertext. The
resulting transformed protocol is clearly relaxed-secure: first, becauseOT2t is relaxed-
secure even if Alice seesall intermediate ciphertexts, the composed protocol is also
relaxed-secure. Second, Bob only sees the first messages of Alice of both protocols and
thus the composed protocols preserves Alice’s privacy iff bothOT2t and the used CPIR
protocol preserve Alice’s privacy.

In general, letΠ1 be theOT2t (or say theOT1t) protocol, and letΠ2 be an
arbitrary CPIR protocol. We denote the transformed protocol byΠ2 ◦ Π1, the case
Π1 = OT11 corresponds to the transformation proposed in [AIR01,LL07]. Clearly,
if Π1 on database elements of length` has the first message ofC1(n, `) bits and the
second message ofC2(n, `) ciphertexts, andΠ2 on database elements of lengthλ with
C3(n, λ) bits of communication, then the transformed protocolΠ2◦Π1 has the commu-
nication ofC1(n, `) + C3(C2(n, `), λ) bits. Here,λ is the length of ciphertexts in bits.
Thus,Π2 ◦OT11 has the communication of|pk|+d2 log2 Ne+C3(n, d2 log2 Ne) bits,
where|pk| = dlog2 Ne ≈ 1536 bits. On the other hand,Π2 ◦ OT2t has the communi-
cation of|pk|+ 3dlog2 Ne+ C3(dn/(t + 1)e, dlog2 Ne) bits, where|pk| is somewhat
longer compared to the case ofOT11.
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If Π2 is the Gentry-Ramzan CPIR protocol [GR05] with communicationO(log2 n+
`) then the total communication ofΠ2 ◦ OT11 is |pk| + O(log2 n + 2 log2 N). In
this case, the total communication ofΠ2 ◦ OT2t is not significantly different unless
t is large. On the other hand, the communication decrease is significant in the case of
less communication-efficient CPIR protocols. Recall that Lipmaa’s(n, 1)-CPIR proto-
col [Lip05]—when used on top of the Damgård-Jurik cryptosystem [DJ01]—has the
communication of (

1
2
· log2

2 n + (s + 3/2) · log2 n + s

)
λ

bits, whereλ = dlog2 Ne. Thus, applying Lipmaa’s CPIR protocol on theOT22-
transformed database ofn/3 ciphertexts results in the protocolΠ2 · OT22 that has
the communication of(

3(s + 1) +
1
2
· log2

2

n

3
+

(
(s + 1) +

3
2

)
· log2

n

3
+ (s + 1)

)
λ

=
(

1
2

log2
2 n +

(
s +

5
2
− log2 3

)
log2 n + (4− log2 3) s + 4 +

5
2
· log2 3+

1
2
· log2

2 3
)

λ

bits. This means that—assuming that the strings to be transferred are short with say
` ≤ 264—the OT22-transformation actuallyreducesthe communication of Lipmaa’s
original CPIR protocol, on top of increasing its security. This same will be true with
virtually any superlogarithmic-communication CPIR protocol.

RecursiveOT2t. We can recursively applyOT2t to itself. Bob’s original database has
n items, each̀ bits. The intermediate database, generated byOT2t hasdn/(t + 1)e
ciphertexts, eachdlog2 Ne bits. One can next apply the(dn/(t+1)e, 1)-OT2t protocol
ξ := dlog2 N/`e times to retrieve alldlog 2Ne bits of thedn/(t + 1)eth intermedi-
ate ciphertext. Continuing, in the levelr recursion, Alice sends1 public key and3r
ciphertexts and Bob sendsξr−1 · dn/(t + 1)r−1e ciphertexts.

Interestingly, if there existed a degree-2 homomorphic cryptosystem withξ = 2
then this recursive construction would result in anO(log n) communication(n, 1)-OT
protocol. More precisely,r ← (lnn − ln 6 + ln ln 1.5)/ ln 1.5 would result in the op-
timal communication of(3 ln n + 3 − 3 ln 6 + 3 ln ln 1.5)/ ln 1.5 ≈ 5.1 log2 n − 12.5
ciphertexts. The same asymptotic result holds wheneverξ ≤ t, while the optimal case
for ξ ≥ t is just the trivial one withr = 1.

5 Related Work

Boneh, Goh and Nissim [BGN05] considered the application of degree-2 homomorphic
cryptosystems to construct efficient oblivious transfer protocols. They proposed two
similar but yet different(n, 1)-CPIR protocols. The next protocol is a symbiosis of
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both that achieves the same communication complexity as their second protocol but
is somewhat simpler to execute. In addition, we provide the precise communication
complexity estimate. In this protocol,` = O(log n) as in (n, 1)-OT2. The database
is viewed as comprising ofn1/3 chunks, each chunk containingn2/3 entires, where
Alice is interested in retrieving entry(I, J,K) of D. For 0 ≤ i, j < 3

√
n, Alice sends

Bob random encryptions of[i = I] and [j = J ]. Bob uses the encryption scheme’s
homomorphic properties to compute associated encryptions of

DI,J,k =
∑

0≤i,j< 3√n

[i = I][j = J ]Di,j,k

for 0 ≤ k < 3
√

n. Bob sends the3
√

n resulting associated ciphertexts to Alice who
decrypts theKth entry. As briefly mentioned in [BGN05], recursively applying this
scheme results in a communication complexityO(nελ) for any ε > λ. More pre-
cisely, assuming that a ciphertext isη` bits, afterR rounds of recursion this pro-
tocol has the communication of(2b3R/2c + ηb3

R/2c−1)n1/3R

ciphertexts. In the
asymptotically optimal case3R =

√
2 logη n, this results in the communication of

(1 + o(1)) exp(
√

2 ln η · lnn) ciphertexts. In the case of sayη = 24 (for example, if
ciphertexts are1536 bits long and̀ = 64), this protocol is inferior to the protocol of
Stern [Ste98].

The essential differences, compared toOT22, are: first,(n, 1)-OT22 requires Al-
ice to send three ciphertexts and Bob to senddn/3e ciphertexts, while the protocols
of [BGN05] that correspond to one-dimensional case require Alice to sendn cipher-
texts and Bob to send one ciphertext. Second, one can combineOT2t andOT1t with
an arbitrary existing sublinear computationally-private information retrieval protocol
to construct an almost as efficient oblivious transfer protocol. The oblivious transfer
protocols from [BGN05] do not seem to share this property. In the case of protocols
of [BGN05] it seems that one can only use standard communication-balancing tech-
niques that are not in par with the state-of-the art CPIR protocols of [Lip05,GR05].
Third, the protocols from [BGN05] are not private for Bob, and thus one must couple
them with sayOT22 to design a real oblivious transfer protocol. In this sense, the new
protocols are orthogonal to the protocols from [BGN05].

Open problems. Constructing a degree-2 homomorphic cryptosystem with efficient
decryption is a major open problem. As we showed in Sect. 4, such a cryptosystem
would make it possible to construct another(n, 1)-OT protocol withO(log n) com-
munication. Constructing degree-t, for t > 2, homomorphic cryptosystems is another
well-known open problem. We stress that not much is known about degree-t, t ≥ 2,
homomorphic cryptosystems. It may come out that the ciphertext lengths of such cryp-
tosystems grow linearly witht. A more specific open problem posed by this paper is to
construct a degree-1 homomorphic cryptosystem based(n, 1)-OT protocol (for exam-
ple, a more efficient version ofOT21) with communicationO(1) + dn/2e.
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