
Fair Exchange Signature Schemes

Jingwei Liu1, Rong Sun2, Weidong Kou2, and Xinmei Wang2

1. The Key Laboratory of Computer Network and Information Security, Ministry of
Education, Xidian University, P.O. Box 119, 710071 Xi’an, China.

2. State Key Laboratory of Integrated Service Networks, Xidian University, P.O. Box
119, 710071 Xi’an, China.

jwliu@mail.xidian.edu.cn, rong sun@hotmail.com, kou weidong@yahoo.com.cn,
xmwang@mail.xidian.edu.cn

Abstract. In this paper we propose a new class of Fair Exchange Sig-
nature Scheme(FESS) that allows two players to exchange digital signa-
tures in a fair way. Our signature scheme is a general idea and has various
implementations on most of the existing signature schemes, thus it may
also be considered as an interesting extension of concurrent signature pre-
sented in EUROCRYPT 2004 that is constructed from ring signatures. In
our scheme, two unwakened signatures signed separately by two partici-
pants can be verified easily by the other player, but it would not go into
effect until an extra piece of commitment keystone is released by one of
the players. Once the keystone revealed, two signatures are both aroused
and become effective. A key feature of the proposed scheme is that two
players can exchange digital signatures simultaneously through a secret
commitment keystone without involvement of any Trusted Third Party.
Moreover, the efficiency of our signature scheme is higher than that of
concurrent signature.

Keywords: FESS, Concurrent Signature, Schnorr Signature, Fair Ex-
change, Electronic Commerce

1 Introduction

The widely use of open networks such as the Internet provides a stability foun-
dation for electronic commerce, which usually involves two distrusted parties
exchanging their items from each other, for instance, e-commerce payment pro-
tocols, electronic contract signing, and certified e-mail delivery. Due to the rapid
growth of electronic commerce nowadays, fair exchange turns out to be an in-
creasingly important topic. A digital exchange problem is deemed to be fair if
at the end of exchange, either each party receives the expected item or neither
party receives it. In general scenarios, digital items’ exchanges have to be car-
ried over open networks and both participants may not trust each other. There
could be subsequent disputes about what was exchanged during a transaction
even if the exchange itself was completed fairly. In this case, evidence should be
accumulated during the exchange to enable the settlement of any future disputes.



In the recent years various schemes on the fair exchange problem have been
proposed and reported in the literature. These schemes often fall into three
categories:

Some solutions on fair exchange problem is often gradual exchange protocols
[1–7] where two parties have to be too interactive and cumbersome for exchang-
ing digital items by many steps. Nevertheless, these methods cannot provide
fairness fully, because at the end of protocols, one player often has an advantage
of one more bit than the other player does. In [3], the authors introduce timed
commitments. A timed commitment is a commitment scheme in which there is
an optional forced opening phase enabling the receiver to recover (with effort)
the committed value without the help of the committer. But this method is only
considered for Rabin and RSA signatures of a special kind. In [7], the authors
show how to achieve timed fair exchange of digital signatures of standard type.
Their construction follows the gradual release paradigm, and works on a new
“time” structure that is called a mirrored time-line. But the length of it lead to
another apparent problem, which is making sure that the underlying sequence
has a period large enough so that cycling is not observed.

Recently, researches on fair exchange protocols mainly exploit an on-line or
off-line Trusted Third Party (TTP) [8–21], which is involved in protocols run
(on-line) or Account Opening and Disputes (off-line). So either on-line or off-
line TTP may cause the bottleneck problem and at least inefficiencies in the
operation though its involvement is further reduced in [8, 12, 20]. In [8], the
authors introduce a new protocol that allows two players to exchange digital
signatures over the Internet in a fair way. The protocol relies on a trusted third
party, but is “optimistic,” in that the third party is only needed in cases where
one player attempts to cheat or simply crashes. The key feature of the protocol
is that a player can always force a timely and fair termination, without the
cooperation of the other player.

The latest direction of fair exchange is supposed to overleap TTP in the
protocols. Two participants carry out digital items’ exchanges using special sig-
natures. By this means, some new fair exchange protocols are designed, which
become more efficient than prior art does. The concept of concurrent signa-
tures was introduced by Chen, Kudla and Paterson in Eurocrypt 2004 [22]. Such
signature schemes allow two parties to produce and exchange two ambiguous
signatures until an extra piece of information (called keystone) is released by
one of the parties, which exploiting the ambiguity property enjoyed by the ring
signatures [23, 24]. More specifically, before the keystone is released, those two
signatures are ambiguous with respect to the identity of the signing party, i.e.,
they may be issued either by two parties together or just by one party alone; af-
ter the keystone is publicly known, however, both signatures are bound to their
true signers concurrently, i.e., any third party can validate who signed which
signature. Concurrent signature allows to build a fair exchange protocol which
allow two parties to interact to exchange digital items without the involvement
of the trusted third party. But it is at the sacrifice that the initial party controls
the keystone and therefore he has an extra power to decide when the keystone is



released or whether it is at all. In ICICS 2004, Susilo, Mu and Zhang [29] further
proposed perfect concurrent signatures to strengthen the ambiguity of concur-
rent signatures. That is, even if the both signers are known having issued one
of the two ambiguous signatures, any third party is still unable to deduce who
signed which signature, different from Chen et al.s scheme. But in [30], Wang
et al. point out that Susilo et al.s two perfect concurrent signature schemes are
actually not concurrent signatures and present an effective way to avoid this
attack.

1.1 Our Contributions

Lots of the previous works for fair exchange are not fully suitable for the ap-
plications on open networks, because most fair exchange applications have to
be provided not only security but also efficiency. In our opinion, an ideal solu-
tion for fair exchange should be both secure and efficient. With the opinion, we
propose a new class of Fair Exchange Signature Schemes (FESS) in this paper
that allows two players to exchange digital signatures over open computer and
communications networks (such as the Internet) in a fair way, so that either
each player gets the other’s signature at the same time, or neither player does.
In our scheme, each unwakened signature signed separately by two participants
can be verified easily by the other player, but it does not go into effect until
an extra piece of information keystone is released by one of the players. Once
the keystone revealed, two signatures are both aroused and become effective.
This new signature scheme can be applied to different application environments
through various implementations. We will also introduce how to construct an
implementation of FESS without a TTP. Thus it provides a valid primitive that
is of interest in designing fair exchange schemes. Of course there might be other
applications to consider. A key feature of FESS is that two players can exchange
digital signatures simultaneously without involvement of any TTP. Although
FESS do not overcome the weakness of concurrent signature, which is the initial
party controls the keystone, but it really has higher efficiency than concurrent
signature does.

The main contributions in this paper are listed as follows:

1. Propose a generic definition of FESS.
2. Demonstrate how to construct FESS without TTP.
3. Provide the security proof of FESS in the random oracle model.

The rest of the paper is organized as follows. We first introduce the basic
definitions of FESS in the following section. The basic models for FESS are de-
scribed in detail in Section 3. In Section 4, we construct an implementation of
the FESS. In Section 5, we show the properties discussion and security anal-
ysis of our scheme and provide efficiency comparison between our scheme and
concurrent signature. Finally, the concluding remarks and future researches are
given in Section 6.



2 Basic Definitions

In this section, we introduce some basic definitions of the FESS. The parameters
involved in our schemes are depicted in the following.

• a plaintext message space M : a set of strings over some alphabet.
• a keystone message space Kks: a set of strings over some alphabet.
• a keystone fix space K: a set of possible keystone fix volume.
• a signature space S: a set of possible signatures.
• a signing key space X: a set of possible keys for signature creation.
• a verification key space Y : a set of possible keys for signature verification.
Definition 1. A full FESS consists of five procedures (Parameter Setup,

KGen, Sign, SVerify, KVerify):
• an efficient probabilistic algorithm Parameter Setup:

k → 〈{xi}, {yi}, description of{M, Kks,K, S}〉, (1)

where k is a security parameter, xi ∈ X and yi ∈ Y .
• an efficient one-way function KGen: Kks → K, which generates a key-

stone fix k ∈ K with the input of a secret keystone ∈ Kks. Secure hash functions
can be used as KGen .

• an efficient probabilistic signing algorithm Sign: M × K × X → S, for
any message m ∈ M , keystone fix k ∈ K and private key x ∈ X, we denote by
s ← Signx (m, k) where s ∈ S.

• an efficient signature verification algorithm SVerify: M ×K × S × Y →
{True, False}, for any m ∈ M , k ∈ K, and y ∈ Y , it is necessary

SVerifyy (m, k, s) =
{

True, if s = Signx (m, k)
False, if s 6= Signx (m, k) (2)

• an efficient keystone verification algorithm KVerify: M ×K × S × Y ×
Kks → {True, False}, for any m ∈ M , k ∈ K, y ∈ Y and keystone ∈ Kks, it is
necessary

KVerifyy (m, k, s, keystone) =





True, if SVerifyy (m, k, s) = True
and k = KGen (keystone)

False, if SVerifyy (m, k, s) = False
or k 6= KGen (keystone)

(3)

3 Basic Models

3.1 Fair Exchange Signature Protocols

In the normal case, most of fair exchange schemes often involve an on-line or off-
line third party, but, for an embedded commitment, it is achieved in our scheme
only between two participants, without loss of generality, Alice (initial signer)
and Bob (respond signer). Alice who initiates the protocol first generates a piece
of secret information – keystone randomly, signs a message with her private key



and a keystone fix built by a one-way function with input of keystone and sends
the signature message to Bob. Bob responds this message by signing another
message with his private key and the same keystone fix.

Following Definition 1, the detailed implement process of FESS is depicted
as follows.

Alice and Bob first choose an efficient signature scheme and the relevant
parameters. Let xA, xB ∈ X denote Alice and Bob’s private key separately and
yA, yB ∈ Y is the public key corresponding to the private key of two participants.

1. Alice chooses a keystone ∈ Kks randomly and computes k = KGen (keystone),
where k ∈ K. And she takes k and her private key xA to sign a signature
sA = SignxA

(mA, k) on a message mA agreed with Bob. The verifiable signa-
ture message is σA = 〈mA, k, sA〉 that should be sent to Bob.

2. After receiving Alice’s verifiable signature message σA, Bob verifies the
message σA using algorithm SVerify described in section 2. If SVerifyyA

(σA) =
True, Bob chooses a message mB agreed with Alice and takes k and his private
key xB to sign a signature sB = SignxB

(mB , k). Bob sends the verifiable signa-
ture message σB = 〈mB , k, sB〉 back to Alice. Otherwise, if SVerifyyA

(σA) =
False, Bob aborts. Note that Bob uses the same value k as Alice does.

3. After receiving Bob’s verifiable signature message σB , Alice verifies the
message σB also using algorithm SVerify. If SVerifyyB

(σB) = True, Alice
release keystone to arouse not only σB but also σA, thus two verifiable signatures
go into effect at the same moment. If SVerifyyB

(σB) = False, Alice aborts.
4. Everyone can verify whetherKVerifyyA

(σA, keystone) = True or KVerifyyB

(σB , keystone) = True.
Here we need to point out that the FESS provides fairness through the dor-

mancy property, which is different from the ambiguous property of concurrent
signature [22]. As a useful cryptographic tool, our scheme provides a primitive to
build efficient fair exchange and contract signing protocols. In the next section,
we will give an example of it.

3.2 Attack Model for FESS

For a secure signature scheme, the property of secure against existential forgery
on adaptively chosen message attack is necessary. In this model [27, 28], an ad-
versary wins the game if he outputs a valid pair of a message and a signature,
where he is allowed to ask the signer to sign any message except the output.
Here we will introduce an attack model for FESS, similarly to [28]. We say that
a FESS, which consists of five algorithms: Parameter Setup, KGen, Sign, SVer-
ify, KVerify , is secure against existential forgery on adaptively chosen message
if no polynomial time algorithm A has a non-negligible advantage against a
challenger S in the following game:

1. S runs Parameter Setup algorithm firstly and gives the public system
parameters to A.

2. A can require the following queries:
(a) Hash function query. S computes the value of the hash function for the

requested input and sends the value to A.



(b) KGen query. A can request that S selects a keystone ∈ Kks and returns
fix k = KGen(keystone).

(c) KReveal query. A can request keystone of any keystone fix k ∈ K pro-
duced by a previous KGen query.

(d) Sign query. Given a message m ∈ M and a k ∈ K , S returns a signature
s which is obtained by running Sign algorithm.

3. A outputs 〈m, k, s〉, where m is a message, k is a keystone fix and s is a
signature, such that 〈m, k〉 are not equal to the inputs of any query to Sign and
k is a previous output of KGen query and a previous input of KReveal query. A
wins the game if s is a valid signature of 〈m, k〉.

Using this attack model, we can reduce the security of keystone signature
scheme to the hardness of discrete logarithm problem in section 5.

4 An Implementation of FESS

In this section, we give an implementation of FESS actually by Schnorr signature.
We give the system parameters firstly.

Parameter Settings:
• System parameters: Let p and q be two large primes and q |p− 1 . The

notation g denotes an element of order q of Z∗p .
• Alice: Alice has a pair of keys (xA, yA) for Schnorr signature where xA is

Alice’s private key , yA is her public key and yA = gxA mod p.
• Bob: Bob has a pair of keys (xB , yB) for Schnorr signature where xB is

Bob’s private key , yB is his public key and yB = gxB mod p.
1. Alice chooses keystone = 〈IDAB〉 and computes k = G(IDAB), where

IDAB is some random information about Alice and Bob’s identity and G is a
hash function. Alice generates her signaturesA = SignxA

(mA, k) = 〈rA, eA, cA〉,
where rA = gkA mod p, eA = H(mA, k, rA), cA = kA + eAxA mod q, and H is a
hash function. The verifiable signature message is σA = 〈mA, k, sA〉 that is sent
to Bob.

2. Bob verifies σA using SVerify algorithm. If eA = H(mA, k, gcAyeA

A mod p),
Bob signs sB = SignxB

(mB , k) = 〈rB , eB , cB〉 and sends σB = 〈mB , k, sB〉 to
Alice, otherwise does nothing.

3. Alice also verifies σB . If eB = H(mB , k, gcByeB

B mod p), Alice releases
keystone, otherwise aborts.

4. Each participant can prove σA (or σB) valid by revealing k = G(IDAB),
SVerifyyA

(σA) = True (or SVerifyyB
(σB) = True).

From the above example, we conclude that FESS is a general idea and has var-
ious implementations on most of the existing signature schemes, thus it may also
be considered as an interesting extension of concurrent signature [22] presented
in EUROCRYPT 2004 that can be constructed from ring signatures. Because
it can be implemented from more simple and efficient signature schemes, FESS
has higher efficiency than concurrent signature does. We will show executive
efficiency comparison between FESS and concurrent signature in next section.



5 Security and Efficiency Analysis of FESS

5.1 Security

In this section, we will discuss the security of FESS in the random oracle model
[26].

LEMMA 5.1. (Correctness) All parties’ signatures can ensure the right
parties send or receive the right messages.

proof: If s = Signx(m, k) = 〈r, e, c〉, r = gk′ mod p, e = H(m, k, r) and c =
k′+ex mod q then e = H(m, k, gcye mod p) ⇔ SVerifyy(m, k, s) = True. More-
over, if SVerifyy(m, k, s) = True and k = G(keystone) then KVerifyy (m, k, s, keystone) =
True. ¤

To prove the Unforgeability of FESS, we introduce an important conclusion
– Forking Lemma [28]. It gives a reductionist security proof for triplet ElGamal-
family signature schemes which produce a signature (Gen, Sign, V erify) on a
input message m.

LEMMA 5.2. (Forking Lemma) Let A be a probabilistic polynomial time
Turing machine whose input only consists of public data. We denote respectively
by Q and R the number of queries that A can ask to the random oracle and the
number of queries that A can ask to the signer. Assume that, within time bound
K, A produces, with probability ε ≥ 10(R + 1)(R + Q)/2k (where k is a secu-
rity parameter), a valid signature (m,σ1, h, σ2). If the triples (σ1, h, σ2) can be
simulated without knowing the secret key, with an indistinguishable distribution
probability, then there is another machine which has control over the machine
obtained from A replacing interaction with the signer by simulation and produces
two valid signatures (m,σ1, h, σ2) and (m,σ1, h

′, σ′2) such that h 6= h′ in expected
time T ′ ≤ 120686QT/ε.

LEMMA 5.3. (Unforgeability) The FESS is unforgeable under a chosen
message attack in the random oracle model.

proof: The proof is referred to the proof of unforgeability of the signature
scheme by Pointcheval and Stern [27], and makes use of the forking lemma [27,
28]. We suppose that G and H are random oracles, and there exists a probabilistic
polynomial time Turing machine A whose input only consists of public data. We
assume that A can make QG queries to the random oracle G, QH queries to the
random oracle H and R queries to the signing oracle Sign. Within time bound
T , A produces, with probability ε ≥ 10(R+1)(R+QH)/2q (where q is a security
parameter), a valid signature 〈m, k, 〈r, e, c〉〉.

simulation: S gives the parameters 〈g, p, q〉 and y = gx mod p to A. S tries
to simulate the challenger by simulating all the oracles to gain the secret key x.
A can query as follows:

G-Queries: A can query the random oracle G at any time. S simulates the
random oracle by keeping list of tuple 〈mi, ki〉 which is called the G-List. When
the oracle is queried with an input m ∈ {0, 1}∗, S responds as follows:

1. If the query m is already on the G-List in the tuple 〈m, ki〉, then S outputs ki.



2. Otherwise S selects a random k ∈ K, outputs k and adds 〈m, k〉 to the
G-List.

H-Queries: A can query the random oracle H at any time. S simulates the
random oracle by keeping list of tuple 〈∑i, ei〉 which is called the H-List, where∑

i is a triple of 〈mi, ki, ri〉. When the oracle is queried with an input
∑

, S
responds as follows:

1. If the query
∑

is already on the H-List in the tuple 〈∑, ei〉, then S outputs
ei.

2. Otherwise S selects a random e ∈ Zq, outputs e and adds 〈∑, e〉 to the
H-List.

KGen-Queries: S maintain a K-List of tuples 〈keystone, k〉. A can request
that S selects a keystone ∈ Kks and returns fix k = G(keystone). S chooses a
random keystone ∈ Kks and computes k = G(keystone). S outputs k and adds
〈keystone, k〉 to the K-List. In fact, K-List is a sublist of G-List, but is required
to answer KReveal queries.

KReveal-Queries: A can request keystone of any keystone fix k ∈ K pro-
duced by a previous KGen query. If there exists a tuple 〈keystone, k〉 on the
K-List, then S returns keystone, otherwise it outputs invalid.

Sign-Queries: S simulates the signature oracle by accepting signature queries
of the form 〈m, k〉 where m ∈ M is the message to be signed and k ∈ K is a
keystone fix. S answers the query as follows:

1. S picks a random c and e ∈ Zq which e isn’t equal to some previous output
for the H oracle.

2. S computes r = gcye mod p. If
∑

= 〈m, k, r〉 is some previous input for the
H oracle, then return to step 1.

3. S adds a tuple 〈∑, e〉 to H-List.
4. S outputs s = 〈r, e, c〉 as the signature for message m.

NOTE : Here we must check whether the distributions of real signature δ and
forged signature δ′ are same.{

δ = {(r, e, c)|k ∈ Zq, k 6= 0, e ∈ Zq, r = gk mod p, c = k + xe mod q}
δ′ = {(r, e, c)|e ∈ Zq, c ∈ Zq, r = gcye 6= 1 mod p}

First we compute the probability of a real signature signed using secret key,

Pr
δ

[(r, e, c) = (ε, β, γ)] = Pr
k 6=0,e

[r = gk = ε, e = β, c = k + xe = γ] =
1

q(q − 1)
.

The probability of a forged signature is

Pr
δ′

[(r, e, c) = (ε, β, γ)] = Pr
e,c

[e = β, c = γ, r = gcye = ε 6= 1 mod p] =
1

q(q − 1)
.

So the triple 〈r, e, c〉 can be simulated without knowing the secret key, with an
indistinguishable distribution probability. Thus, the signing oracle simulated by



S is high quality, and thereby A is very satisfied with the Sign-Queries’ answer.
He can fully exert his forgery ability.

Output: Finally, with non-negligible probability, A output a signature s =
〈r, e, c〉 with a message m ∈ M and k ∈ K, where SVerifyy(m, k, s) = True, in
the case that A produces k = G(keystone) through KGen queries and KReveal
query with input k and no Sign query with input 〈m, k〉 were made by A.

Now S can play the simulation twice so that A should produce two valid
signature s = 〈r, e, c〉 and s′ = 〈r, e′, c′〉 with e 6= e′. Then we have the following
equations.

r = gcye = gc−xe = gc′−xe′ = gc′ye′ mod p (4)

From above equations S can solve the hard discrete logarithm:

logg y = −x =
c− c′

e′ − e
mod q (5)

within expected time less than 120686×2q×QHT
10×(R+1)×(R+QH) . This contradicts the hardness

of the discrete logarithm problem. ¤
In [22], to provide two participants’ signatures are concurrent, Chen et al

make full use of the ambiguous property of ring signatures. Everyone except
initial signer cannot confirm who is the signer within two participants until
initial signer releases the keystone. But in FESS, to ensure simultaneity, we
introduce the property of Dormancy. Two signatures that have been exchanged
would not go to valid until the secret information keystone is released to arouse
them.

LEMMA 5.4. (Dormancy) The FESS is dormant before the secret infor-
mation keystone is released in the random oracle model.

proof: The random oracle assumption is same as before. We suppose there
exists a probabilistic polynomial time Turing machine A whose input only con-
sists of public data. We assume that A can make QG queries to the random
oracle G, QK queries to the random oracle KGen and R queries to the signing
oracle Sign.

simulation: S gives the parameters 〈g, p, q〉 and y = gx mod p to A. S tries
to simulate the challenger by simulating all the oracles to reveal a keystone with
k = G(keystone). A can query as in LEMMA 5.3.

Output: Finally, with non-negligible probability,A outputs a keystone and a
signature s = 〈r, e, c〉 with a message m ∈ M and k ∈ K, where KVerifyy(m, k, s, keystone) =
True, in the case that A produces k = G(keystone) through KGen queries and
no KReveal query with input k was made by A.

In this model, it is an easy job for A to obtain a valid signature s = 〈r, e, c〉
with SVerifyy(m, k, s) = True through Sign-Queries. But A cannot make
query to KReveal-Queries, so he has a probability QGQK

q , which is a negligible
probability, to reveal keystone. This contradicts the assumption that, with non-
negligible probability, A outputs a keystone and a signature s = 〈r, e, c〉 with a
message m ∈ M and k ∈ K, where KVerifyy(m, k, s, keystone) = True. ¤

LEMMA 5.5. (Fairness) The FESS is fair in the random oracle model.



proof: The random oracle assumption is same as in LEMMA 5.3. We suppose
there exists a probabilistic polynomial time Turing machine A whose input only
consists of public data. We assume that A can make QG queries to the random
oracle G, QH queries to the random oracle H, QK queries to the random oracle
KGen and R queries to the signing oracle Sign.

simulation: S gives the parameters 〈g, p, q〉 and y = gx mod p to A. S tries
to simulate the challenger by simulating all the oracles to gain the secret key x
or reveal a keystone with k = G(keystone). A can query as before.

Output: Finally, with non-negligible probability, A output a keystone and
a signature s = 〈r, e, c〉 with a message m ∈ M and k ∈ K, where KVerifyy

(m, k, s, keystone) = True, one of the following two cases holds:

1. A produces k = G(keystone) through KGen queries and KReveal query
with input k and no Sign query with input 〈m, k〉 were made by A.

2. A produces k = G(keystone) through KGen queries and no KReveal query
with input k was made by A.

In the case 1, it is easy to educe a contradiction from LEMMA 5.3. In the
case 2, the output conditions can occur only with a negligible probability. This
follows LEMMA 5.4. ¤

THEOREM 5.6. The FESS are secure in the random oracle model, assum-
ing the hardness of the discrete logarithm problem.

proof: The proof follows directly from correctness, unforgeability, dormancy
and fairness. ¤

5.2 Efficiency

Because FESS can be implemented from more simple and efficient signature
schemes, it has higher efficiency than concurrent signature does. Executive effi-
ciency comparison between FESS and concurrent signature is given in Table 1.
In the table 1, “ E ” denotes the number of exponentiation in Zp, “ Mp ” denotes
the number of multiplication in Zp, “ Mq ” denotes the number of multiplication
in Zq, “ A ” denotes the number of addition in Zq, “ H ” denotes the number
of hash operation.

Table 1. Efficiency Comparison
Algorithm FESS Concurrent Signature

Initial Sign 1E + 1Mq + 1A + 2H 2E + 1Mq + 1Mp + 2A + 2H

Respond Sign 1E + 1Mq + 1A + 1H 2E + 1Mq + 1Mp + 2A + 1H

SVerify 2E + 1Mp + 1H 3E + 2Mp + 1A + 1H

KVerify 2E + 1Mp + 2H 3E + 2Mp + 1A + 2H



6 Conclusions

In this paper we propose a secure and efficient signature scheme — FESS that
allows two players to exchange digital signatures in a fair way. It is a general idea
and can be implemented from most of the existing signatures. In this scheme,
each unwakened signature can be verified easily by the other player, but it doesn’t
go into effect until an extra piece of information keystone is released by one of
the players. Once the keystone released, two signatures are both aroused and
become effective. A key feature of the proposed scheme is that two players can
exchange digital signatures simultaneously through a secret commitment with-
out involvement of any Trusted Third Party. Although FESS does not overcome
the weakness of concurrent signature, which is the initial party controls the key-
stone, but, from the comparison, we can point out that the executive efficiency
of FESS is higher than that of concurrent signatures. For having variety im-
plementations from most of existing signature schemes, FESS can be applied to
different environment. As a useful cryptographic tool, FESS provides a primitive
to build efficient fair exchange and contract signing protocols.

Our scheme can also be extended to the multi-party case easily. In this case,
the security assumption could also be proved in the same way. We have taken the
directions for future research to reduce the initial signer’s advantage of revelation
of keystone.

References

1. E. F. Brickell, D. Chaum, I. B. Damgard and J. van de Graaf, Gradual and
verifiable release of a secret, Advances in Cryptology: Proceedings of Crypto’87,
LNCS vol. 293, Santa Barbara, California, August, 1987, pp. 156-166.

2. M. Ben-Or, O. Goldreich, S. Micali and R. Rivest, A fair protocol for sign-
ing contracts, IEEE Transactions on Information Theory, IT-36(1), January 1990,
pp.40-46.

3. D. Boneh, and M. Naor, Timed commitments (extended abstract), In Advances
in Cryptology - CRYPTO 2000, LNCS vol. 1880, Springer-Verlag, 2000, pp. 236-
254.

4. R. Cleve, Controlled gradual disclosure schemes for random bits and their appli-
cations, Advances in Cryptology: Proceedings of Crypto’89, LNCS vol. 435, Santa
Barbara, California, August 1989, pp. 573-588.

5. I. B. Damgard, Practical and provably secure release of a secret and exchange of
signatures, Advances in Cryptology: Proceedings of Eurocrypt’93, LNCS vol. 765,
Lofthus, Norway, May 1993, pp. 200-217.

6. O. Goldreich, A simple protocol for signing contracts, In Advances in Cryptology
- CRYPTO 1983, Plenum Press, New York, 1984, pp. 133-136.

7. J. Garay, and C. Pomerance, Timed fair exchange of standard signatures, In
Proc. Financial Cryptography 2003, LNCS vol. 2742, Springer-Verlag, 2003, pp.
190-207.

8. N. Asokan, V. Shoup, and M. Waidner, Optimistic fair exchange of digital sig-
natures, Advances in Cryptology - EUROCRYPT’98. LNCS, Vol. 1403, Springer-
Verlag, 1998, pp. 591-606.



9. N. Asokan, V. Shoup, and M. Waidner, Optimistic fair exchange of signatures,
In IEEE Journal on Selected Areas in Communication vol. 18(4), 2000, pp. 593-610.

10. C. Boyd and E. Foo, Off-line fair payment protocols using convertible signature,
Proceedings of Asiacrypt’98, LNCS vol. 1514, Springer-Verlag, 1998, pp. 271-285.

11. F. Bao, Colluding attacks to a payment protocol and two signature exchange
schemes, Proceedings of Asiacrypt 2004, LNCS vol. 3329, Springer-Verlag, 2004,
pp. 417-429.

12. F. Bao, R. H. Deng and W. Mao, Efficient and practical fair exchange protocols
with off-line TTP, Proceedings of 1998 IEEE Symposium on Security and Privacy,
Oakland, California, May 1998, pp. 77-85.

13. D. Boneh, C. Gentry, B. Lynn and H. Shacham, Aggregrate and verifiably en-
crypted signatures from bilinear maps, In Advances in Cryptology -EUROCRYPT
2003, LNCS vol. 2656, Springer-Verlag, 2003, pp. 416-432.

14. R. H. Deng, L. Gong, A. A. Lazar and W. Wang, Practical protocols for
certified electronic mail, Journal of Network and Systems Management, 4(3), 1996,
pp. 279-297.

15. Y. Dodis, and L. Reyzin, Breaking and repairing optimistic fair exchange from
PODC 2003, In ACM Workshop on Digital Rights Management (DRM), October
2003, pp. 47-54.

16. M. Franklin and M. Reiter, Fair exchange with a semi-trusted third party,
Proceedings of 4th ACM Conference on Computer and Communications Security,
Zurich, Switzerland, April 1997, pp. 1-6.

17. J. Garay, M. Jakobsson and P. MacKenzie, Abuse-free optimistic contract
signing, In Advances in Cryptology - CRYPTO 1999, LNCS vol. 1666, Springer-
Verlag, 1999, pp. 449-466.

18. J. M. Park, E. Chong, H. Siegel, I. Ray, Constructing Fair-Exchange Protocols
for E-Commerce Via Distributed Computation of RSA Signatures, Proceedings
of the Twenty-Second ACM Symposium on Principles of Distributed Computing
(PODC 2003), Boston, Massachusetts, USA, July 13-16, 2003, pp. 172-181.

19. J. Zhou and D. Gollmann, A fair non-repudiation protocol, Proceedings of 1996
IEEE Symposium on Security and Privacy, Oakland, California, May 1996, pp.
55-61.

20. J. Zhou and D. Gollmann, An efficient non-repudiation protocol, Proceedings of
10th IEEE Computer Security Foundations Workshop, Rockport, Massachusetts,
June 1997, pp. 126-132.

21. Jianying Zhou, Robert Deng, and F. Bao, Some remarks on a fair exchange
protocol, Third International Workshop on Practice and Theory in Public Key
Cryptosystems, PKC 2000. LNCS, Vol. 1751, Springer-Verlag, Australia, 2000, pp.
46-57.

22. Liqun Chen, Caroline Kudla and Kenneth G.Paterson, Concurrent Signa-
ture, Advances in Cryptology - EUROCRYPT 2004. LNCS, Vol. 3027, Springer-
Verlag , 2004, pp. 287-305.

23. R. Rivest, A. Shamir and Y. Tauman, How to leak a secret, In Advances in
Cryptology - ASIACRYPT 2001, LNCS vol. 2248, Springer-Verlag, 2001, pp. 552-
565.

24. M. Abe, M. Ohkubo, and K. Suzuki, 1-out-of-n signatures from a variety of
keys, In Advances in Cryptology - ASIACRYPT 2002, LNCS vol. 2501, Springer-
Verlag, 2002, pp. 415-432.

25. G. Ateniese, Efficient verifiable encryption and fair exchange of digital signa-
tures, Proceedings of the 6th ACM Conference on Computer and Communications
Security (CCS), 1999, pp. 138-146.



26. M. Bellare, and P. Rogaway, Random oracles are practical: a paradigm for
designing efficient protocols, In Proc. of the 1st CCCS, ACM press, 1993, pp. 62-
73.

27. D. Pointcheval and J. Stern, Security proofs for signature schemes, In Ad-
vances in Cryptology - EUROCRYPT 1996, LNCS vol. 1070, Springer-Verlag, 1996,
pp. 387-398.

28. D. Pointcheval and J. Stern, Security arguments for digital signatures and
blind signatures, In Journal of Cryptology, vol. 13(2000), pp. 361-396.

29. W. Susilo, Y. Mu, and F. Zhang, Perfect concurrent signature schemes, In: In-
formation and Communications Security (ICICS 04), LNCS 3269, Spriger- Verlag,
2004, pp. 14-26.

30. Guilin Wang, Feng Bao, and Jianying Zhou, The Fairness of Perfect Concur-
rent Signatures, In: Information and Communications Security (ICICS 06), LNCS
4307, Spriger- Verlag, 2006, pp. 435-451.


