
Multivariates Polynomials for Hashing

Jintai Ding, Bo-yin Yang*
University of Cincinnati, Technical University of Darmstadt

Academica Sinica*

Abstract

We propose the idea of building a secure hash using quadratic or
higher degree multivariate polynomials over a finite field as the com-
pression function, whose security relies on simple hard questions. We
analyze some security properties and potential feasibility, where the
compression functions are randomly chosen high-degree polynomials.
Next, we propose to improve on the efficiency of the system by using
some specially designed polynomials using composition of maps and
certain sparsity property, where the security of the system would then
relies on stronger assumptions.

1 Introduction: the Dilemma

It is well-circulated joke that hash functions are the only common cryptologi-
cal primitives that are getting slower as chips evolve. This is becoming rather
pressing as of today, after the work of Wang et al culminated in the collision
of some well-known and standard hash functions [7, 8]. One common feature
of the currently used hash functions is that it is more an area of art, where
the design of the system is based on certain procedures and the security of
the system is very very difficult to study from the theoretical point of view.
For example, even the work of Wang et al is still not well understood and
people are still trying to analyze the methods used in some systematical way.
[6]

Naturally, one direction is to look for provably secure hash functions,
whose security relies on well-understood hard computational problems. These
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hashes tend to be slower, although they have a saving grace in terms of prov-
able security. In these formulations, the designer seeks a reduction of the
security of the compression function to some other intractable problem. In
this paper, we propose another method, which is inspired by the MQ prob-
lem, and study how well it works.

The paper is arranged as follows. We first study the case of random
systems. Then we study the case of composition construction and sparse
construction, and present the main theoretical challenges and its practical
applications. We will then discuss other new ideas and the future research
in the conclusion. Much work remains in this area in terms of security re-
ductions and the improvement of the computation efficiency of the systems.

2 The MQ frame work

Problem MQ: Solve the polynomial system with coefficients and variables
in K = GF(q)

p1(x1, . . . , xn) = 0, p2(x1, . . . , xn) = 0, . . . , pm(x1, ..., xn) = 0, (1)

where each pi is generic and quadratic in x = (x1, . . . , xn).

MQ is NP-hard generically [5] and is the basis of multivariate public-key
cryptosystems [4, 9]. If each pi is of degree di > 1, the problem may be
termed called MP , which is of course no easier than MQ, so must also be
NP-hard.

That a problem is NP-hard generically need not mean that its solution
is of exponential time complexity in its parameters on average, or imply
anything about the coefficients. However, today, as m and n increases, we
believe that the following holds.

Conjecture 1 MQ is exponential in n unless n/m = o(1) in the generic
case.

The latest way of tackling such methods involve guessing at some optimal
number of variables (depending on the method in the closing stage) then
use a Lazard-Faugère solver (XL or F5, [1]). We also believe, and it is
commonly accepted that the complexity to solve the set of equations is indeed
exponential, if pi(x1, . . . , xn) are quadratic polynomials whose coefficients are
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randomly chosen or say that pi(x1, ..., xn) are randomly chosen quadratic
polynomials. We will assume this statement as the security foundation.

Under this assumption, the first straightforward idea is to build an it-
erated hash using completely random quadratic polynomials as compression
functions, namely the one way function is given by

F (x1, . . . , xn, y1, . . . , yn) = (f1(x1, . . . , xn, y1, . . . , yn), ..., fn(x1, ..., xn, y1, . . . , yn)),

where each fi is a randomly chosen quadratic polynomial over GF(q). All the
coefficients are chosen randomly. We will use this as a compressor with state
x = (x1, . . . xn), and each input message block is y = (y1, . . . , yn). In the
following, we show that this cannot work and suggest the next improvements,
particularly cubic and stacked (composed) quadratics, and the idea of using
the least number of parameters to determine our maps.

2.1 General Remark on Solvability

A rough estimate of effort to solve these MQ problems: 20 quadratic equa-
tions in 20 GF(256) variables: 280 cycles; 24 quadratic in 24 GF(256) vari-
ables: 292 cycles. It is harder to solve higher-order equations: for reference,
20 cubic equations in 20 GF(256) variables takes about 2100 cycles, 24 cubics
in 24 GF(256) variables about 2126 cycles, and 20 quartics in in 20 GF(256)
variables about 2128 cycles.

Clearly, the problem for our hash schemes is not going to be the direct
solution (algebraic attack) using a polynomial system sovler. The above
shows that any multivariate polynomial systems are not really susceptible to
preimage or second preimage attacks.
Note: There is a special multivariate attack to solve under-defined systems
of equations [3] that applies to this situation where there is a lot many more
variables than equations, but for fields other than q = 2 it has proved to be
rather useless if we just plug in the numbers into the formulas.

We would then, of course, try multivariate quadratics as the obvious idea.
However, it is not secure because collisions are easy to find:

Proposition 1 With randomly chosen F = F (x,y), it is easy to find at
least one solution for the equation.

F (x1,y1) = F (x2,y2)
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Proof. The equation above can be written as

F (x + b,y + c)− F (x,y) = 0

which is a set of linear equations in 2n variables (x,y) and n equations. If we
randomly choose the values of b, c, then in general, it should have none trivial
solutions, because the number of variables is twice the number of equations;
even if it does not, we can choose another set of random values of b, c and
find a solution. �

However, we may see that this points out a better way to building a secure
hash.

3 Cubic Construction

Suppose that q = 2k and the F above is changed to a random cubic K2n →
Kn, then the following heuristic argument implies that this compression func-
tion is secure.

Proposition 2 A random cubic F : K2n → Kn (written as F := F (x,y), x,y ∈
Kn) is

1. impossible to invert or to find a second image for, in polynomial time.

2. is impossible find a second solution for in polynomial time.

The first item is more or less MP hypothesis for cubics, the second one
requires that

F (x1,y1) = F (x2,y2)

be impossible to solve in polynomial time, with F as above.
Proof. [Heuristic] First, let us consider that we are using a randomly
generated set of equations, so it should be approximately equal opportunity
or probability in collisions of any pair of points. In other words, in terms of
the difference of the collision pairs, there should not be any difference among
all the possibilities for the difference except the zero point. Thus, we can
assume that the adversary knows the differential, or choose any differential
at random. Consider now

F (b,c) = F (x + b,y + c)− F (x,y).
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This is a set of quadratic equations in x and y. We can show that this is
the only way to obtain quadratic equations associated with a collision by
intersectiong our equations with an additional hyperplan of codimension n,
otherwise it is impossible to eliminate all the cubic terms. But this differ-
ential construction is hard to solve, because we can show that as long as b
and c are not both zero, F (b,c) is essential random using an argument on the
Jacobian of F . Since F (b,c) still random and quadratic, and is hence hard to
solve. �

This shows that the compressor and hence the hash function should be
collision-free with proper chosen parameters. We propose some instances,
which has the security level at 280 or 2128, but those system are very slow for
practical applications. A natural idea is to use sparse polynomials. This is
as in the case of the central maps of TTS signature schemes, namely we will
choose each of the above polynomial to be a sparse polynomial. However,
the security relies on the following stronger assumption:

Conjecture 2 As n and m = kn goes to infinity, for any fixed 0 < ε < 1, a
random sparse quadratic system with a randomly picked ε proportion of the
coefficients being non-zero (and still random) will still take time exponential
in n to solve.

The key problem is that the ratio ε of the nonzero terms.

1. How many we choose such that it is fast?

Answer: no more than maybe 0.1% (see below).

2. How many we choose such that it is secure?

Answer: a predetermined fixed percentage.

3. How do we choose the sparse terms?

Answer: probably randomly.

4 Random Cubic Polynomial

We use completely random cubic polynomials, namely the one way function
is gives by

F (x,y) = (f1(x,y), ..., fn(x,y)),
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where fi is a randomly chosen cubic polynomial over GF(q). Here x,y ∈
Kn as before. All the coefficients are chosen randomly. We will use this
as a compressor in a Merkle-Damg̊ard iterated compression hash function.
Suppose we have the following Merkle-Damg̊ard like structure:

State: x := (x1, x2, . . . , xn).

Incoming Data Block: y := (xn+1, . . . , x2n).

Compression: F : (GF(q))2n → (GF(q))n.

Initial State: F (P (a1, . . . , an/2), P (an/2+1, . . . , an)), P is a random quadratic
Kn/2 → Kn.

According to [2], the output of P is impossible to predict or distinguish
from random.

Final Output: in (GF(q))n, possibly with some post-treatment.

Assuming 160-bit hashes (SHA-1), preliminary runs with a generic func-
tion F :

• 40 GF(256) variables into 20: 67300 cycles/byte (6.0 cycles/mult)

• 80 GF(16) variables into 40: 4233000 cycles/byte (3.2 cycles/mult)

Assuming 256-bit hashes (SHA-2), preliminary runs with a generic func-
tion F :

• 32 GF(216 variables into 16: 48200 cycles/byte (19 cycles/mult)

• 64 GF(256) variables into 32: 3040000 cycles/byte (6.0 cycles/mult)

• 128 GF(16) variables into 64: 9533000 cycles/byte (3.2 cycles/mult)

Some implementation details:

• The coefficients of the map F is taken from the binary expansion of π.

• Multiplication in GF(16) and GF(256) are implemented with tables.
In fact, in GF(16), we implement a 4kBytes table with a where we can
multiply simultaneously one field element by two others.

• Multiplication in GF(216) is implemented via Karatsuba multiplication
over GF(256).

But using a random cubic system is not very efficient in general, the new
idea is the next one namely we will use sparse polynomials.
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4.1 Sparse Polynomial

The idea is the same as above but we choose each of the above polynomial
to be sparse.

Conjecture 3 As n and m = kn goes to infinity, for any fixed 0 < ε <
1, a random sparse nonlinear polynomial system with a randomly picked ε
proportion of the coefficients being non-zero (and still random) will still take
time exponential in n to solve.

The key point is to pick a the ratio ε of the nonzero terms. In general,
storing the formula in a sparse form takes extra space and time to unscramble
the storage, so it is never worthwhile to have ε > 1/6 or so in practice. In
the examples in the following, less than 0.2% of the coefficients are non-zero
(one in 500). To give one example, there is around 30 terms per equation in
a 40-variable cubic form.

Assuming 160-bit hashes (SHA-1), preliminary runs with a generic sparse
F :

• 40 GF(256) variables into 20, 0.2%: 215 cycles/byte

• 80 GF(16) variables into 40, 0.1%: 4920 cycles/byte

Assuming 256-bit hashes (SHA-2), preliminary runs with a generic sparse
F :

• 32 GF(216 variables into 16, 0.2%: 144 cycles/byte

• 64 GF(256) variables into 32, 0.1%: 3560 cycles/byte

• 128 GF(16) variables into 64, 0.1%: 9442 cycles/byte

5 Stacked (Composed) Quadratics

Having noted that cubics don’t work so well, another way is to have quartics
which are composed of quadratics. The first quadratic maps 2n variables to
3n, the second one then maps the 3n to n. This avoids the problem by using
a set of quartic that can still be computed relatively quickly.

The first question is, whether this is a good idea.
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Proposition 3 Let the compression function F be equal to F2 ◦ F1, with
generic F1 : K2n → K3n, F2 : K3n → Kn.

Proof. Schematically, F−1
2 = F1 ◦ F−1. Hence If we can invert F , then we

can invert F2. This is hard by assumption. �

Proposition 4 F is collision-resistant.

Proof. [Heuristic] Frst, if we find a collision of F1, we can find collision of F
But it is easy to see that F1 has no chance of collision once n is big enough.
This can be seen using the differential to find the collision of F1, where one
gets a set of linear equation with 3n equations and 2n variables; and the
probability for it to have a nontrivial solution is essentially zero if n is large
enough; and even if it has a pair, it is hard to find because we need to know
the right difference of the pair.

Thus, to find a collision on F means we need to find a collision on F2,
which poses no problem, but then we need to make sure that the pair pro-
duced by a collision on F2 must have inverse under F1, which has a essentially
zero probability, further more we will have to invert F1 twice, which is difficult
by assumption.

Now, let us consider a direct differential attack and compute F (b,c). First,
the differential is a set of degree 3 polynomial. Using the chain rule and the
rule of expansion, we can see that the polynomial of the differential belong
to the ideal generated the polynomials of F1. Since for generic polynomials
we should not see a reduction to zero under the degree of regularity [1], the
solution is at as hard as inverting F1. �

We would like to note that the using of expansion function like F1 is also
used in the construction of QUAD [2].

Another easy way to improve the security of the differential attack is to
build a new function F , where

F = F2 ◦ F̄1,

where
F̄1 = (F−1

11 , F
−1
22 , ..., F

−1
3n,3n),

and F1 = (F11, F22, ..., F3n,3n)
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Assuming 160-bit hashes (SHA-1), preliminary runs with a function F =
F2 ◦ F1, with generic F1 : K2n → K3n, F2 : K3n → Kn

• 40 GF(256) variables into 20: 27400 cycles/byte

• 80 GF(16) variables into 40: 101200 cycles/byte

Assuming 256-bit hashes (SHA-2), preliminary runs with F = F2 ◦ F1,
generic F1, F2:

• 32 GF(216 variables into 16: 24100 cycles/byte

• 64 GF(256) variables into 32: 64200 cycles/byte

• 128 GF(16) variables into 64: 247000 cycles/byte

In this way we can explore another form of sparsity, which relies on the
idea is that any quadratic map can be written as f ◦ L, where f is a certain
standard form and L is an invertible linear map. Now we will instead choose
L to be sparse.

In this instance, the key question are still the same:

1. How many we choose such that it is fast?

2. How many we choose such that it is secure?

3. How do we choose the sparse terms?

In this area, we note that it is not necessary that L be sparse, but only that
it be decided by a relatively small number of parameters, and that the eval-
uation is fast. Along these lines, a new construction is the continued sparse
compositions, where we use composition of sparse random linear maps. We
propose some instances of these type hash functions for practical applications.
There are furthermore several new ideas that should be further studied.

5.1 Sparse Composition Factor: “Rotated” Quadratic
Sets

The idea is that any quadratic map can be written as f ◦ L, where f is a
certain standard form and L is an invertible linear map. Now we will choose
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L to be sparse. The obvious standard form for characteristic 2 fields is to
start with the standard form (“rank form”).

f1(x) = x1x2 + x3x4 + · · ·xn−1xn.

Let us explain a little why. Let k be a field of characteristic 2. A quadratic
form in n variables over k is defined by Q =

∑
1≤i≤j≤n pijxixj, pij ∈ F .

Theorem 5 (A) Any quadratic form over k is equivalent to

Q′ =
ν∑

i=1

xiyi +
τ+ν∑

j=ν+1

(
ajx

2
j + xjyj + bjy

2
j

)
+

d∑
k=1

ckz
2
k

with ck 6= 0 and 2ν + 2τ + d ≤ n.

When 2ν + 2τ + d = n, the form Q′ is regular. The number d is the defi-
ciency of the form and the form q′ is completely regular, if Q′ is regular and
its deficiency is zero, which corresponding the case that the corresponding
symmetric form is non-degenerate. A randomly chosen is in general expected
to completely regular.

Furthermore, we have

Theorem 6 (A) If two quadratic forms over k, ψ + q1 and ψ + q2, are
equivalent and ψ is completely regular, then q2 and q1 are equivalent over F .

We will use this to give a general characterization of a quadratic function.
Any quadratic function f(x1, ..., x2n) can be written in the form

f(x1, .., xn) =
∑

1≤i≤j≤2n

aijxixj +
∑

1≤i≤2n

bixi + c

where aij, bi, c are in k. We know that through a linear transformation of the
form L(xi) = xi + di, if the quadratic part is non degenerate, we can have
that

f(L1(x1, .., xn)) =
∑

1≤i≤j≤2n

a′ijxixj + c′.

From the theorem above we know that there is a linear map L2 such that

f((L2 ◦ L1)(x1, .., xn)) =
∑

1≤i≤n

x2i−1x2i +
∑
i∈S

x2
i + c′,
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where S is a set consisting of pairs in the form of (2j − 1, 2j). The simplest
form this kind of function is surely

f((L2 ◦ L1)(x1, .., xn)) =
∑

1≤i≤n

x2i−1x2i + c′,

and its difference from others in some sense are something of the linear nature,
which can be neglected in some way. From this we conclude that a general
quadratic function can be represented as: F ◦ L, where

F =
∑

1≤i≤n

x2i−1x2i + c′,

which is the basis we will use to build our hash function.
Knowing that any quadratic functions from GF(q)k → GF(q) can be

written this way. The key question are similar now:

1. How do we choose L such that it is fast?

2. How many we choose such that it is secure?

3. How do we choose the sparse terms?

In this particular instance, there is something that leaps out at us. starting
with x1 := x, we compute f1(x1), then transform x1 7→ x2 := L2x1, where L2

has three randomly chosen entries in each row, and f2(x) := f1(x2). Continue
in this vein and do x2 7→ x3 := L3x2, f3(x) := f1(x3), and so on and so forth.

A set of quadratic polynomials like this we call “rotated”.

Assuming 160-bit hashes (SHA-1), preliminary runs with a composed
rotated F :

• 40 GF(256) variables into 20: 1720 cycles/byte

• 80 GF(16) variables into 40: 3220 cycles/byte

Assuming 256-bit hashes (SHA-2), preliminary runs with a composed
rotated. F :

• 64 GF(256) variables into 32: 8100 cycles/byte

• 128 GF(16) variables into 64: 24100 cycles/byte
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6 Further Discussion: Variant Ideas and Other

Attacks

We see that our hash schemes are roughly on a par speedwise with other
schemes that depends on hard problems. It is true that there may be better
formulations of the same idea, but MQ is a known hard problem, which
should lend a measure of confidence.

6.1 Other Attacks

There are many specialized attacks in multivariate public key cryptography,
especially the true multivariates, that one may think to use to attack our
systems. But one should realize that due to the property of random poly-
nomials, from what we can see, all but one of them is now inapplicable to
attack our hash.

There are the usual attacks of linear and differential cryptanalysis to think
of, but cubic and quartic equations are so far removed from linearity that it
is hard to imagine such attacks working.

6.2 Other Constructions

The key idea here is once we have a sparse construction, we would like to add
some kind of internal perturbation to make system even more complicated.
The key question is about how we add the perturbation. Another idea is to
use a Feistel structure, which might speed up evaluation a lot with random
maps, but requires more set-up and makes any putative preimage resistance
harder to show. Since the principle is not much different we don’t go in that
direction.

7 Conclusion

In this paper, we present the idea of using randomly polynomials, and ran-
domly polynomials with sparse property to build hash functions. What is new
here are: the cubic construction, the amplify-compress composed quadratic
construction, and the specially constructed systems using compositions of
sparse linear functions.
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We present arguments for the security of the system and for the case of
sparse construction. We can improve our ideas with internal perturbation
by adding additional noise into our sparse system. One more idea is to use
composite field, where we explore further field structure to make our system
more secure.

It is clear that some of these programming is very preliminary. The idea
is mainly to point out a new direction in developing hash function whose
security relies on a clear hard problems and therefore easier to study and
understand, our work is just the beginning of this new direction and much
work need to be done. We believe the multivariate hash has a very strong
potential in practical applications. Much more work is needed in finding
the right constructions and optimal parameters, and in rigorous proofs of
security, which is something we are pursuing next.
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