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Abstract. In this paper, a method for the efficient computation of Tate
pairings on curves which is a generalization of Barreto, etc.’s method [2]
is presented. It can reduce the number of loops in the computation of
the Tate pairing. The method can be applied not only to supersingular
curves but to non-supersingular curves. An example shows the cost of
the algorithm in this paper can be reduced by 18% than the best known
algorithm in some elliptic curves.
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1 Introduction

Since Shamir [23] proposed the idea of identity-based cryptography, the pairing-
based protocols have been used in many application fields. Bilinear pairings
present us the new cryptographic applications such as identity-based encryp-
tions [5], short signature schemes [6], etc. For the practical applications of these
systems, it is important to show efficient algorithms for the computation of the
Tate pairing. There has been a lot of works on the efficient computation of the
Tate pairing. In these works, Duursma and Lee [8] presented how to reduce the
loop length in the computation of the Tate pairing for a special family of super-
singular elliptic and hyperelliptic curves. In 2004, Barreto, etc. [2] generalized the
method of Duursma and Lee and gave a more efficient computation of the Tate
pairing on supersinguler curves. The eta pairing is the best result on reducing
the number of the main loop length for computing the Tate pairing. Currently
the eta pairing is one of the fastest algorithms for computing the bilinear pair-
ing. Under some conditions, the eta pairing is a non-degenerate bilinear pairing.
Therefore the eta pairing can be used in pairing-based cryptosystems.

In this paper, a method for the efficient computation of Tate pairings on
curves which is a generalization of Barreto, etc.’s method is presented. It can
reduce the number of loops in the computation of the Tate pairing and can
be used not only on supersingular but also on non-supersingular curves. This
method is consistent with the eta pairing when the conditions of the eta pairing
are satisfied. An example shows the cost of the algorithm in this paper can be
reduced by 18% or 13% than the best known algorithm.

This paper is organized as follows. Section 2 gives a brief background on the
Tate pairing which include Barreto, etc.’s result presented in [2]. In Section 3,
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Barreto, etc.’s method is generalized. Efficient computations of Tate pairings on
non-supersingular curves can be achieved by this new method. Some examples
to apply this method are discussed in Section 4. Section 5 shows some advices
on the choice of parameters. Finally the conclusion is given in Section 6.

2 Preliminaries

The terminology and notation in this paper follows that found in Barreto, etc.
[2]. For more information on the Tate pairing defined at abelian varieties and on
the Miller’s algorithm, the readers are referred to [2], [11] and [24].

Let C be a smooth, projective, and absolutely irreducible curve over a finite
field K = Fqk . Denoted by PicK

0 (C) the degree zero divisor class group of C over
K. Let r be an integer such that r | ]PicK

0 (C) and let PicK
0 (C)[r] be the divisor

classes of order dividing r. Let D1 be a divisor representing a class in PicK
0 (C)[r]

and D2 be a divisor on C defined over K such that the supports of D1 and D2

are disjoint. Let f be a function whose divisor is equal to rD1. Then the Tate
pairing 〈D1, D2〉r = f(D2) is a well-defined, non-degenerate, bilinear pairing

PicK
0 (C)[r]× PicK

0 (C)/rPicK
0 (C) → K∗/(K∗)r,

The output of this pairing is defined up to a coset of (K∗)r. Hence one defines
the reduced pairing τ(D1, D2) = 〈D1, D2〉(q

k−1)/r
r to obtain a unique value. One

important property of the reduced pairing is

τ(D1, D2) = 〈D1, D2〉(q
k−1)/r

r = 〈D1, D2〉(q
k−1)/N

N

when N | (qk − 1) and N = hr for some h.
Throughout this paper, C will be an elliptic or a hyperelliptic curve and r

will be a prime with r | ]PicK
0 (C). We assume also that the curve C is a pairing-

friendly curve with embedding degree k which allows denominator elimination
in the computation of Tate pairings by using Miller’s algorithm (see [1]).

For any integer n ∈ N, let Dn be a reduced divisor equivalent to nD and
let fn,D be the function whose divisor is nD − Dn − m(∞) for some m ∈ N.
When C is an elliptic curve, then D = (P ) − (∞), where P is a point. Thus
Dn = (nP ) − (∞) and fn,D is just the Miller’s function. If n ∈ Z with n < 0
then nD = (−n)(−D). So Dn is a divisor equivalent to (−n)(−D) and fn,D is
a function with divisor (−n)(−D) − (Dn) −m(∞) for some m. Then the Tate
pairing is 〈D, D′〉n = fn,D(D′).

The following theorem is the main result in the paper [2].

Theorem 1. [2] Let C be a supersingular curve over Fq with distortion map ψ
and even embedding degree k. Let D be a divisor on C defined over Fq with order
dividing N ∈ N and let M = (qk − 1)/N . Suppose T ∈ Z is such that
1. TD ≡ γ(D) in the divisor class group where γ is an automorphism of C

which is defined over Fq.
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2. γ and ψ satisfy the condition

γψq(Q) = ψ(Q)

for all points Q ∈ C(Fq).

3. T a + 1 = LN for some a ∈ N and L ∈ Z.

4. T = q + cN for some c ∈ Z.

Then
(〈D, ψ(D

′
)〉MN )L = (fT,D(ψ(D′)))aMT a−1

.

In [14], the authors simplify and extend the Eta pairing, which them call the
Ate pairing. Although the Tate pairing as defined in elliptic curves allows argu-
ments P ∈ E[r] and Q ∈ Fqk , in practice one often works with specific subgroups
to speed-up the pairing computation. Let πq be the Frobenius endomorphism,
i.e. πq : E → E : (x, y) 7→ (xq, yq), then the following choice seems to be optimal:
- the group G1 = E[r]

⋂
Ker(πq − [1]),

- the group G2 = E[r]
⋂

Ker(πq − [q]).
Although in practice one has always used the Tate pairing on G1 ×G2, from a
theoretical point of view, the Tate pairing on G2×G1 has a much nicer structure.

Theorem 2. [14] Let E be an elliptic curve over Fq, r a large prime with
r|]E(Fq) and denote the trace of Frobenius with t, i.e. ]E(Fq) = q + 1 − t. For
T = t− 1, Q ∈ G2 = E[r]

⋂
Ker(πq − [q]) and P ∈ G1 = E[r]

⋂
Ker(πq − [1]),

we have the following:
- fT,Q(P ) defines a bilinear pairing, which we call the Ate pairing
- let N = gcd(T k − 1, qk − 1) and T k − 1 = LN , with k the embedding degree,
then e(Q,P )L = fT,Q(P )c(qk−1)/N , where c = Σk−1

i=0 T k−1−iqi ≡ kqk−1 (mod r)
- for r - L, the Ate pairing is non-degenerate.

The Theorem 2 allows us to simplify the Tate pairing with a restrictive. We
use a different restrict way to simplify the Tate pairing on curves. The following
theorem show that we can also simplify the Tate pairing not only in ellitptic
curves but also in hyperelliptic curves.

3 Main results

In this section, We will prove the following theorem.

Theorem 3. Let C be a curve(supersingular or non-supersingular)over Fq with
embedding degree k which allows denominator elimination. Let D be a divisor
on C defined over Fq with order dividing N ∈ N and let M = (qk − 1)/N . Let
D′ be a divisor on C defined over Fqk such that the supports of D and D′ are
disjoint. Suppose T ∈ Z is such that
1. T a + bT + c = LN for some a, b, c ∈ N and L ∈ Z.
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2. Let γ be an automorphism of divisor class group of C which is defined over
Fq such that TD ≡ γ(D) in the divisor class group and let ζ be an endo-
morphism in divisor class group of C which allows denominator elimination
with γ ◦ ζ(D′) = D′ up to a scalar multiple in F∗q .

Then

(〈D, D′〉MN )L =
a−1∏

j=0

(fT,D(ζj(D′)))MT a−1−j · fbT,D · lT a,bT · fc,D(D′)M ,

where lT a,bT is the equation of the line through the points T aD and bTD.

First note that, since TD is equivalent to γ(D) we have DT i = γi(D). Write
d for the degree of the finite part of D. Then D =

∑d
j=1(Pj) − d(∞) and so

DT i =
∑d

j=1(γ
i(Pj))− d(∞).

Lemma 1. With notation as above and D any divisor such that TD is equivalent
to γ(D). Then

fT,D(ζ(D′))M = fT,TD(D′)M .

Proof. The argument is an analogue of the method used in [2]. Since (fT,D) =
TD−DT − (T − 1)d(∞), (fT,D)T = T (fT,D) and (fT,TD) = TDT −DT 2 − (T −
1)d(∞), using the assumption TD ≡ γ(D), we have

γ∗(fT,TD) = γ∗(TDT −DT 2 − (T − 1)d(∞))
= TD −DT − (T − 1)d(∞)
= (fT,D).

Also,
γ∗(fT,TD) = (γ∗fT,TD) = (fT,TD ◦ γ).

Hence, we have (up to a scalar multiple in F∗q)

fT,TD ◦ γ = fT,D.

Applying ζ to the above yields

fT,TD ◦ γ ◦ ζ = fT,D ◦ ζ.

From γ ◦ ζ(D′) = D′, the result follows immediately. 2

Lemma 2. [2] With notation as above, we have

(fT a,D) = (fT a−1

T,D fT a−2

T,TD · · · fT,T a−1D).

Proof. We prove only the non-supersingular case too. Note that fL
N,D =

fLN,D = fT a+1,D. Since T a + bT + c = LN , we know that (T a + bT + c)D ≡ 0,
which implies (T a + bT )D ≡ −D and so up to a scalar multiple in F∗q , we have

fT a+bT+1,D = fT a,DfbT,DlT a,bT fc,D.
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Evaluating at D′ and raising to the power M we have

fT a+bT+1,D(D′) = fT a,DfbT,DlT a,bT (D′).

By Lemma 2, this is

a−1∏

j=0

fT,T jDfbT,DlT a,bT (D′)MT a−1−j

.

Now substituting T jD for D in Lemma 1 implies that

fT,T jD(D′)MT a−1−j

= (fT,D(ζj(D′)))MT a−1−j

.

Hence the result follows. 2

Noting that (〈D, D
′〉MN )L is non-degenerate if L does not divide N .

4 Examples

In this section, some examples will be given. It is clear that the conditions in
Theorem 3 are satisfied when the conditions in Theorem 1 hold. So Theorem 3
is an extension of Theorem 1. The following first 2 examples are from [2] while
Examples 3 and 4 deal with non-supersingular curves.

Example 1. Consider the supersingular curve E : y2 + y = x3 + x + b over F2m ,
where b = 0, 1 and m is odd. The embedding degree is k = 4. The field F24m has
a basis 1, s, t, st over F2m , where s and t satisfy s2 = s + 1 and t2 = t + s. A
distortion map ψ is given by

ψ(x, y) = (x + s2, y + sx + t).

Define
φ(x, y) = (x + 1, y + x).

Then φ4(P ) = P for any P = (x, y) ∈ E(F2m). Let q = 2m then [q]P = φm(P ).
Set γ = φm. Let N = ]E(F2m) = 2m ± 2(m+1)/2 + 1 and M = (24m − 1)/N .
Taking T = ∓2(m+1)/2−1, a = 2 and L = 2, we have T a +1 = LN . Let ζ be the
qth-power Frobenius morphism. Then γ(ζ(ψ(Q))) = ψ(Q) for any Q ∈ E(F24m).
Therefore, we have

(〈P, ψ(Q)〉MN )2 = (fT
T,P (ψ(Q)) · fT,P (ζ(ψ(Q))))M = (fT,P (ψ(Q))))2TM .

From T = q −N and fNM
T,P = 1, we have

fTM
T,P = fqM

T,P /fNM
T,P = fqM

T,P = (fT,P ◦ ζ)M .

Therefore
〈P, ψ(Q)〉MN = fT,P (ζ(ψ(Q)))M .
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Example 2. Consider the supersingular curve E : y2 = x3−x+b over F3m , where
B = ±1 and gcd(m, 6) = 1. The embedding degree is k = 6. It is well-known
that ]E(F3m) = 3m + 1 + B′3(m+1)/2, where B′ is defined as

B′ =
{

B if m ≡ 1 (mod 12),
−B if m ≡ 7 (mod 12).

A distortion map ψ is given by ψ(x, y) = (ρ− x, σy), where σ2 = −1 and ρ3 =
ρ + b. Let π be the 3-power Frobenius morphism and let φ(x, y) = (x−B,−y).
Set q = 3m and γ = φm. Then

[q](x, y) = φmπ2m(x, y) = φm(x, y) = γ(x, y).

Let N = 3m ± 3(m+1)/2 + 1 and M = (36m − 1)/N = (33m − 1)(3m + 1)(3m ∓
3(m+1)/2 +1). Taking T = q−N = ∓3(m+3)/2−1, a = 3 and L = ∓3(m+3)/2, we
have T a + 1 = LN . Let ζ be the qth-power Frobenius morphism then we have
γ(ζ(ψ(Q))) = ψ(Q) for any Q ∈ E(F3m). By Theorem 3, we have

(〈P, ψ(Q)〉MN )L = (fT 2

T,P (ψ(Q)) · fT
T,P (ζ(ψ(Q))) · fT,P (ζ2(ψ(Q))))M .

From fTM
T,P (ψ(Q)) = fM

T,P (ζ(ψ(Q)), we have

〈P, ψ(Q)〉MN = fT,P (ζ2(ψ(Q)))3M/L.

Example 3. Consider the non-supersingular curves E : y2 = x3 + dx over Fp,
where p ≡ 1 (mod 4) is a prime and d 6= 0. Choose suitable p and k such that
the curve E is of the pairing-friendly type. Let α ∈ Fq be an element of order
4. Then the map γ : E → E given by (x, y) → (−x, αy) and ∞ → ∞ is an
automorphism defined over Fp. Let P ∈ E(Fp) be a point of prime order r with
r | ]E(Fp). Then γ acts on P as a multiplication map [T ], where T is an integer
satisfying T 2 ≡ −1 (mod r). Thus there is an integer L such that T 2 + 1 = Lr.
Let ζ = γ3 then we have γ ◦ ζ = 1 and ζ(P ) = (x,−αy). Let N = r and
M = (pk − 1)/N . Choose Q ∈ E(Fpk) such that the denominator elimination is
allowed. Therefore

(〈P, Q〉MN )L = (fT
T,P (Q) · fT,P (ζ(Q)))M ;

Noting that Q and γ(Q) have the same x-coordinate, we can save a multiplication
in the computation of evaluation of the line function in each loop. Furthermore,
we can choose suitable curves such N = r = T 2 + 1, i.e., L = 1. In this case the
Tate pairing is

〈P, Q〉MN = (fT
T,P (Q) · fT,P (ζ(Q)))M .

Thus we have the following algorithm to compute the Tate pairing τ(P, Q) =
〈P, Q〉MN on E : y2 = x3 + dx, where λR,P is the slope of the line through points
R and P (or the tangent line at R when P = R).
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Algorithm 1 Computation of τ(P, Q) on E : y2 = x3 + dx.
—————————————————————————-
Input: P = (xP , yP ), Q = (xQ, yQ), T =

m∑
i=0

Ti2i, where Ti ∈ {0, 1}
Output: τ(P, Q)
—————————————————————————-
1: Begin
2: R = P , Q′ = (xQ,−αyQ), f1 = f2 = 1;
3: for i = m− 1 to 0 do
4: temp = λR,R(xQ − xR), lR,R(Q) = yQ − yR − temp, lR,R(Q′) = −αyQ −

yR − temp;
5: f1 = f2

1 · lR,R(Q), f2 = f2
2 · lR,R(Q′), R = 2R;

6: If Ti = 1 then
7: temp = λR,P (xQ − xR), lR,R(Q) = yQ − yR − temp, lR,R(Q′) = −αyQ −

yR − temp;
8: f1 = f1 · lR,P (Q), f2 = f2 · lR,P (ζ(Q)), R = R + P ;
9: end for
10: f1 = fT

1 ;
11: Return τ(P, Q) = (f1f2f3)M .
—————————————————————————-

Example 4. Consider the non-supersingular curves E : y2 = x3 + B over Fp,
where p is a prime with p ≡ 1 (mod 3). We focus on pairing-friendly elliptic curves
again so that the denominator can be omitted in the Miller’s algorithm. Note
that many curves that have been suggested for practical use in pairing-based
cryptography are in fact of this type. Also we can generate the pairing-friendly
curves of this type with large embedding degree such as 12 (see [3]). Let β ∈ Fp

be an element of order 3. Then the map γ : E → E given by (x, y) → (βx, y)
and ∞ → ∞ is an automorphism defined over Fp. Let P ∈ E(Fp) be a point
of prime order r. Then γ acts on P as a multiplication map [T ], where T is an
integer satisfying T 2 + T ≡ −1 (mod r). Thus there is an integer L such that
T 2 + T + 1 = Lr. Let ζ(x, y) = (β2x, y) then γ ◦ ζ(P ) = (P ). Let N = r and
M = (pk − 1)/N . Choose Q ∈ E(Fpk) such that the denominator elimination is
allowed. By Theorem 3, we have

(〈P, Q)〉MN )L = (fT+1
T,P (Q) · fT,P (ζ(Q)) · lT 2,T (Q))M ,

where lT 2,T (Q) = yQ − yP is the equation of the line through points T 2P and
TP . Especially, if we can generate a suitable elliptic curve such that N = r =
T 2 + T + 1, then we can compute the Tate pairing as

〈P, Q〉MN = (fT+1
T,P (Q) · fT,P (ζ(Q)) · lT 2,T (Q))M .

Now we have the following algorithm to compute the L-th power of the Tate
pairing τ(P, Q)L = 〈P, Q〉MN on E : y2 = x3 + B, where lR,P is the equation of
the line through points R and P (or the tangent line at R when P = R).
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Algorithm 2 Computation of τ(P, Q)L on E : y2 = x3 + B.
—————————————————————————-
Input: P = (xP , yP ), Q = (xQ, yQ), T =

m∑
i=0

Ti2i where Ti ∈ {0, 1}
Output: τ(P, Q)L

—————————————————————————-
1: Begin
2: R = P , f1 = f2 = 1, f3 = yQ − yP ;
3: for i = m− 1 to 0 do
4: f1 = f2

1 · lR,R(Q), f2 = f2
2 · lR,R(ζ(Q)), R = 2R;

5: If Ti = 1 then
6: f1 = f1 · lR,P (Q), f2 = f2 · lR,P (ζ(Q)), R = R + P ;
7: end for
8: f1 = fT+1

1 ;
9: Return τ(P, Q)L = (f1f2f3)M .
—————————————————————————-

For comparing our method with the algorithm in [21], consider the elliptic
curve E512 : y2 = x3 + 5 over Fp, where

p = 1145747568399549380635317418620582531453546123676759744111
5533728505070527823154532657656991234473986641703193940343
559823628668878734326909502089393493643.

The embedding degree of E512 is k = 2. We choose T = 280 + 216 which gives
a prime N = T 2 + T + 1 of 161 bits. In this case we has a very low Hamming
weight of T . Choose the points P = (xP , yP ) ∈ E512(Fp)[N ] and Q = (xQ, yQ) ∈
E512(Fp2) such that xQ ∈ Fp. Then we have the following algorithm to compute
the Tate pairing τ(P, Q) = 〈P, Q〉MN on E512.

Algorithm 3 Computation of τ(P, Q) on E512.
—————————————————————————-
Input: P = (xP , yP ), Q = (xQ, yQ), T = 280 + 216

Output: τ(P, Q)
—————————————————————————-
1: Begin
2: R = P , Q′ = (β2xQ, yQ), f1 = f2 = 1, f3 = yQ − yP ;
3: for i = 39 to 0 do
4: f1 = (f2

1 · lR,R(Q))2 · l2R,2R(Q), f1 = (f2
1 · lR,R(Q′))2 · l2R,2R(Q′), R = 4R.

5: if Ti = 1 then
6: f1 = f1 · lR,P (Q), f2 = f2 · lR,P (Q′), R = R + P ;
7: end for
8: f1 = fT+1

1 ;
9: Return τ(P, Q) = (f1f2f3)(p−1)(p+1)/N .
—————————————————————————-
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Note that in this algorithms, we use the direct algorithm to compute 4R as
in [10] which cost about 25 multiplications in Fp if we assume that the com-
putational cost of an inverse in F∗p is 10M. We assume also one square and one
multiplication in F∗p2 as 2M and 3M. For the final power we use the method
in [20]. Thus the total cost of the Algorithm 3 is 2864M while the algorithm
in [21] requires 3329M or 3163M with extra storage. Therefore the cost of this
algorithm can be reduced by 14% or 10%.

One needs to compute the scalar multiplication of a point in the computation
of Tate pairings. However in the Jacobian projective coordinates we have a more
efficient method to perform it. Let the point P = (X1, Y1, Z1) correspond to
the point (X1/Z

2
1 , Y1/Z

3
1 ) in affine coordinates. Set 2P = (X2, Y2, Z2). Then

X2 = 9X4
1 − 8X1Y

2
1 , Y2 = 3X2

1 (4X1Y
2
1 −X2)− 8Y 4

1 and Z2 = 2Y1Z1. According
to the affine line equation, we have

lP,P (x, y) = y − Y1

Z3
1

− 3X2
1

2Y1Z1

(
x− X1

Z2
1

)
= y − 3X2

1

2Y1Z1
x− 2BZ6

1 −X3
1

2Y1Z3
1

=
Z2Z

2
1y − 2Y 2

1 − (3X2
1 )(Z2

1x−X1)
2Y1Z3

1

.

Since p ≡ 3 (mod 4), −1 ia a quadratic non-residue in Fp. Let i2 = −1 then any
element in Fp2 have a “complex number” form. Let Q = (xQ, yQ) ∈ E512(Fp2),
where xQ = s+ ti and yQ = u+vi with s, t, u, v ∈ Fp. Let us restrict Q to be the
form where t = u = 0. Then we can ignore the denominator in the computation
of the Tate pairing. Therefore we can let Q = (xQ, iyQ), where xQ, yQ ∈ Fp.
Hence

lP,P (Q) =
Z2Z

2
1yQi− 2Y 2

1 − (3X2
1 )(Z2

1xQ −X1)
2Y1Z3

1

.

Since Y1, Z1 ∈ Fp, we can assume that

lP,P (x, y) = Z2Z
2
1y − 2Y 2

1 − (3X2
1 )(Z2

1x−X1)

and then we have

lP,P (Q) = Z2Z
2
1yQi− 2Y 2

1 − (3X2
1 )(Z2

1xQ −X1).

Therefore we need only 11M to compute lR,R(Q) and 2R from the point R.
Noting that ζ(Q) = (β2xQ, yQi), we need 13M to compute lR,R(Q), lR,R(ζ(Q))
and 2R. Furthermore we can let P = (xp, yP , 1), thus the point addition of R+P ,
lR,P (Q) and lR,P (ζ(Q)) will cost 15M. Therefore, in the Jacobian projective
coordinates we need only 2739M (not forgetting the point P = (xP , yP , 1)) to
compute the Tate pairing of E512 by application of Theorem 3. Thus the cost
of our algorithm can be reduced by 18% or 13%. Also it should be pointed out
that the above method can be applied to Example 3 too.
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5 What about T and ζ

In order to use Theorems 3, a main problem is to find T , γ and ζ which satisfy
the conditions. There is no general method to find them until now. Usually the
automorphism γ of C will be chosen as the T multiplications map as in above
examples. In this section, some ideas and strategies for choosing T and ζ will be
proposed.

The integer T and the endomorphism ζ should be chosen so that fT (ζ(D′))
(or fT (ζj(ψ(D′)))) can be computed efficiently by fT (D′) (or fT (ψ(D′))). At
first, we would like to choose T such that the absolute value |T | is small enough
to reduce the iterative numbers in the computation of the Tate pairing. By
practical experiences, in order to find ζ which can correspond to T , some special
numbers, such as p, the characteristic of the field, or q, or qk, or q − ]PicK

0 (C)
would be considered to be candidates for T .

Let E be a general curve over the field K with char(K) 6= 2. For any point
P = (x, y) ∈ E and an integer T > 0, we have

[T ]P =
(

φT (x, y)
ψ2

T (x, y)
,
ωT (x, y)
ψ3

T (x, y)

)
,

where ψT (x, y) is the division polynomial. Let ζ(x, y) = (x′, y′). In order to
decide the endomorphism ζ after T is chosen, we need to solve the equations

φT (x′, y′)
ψ2

T (x′, y′)
= x and

ωT (x′, y′)
ψ3

T (x′, y′)
= y

with unknowns x′ and y′. But in general these equations can not be solved in
some practical applications. So how to choose ζ is still a difficult problem.

Generally, we have the following strategies to consider this problem.

1. Choose T , ζ so that we have fT,D(ζj(D′))M = fT,D(D′)MT j′
for some inte-

ger j′. For general curves, this aim may be difficult to get. But at least we
hope to compute fT,D(ζj(D′))M from fT,D(D′)M more easily.

2. In the iterative procedure, we need to compute the line function value of
l(x, y) = y−y′−λ(x−x′) at ψ(Q) or Q. We hope to choose T and ζ such that
ζj(ψ(Q)) and ψ(Q) have the same x-coordinate. Then it is free to compute
l(ζj(ψ(Q)) from l(ψ(Q)). Similarly, if they have the same y-coordinate, then
we can use the projective coordinates to simplify the computation as in
Example 4.

6 Conclusion

A method for the efficient computation of Tate pairings on curves which is a gen-
eralization of Barreto, etc.’s method [2] is presented in this paper. Our method
is different from F. Hess etc.[14]. It can reduce the number of loops in the com-
putation of the Tate pairing and can be used not only on supersingular but also



11

on non-supersingular curves. It can also be used on curves with large embedding
degrees. This method is consistent with eta pairings when the conditions of eta
pairings are satisfied. An example shows the cost of the algorithm in this paper
can be reduced by 18% or 13% than the best known algorithm.
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