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Abstract. Evidences of delivery are essential for resolving (and avoiding) disputes on delivery of
messages, in classical as well as electronic commerce. We present the first rigorous specifications and
provably-secure implementation, for a communication layer providing time-stamped evidences for the
message delivery process. This improves on existing standards for evidences (‘non-repudiation’) services,
based on informal specifications and unproven designs.
Our work also improves on the large body of analytical works on tasks related to evidences of delivery,
such as certified mail/delivery protocols and fair exchange (of signatures). We improve by address-
ing practical needs and scenarios, using realistic synchronization and communication assumptions,
supporting time-outs and failures, and providing well-defined interface to the higher-layer protocols
(application). Furthermore, we use the layered specifications framework, allowing provably-secure use
of our protocol, with lower and higher layer protocols, with complete re-use of our analysis (theorems).

Keywords: Certified delivery, cryptographic protocol, fair exchange, layered specifications,
non-repudiation, secure e-commerce.

1 Introduction

Reliable, fair and time-stamped message delivery is central to development of e-commerce. Without
a doubt, every business relationship between parties includes provisions, whether implicit or explicit,
regarding resolution of disputes and the communication mechanism between the trading parties.
In addition, when commercial risk is substantial, typically a notarial entity is introduced for the
certification and time-stamping of mail.

Currently deployed messaging systems typically do not have a secure, agreed mechanism for
fair resolution of disputes regarding communicated messages. Especially in e-commerce scenarios,
laws and regulations often force default resolution, e.g. in favor of the buyer, or as an opposite
example, in favor of bank records, when client denies a transaction. Though such “thumb-laws” are
acceptable in majority of scenarios, admittedly, they bear a potential for unfairness to one of the
parties. Moreover, in the majority of the cases dispute resolution involves a human arbiter, which
substantially raises the costs of such resolution.

In current work we show how time-stamping and certification service could be provided elec-
tronically and in an efficient way. In addition we show how fair dispute resolution is achieved
automatically. We believe an evidence layer for certified and time-stamped delivery, such as we
present, would become an underlying layer for many e-commerce applications and architectures [1,
2].

There has been extensive amount of research on secure certified (electronic) mail, and the
related Trusted Third Party (TTP) protocols of fair exchange, contract signing and time-stamping;
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we consider all these to be variants of the trusted delivery problem, and refer to the TTP as
notary. Our protocol extends Protocol F of Asokan, Shoup and Waidner [3], and shares many of
its properties; in particular it is optimistic - i.e., the notary is involved only if the sender and
receiver cannot directly complete the communication due to failure. Our protocol has the following
advantages:

We provide precise (and compact) bounds for the termination time and imprecision of time-
stamp. Previous works assumed perfect synchrony, or did not provide time-stamp and bounded
termination.

We provide the recipient with an affidavit of availability, allowing it to prove that it was operative
at give time interval. This is crucial for allocation of liability to failures between the parties.
Failures may be due to outages, denial of service attacks, or attempts by the party to ignore
unwelcome message.

Our protocol ensures accountability, i.e. if the notary tries to provide services incorrectly, this
can be proven based on the affidavits signed by the notary or detected in real time. Note that
accountability implies a visible notary, i.e. the identity of the notary can be inferred from the
affidavits produced by the protocol. We believe that for many e-commerce applications, e.g.
e-banking, accountability is more crucial than invisibility of the notary; however most works do
not provide accountability (sometimes, in order to provide invisible TTP [4, 5]). One notable
exception is the previously mentioned Protocol F of [3].

Our protocol is simple, practical and efficient, yet proven secure. The efficiency gain in proving
protocol security in our layered model is substantial, compared to rigorously proven protocols,
e.g. [6].

We address the practical need of parties to get evidences for sending messages in time. This
extend the traditional notion of fairness (i.e., with fair exchange sender does not get evidence
for reception iff receiver does not get evidence for the message origin).

We specify and analyze the dispute resolution process.

There is considerable amount of literature published regarding fair exchange and non-repudiation,
and we would give only a partial and succinct comparison. For comprehensive overviews see [7, 8].

An underlying delivery layer for secure e-commerce applications is part of the architecture of [1],
which also addressed the initialization process, mostly focusing on the legal aspects; they considered
only fairness goals. There are also several messaging systems and standards offering fair delivery
services, in particular [9, 10], and ISO standards [11, 12].

Much of the research on fair delivery focuses on avoiding the use of a notary, by probabilistic or
gradual exchange, as in [13, 14]; these works are applicable only to special applications, mainly due
to their high overhead and probability of failure; and certainly they do not provide time-stamping
services. Additional research direction, is the optimistic approach, where the notary is involved only
to handle exceptions. There are many works which adopt and study optimistic approach delivery
protocols [3–7, 15–17].

The timeliness properties of the protocol imply, in particular, that the ‘proofs‘ produced include
a digitally signed time-stamp. The time-stamp allows the receiver (sender) to prove to a third party,
e.g. arbiter, that the message was sent (respectively, received) by a particular sender (respectively,
receiver) during a specific time interval. The signatures we use in the timestamps are simply those
of the sender and receiver, except if the receiver fails, in which case the time-stamp, on the proof
that the message was sent and failed to be acknowledged, is by the notary.
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Some applications may require additional, non-sender’s, signature on a time-stamp to enable
long-lasting signatures where exposure of (old) keys could be managed. Our protocol could be used
in these cases as more efficient than having the parties contact a Time Stamping Authority, as with
the standard Time Stamp Protocol (TSP) [18].

To our knowledge, there are very few works on non-repudiation [19, 8, 20] which embed auto-
matic dispute resolution, or define an appropriate resolution process. The result are designed for
humans, and either not fully automated or do not consider the effect of communication failures.

In current work we also handle the confidentiality requirement. We show both variants when
confidentiality is preserved by evidence layer, though the notary is not trusted with the content
of the messages, and when confidentiality is inherited from lower, transport layer, when notary is
trusted.

Notation. Throughout this document, we use dot notation: a.b, to denote element b of a
record or tuple a.

2 Evidence layer

The evidence layer is the lowest secure e-commerce layer. Evidences layer is positioned on top of
a transport layer, such as, for example, TCP/IP, TLS/SSL, themselves working on top of socket
or SSL API, respectively, and provides additional certification services. An evidence layer session
is always between three parties: a client, server, and a notary (trusted third party), which acts as
time-stamping and certification provider.

Evidence Field Description

type Evidences of origin, delivery, failed submission and availability,
EOO, EOD, EOFS, EOA, respectively.

t Evidence time-stamp.

msg The evidence message.

σ Evidence signature (proof).

Table 1. Evidence structure.

An evidence is a time-stamped and signed statement, by an entity or a notary. The evidences
are crucial for proving statements regarding the runs of the protocol, for example, that certain
messages were delivered to a party. We show an evidence in Table 1. We distinguish four main
types of evidences for the evidence layer,

Evidence of origin (EOO), is an attestation of a message send time and origin. The evidence
is output by server, which is the recipient of messages, and is signed by the client.

Evidence of delivery (EOD), is an attestation of a message acceptance by an intended message
receiver, and the acceptance time. The evidence is output by the client (message sender), and
is signed by the server.

Evidence of failure and submission (EOFS), is a complementing evidence for EOD; the ev-
idence states that a message was not acknowledged by the intended receiver. The evidence is
output and signed by both client and notary.
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Evidence of availability (EOA), is an attestation of server’s availability. The evidence is signed
by the notary, and includes the time intervals during which the notary did not issue evidences
of failure and submission.

Generally, the EOO is intended for the server to prove that the message was sent by the client
at specified time. The client, on the other hand obtains an EOD as a proof for the client that
the server has indeed received the message. However, when the server does not acknowledge the
message the client obtains an EOFS to prove that a message was sent but was not acknowledged,
e.g. consider a client placing an stock buy order at a broker. Nevertheless, server may prove it did
acknowledge all messages at some time interval by obtaining an EOA from the notary for that
interval. Of course, having both EOFS and EOA with overlapping times means that either the
notary was compromised, e.g. notary’s signature was forged.

Time-stamping. The evidence layer supplies, as part of the aforementioned evidences mentioned
above, attestation of message existence at specific time interval, and attestation that by that
time it was also signed by the originating party. This allows non-repudiation of a message even
after message originator’s key had expired, been compromised or revoked.

Confidentiality. In current work we treat confidentiality twofold. First, the evidence layer may
provide confidentiality (in the indistinguishability sense) by itself. On other hand confidentiality
could be solved by cautious use of a confidentiality providing transport or communication layers,
for instance, TLS/SSL or IP-Sec layers. In later sections we show how to define confidentiality
specifications for both cases.

Failed Delivery. We assume simple management of non-delivered messages, where each message
is assigned only one type of evidence during lifetime. The evidence layer does not try to re-
deliver messages (reliability service could be provided by layers below the layer of evidences,
e.g., TCP), if it had been already assigned an EOFS.

2.1 Agreements, interfaces and validation

We proceed to define the evidence layer, by first defining the concept of an agreement, which
provides the context for the communication and evidences. We then proceed to define the precise
interfaces exposed by the evidence layer, and finally, we discuss the validation mechanism to resolve
disputes between the communicating parties.

Agreements. Any communication between parties always involves a context and an agreement,
whether implicit or explicit. An agreement, shown in Table 2, is an accord between an attestation
client, notary and server, i.e. evidence layer channel participants, regarding the communicating
parties addresses, parties validation and encryption keys, clock drifts and bounds, and lower
layer communication information, such as the allowed messages and maximum allowed message
delay.

Remark 1. We have introduced the communication validity function, in Table 2 to capture practical
considerations of communication protocols working with limited or predefined sets of messages. A
trivial example would be a function that limits the length of the sent messages, i.e., Vcomm(m) =
(|m| ≤ c), for some c ∈ N.
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Agreement Fields Description

C.addr, C.vk, C.ek, S.addr, The identities of the principals participating in the
S.vk, S.ek, N.addr, N.vk, N.ek agreement; client, server and notary, respectively.

Principal’s identity is an (addr,vk,ek) tuple,
of principal’s address and public signature validation
and encryption keys.

α,β Clocks drifts and biases bounds, respectively.

∆comm Communication delay bound, between any two parties.
Vcomm: {0, 1}∗ 7→ {true, false} Communication message validity test function.

Table 2. Evidences layer agreement.

Interfaces. We show precise interfaces for the evidence layer in Tables 3–7. In Table 3 we show
the interfaces between the evidence layer and the user, i.e. application. In Table 4 we show the
interface with the communication service layer, and in in Tables 5 and 6 respectively, we show
the interface with the signature and encryption schemes used by the layer. Additional interface
with a clock service, is shown in Table 7.

Method Direction Description

EL.Init(1k,addr,α,β,∆comm,Vcomm) in Initializes layer, with security parameter, 1k, and lower layer settings, see
EL.InitResult(vk,ek,∆el) out Table 2. Returns false if initialization failed, or returns the generated

validation key vk, public encryption key ek, and layer’s bound ∆el

on delivery of evidences (Table 1).

EL.OpenChannel(Agr,ρ) in Establishes an attested channel for the role ρ ∈ {S, C, N},
client, server and notary, respectively.

EL.OpenChannelResult(Agr,status) out Return a boolean status channel open result.

EL.Send(Agr,m) in Sends a message m on an open channel identified by Agr agreement.
EL.SendResult(Agr,e,h) out Returns an EOD or EOFS (Table 1), for previously sent message

on channel identified by Agr agreement, or a special FAIL indication of
channel failure. The field h is a hint, for encrypted evidence content.

EL.AvailabilityRequest(Agr) in Request EOA from the notary.

EL.Receive(Agr,e,h) out Delivers evidence e, which could be an EOA, or EOO (Table 1).
Also used for channel failure, e = FAIL notification. The field h is a hint,
for encrypted evidence content.

Table 3. Evidences layer interface with application.

Remark 2. We note that the specified interfaces, e.g. the encryption interface, lack the explicit
option for randomness, since the randomness is implicitly supplied for each protocol event by the
execution framework [21, 22].

Validation. A central element of the evidence layer is the mechanism for resolving disputes be-
tween the parties, or in other words, how to validate claims of the parties related to the runs
of the protocol. The sender may want to claim (or prove) that she submitted the message on
time; that the message was delivered to the destination, who made a specific response, on given
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Method Direction Description

Comm.Init(addr,∆comm,Vcomm) in Initializes a communication channel using addr address,
delivery delay bound ∆comm and V commmessage validity function.

Comm.InitResult(status) out Outputs whether the communication service was successfully initialized.

Comm.Send(addr,m) out Sends a message m, to a party identified by addr address.

Comm.Receive(addr,m) in Delivery of a message m which had arrived from party identified by addr
address, in addition m could be a special FAIL, channel failure indication value.

Table 4. Evidences layer interface with communication layer.

Method Direction Description

S.Gen(1k) in Key generation takes an unary security parameter k and a random string r ∈ {0, 1}k.
S.GenResult(sk,vk) out Outputs the (private) signing key identifier sk and a (public) verification key vk.

S.Sign(sk,m) in Signs a message m using signing key identified by sk.
S.SignResult(σm) out Returns the resulting signature σm.

S.Verify(vk,m,σm) in Verifies using vk key, if message m matches the signature σm.
S.VerifyResult(b) out Returns a boolean verification result b ∈ {true, false}.

Table 5. Evidences layer interface with signature scheme S.

time; or that the destination failed to receive the message. The recipient may want to claim
(or prove) that it received the message from the sender (at given time); or that it did not fail
to receive any message during given time interval. To facilitate validation of claims, the parties
sign relevant evidences during the run. We require the evidence layer to include an efficient
Validate(Agr, e, m, h) predicate, to decide whether the evidences are valid or not. The argu-
ments to the validation predicate include an agreement Agr, an evidence e, the message m in
the case the message does not equal to e.msg, and a hint h, e.g. the randomness that was used
to create an encrypted e.msg part. The validation predicate is then to check if the evidence is
valid in the context of the Agr agreement, with respect to the input message and hint. Later
on, in Section 2.4 we show a specific implementation of the validation predicate, with respect
to our implementation.

2.2 Simple evidence layer protocol

In the current section we present an informal description of the simple evidence layer protocol
(SELP). We do present the protocol implementation code in Appendix. The protocol is natural
and straightforward for either physical security (envelops and seals) or cryptographic security. In
later section we present an optimistic variant, optimistic evidence layer protocol (OELP), as simple
supplement to SELP.

SELP participants are client, notary and server, and all are involved in the protocol execution.
There are four basic types of inner flow types in SELP. The ‘M’ (for ‘Message’) is the flow which
depicts the message sent and signed by the client and forwarded by the notary to the server; the
‘R’ (for ‘Response’) flow depicts the server’s signed response, forwarded by the notary to the client;
the ‘RA’ (for ‘Response acknowledgment’) flow is the signed acknowledgment by the notary to the
server, regarding server’s response. Additional flow is the ‘F’ (for ‘Failure’) flow where the notary
affirms the client that no response was received from the server.
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Method Direction Description

CE.Gen(1k) in Key generation takes an unary security parameter k and a random string r ∈ {0, 1}k.
CE.GenResult(dk,ek) out Outputs the (private) decryption key identifier dk and a (public) encryption key ek.

CE.Enc(ek,m) in Encrypts a plaintext m using encryption key ek.
CE.EncResult(c) out Returns the resulting ciphertext c.

CE.Dec(dk,c) in Decrypts a ciphertext c using decryption key identified by dk.
CE.DecResult(m,r) out Returns the corresponding plaintext m and the randomness r that was used in the

encryption process.

Table 6. Evidences layer interface with encryption scheme CE .

Method Direction Description

Clock.Init(α,β) in Initializes the clock services, with global drift bound α and bias bound β.
Clock.InitResult(status) out Outputs whether the communication service was successfully initialized.

Clock.SetTimer(cky,offset) out Schedules a wakeup call, identified by unique cookie cky, in relative offset time
from the party’s current clock value.

Clock.CancelTimer(cky) out Cancels a schedules a wakeup call, identified by unique cookie cky.

Clock.WakeAlarm(cky) in Notification of a scheduled wakeup, identified by cky cookie. The wakeup event
cancels the timer.

Table 7. Evidences layer interface to clock.

Faultless scenario. We show the basic, sunny-day faultless flows in Figure 1. The figure guide-
lines the protocol implementation in Appendix, assuming that each pairwise communication
takes place within the ∆comm underlying communication channel delivery bound. The process
is initiated by the client at time tC1 , sending message m to the server. The client signs the
(‘M’,tC1,m) tuple as σM . When the message arrives at time tN1 to the notary, the notary val-
idates client’s signature and forwards the message as is to the server (recording the forward
time). After the message arrives to the server, at time tS1 at the figure, the server signs an
(‘R’,tC1,m) reply as σR, and replies with this signed tuple to the notary. The notary, receiving
the reply at tN2 , forwards it to the client after validating server’s signature and acknowledges
the server by replacing server’s signature with its own σRA. The client receives the reply at
tC2 , validates server’s signature and terminates. We note that in the sunny-day scenario just
described, all signatures are valid and replies are received within expected bounded time, e.g.
|clkN (tN1)− clkC(tC1)| ≤ ∆comm, where clkp(t) denote the real-time clock reading t of party p
(which clock may drift, and be initially biased). When all signature are valid and all messages
received in time, as in the currently discussed scenario, and evidence of origin is produced by
the server, and an evidence of delivery is produced by the client. The server assembles the EOO
evidence, with σM and σRA as the proof that, respectively, the message did originate from the
client at specified tC1 time, and that he provided his part of the fair deal. The client assembles
an EOD evidence with σM and σR signature, as the proof that message is his own and was sent
at the specified time, and that this exact information was also acknowledged by the server.

No acknowledgment from server. In current scenario, depicted in Figure 2, the notary does
not receive a reply from the server within 2 ·∆comm, and issues an EOFS evidence for the client.
To do so the notary signs an (‘F’,tFC1

,m) tuple as σF , where tFC1
is the time the client had

sent the message, and send the tuple with the signature back to the client. The EOFS proof
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Fig. 1. SELP flow without faults. Client sends a valid message, and obtains an evidence of delivery, formed from the
‘M’ and ‘R’ messages signatures. In similar way the server obtains evidence of origin formed from the ‘M’ and ‘RA’
messages signatures.

constitutes then from both the client’s signature on the ‘M’ message and notary’s signature on
the ‘F’ message.

Fig. 2. SELP flow with server failure. Client sends a valid message, and obtains an evidence of failure and submission,
formed from the ‘M’ and ‘F’ messages signatures. The server does not obtain any evidence.

Server’s availability. Last scenario type is the ‘A’ (for ‘Availability’) flow. As previously men-
tioned, the server might want to show that it was available during certain time intervals, thus
effectively disputing notary’s honesty in the case an EOFS is presented by the client for the
interval server was available. We show the availability flow in Figure 3. The notary responds
to server’s availability request with a signed (‘A’,(t1, t2]) tuple. The times t1 and t2 represent
the interval which is approved by the notary as EOFS free (in the context of the evidence layer
agreement).

Though, in Figures 1–3 flows we did not demonstrate what happens when the notary fails,
the implementation code in Appendix handles this case. In fact, the notary may fail or exhibit
adversarial behavior. In particular the notary may fail to return an acknowledgment or to forward
a response. The client detects that it did not receive an ‘R’ or an ‘F’ message within reasonable
time. Similarly, the server detects that it did not get an ‘RA’ response message from the notary.
However, such faults of the notary could not be proven to an arbiter and the only recourse for the
parties is to raise a ‘FAIL’ alert for upper (application) layer, as soon as failure of the notary is
detected.
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Fig. 3. SELP flow for availability. Server obtains an evidence of availability, formed directly from the ‘A’ message.
Evidences of availability are not issued for time interval between previous such evidence and ‘F’ failure notification
message, to avoid claims of notary dishonesty. Boldface line part indicates the time interval for which no availability
evidence is issued by the notary.

2.3 Optimistic evidence layer protocol

In OELP the notary is involved only in the failure scenario, at which point the protocol falls back to
SELP. Consider a faultless scenario for sending a message m, described in Figure 4. The difference
from Figure 1 is that the client is the one signing the ‘RA’ messages. When the client does not
receive an ‘R’ response for an ‘M’ protocol message it had sent, the game is fair, as nor client
nor server could create a valid evidence, each missing a σM and σR signatures on the message m,
respectively. However, the server is in an inferior position, when not candid client does not send
an ‘RA’ message, as the client could create an EOO evidence for m, while the server could not yet
create an EOD for it. This situation is described in Figure 5, and server recovery is a straightforward
fallback to SELP by involving the notary and resending it the ‘R’ message. When the notary replies
with an ‘RA’ answer, the server could also create an EOD evidence.

Remark 3. We note that many fair exchange and non-repudiation protocols, e.g. [4, 23–25] are
concerned with obtaining the same proof (signature) for messages whether the notary was involved
or not (this is also known as transparent signatures). We do not view this mission as central to
our goal. In our opinion what is central in e-commerce is the validity of the evidence itself, e.g.
valid evidence of failure and submission for cheque deposit in a bank could be later submitted for
additional credit. In the arbitration process initiated by layers above evidence layer, the Validate
function would be used to conduct evidence validation for SELP or OELP.

Fig. 4. OELP flow without faults. Notary is not involved, and client and server parties obtain the relevant evidences,
evidence of delivery and evidence of origin respectively.
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Fig. 5. OELP flow with faults and fall-back to SELP by server, indicated by dotted line. While client possibly have
obtained an ‘R’ message and could complete an evidence of delivery, server did not obtain an ‘RA’ message and to
complete an evidence of origin contacts the notary. The notary sends both ‘RA’ and ‘R’ messages, to prevent fake
or premature server requests for ‘RA’.

2.4 Validation of evidences

Admittedly, a clear and automated process by which parties’ evidences are validated is crucial. In
Figure 12 we show an implementation for validation function Validate for SELP. The arguments to
the validation are the agreement, validated evidence, and in the case encryption is used a message
and hint (e.g. randomness used during the encryption process). In all evidence types the validation
is similar: verifying that the encrypted content of the evidence corresponds to the supplied message,
and validating signature of the signer of the corresponding evidence part (client’s signature for ‘M’
message, server’s signature for ‘R’ message, and notary’s signature for failures ‘F’ and response
acknowledgments ‘RA’ messages). For brevity, we omit implementation for OELP, which is similar.

3 Evidence layer specifications

In the current section we informally present the specifications we are to consider for the evidence
layer. We adopt a layered analysis [21], which requires that we present the specifications on the
interfaces of the analyzed layer, to later show that if lower layer specifications (defined in a similar
way) are upheld, then so are the specifications of the evidence layer. The full model details are
available at [21].

Though our model is formal, we have chosen first to informally exhibit the specifications, to
capture the essence of the requirements from an evidence layer. Therefore we begin with the more
interesting, by our own admission, correctness specifications, proceed with liveness specifications,
discuss two confidentiality (indistinguishability) modes and omit the less interesting initialization
specifications.

3.1 Correctness specifications

We now define adversarial win predicates on the evidence layer interfaces. The predicates would
define whether the evidence layer interfaces exhibited incorrect behavior with respect to protocol
execution.

In forging and evidence of origin for a message, we consider the following improper on the
interfaces of the application layer. The protocol execution consists of a honest client, honest notary
and adversarial server. The settings are described in Figure 7(a). We say that an EOO was forged



The Delivery and Evidences Layer 11

for a message m, if at the end of the protocol execution the adversary could output an evidence layer
agreement, a message and an EOO evidence for the message m, denoted EOO(m) in the figure (and
similar notation follows in subsequent figures), such that the EOO is successfully validated with
respect to the evidence layer agreement, however m was not sent by the client over the evidence
layer channel associated with the agreement.

We now provide some intuition how to formally describe this condition with a predicate over
an execution of a protocol with interfaces as defined in Section 2. First, recall that execution of
composite protocol is a view of events produced by both adversarial (corrupted) and non-adversarial
parties. The predicate would contain explicit reference to a Receive event output by the corrupted
server, which contains a valid EOO evidence e, i.e., evidence which passes Validate check. The
predicate would be upheld if for the former evidence, there was no Send event with the message m
described by the evidence, at the time described by evidence’s time-stamp.

Definition 1 (Forging evidence of origin, FakeEOO, informally). Predicate FakeEOO is true
for evidence layer protocol execution, if an adversary outputs an evidence layer agreement and a
valid EOO evidence, such that the message described by the evidence was not sent by the client, at
the time described by the evidence.

Notice that we have omitted from FakeEOO the obvious preconditions that the client and notary
parties, as specified by the agreement, have opened an evidence layer channel defined by the agree-
ment, in their (correct) respective roles. We will reintroduce these and other preconditions later, in
Section 4.

Similarly, successfully forging an evidence of delivery involves an corrupted client, and a server
such that an EOD evidence which passes Validate check exists, however, the server have never
obtained an EOO evidence for the message. We illustrate this situation in Figure 7(b).

Definition 2 (Forging evidence of delivery, FakeEOD, informally). Predicate FakeEOD is true
for evidence layer protocol execution, if an adversary outputs an evidence layer agreement and valid
EOD evidence, such that there was no receive event, for the message described by the evidence, at
the time described by the evidence, with a valid EOO evidence for the message, at the server.

Forging an EOFS involves a corrupted server. In such case, as described in Figure 7(c), the
server would output a valid EOFS evidence, while such was not output by a honest notary.

Definition 3 (Forging evidence of failure and submission FakeEOFS, informally). Predicate
FakeEOFS is true for evidence layer protocol execution, if an adversary outputs an a valid EOFS
evidence such that the notary did not output the same evidence.

Additional basic correctness specifications is a basic requirement not to provide evidence on the
evidence layer API which fail the Validate validation. Thus the layer should not provide unchecked
content to upper layer.

Definition 4 (Invalid receive and send result, InvalidReceive and InvalidSend, infor-
mally). Predicate InvalidReceive (InvalidSend) is true for evidence layer protocol execution,
if a party has supplied an evidence for application, as part of receive (send result) event, such that
the evidence fails the evidence layer validation function.

We omit the correctness specifications for evidences of EOA type, which are quite similar to
the correctness specifications of EOFS evidences. We also remark that we have always considered
a honest notary, to avoid forced optimistic implementation for evidence layer protocols.
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3.2 Liveness specifications

Liveness specification for the evidence layer are about getting evidences if different parties are
connected. Admittedly, if client and notary are connected (and both are non-corrupted) then the
client should always receive at least an EOFS evidence, signed by the notary, for sent messages.
We describe this requirement in Figure 13(a). Informally,

Definition 5 (Client gets evidence, LinkClientNotary, informally). Predicate
LinkClientNotary is true for evidence layer protocol execution, if client’s invocation of Send
interface event results in client’s SendResult event, which contains a valid evidence, within ∆el

(bound returned by InitResult) time.

When the server and notary is connected, the situation is not symmetrical, as not the client
and server roles. The (non-corrupted) server is ought to expect that a non-failing channel to a
(non-corrupted) notary guarantees that no EOFS type evidences would be affirmed by the latter.
We describe this requirement in Figure 13(b). Informally,

Definition 6 (No EOFS type evidences, LinkServerNotary, informally). Predicate
LinkServerNotary is true for evidence layer protocol execution, if no SendResult interface event
is produced by the notary, with valid EOFS evidence, during the time the channel between server
and notary did not fail.

However, when all the parties are connected, we could expect more than mere combination of
the previous requirements. When all parties are connected we could expect that sent message are
actually delivered, whether via notary, or alternatively, in an optimistic implementation, via the
direct link between the client and the server. Since sent messages are delivered, the server is ought
to get an EOO for a delivered message, and the client is ought to get an EOD for it. We picture
this requirement in Figure 13(c). Informally,

Definition 7 (Sent messages delivered, Link, informally). Predicate Link is true for evi-
dence layer protocol execution, if client’s Send interface event, results in two SendResult events,
both within ∆el time interval. A client’s SendResult interface event with a valid EOD evidence for
the message, and server’s SendResult event with a valid EOO evidence for the message.

3.3 Confidentiality specifications

Typical engineering practice of protocol design is to design protocols using lower layer protocols
as building blocks. In such modular design security and correctness properties of the new protocol
are typically derived from the fact that the auxiliary protocols (or their ideal counterparts) uphold
some specifications by themselves. Thus deriving protocol specifications for modular design is a
bottom-up process where protocols are shown to uphold some specifications as long as protocols
used as building blocks uphold some, possibly different, specifications.

In [21] we have provided a formalization for the above process including a composition theorem
for specifications. In particular, a test protocol is a particular case of a specification which tests
another protocol. In such settings, in addition to the traditional adversary, a test environment may
also include components (which implement some other, non-tested protocols) that are controlled
by adversary but uphold some specifications. So generally, when testing protocols, we identify four
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types of participants, viz., (1) processors of the tested protocol, (2) processors of the tester proto-
col, (3) adversary, and (4) adversarial processors, running non-tested protocol, which nevertheless
uphold certain specifications.

Next in this section, we provide the confidentiality (indistinguishability) specifications, as test
settings, for two cases,

Untrusted notary. When notary is not trusted, informally, it means that the only two honest
players, the evidence layer client and server, are to pass a confidentiality (indistinguishability)
game, when connected to an adversary which also acts as a message transport. We note that
practically, it means that to pass such confidentiality settings the evidence layer protocol would
have to encrypt the application messages.

Trusted notary. When notary is trusted, it is not corrupted by the adversary, and the notary
could view the content of the messages. Thus, confidentiality is ‘inherited’ from the transport
below evidence layer. Informally, evidence layer preserves confidentiality, if is placed on top of a
confidentiality preserving transport. We note that practically, the meaning of trusted notary, is
that the evidence layer protocol itself does not encrypt the content of the application messages.

A practical implementation of a communication protocol (e.g., IPsec) would typically employ
encrypt-then-authenticate paradigm, e.g. see [26] why only encryption is not enough. However, it
is widely known that extending encryption with additional cryptographic modules may result in
IND-CCA2 test failure, e.g. see [27]. Therefore we use the adaptive replayable chosen ciphertext
attack (rCCA) [28] weaker variant of the indistinguishability test for our protocol.

We now informally define the rCCA test configuration, CNOTRUST = 〈Π,W, Γ 〉, for ELP, evi-
dence layer protocol, when notary is untrusted (corrupted). Let P = {pclient

el , pserver
el , ptest

el } denote
a set of participating processors, where ptest

el mimics all the evidence layer interfaces and has an
additional test-result interface. Let W be their wiring as shown in Figure 15(a) and Figure 14.
Additionally, let Γ = {(ptest

el , T ELP:C,S
rCCA ), (pclient

el , ELP), (pserver
el , ELP)} be the implementation in the

configuration. In following definition we describe the test settings,

Definition 8 (T ELP:C,S
rCCA test protocol machine in CNOTRUST). A T ELP:C,S

rCCA IND-rCCA test
protocol for evidence layer protocol ELP is a state machine, running with adversary A as follows:

1. Initialize two evidence layer service instances pclient
el and pserver

el and pass the respective initial-
ization return values to A. Receive agreement Agr from A and open evidence layer channels for
pclient
el as a client and pserver

el as a server, respectively.
2. Repeat:

(a) If A outputs 〈Send,Agr,m〉 invoke pclient
el .Send(Agr,m).

(b) If A outputs 〈Choose,Agr,m0,m1〉 invoke pclient
el .Send(Agr,mb) where b ∈R {0, 1}.

(c) If pclient
el outputs SendResult(Agr,e,h) and (Validate(Agr, e, m0, h) = true or Validate(Agr,

e,m1, h) = true) output REPLAY to A, otherwise pass the output to A as is.
(d) If pserver

el outputs Receive(Agr,e,h) and (Validate(Agr, e, m0, h) = true or Validate(Agr,
e,m1, h) = true) output REPLAY to A, otherwise pass the output to A as is.

Until A outputs 〈Guess,b̂〉 where b̂ ∈ {0, 1}. Return the boolean value of b = b̂ on the test-result
interface.

We now informally define the rCCA test configuration, CTRUST = 〈Π,W, Γ 〉, for ELP, evidence
layer protocol, when notary is trusted (corrupted). Let P = {pclient

el , pserver
el , pnotary

el , ptest
el , pclient

comm, pserver
comm,
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pnotary
comm } denote a set of participating processors, where ptest

el mimics all the evidence layer interfaces
and has an additional test-result interface, and the communication (adversarial) processors im-
plement a basic communication interface, with ports for initialization and send and receive, as
discussed in [21].

Let W be their wiring as shown in Figure 15(b). Let Γ be defined similarly to above and aug-
mented with the communication processors implementing some adversarial communication protocol
CP. In following definition we describe the test settings,

Definition 9 (T ELP:C,S,N
rCCA test protocol machine for CTRUST). A T ELP:C,S,N

rCCA IND-rCCA test
protocol for evidence layer protocol ELP is a state machine, running with adversary A as follows:

1. Initialize three evidence layer service instances pclient
el , pserver

el and pnotary
el and pass the respec-

tive initialization return values to A. Receive agreement Agr from A and open evidence layer
channels for pclient

el as a client, pserver
el as a server, and pnotary

el as a notary, respectively.
2. Continue as in Definition 8-2, with the addition that if pnotary

el outputs SendResult(Agr,e,h) and
(Validate(Agr, e, m0, h) = true or Validate(Agr, e, m1, h) = true) output REPLAY to A,
otherwise pass the output to A as is.

Remark 4. We note that intentionally there is no explicit initialization of the communication ma-
chines in the above Definition 9, since the test machine is not connected to the communication
machines.

Using composition of specifications, we would later claim that if CP preserves pairwise confi-
dentiality - evidence layer confidentiality, as defined by the test, is also preserved.

4 Analysis

We analyze the two evidence layer protocols, SELP and OELP, we have defined in previous Sec-
tions 2.2,2.3, with respect to the generic specifications on the interfaces of evidence layer protocols,
defined in Section 2.1. In the following theorems we would use predicates for lower layer which we
have defined elsewhere [21]. The predicate CommGuaranteedDelivery defines guaranteed delivery
on the interfaces of the lower layer, i.e. if a message was sent it would be delivered (but not neces-
sarily vice versa) within bounds provided during initialization of the (lower) communication layer.
The predicate ClockSync describes synchronized clocks of the non-corrupted parties, with bounds
for drifts and initial offset. Finally we make two additional notes, first we note that for brevity we
omit discussion of initialization, second, for simplicity, we do not consider cases when the notary is
corrupted. For example the specification regarding the exchange of EOO and EOD evidence (Defi-
nition 7) could be amended to include the case where only the client and server parties are honest
and maintaining a direct communication link. However, this would force optimistic implementation
for every protocol which is to uphold our specifications.

We now proceed to state a number of theorems regarding our protocol(s).

Theorem 1 (Liveness). Let X ∈ X[ELP] be an execution of the evidence layer protocol ELP ∈
{SELP,OELP}. Then,

CommGuaranteedDelivery(X) ∧ ClockSync(X) ⇒
LinkClientNotary(X) ∧ LinkServerNotary(X) ∧ Link(X)
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Theorem 2 (Correctness). Let evidence layer protocol ELP ∈ {SELP,OELP} be implemented
with CCA-secure encryption scheme CE, CMA-secure signature scheme S and clock scheme which
securely upholds ClockSync. Then ELP securely prevents

1. FakeEOO, if client and notary are not corrupted.
2. FakeEOD, if server and notary are not corrupted.
3. FakeEOFS, if notary is not corrupted.
4. InvalidReceive (InvalidSend) for non-corrupted party.

Theorem 3 (Confidentiality with untrusted notary). Let evidence layer protocol ELP ∈
{SELP,OELP} be implemented with rCCA-secure encryption scheme CE and CMA-secure signature
scheme S. Then ELP securely upholds T ELP:C,S

rCCA .

The following theorem states that when the lower communication layer preserves confidentiality,
tested with T CP

rCCA in [21], the evidences layer also preserves confidentiality, as described by the
T ELP:C,S,N
rCCA configuration.

Theorem 4 (Confidentiality with trusted notary). Let evidence layer protocol ELP ∈ {SELP,
OELP} be implemented over a communication protocol CP, such that CP securely upholds T CP

rCCA.
Then ELP securely upholds T ELP:C,S,N

rCCA .

For shortness of this submission we omit the direct but somewhat tedious proofs of the theorems.
We note that the proofs for Theorems 1-3 are derived in a direct manner from examinations of the
protocol implementation code, provided in the Appendix, assuming lower layer services (commu-
nication and clock) uphold the predicates of clock synchrony and guaranteed (bounded) delivery.
However, unlike straightforward (single-layer) proofs, in multi-layer settings of Theorem 4 we addi-
tionally apply a secure composition theorem from [21] to show that when the lower communication
layer upholds the confidentiality test (when certain specifications are upheld by layer lower than
communication) the evidence layer also upholds its confidentiality test.

5 Conclusions

We presented specifications, and practical and provably secure implementations, for the ‘delivery
with evidences’ layer. Delivery with evidences is a basic service required in many e-commerce
scenarios, e.g. business-to-business transactions. Our protocol is the first to provide evidences with
timestamps and bounded termination under realistic adversarial assumptions. The protocol is used
as a foundation layer in an architecture for secure e-commerce, we have described in [2], and as
an underlying layer for secure orders layer [22]. Our specifications and analysis use the layered
specifications framework [21], to allow provable security for a system combining the delivery with
evidences protocols, with higher and lower layer protocols.
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A Implementation of protocol and evidence validation

We specify the protocol in the context of a single evidence layer agreement Agr and denote by
v(Agr) a variable v obtained or stored in the context of such agreement. We would omit Agr, and
use just v when the context is clear. We use currenttime() to denote the reading of the personal
clock variable of a party running the protocol, and in addition we would use a boldface notation that
implies that protocol events are invoked only if certain event strings are parsed and matched against
state variables previously specified. That is, on event(Agr,m,σm) would mean that a protocol input
event was parsed to a triple of values, and the first and last variable had been matched1.

1: on EL.Init(1k,addr,α,β,∆comm,Vcomm) :
2: statusClock = Clock.Init(α,β) // init clock service
3: statuscomm = Comm.Init(addr,∆comm,Vcomm) // init communication service

4: (sk,vk) = S.Gen(1k) // generate signing keys

5: (dk,ek) = CE.Gen(1k) // generate encryption keys
6: ∆el = (2 ·∆comm + 2 ·∆comm · (1 + α)) · (1 + α) // real-time bound on layer’s response time
7: if (statusClock ∧ statuscomm)
8: EL.InitResult(vk, ek, ∆el)
9: else
10: EL.InitResult( false)
11: on EL.OpenChannel(Agr,ρ) :
12: if (Agr.ρ = (addr,vk,ek) ∧ // check identity of self
13: ∧ (α,β,∆comm,Vcomm) = Agr.(α,β,∆comm,Vcomm)) // check initialized variables validity
14: EL.OpenChannelResult( true)
15: else
16: EL.OpenChannelResult( false)

Fig. 6. SELP initialization and channel establishment for evidence layer agreement Agr. Further protocol interactions
are aborted if initialization or the following channel establishment do not succeed.

(a) The forged evidence of origin (EOO) scenario.

(b) The forged evidence of delivery (EOD) scenario. (c) The forged evidence of failure and submission
(EOFS) scenario.

Fig. 7. Forgery of evidences specifications.

1 This notation would serve to reduce the number of explicit validations and verifications in the pseudo-code.
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1: on EL.Send(Agr,m’):
2: t = currenttime() // obtain local clock reading
3: m = CE.Enc(S.ek,m’,r) // encrypt message using randomness r
4: if (Vcomm(m)) // if message could be sent
5: σM = S.Sign(sk,(Agr,‘M’,t,m)) // sign message
6: Comm.Send(N.addr,(Agr,‘M’,t,c,σM )) // send to notary
7: Clock.SetTimer(m,2 ·∆comm + 2 ·∆comm · (1 + α))) // timer for notary’s response
8: t=t,m=m,r=r
9: else
10: EL.SendResult(Agr,‘FAIL’,⊥) // if message could not be sent
11: on Comm.Receive(N.addr, (Agr,‘R’,t,m,σR):
12: if (S.Verify(S.vk, (Agr,‘R’,t,m),σR) ∧ // check recipient’s signature
13: ∧ timer(m) is on) // check that message did not time-out
14: Comm.CancelTimer(m)
15: EL.SendResult(Agr,(‘EOD’,t,m,(σM ,σR)),(m’,r)) // supply evidence of delivery
16: on Comm.Recieve(N.addr, (Agr,‘F’,t,m,σF ):
17: if (S.Verify(N.vk, (Agr,‘F’,t,m),σF ) ∧ // check notary’s signature
18: ∧ timer(m) is on)
19: Comm.CancelTimer(m)
20: EL.SendResult(Agr,(‘EOFS’,t,m,(σM ,σF )),(m’,r)) // supply evidence of failure and submission
21: on Comm.WakeAlarm(m):
22: EL.SendResult(Agr,‘FAIL’,⊥)

Fig. 8. SELP client role, ρ = C, pseudo-code for handling single, unique, message associated with previously specified
evidence layer agreement Agr. The flow is aborted after first EL.SendResult invocation.

1: on Comm.Recieve(C.addr, (Agr,‘M’,t,m,σM )):
2: if (S.Verify(C.vk, (Agr,‘M’,t,m) ,σM ) ∧ // verify sender’s signature
3: ∧ t ∈ [currenttime()− 2 · β −∆comm · (1 + α), currenttime() + 2 · β] ∧ // verify sender’s time-stamp
4: ∧ Vcomm(m)) // verify message validity
5: Clock.SetTimer(m,2 ·∆comm) // timer for recipient’s response
6: Comm.Send(S.addr, (Agr,‘M’,t,m,σM )) // forward message
7: t=t,m=m
8: on Comm.Recieve(S.addr, (Agr,‘R’,t,m,σR)):
9: if (S.Verify(S.vk, (Agr,‘R’,t,m) ,σR) ∧ // verify recipient’s signature
10: ∧ timer(m) is on) // verify recipient’s response did not time-out
11: Clock.CancelTimer(m)
12: σRA = S.Sign(sk,(Agr,‘RA’,t,m)) // sign recipient’s acknowledgement
13: Comm.Send(S.addr, (Agr,‘RA’,t,m,σRA)) // send acknowledgement to recipient
14: Comm.Send(C.addr, (Agr,‘R’,t,m,σR)) // forward recipient’s response to sender
15: on Clock.WakeAlarm(m):
16: σF = S.Sign(sk,(Agr,‘F’,t,m)) // recipient timed-out, sign evidence of failure and submission
17: Comm.Send(C.addr, (Agr,‘F’,t,m,σF )) // send evidence to sender
18: lastf = currenttime() // remember last failure time lastf(Agr) for the current Agr agreement

Fig. 9. SELP notary role, ρ = N, pseudo-code for handling single, unique, message associated with previously specified
evidence layer agreement Agr.
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1: Server[ρ = S]: on EL.AvailabilityRequest(Agr):
2: Comm.Send(N.addr,(Agr,‘AR’)) // send availability request to notary
3: cky = currenttime() // time readings used as unique cookie
4: Clock.SetTimer(cky,2 ·∆comm) // set timer for the response
5: cky=cky
6: Notary[ρ = N]: on Comm.Recieve(S.addr, (Agr,‘AR’)):
7: IA = [lastf(Agr),currenttime()] // pledge availability interval from last failure
8: σA = S.Sign(sk,(Agr,IA))
9: Comm.Send(S.addr, (Agr,‘A’,IA,σA)) // send signed message to server
10: Server[ρ = S]: on Comm.Recieve(N.addr, (Agr,‘EOA’,[t1,t2],σEOA):
11: if (S.Verify(N.vk, (Agr,‘EOA’,[t1,t2]),σEOA) ∧ // verify notary’s signature
12: ∧ timer(cky) is on) // verify notary’s response did not time-out
13: EL.Receive(Agr,(‘EOA’,[t1,t2]),σEOA,⊥) // supply evidence of availability
14: Server[ρ = S]: on Comm.WakeAlarm(cky):
15: EL.Receive(Agr,‘FAIL’,⊥) // channel failure, as notary failed to respond

Fig. 10. SELP pseudo-code for availability, associated with previously specified evidence layer agreement Agr.

1: on Comm.Recieve(N.addr, (Agr,‘M’,t,m,σM ):
2: if (S.Verify(C.vk, (Agr,‘M’,t,m),σM ) ∧ // verify signature
3: ∧ t ∈ [currenttime()− 2 · (β + ∆comm · (1 + α))), currenttime() + 2 · β] ∧ // verify sender’s time-stamp
4: ∧ Vcomm(m)) // verify message validity
5: σR = S.Sign(sk,(Agr,‘R’,t,m)) // sign response
6: Comm.Send(N.addr, (Agr,‘R’,t,m,σR)) // send response to notary
7: Clock.SetTimer(m,2 ·∆comm)) // timer for notary’s response
8: t=t,m=m
9: on Comm.Recieve(N.addr, (Agr,‘RA’,t,m,σRA):
10: if (S.Verify(N.vk, (Agr,‘RA’,t,m),σRA)) // verify notary’s signature
11: (m’,r) = CE.Dec(dk,m) // decrypt message, and extract randomness used for encryption
12: Clock.CancelTimer(m)
13: EL.Receive(Agr,(‘EOO’,t,m,(σM ,σRA)),(m’,r)) // supply evidence of origin
14: on Comm.WakeAlarm(m):
15: EL.Receive(Agr,‘FAIL’,⊥) // channel failure, as notary failed to respond

Fig. 11. SELP server role, ρ = S, pseudo-code for handling single, unique, message associated with previously specified
evidence layer agreement Agr. The flow is aborted after first EL.Receive invocation.

Validate(Agr,e,m,h):
1: (type,t,c,(σ1,σ2)) = e
2: if ((CE .Enc(Agr.S.ek,m,h) 6= c) ∨ (¬Agr.Vcomm(c))) return false

3: case type=EOFS:
4: return S.Verify(Agr.N.vk, (Agr,‘F’,t,c),σ2) ∧ S.Verify(Agr.C.vk, (Agr,‘M’,t,c),σ1)
5: case type=EOO:
6: return S.Verify(Agr.N.vk, (Agr,‘RA’,t,c),σ2) ∧ S.Verify(Agr.C.vk, (Agr,‘M’,t,c),σ1)
7: case type=EOD:
8: return S.Verify(Agr.S.vk, (Agr,‘R’,t,c),σ2) ∧ S.Verify(Agr.C.vk, (Agr,‘M’,t,c),σ1)
9: case otherwise:
10: return false

Fig. 12. Implementation of the Validate efficient algorithm for EOO,EOFS and EOD evidences validation for SELP.
Validation of availability evidences (EOA) is similar and omitted for brevity.
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(a) Client always gets evidences if client and
notary are connected.

(b) Notary never declares server failure when
server and notary are connected.

(c) Sent messages are delivered and both client and server obtain evidences
when client, server and notary are connected.

Fig. 13. Liveness specifications.

Fig. 14. Inner configuration of the attestation client and server blocks for Figures 15(a) and 15(b).

(a) Confidentiality (indistinguishability)
test configuration with untrusted notary.

(b) Confidentiality (indistinguishability)
test configuration with trusted notary.

Fig. 15. Confidentiality test configurations.


