
Hidden Identity-Based Signatures

Aggelos Kiayias∗ Hong-Sheng Zhou∗

Abstract

This paper introduces Hidden Identity-based Signatures (Hidden-IBS), a type of digital signatures
that provide mediated signer-anonymity on top of Shamir’s Identity-based signatures. The motivation
of our new signature primitive is to resolve an important issue with the kind of anonymity offered by
“group signatures” where it is required that either the group membership list ispublicor that the opening
authority isdependenton the group manager for its operation. Contrary to this, Hidden-IBS do not
require the maintenance of a group membership list and they enable an opening authority that is totally
independent of the group manager. As we argue this makes Hidden-IBS much more attractive than
group signatures for a number of applications. In this paper, we provide a formal model of Hidden-IBS
as well as two efficient constructions that realize the new primitive. Our elliptic curve construction that
is based on the SDH/DLDH assumptions produces signatures that are merely half a Kbyte long and can
be implemented very efficiently.

To demonstrate the power of the new primitive, we apply it to solve a problem of current onion-
routing systems focusing on the Tor system in particular. Posting through Tor is currently blocked by
sites such as Wikipedia due to the real concern that anonymous channels can be used to vandalize online
content. By injecting a Hidden-IBS inside the header of an HTTP POST request and requiring the exit-
policy of Tor to forward only properly signed POST requests, we demonstrate how sites like Wikipedia
may allow anonymous posting while being ensured that the recovery of (say) the IP address of a vandal
would be still possible through a dispute resolution system. Using our new Hidden-IBS primitive in this
scenario allows to keep the listing of identities (e.g., IP addresses) of Tor users computationally hidden
while maintaining an independent Opening Authority which would not have been possible with previous
approaches.

Keywords. Anonymity and Privacy, Identity-based schemes, Digital Signatures, Onion-routing, Tor,
Wikipedia.

1 Introduction

Anonymity and privacy is an issue of increasing concern in the Internet and the offering of services such
as anonymous channels is an important aspect of the future Internet infrastructure if we want to retain
fundamental rights such as free speech. Still, anonymous systems are plagued by the potential of misuse
and any system that permits strong anonymity seems to be doomed to be of limited use in one sense or
another. To see this point consider the recent example of Tor [Tor], an onion-routing system, and how Tor
traffic is currently handled by Wikipedia [Wik]. While Wikipedia allows HTTP “GET requests” from Tor,
it does not allow editing (i.e., HTTP “POST requests”) since allowing such requests opens the possibility to
malicious users to vandalize the content of the web-site (actually the Wikipedia suggests to disable privacy
in Tor in order to publish to the web-site through the onion-router, see [Wik06]). For similar reasons, Tor’s
“exit policy” drops all SMTP packets (i.e., packets directed to port 25) to make sure that spammers do not
take advantage of the anonymity offered by Tor.

The above two examples exemplify the fact that anonymous communication systems such as Torlimit
their scopedue to the potential of misuse. And it is conceivable that the increase of malicious activity

∗University of Connecticut, Computer Science and Engineering, Storrs, CT, USA,{aggelos,hszhou }@cse.uconn.edu .

1

trafficking through anonymous communication networks (that includes the distribution of child pornography
for example) will force such networks to become even more restricted in scope something that in turn will
nullify the purpose they were built originally (to protect free speech and enable anonymous communication
for legal uses).

Misusing anonymity is by no means a new idea: for example the work of [vSN92] shows how anony-
mous e-cash can be used to commit a perfect crime. For this reason primitives such as fair off-line cash
[CMS96, FTY96] were proposed where it is possible for an authority to manage anonymity and reveal the
identities of the entities behind a certain transaction given that certain conditions are satisfied. It should be
stressed that the existence of such “anonymity mediation” systems are not restricting anonymity but rather
enhance itsince they make it possible to employ anonymous systems in cases where no such system may
be allowed to exist (due to regulation and potential of misuse etc.).

Group signatures, introduced in [CvH91], and further studied in a number of works [CP94, Cam97,
CS97, KP98, CM98, CM99, AT99, ACJT00, CL01, Son01, CL02a, AST02, BMW03, KY03, AdM03,
TX03, KTY04, BBS04, CG04, FY04, CL04, NSN04, BS04, BSZ05, KY05a, KY05b, FI05, BW06, ACHdM05]
constitute a tool that can be used to offer such mediated anonymity. Indeed, in a group signature it is possible
for users to join the group and obtain a credential from the group manager (GM); subsequently, users can
issue signatures that a verifier can identify as signatures originating from a group member but she cannot
tell which member is issuing the signature. At the same time an opening authority (OA) is capable, given an
“offending” signature, to recover a piece of information that leads to the identity of the signer.

However, as we notice in this work, if one tries to employ group signatures to mediate anonymity in an
anonymous credential system, a fundamental problem arises:

The Anonymity Catch-22 of Group Signatures. In Heller’s novel [Hel61] Catch-22 refers to a no-win
situation; a certain setting where no matter what you do you lose. Here we argue that a similar “Catch-
22” scenario occurs when one applies group signatures to mediate anonymity in an anonymous credential
system.

To see the problem consider the following sequence of objectives: our primary goal is to (i) maximize
anonymity and its scope; now given that perfect anonymity would be of limited scope, this implies that we
need to: (ii) employ an opening authority; now, once the OA is allowed, one would want this entity to be
managed properly and thus this brings forth: (iii) the OA should be separated from the GM (the registration
service) and preferably be a “threshold entity” where many share-holders should be allowed to participate
equally in the decision-making process of opening an offending signature.

Now recall the following: inall group signature schemes the OA is incapable of recovering the identity
of the signer without comparing the information recovered from the signature to aname directory(essen-
tially a group membership database that acts as PKI) that is maintained by the GM (this is even true in recent
“identity-based” group signature [WYZ05]). With respect to the membership directory thus, it should be
that either (iv-1) the group member directory is public knowledge, or (iv-2) the group member directory is
kept secret by the GM. But if (iv-1) is true, our objective (i) is violated: publishing the list of users that
take advantage of an anonymous service in most cases would be the most serious privacy violation possible!
(indeed publishing the list of users that use an anonymous service maybe enough to incriminate them if
someone wishes their persecution). On the other hand, if (iv-2) is true, objective (iii) is violated since the
OA cannot open an offending signature without the help of the GM. This means that the GM can effectively
produce adenial of serviceto any entity that requires the assistance of the OA and thus the OA cannot really
guarantee to a service provider that it can open an offending signature. This in turn leads to the OA being
less credible and may lead to service providers restricting the use of the anonymous system something that
in turn hurts anonymity. Thus no matter how one deploys group signatures, privacy is being reduced.

Resolving this “Anonymity Catch-22” issue of group signatures requires a new signature primitive that
we introduce in this work:

2

Our Contribution: Hidden Identity-Based Signatures. In this work we propose a new digital signature
scheme that offers anonymity that can be mediated and is based on the concept of Identity-based signatures
(IBS) [Sha84]. In a Hidden-IBS scheme, a signer obtains her signing key by communicating to an identity
manager (IM) and negotiating her identity with IM. Given the secret-key the signer can produce signatures
on a given message so that her identity is not revealed to the verifier. Still, the verifier is ensured of the fact
that the identity negotiation has taken place between the signer and the IM and moreover that the signature
contains the name of the signer in enciphered formand such name can be recovered by an opening authority.

Hidden-IBS resolve the Anonymity Catch-22 of group signatures since they allow the OA to recover the
identity of the signer (i) without having to consult with the IM (which substitutes the GM in the Hidden-IBS
setting) and (ii) without requiring the IM to publish a listing of users of the anonymous signatures. See
Figure 1.

GM

User OA

member

list

signature

cert_id

id

(a)

public

 GM

User OA

member

list

signature

cert_id

id

(b)

secret

IM

User OA
signature

cert_id

id

(c)

no
member
list

Figure 1: Comparison of the opening functionality between group signatures and Hidden-IBS: (a) group
signature with public group membership list, (b) group signature with secret group-membership list, (c)
Hidden-IBS.

We note that in a Hidden-IBS the identity of the signer may be equal to any piece of information that is
considered acceptable under the policy of the IM, e.g., it can be the signer’s e-mail address, the signer’s IP
address and so forth. Note that the IM and the signer may execute a multi-round protocol to establish the
validity of the signer’s identity (e.g., the IM may send a verification e-mail to the signer’s e-mail account
etc.).

In this work we present a formal model of Hidden-IBS, that captures two intuitive properties, misidentifi-
cation-forgery and anonymity and also consider how the property of exculpability can also be achieved. We
then present two constructions of Hidden-IBS, one over elliptic curve groups that is based on the Strong
Diffie-Hellman assumption and the Decisional Linear Diffie-Hellman assumption that is merely 533 bytes
long and one based on the Strong-RSA assumption and Decisional Composite Residuosity assumption that
also achieves security against a malicious IM (called exculpability in the setting of group signatures).

Application to Onion Routing. We demonstrate how Hidden-IBS can be applied to onion-routing [GRS96]
and in particular to the Tor system [Tor, DMS04] to allow mediation of anonymity and thus increase rather
than limit the scope of such anonymous communication systems.

In Tor, each user transmits messages through a local Onion Proxy (OP) that allows a local host to build
circuits hopping along a sequence of onion-routers (OR). Tor has an exit policy: packets that match certain
conditions may be dropped (e.g., Tor drops packets directed to port 25 (SMTP) to prevent spammers from
using Tor).

Our Hidden-IBS enhanced version of Tor is as follows: there will be certain types of traffic that the exit-
policy of Tor will require to be signed with a Hidden-IBS. These may include HTTP POST requests directed
to Wikipedia sites and traffic directed to the SMTP port (we stress that most of the traffic will be excluded

3

from the requirement of being signed and thus the performance overhead of our extension would be low).
Tor users that wish to use Tor for “sensitive traffic” will be given a list of IM’s and explain the conditions of
usage as well as they will be informed of the identity of the OA (which ideally will be a threshold entity).
The IM’s that will employed by Tor will require very little information from the users: in particular the
identity of a signer can be simplya verified e-mail addressor the signer’sIP-address(of course the identity
information required by the IM can be calibrated accordingly). The OP of a user will detect that the user
wishes to transmit something that according to the exit-policy must be signed and will redirect the user to
obtain a Hidden-IBS secret-key that will allow the signing of the message. The Hidden-IBS will be injected
into the packet itself (e.g., in the case of an HTTP POST we will use a special header field to contain the
Hidden-IBS of the HTTP packet) and the signature will be verified by the Tor exit point. The ciphertext
along with the necessary information to recover the identity of the user (if ever needed) will be posted in
a public “Disputes&Grievances” database. The database will be designed in such a way so that it retains
no publicly readable information about the identities of Tor users or the traffic they produce (only hashed
packets and ciphertexts will be stored in the database). Still, the database will make it possible for any web-
site that has received offending Tor traffic to submit a complaint to the OA that, if accepted, it will recover
either the IP address or the e-mail of the culprit. Subsequently the identity may be blacklisted by the IM or
receive negative points in a reputation system. Given that a Hidden-IBS signing credential would expire in
short time periods the offender will have to face the outcome of his adverse behavior (lower reputation score
with the IM, or being blacklisted etc.).

Organization. In Section 2we introduce our model for the new primitive. Our basic Hidden-IBS con-
struction inSection 3is based on elliptic curve groups and pairing, and employs the digital signature of
Boneh-Boyen (BB) signature which is based on the Strong Diffie-Hellman (SDH) assumption [BB04], and
the Linear Encryption based on the Decision Linear Diffie-Hellman (DLDH) assumption [BBS04]. Given
this construction we explain in more detail the way that our Hidden-IBS enhanced anonymous routing sys-
tem is designed inSection 4. Wedescribe the problem of exculpability in the context of Hidden-IBS and
provide an extended model to capture the setting of corrupted IM’s inSection 5. In our second construc-
tion presented inSection 6, we use Camenisch-Lysyanskaya (CL) signature which is based on the Strong
RSA assumption [CL02b]. Also we use Paillier encryption based on the Decisional Composite Residuosity
(DCR) assumption [Pai99]. We include the description of the cryptographic primitives we use inSection A.1
in the appendix.

2 Hidden-IBS: Modelling
2.1 Syntax

In this section, we give the definition of Hidden-IBS. First, we start with the syntax of the scheme. The
parties are involved in the scheme include the identity managerIM, the open authorityOA, the usersU, and
the verifiersV,

Definition 2.1. A hidden identity-based signature(Hidden-IBS) scheme is a digital signature scheme that
consists of six polynomial-time algorithms〈Setup, Reg, Sign, RegCheck, Verify, Open〉. The first three
algorithms are probabilistic but the last three are not necessarily.

Setup: The Setup algorithm includesSetupIM andSetupOA. On input a security parameter, first the
global system parameter is generated. Then on input a security parameter and the system parameter,
the probabilistic algorithmSetupIM outputs the group verification keypkIM and the signing keyskIM

for the identity manager, the probabilistic algorithmSetupOA outputs the public keypkOA and the
secret keyskOA for the open authority. TheSetup algorithm may includeSetupUser; on the input a
security parameter and the system parameter, outputsid for both the identity manager and the user.

4

Reg: A probabilistic algorithm that given an identity manager’s verification key, an identity manager’s
signing key, a user’s identityid outputs a membership certificatecertid for the identityid. We write
Reg(pkIM; skIM, id) to denote the registration algorithm.

RegCheck: An algorithm for user’s checking the validity of the certificate for her identity with respect to
an identity manager’s public key. We denote the application of the registration checking algorithm as
RegCheck(pkIM; id, certid) ∈ {0, 1}.

Sign: A probabilistic algorithm that given an identity manager’s public key, an open authority’s public
key, a user’s identity, a membership certificate on the user’s identity, and a messagem, outputs a
signature for the messagem. We writeSign(pkIM, pkOA, id; certid,m) to denote the application of
the signing algorithm.

Verify: An algorithm for establishing the validity of an alleged Hidden-IBS signature of a message with
respect to an identity manager’s verification key and an open authority’s public key. Ifσ is a signature
on a messagem, then we haveVerify(pkIM, pkOA;m,σ) ∈ {0, 1}.

Open: An algorithm that given a message, a valid Hidden-IBS signature on it, an identity manager’s verifi-
cation key, an open authority’s public key, and an open authority secret key, determines theid directly.
In particularid← Open(pkIM, pkOA; skOA,m, σ).

2.2 Correctness and Security

In this section we provide the definitions of correctness and security of a Hidden-IBS scheme. We begin
with correctness and then define misidentification-forgery and anonymity.

Definition 2.2 (Correctness).The correctness of the Hidden-IBS include the registration correctness, the
signing correctness, and the opening correctness.
Registration Correctnessmeans that the IM issues only one valid membership certificate for each different
id, which is defined as below,

Pr




(pkIM, skIM) ← SetupIM(1λ);
(pkOA, skOA) ← SetupOA(1λ);
certid ← Reg(pkIM, pkOA; skIM, id);

: RegCheck(pkIM, pkOA; id, certid) = 1


 = 1

Signing Correctnessensures that the correctness of the underlying signing and verification algorithms for
any valid signing key.

Pr




(pkIM, skIM) ← SetupIM(1λ);
(pkOA, skOA) ← SetupOA(1λ);
certid ← Reg(pkIM, pkOA; skIM, id);
RegCheck(pkIM, pkOA; id, certid) = 1;
σ ← Sign(pkIM, pkOA, id; certid,m)

: Verify(pkIM, pkOA;m,σ) = 1




= 1

Opening Correctnessensures that theOpen algorithm can correctly identifies all signers from a valid signa-
ture, which is defined as below,

5

Pr




(pkIM, skIM) ← SetupIM(1λ);
(pkOA, skOA) ← SetupOA(1λ);
certid ← Reg(pkIM, pkOA; skIM, id);
RegCheck(pkIM, pkOA; id, certid) = 1;
σ ← Sign(pkIM, pkOA, id; certid,m);
Verify(pkIM, pkOA;m,σ) = 1

: Open(pkIM, pkOA; skOA,m, σ) = id




= 1

Next, we proceed to the definition of security which is comprised of two different properties: misidentifi-
cation-forgery where the attacker either manages to be not properly identified or forges a signature and
anonymity where the attacker extracts some information about the signer’s identity.

In a misidentification-forgery attack, the adversary is allowed to corrupt the registered honest users. Also
the adversary is capable of corrupting the OA. The adversary is allowed to adaptively ask signing queries
from the honest users. The adversary wins the game if it either produces a message-signature pair that foils
the opening procedure (i.e. misidentification), or forges a message-signature which can be opened to an
identity but the message has never been queried in the history of the user with the identity (i.e. forgery).

Definition 2.3 (Misidentification-Forgery). We say a Hidden-IBS scheme is against misidentification-
forgery attacks if for any PPT adversaryA, Advmisid

A (λ) is negligible inλ, whereAdvmisid
A (λ) =

Pr[Expmisid
A (λ) = 1], where the experiment defined as inFigure 2.

RegOracle(id) SignOracle(id, certid,m)
If id ∈ CU ∪HU then return⊥; If id 6∈ HU then return⊥;
certid ← Reg(pkIM, pkOA; skIM, id); σ ← Sign(pkIM, pkOA, id; certid,m);
MSGid ← ∅;HU ← HU ∪ {id}; MSGid ← MSGid ∪ {m};
Return 1; Returnσ;

CorruptUOracle(id) CorruptOAOracle()
If id 6∈ HU then return⊥; ReturnskOA;
CU ← CU ∪ {id};HU ← HU\{id}
Returncertid;

ExperimentExpmisid
A (λ)

(pkIM, skIM) ← SetupIM(1λ); (pkOA, skOA) ← SetupOA(1λ); HU ← ∅;CU ← ∅
(m,σ) ← ARegOracle(),SignOracle(),CorruptUOracle(),CorruptOAOracle()(1λ, pkIM, pkOA)
If Verify(pkIM, pkOA;m,σ) = 1 ∧ Open(pkIM, pkOA; skOA,m, σ) = ⊥ then return 1;
If Verify(pkIM, pkOA;m,σ) = 1 ∧ Open(pkIM, pkOA; skOA,m, σ) = id ∧ m 6∈ MSGid ∧ id 6∈ CU

then return 1;
Return 0;

Figure 2: Experiment of misidentification-forgery

Next we define the anonymity notions. The CCA2-anonymity attack can be modelled as a CCA2 attack
against the identity encryption of the Hidden-IBS, while the CPA-anonymity attack be modelled as a CPA
attack.

Definition 2.4 (CCA2-Anonymity). We say a Hidden-IBS scheme is against anonymity attacks if for any
PPT adversaryA, Advcca2−anon

A (λ) is negligible inλ, whereAdvcca2−anon
A (λ) = Pr[Expcca2−anon,1

A (λ) =
1]− Pr[Expcca2−anon,0

A (λ) = 1], where the experiment defined as inFigure 3.

Definition 2.5 (CPA-Anonymity). We say a Hidden-IBS scheme is against CPA-anonymity attacks if for
any PPT adversaryA, Advcpa−anon

A (λ) is negligible inλ, whereAdvcpa−anon
A (λ) = Pr[Expcpa−anon,1

A (λ) =
1]− Pr[Expcpa−anon,0

A (λ) = 1], where the experiment defined as inFigure 4.

6

OpenOracle(m,σ) CorruptIMOracle()
If Verify(pkIM, pkOA;m,σ) = 1 ReturnskIM;

then returnOpen(pkIM, pkOA; skOA,m, σ)
Return⊥;

ExperimentExpcca2−anon,b
A (λ)

(pkIM, skIM) ← SetupIM(1λ);(pkOA, skOA) ← SetupOA(1λ);
(id0, id1,m) ← ACorruptIMOracle(),OpenOracle()(1λ, pkIM, pkOA);
certid0 ← Reg(pkIM, pkOA; skIM, id0); certid1 ← Reg(pkIM, pkOA; skIM, id1);
σ ← Sign(pkIM, pkOA, idb; certidb

,m);
b∗ ← ACorruptIMOracle(),OpenOracle¬σ()(1λ, pkIM, pkOA);
Returnb∗;

Figure 3: Experiment of CCA2-anonymity. In the experiment above,OpenOracle¬σ() operates as the
OpenOracle() with the restriction that it will return⊥ if the adversary submitσ as the signature to be
opened.

ExperimentExpcpa−anon,b
A (λ)

(pkIM, skIM) ← SetupIM(1λ);(pkOA, skOA) ← SetupOA(1λ);
(id0, id1,m) ← ACorruptIMOracle()

(
1λ, pkIM, pkOA

)
;

certid0 ← Reg(pkIM, pkOA; skIM, id0); certid1 ← Reg(pkIM, pkOA; skIM, id1);
σ ← Sign(pkIM, pkOA, idb; certidb

,m);
b∗ ← ACorruptIMOracle()

(
1λ, pkIM, pkOA

)
;

Returnb∗;

Figure 4: Experiment of CPA-anonymity. In the experiment above, theCorruptIMOracle() used is same as
that in the CCA2 version, and theOpenOracle() is not allowed.

Remark 2.6. Our modeling of the Hidden-IBS primitive is extending the basic modeling of identity-based
signatures. As it was described in [BNN04] there is a relation between Identity-based signatures and
Identity-based identification (IBI) schemes. In a similar way we can formalize Hidden-IBI schemes and
in fact our two constructions would yield two Hidden-IBI schemes (that in fact would be provably secure
without random oracles). The relation of Hidden-IBS and Hidden-IBI is parallel to the relation between
group signatures and identity escrow [KP98].

3 Hidden-IBS: Construction

In this section we describe our first Hidden-IBS construction. It is geared towards producing short signatures
and is suitable for relatively short identity strings (e.g., IP addresses of 32 bits). We first describe the scheme
and then we prove that the scheme achieves the misidentification-forgery property and the CPA-anonymity
property.

3.1 The Scheme

In our Hidden-IBS scheme, we let the IM use the Boneh-Boyen [BB04] signature to issue a certificate to
each user identity. Once a user obtains the certificate from the IM, she can generate a Hidden-IBS signature
for a message: the user uses Linear encryption [BBS04] to “embed” her identity which can be opened by
the OA; the user forms the signature based on a proof of knowledge that ensures her identity, her certificate,
and the relations between them are properly formed. We present the details below:

Setup. This procedure first generates the system parameters including the bilinear group parameter〈p, g, ĝ,
G, Ĝ, ψ,GT , e〉, random element̂h

r← Ĝ\{1} andh = ψ(ĥ), and a hash functionH : {0, 1}∗ → Zp which

7

will be treated as a random oracle in the security proof. Then the algorithmSetupIM generates key pair
(pkIM, skIM): selectsx, y

r← Z∗p and computêX = ĝx andŶ = ĝy; setspkIM = 〈X̂, Ŷ 〉, andskIM = 〈x, y〉.
The algorithmSetupOA generates key pair(pkOA, skOA): selectsŵ

r← Ĝ\{1}, selectsδ, ξ
r← Z∗p and sets

û, v̂ ∈ Ĝ such that̂uζ = v̂η = ŵ; setsw = ψ(ŵ), u = ψ(û), v = ψ(v̂); note thatuζ = vη = w holds;
setspkOA = 〈u, v, w, û, v̂, ŵ〉 andskOA = 〈ζ, η〉. Finally sets the public parameters for the Hidden-IBS
aspub = 〈p, g, ĝ, h, ĥ,G, Ĝ, ψ,GT , e; X̂, Ŷ ;u, v, w, û, v̂, ŵ;H〉. We still need to prescribe the form of the
user identities: each identity is a short string with length`. For example, it can be an IP address with` = 32
or a userid in a reputation system (e.g., using` = 50 we can allow 10 character long userids with 5 bits per
character).

Reg. In the registration algorithm, the user sends her identityid to the IM. The IM verifies thatid is
acceptable (e.g., not being used before or not blacklisted etc.). We note that theid can also be a product
of a negotiation between the IM and the users. Then the IM generates a BB signature〈s, r〉 for id, where

s ← g
1

x+id+yr , r
r← Zp, and sends〈s, r〉 to the user by a secure communication channel.

RegCheck. Once receiving the signature〈s, r〉 from the IM, the user verifiese(s, X̂ĝidŶ r) = e(g, ĝ). The
user sets her membership certificate tocertid = 〈s, r〉.
Sign. With a membership certificatecertid = 〈s, r〉 in hand, a user can compute a Hidden-IBS signature
σ for messagem. We first develop a proof of knowledge inFigure 5, where the user proves her knowledge
of id andcertid, and proves thatcertid is a BB signature ofid from the IM. Then we transform the proof
of knowledge into a signing algorithm by using the Fiat-Shamir heuristic.

Next we give a detailed description: (i) the user uses the Linear Encryption to encryptgid into 〈U, V, Ŵ 〉
(Note that in the open algorithm below, the OA first computesW = ψ(Ŵ) and opens the ciphertext
〈U, V,W 〉 into gid, then getsid by “brute force”; here the length ofid is very short, e.g. a 32-bits IP
address), whereU = uk, V = vl, Ŵ = ŵk+lĝid, k, l

r← Zp; the user commitss into S = gr1s, commits
r into R̂ = ĝr2 ĥr1 Ŷ r, wherer1, r2

r← Zp. (ii) the user deploys a three moveΣ-protocol to prove that
she knows the underlying plaintextgid of 〈U, V, Ŵ 〉, and the underlying plaintextss andr of ciphertextsS
andR̂ respectively are a signature forid based on the BB verification key: computeδ1 = r1k, δ2 = r1l,
δ3 = r1r2, δ4 = r2

1, δ5 = r1r; randomly selectθid, θr, θr1 , θr2 , θk, θl
r← Zp, θδ1 , θδ2 , θδ3 , θδ4 , θδ5

r← Zp;
and computeB1 = u−θk , B2 = v−θl , B3 = ŵ−(θk+θl)ĝ−θid , B4 = ĝ−θr2 ĥ−θr1 Ŷ −θr , B5 = U−θr1uθδ1 ,
B6 = V −θr1vθδ2 , B7 = R̂−θr1 ĝθδ3 ĥθδ4 Ŷ θδ5 , B8 = e(g, X̂Ŵ R̂)θr1e(S, ŵ)θk+θle(g, ŵ)−(θδ1

+θδ2
)e(S, ĝ)θr2

e(g, ĝ)−θδ3e(S, ĥ)θr1e(g, ĥ)−θδ4 ; computec = H(m||S||R̂||U ||V ||Ŵ ||B1||...||B8); then computeξid =
θid + c · id, ξr = θr + c · r, ξr1 = θr1 + c · r1, ξr2 = θr2 + c · r2, ξk = θk + c · k, ξl = θl + c · l,
ξδ1 = θδ1 + c · δ1, ξδ2 = θδ2 + c · δ2, ξδ3 = θδ3 + c · δ3, ξδ4 = θδ4 + c · δ4, ξδ5 = θδ5 + c · δ5. Therefore, the
generated signature for messagem is the tuple:σ = 〈S, R̂, U, V, Ŵ ; c; ξid, ξr, ξr1 , ξr2 , ξk, ξl, ξδ1 , ..., ξδ5〉.
Verify. The verifier can verify a message-signature pair by checking the equation below:

c =? H(
m||S||R̂||U ||V ||Ŵ

||U cu−ξk ||V cv−ξl ||Ŵ cŵ−(ξk+ξl)ĝ−ξid ||R̂cĝ−ξr2 ĥ−ξr1 Ŷ −ξr ||U−ξr1 uξδ1 ||V −ξr1 vξδ2 ||R̂−ξr1 ĝξδ3 ĥξδ4 Ŷ ξδ5

||e(g, X̂Ŵ R̂)ξr1 e(S, ŵ)(ξk+ξl)e(g, ŵ)−(ξδ1+ξδ2)e(S, ĝ)ξr2 e(g, ĝ)−ξδ3 e(S, ĥ)ξr1 e(g, ĥ)−ξδ4 (e(g, ĝ)/e(S, X̂Ŵ R̂))c
)

Open. Given a message-signature pair as described above, the OA first verifies the message-signature pair.
Next the OA uses her secret keyskOA = 〈ζ, η〉 to open ciphertext〈U, V,W 〉 into gid whereW = ψ(Ŵ);
considering that the identity space is small, the OA recoversid from gid (see below in performance for
more details).

8

pub = 〈p, g, ĝ,G, Ĝ, ψ,GT , e;h, ĥ; X̂, Ŷ ;u, v, w, û, v̂, ŵ〉

User Verifier
id, s, r

r1, r2, k, l
r← Zp,

S = gr1s, R̂ = ĝr2 ĥr1 Ŷ r,
δ1 = r1k, δ2 = r1l,
δ3 = r1r2, δ4 = r2

1, δ5 = r1r

U = uk, V = vl, Ŵ = ŵk+lĝid

θid, θr, θr1 , θr2 , θk, θl
r← Zp,

θδ1 , θδ2 , θδ3 , θδ4 , θδ5

r← Zp

B1 = u−θk , B2 = v−θl ,
B3 = ŵ−(θk+θl)ĝ−θid ,
B4 = ĝ−θr2 ĥ−θr1 Ŷ −θr ,
B5 = U−θr1 uθδ1 , B6 = V −θr1 vθδ2

B7 = R̂−θr1 ĝθδ3 ĥθδ4 Ŷ θδ5

B8 = e(g, X̂Ŵ R̂)θr1 e(S, ŵ)θk+θl ·
e(g, ŵ)−(θδ1+θδ2)e(S, ĝ)θr2 ·
e(g, ĝ)−θδ3 e(S, ĥ)θr1 e(g, ĥ)−θδ4

S, bR,U,V,cW ;B1,...,B8−−−−−−−−−−−−−−−−−−→
c

r← Zp
c←−−−−−−−−−−−−−−−−−−

ξid = θid + c · id, ξr = θr + c · r,
ξr1 = θr1 + c · r1, ξr2 = θr2 + c · r2

ξk = θk + c · k, ξl = θl + c · l
ξδ1 = θδ1 + c · δ1, ξδ2 = θδ2 + c · δ2

ξδ3 = θδ3 + c · δ3, ξδ4 = θδ4 + c · δ4

ξδ5 = θδ5 + c · δ5,
ξid,ξr,ξr1 ,ξr2 ,ξk,ξl,ξδ1 ,...,ξδ5−−−−−−−−−−−−−−−−−−→

uξkB1 =? U c, vξlB2 =? V c

ŵξk+ξl ĝξidB3 =? Ŵ c

ĝξr2 ĥξr1 Ŷ ξrB4 =? R̂c

Uξr1 u−ξδ1 B5 =? 1, V ξr1 v−ξδ2 B6 =? 1
R̂ξr1 ĝ−ξδ3 ĥ−ξδ4 Ŷ −ξδ5 B7 =? 1
e(g, X̂Ŵ R̂)−ξr1 e(S, ŵ)−(ξk+ξl)·

e(g, ŵ)(ξδ1+ξδ2)e(S, ĝ)−ξr2 ·
e(g, ĝ)ξδ3 e(S, ĥ)−ξr1 e(g, ĥ)ξδ4 B8

=? (e(g, ĝ)/e(S, X̂Ŵ R̂))c

Figure 5: The hidden identity-based identification protocol.

9

3.2 Efficiency of the Scheme

Signature Length. A generated Hidden-IBS signature includes3 elements ofG, 2 elements of̂G, and12
elements ofZp. Using the families of curves described in [BLS04], we takep to be a170-bit prime and
use a groupG where each element is171 bits and a group̂G where each element6× 171bits, and the total
signature length is4605 bits or576 bytes. The security is approximately the same as a standard1024-bit
RSA signature (that offers no anonymity whatsoever) and has length128 bytes.

Performance. Consider that both signer and verifier can precompute the pairingse(g, ŵ), e(g, ĝ), and
e(g, ĥ); the signers can computee(S, ŵθk+θl ĝθr2 ĥθr1) instead ofe(S, ŵ)θk+θle(S, ĝ)θr2e(S, ĥ)θr1 ; and
the verifier can computee(S, ŵξk+ξl ĝξr2 ĥξr1) instead ofe(S, ŵ)ξk+ξle(S, ĝ)ξr2e(S, ĥ)ξr1 , and compute
e(g−ξr1Sc, X̂Ŵ R̂) instead ofe(g, X̂Ŵ R̂)−ξr1e(S, X̂Ŵ R̂)c. Thus generating a Hidden-IBS signature re-
quires 14 multi-exponentiations (or exponentiation) and 2 pairing computations; and verifying a group sig-
nature requires 10 multi-exponentiations (or exponentiations) and 2 pairing computations. In opening, we
first computeW = ψ(Ŵ), which takes roughly the same time as an exponentiation in groupG; then we de-
crypt ciphertext〈U, V,W 〉 into gid = WU−ζV −η, we need 1 multi-exponentiation. Then using for example
Pollard’s rho method [Pol75] the opening authority extractsid from gid in Õ(

√
2`) steps.

We note that we designed our scheme with a superpolynomial-time in the identity length` opening
algorithm for the sake of reducing the signature size. If a more efficient opening is desired and the signature
length is of less importance, one can use our scheme inSection 6that has a polynomial iǹ opening
operation.

3.3 Correctness and Security

Theorem 3.1 (Correctness).The Hidden-IBS scheme ofSection 3.1is correct.

Theorem 3.2 (Misidentification-Forgery). In the random oracle model, the Hidden-IBS scheme ofSec-
tion 3.1satisfies the misidentification-forgery property if the SDH assumption holds.

Theorem 3.3 (CPA-Anonymity). In the random oracle model, the Hidden-IBS scheme ofSection 3.1is
CPA-Anonymous if the DLDH assumption holds.

Based onTheorem 3.1, Theorem 3.2andTheorem 3.3, we have

Theorem 3.4. The Hidden-IBS scheme ofSection 3.1is correct and secure satisfying misidentification-
forgery and CPA-anonymity in the random oracle model under the SDH and the DLDH assumptions.

4 Reducing Abuse in Anonymous Routing Systems
As mentioned in the introduction some internet services block certain types of traffic coming through anony-
mous routing systems in order to maintain the quality of their service (e.g., in the case of Wikipedia, POST
requests coming from Tor are blocked to prevent vandalism). This practice stems from the fact that anony-
mous routing systems such as Tor have no built-in mechanisms to handle abusive users. In this section,
we show how using our Hidden-IBS we can strengthen the Tor network with the capability to defend itself
against such abusive users.

Our approach, outlined inFigure 6, adds three entities to the Tor network deployment: the Identity
Manager (IM) of a Hidden-IBS, a Disputes&Grievances database and the Opening Authority (OA) of the
Hidden-IBS. Our basic idea is to show how a service web-site that receives Tor traffic can complain about
malicious requests (e.g., vandalism in the case of Wikipedia) and recover some information about the of-
fending users. In this way the anonymous routing system offers a mechanism to prevent abusive users from
taking advantage of anonymity and thus its services can be granted higher functionality by service providers.
Our enhancement to Tor will be totally transparent to service web-sites that receive Tor traffic.

10

OR1

User Proxy

Wikipedia OA

Hash(POST) || Hidden-IBS

Hash(POST) || Hidden-IBS

OR5

OR4

OR6OR2
OR9

cert_id

Blacklist

IM

If open request accepted, then

send offender’s IP address to IM

Offending

POST

Disputes&Grievances

Database

Hidden IBS

Hash(POST)
Hidden-IBS

POST

OR3

OR8
OR7

Hash(POST) || Hidden-IBS

Figure 6: Enhancing the Tor network with a mechanism to defend against anonymity abuse using the
Hidden-IBS primitive. Note that we use IP addresses as user identities in the figure but other types of
identities can be used, e.g., userids of a reputation system.

More specifically now, the Hidden-IBS enhanced Tor works like this: certain packets generated by a
Tor user are permitted through the Tor exit point only if they carry a Hidden-IBS. The Tor user’s onion
proxy (OP) catches this and assists the user to get the Hidden-IBS signing capability. Then any packet that
needs to be signed is hashed and then signed. Tor exit points verify the Hidden-IBS signature on the hashed
reconstructed packet and forward the packet (with the signature removed) to the web-site that the packet was
directed while they write the hashed packet together with the signature to a Disputes&Grievances database.
If any vandalism is caught by a service provider, the service-provider using the packet that was sent through
Tor by the abusive user can retrieve the corresponding Hidden-IBS from the database and forward it to
the OA along with a complaint report. Based on the properties of the Hidden-IBS scheme, the OA can
open the signature and recover the identity of the abusive user. Subsequently the IM can be notified of the
abusive user’s identity and the user can be punished by being black-listed (or receiving a negative point in a
reputation system). Below we describe in more details how we propose to deploy our Hidden-IBS enhanced
Tor system for handling HTTP POST requests to Wikipedia. Note that all other traffic through Tor would
be unaffected (i.e., it would not require a signature).

When the user first installs a Tor OP she can obtain a certificatecert id for her identityid from the IM.
The id that the user deposits to the IM can be the user’s IP address or a long-lived userid in a reputation
system. Subsequently whenever the user wants to send an HTTP POST the OP builds a route to a Tor exit
point (in the figure, this route is OR1,OR7,OR5, and OR5 is the Tor exit point). When the user generates a
POST request for a Wikipedia web-site the following things happen: (i) the user’s browser passes the POST
request, saypost1 to the OP; (ii) the OP sanitizespost1 into post2 so that the header ofpost2 does not
contain any unnecessary identity related information; (iii) the OP generates a random nonce and stored in a
Nonce field into the header ofpost2, resulting to packetpost3; (iv) the OP hashespost3 and signs the hash
with the Hidden-IBS signing algorithm; (v) the OP creates a new field calledSignature in the header of
post3 and fills it with the generated signature; we call the modifiedpost3 aspost4; (vi) the OP forwards
thepost4 along the established circuit.

When a Tor exit point assembles a POST request such aspost4 above, it parses the fieldSignature
and obtains the Hidden-IBS signature; then it transformspost4 intopost3 by throwing away theSignature
field in the header and computes the hash value ofpost3 to verify the signature (using the public-key of the
IM). Finally, if the signature verifies, the exit point forwardspost3 to the Wikipedia web-site; at the same

11

time it submits the hash value and the Hidden-IBS signature to the Disputes&Grievances database.
Wikipedia may now keep the POST request coming through a Tor exit point (or in fact only the hash of

the request suffices). If a certain posting is found to be offensive or abusive the web-site may search for the
corresponding Hidden-IBS signature into the Disputes&Grieances database (that will be indexed based on
the hash of the post). Then, once the hidden-IBS is recovered it can be submitted to the opening authority
(OA) along with a complaint report. The OA uses his secret key to open the Hidden-IBS and recover
offender’s identity (e.g., her IP address), and then sends this identity to the IM. The IM may blacklist this
identity which may result in refusing future registration requests originating from the offender’s IP address
for example. Other strategies may be followed here by the IM, for example if the identity is a userid in a
reputation system the user may receive a negative point.

Remark 4.1. Regarding the Dispute& Grievances database we make the following two observations: First,
the database leaks no information about the identities of Tor users or the traffic they produce; indeed, only
the hashed POST requests are stored together with the Hidden-IBS signatures that cryptographically hide
the user identities. Second, the database size is quite manageable: indeed, using our construction from
Section 3and a 256-bit hash (e.g., SHA-256) we can store about 1.6 million pairs of hash and signature in
1Gbyte of storage. Given that only a small percentage of Tor traffic needs to be logged into the database
(e.g., only POST requests) the size of the database is manageable by today’s standards (e.g., with 100GB
one can keep 160 million POST requests which is sufficient to maintain a database with long history).

Remark 4.2. Our solution is designed to be totally transparent to the service providers that receive Tor
traffic. This is advantageous as it demonstrates the principle that Tor can manage the quality of its traffic
by itself and provide mechanisms to catch misbehaving users. Still, service providers that are interested
in allowing Tor traffic may sponsor the enhancement by providing storage for the Dispute& Grievances
database for example.

Remark 4.3. The OA can be designed to be a distributed threshold entity where a voting decision-making
procedure would be required to open the signature. In fact, the shareholders of the OA can be the population
of all Tor users (with an appropriately low threshold) so in this way it would be possible for the users
themselves to manage the anonymity revocation offered by the system they use. This would require a
threshold variant of the encryption mechanism employed in our construction which is straightforward to
build using a similar approach as [DF89, GJKR99].

Remark 4.4. In this section we used HTTP POST requests and Wikipedia as the motivating example.
However it is straightforward to apply our Hidden-IBS enhancement to other types of Tor traffic or web-
services. For example, we can require SMTP traffic to be signed and thus let it pass through Tor (while now
it is blocked by the current Tor exit policy). Similarly Wikipedia is only one case of a web-site that faces the
potential of vandalism through Tor; many other examples exist, e.g., Slashdot and they would benefit from
the proposed architecture.

5 Hidden-IBS with Exculpability: Modelling
In our basic model for Hidden-IBS inSection 2, we assume the IM is honest. In that model it is evident
that the IM has the capability to impersonate a user if it wishes but it is trusted not to do so. A similar
problem can be observed in the primitive of group signatures where the relevant security property is called
“exculpability” [ACJT00]. In a group signature scheme with exculpability the group manager is incapable
of impersonating an existing user.

In this section we consider the exculpability property from the point of view of the Hidden-IBS primitive.
We stress that this security property is not as important as in the case of group signatures since in Hidden-
IBS there does not exist a public membership list and the overall identification performed by a Hidden-IBS

12

is intended to be more “lightweight” compared to a group signature. Still there can be settings where it
should be possible for a user to be able to deny an allegation that she is responsible for a signature and be
able to prove instead that the IM tried to frame her.

To achieve the exculpability property, intuitively, based on the reasoning above, we should let the user
have a secret associated to her signing capability which is not known by the IM. During user registration
the user will submit a key corresponding to the secret that she only knows and the IM will embed the user’s
key into the certificate he returns to the user. Subsequently, in order to issue a signature the user will have
to employ her secret. On the other hand based on the hiding property of the commitment the IM will not be
able to impersonate the user unless he produces another key to bind it to the user’s identity. When the OA
opens a signature and accuses the user, the OA will also recover the key that was used as well. Thus the user
can deny her involvement by presenting the key she used originally in her interaction with the IM. Upon the
presentation of such evidence the OA will in turn accuse the IM instead.

In the remaining of the section, we modify our basic Hidden-IBS model to capture the new property.

Syntax. In a Hidden-IBS scheme with exculpability, the involved parties are same as that in the basic
Hidden-IBS. Here the identityid has more complex structure though and consists of two parts,name and
key, wherename can be the “name” part of the identity e.g., an IP address, or email address andkey is the
key that corresponds to a user’s secrettrapdoor. Given a certain identityid we will write id.name and
id.key to refer to its two components respectively.

TheSetup includesSetupUser in addition toSetupIM, SetupOA which are defined as in the Hidden-
IBS. Next we describeSetupUser. On input a public parameter, the probabilistic algorithm outputskey and
the corresponding user secrettrapdoor based on some known relation. TheReg andRegCheck are same
as those in the Hidden-IBS. Note that the involved identity is a pair of the formid = (name, key). TheSign
procedure will also involve the secrettrapdoor data. We writeSign(pkIM, pkOA, id; certid, trapdoor,m)
to denote the application of the signing algorithm, whereid = (name, key). TheVerify andOpen are syn-
tactically the same as that in Hidden-IBS.

Correctness. The correctness of Hidden-IBS with exculpability includes the registration correctness, the
signing correctness and the opening correctness: these properties are essentially identical to the properties
as described in sectionSection 2.2and are omitted. Note that in a Hidden-IBS scheme with exculpability
a dispute resolution mechanism is available to the OA that is given two identitiesid, id∗, the first coming
from the signature that the OA opens and the second coming from the user (cf.Figure 7). The OA proclaims
the IM to be guilty or the user to be guilty depending on the output of the functionDisputeResult that
is defined in the same way for all schemes, seeFigure 7. Note that if the user refuses to participate to the
dispute resolution mechanism she should be considered guilty. On the other hand, the IM should not allow
users with the same name register different keys.

Security. The misidentification-forgery and (CCA2,CPA)-anonymity notions are same as that in the basic
Hidden-IBS (with the understanding that the identities are assumed to have the structureid = (name, key)).
In addition to these two security properties we define a new security notion, exculpability, that captures the
setting where the IM is corrupted.

In an exculpability attack the adversary is allowed to corrupt the IM and is capable of issuing signing
credentials to honest users. The adversary is also capable of corrupting the OA (in the sense of obtaining the
key - not in the sense of controlling the outcome of who is guilty). The adversary is allowed to adaptively
ask signing queries from the honest users. The adversary wins the game if it manages to produce a signature
that (i) opens to one of the honest users and (ii) theDisputeResult algorithm proclaims the user to be
guilty despite the fact that the honest user participates in the dispute resolution procedure by providing her
id.key.

Definition 5.1 (Exculpability). We say a Hidden-IBS scheme is secure against exculpability attacks if for

13

CreateOracle(name) SignOracle(id, certid,m)
If name ∈ HU then return⊥; If id.name 6∈ HU then return⊥;
(key, trapdoor) ← SetupUser(1λ, pkIM, pkOA; name); σ ← Sign(pkIM, pkOA, id; certid,m);
Saveid = 〈name, key〉; MSGid ← MSGid ∪ {m};
Returnkey; Returnσ;

CreateCheckOracle(certid) CorruptOAOracle()
If RegCheck(pkIM, pkOA; id, certid) 6= 1 then return⊥; ReturnskOA;
HU ← HU ∪ {id}
Return 1;

CorruptIMOracle()
ReturnskIM;

ExperimentExpexculp
A (λ)

(pkIM, skIM) ← SetupIM(1λ); (pkOA, skOA) ← SetupOA(1λ); HU ← ∅;CU ← ∅
(m,σ) ← ACreateOracle(),CreateCheckOracle(),SignOracle(),CorruptIMOracle(),CorruptOAOracle()(1λ, pkIM, pkOA)
If Verify(pkIM, pkOA;m,σ) = 1

∧ Open(pkIM, pkOA; skOA,m, σ) = id ∧ m 6∈ MSGid ∧ id.name ∈ HU
∧ id∗ ∈ HU s.t.id.name = id∗.name
∧ DisputeResult(id, id∗) =“User is guilty” then return 1;

Return 0;
The dispute resolution is defined as follows:

DisputeResult(id, id∗) =
{

“User is guilty” id.key = id∗.key
“IM is guilty” id.key 6= id∗.key

Figure 7: Experiment of an exculpability attack

any PPT adversaryA, Advexculp
A (λ) is negligible inλ, whereAdvexculp

A (λ) = Pr[Expexculp
A (λ) = 1], and

the involved experiment defined as inFigure 7.

6 Hidden-IBS with Exculpability: Construction
Now we present an efficient construction which can achieve misidentification-forgery, CCA2-anonymity
and also exculpability notions. In the user registration, the IM use CL signature [CL02b] to generate a
certificate to user’s identity. Note that the user’s identity includes two components, name and key. The key
is a RSA modulus, and only the user knows the trapdoor of the key which is two primes. When the user
signs a message, she encrypts her identity by the CCA2-Paillier encryption [CS03] and sends the ciphertext
to the verifier which can be used for the opening. Then, she proves to the verifier that she knows her identity,
the certificate, and the relation between them. Furthermore, she proves that she knows the trapdoor which is
corresponding to the key in the identity. We present the details below:

Setup. The algorithmSetupIM generates key pair(pkIM, skIM): first generates parameter for cyclic group
QR(n), i.e. 〈n, p, q, p′, q′〉, wheren = pq, p = 2p′ + 1, q = 2q′ + 1, p, q, p′, q′ are primes; randomly
selectsa0, a, b

r← QR(n); setspkIM = 〈n, a0, a, b〉, andskIM = 〈p, q〉. The algorithmSetupOA generates
key pair(pkOA, skOA): generate the Paillier encryption parameter〈N, G,P, Q, P ′, Q′〉 whereN = PQ,
P = 2P ′ + 1, Q = 2Q′ + 1; selectH1,H2,H3 ∈ 〈G〉 with Hi = Gαi , αi

r← ZbN/4c for i = 1, 2, 3, and a
hash-keyhk for a universal one-way hash function familyhash; setspkOA = 〈N, G,H1,H2,H3, hk, hash〉
andskOA = 〈α1, α2, α3〉. More system parameters are required: randomly selectsg, f1, f2, f3, f4, f5, f6

r←
QR(n) for commitment; generates a hash functionH : {0, 1}∗ → {0, 1}λ0 , which will be treated as
a random oracle in the security proof. Finally set the public parameters for the Hidden-IBS aspub =
〈n, a0, a, b;N, G,H1,H2,H3, hash, hk; g, f1, f2, f3, f4, f5, f6,H〉. For each user, her identityid consists
of two parts, name and key, i.e.id = (name, key). The length ofkey is ` and the length ofname is `′. The

14

algorithmSetupUser generates key pair(key, trapdoor) for each user: generates RSA modulusx = x1x2

wherex1, x2 are two primes with length̀/2; setskey = x andtrapdoor = 〈x1, x2〉.
Reg. The user keep the trapdoor〈x1, x2〉; sends the keyx with her namename to the IM. The IM verifies
that name has never been submitted before. Then the IM generates a CL signature〈v, e, s〉 for identity
id = x + name · 2`, whereve = a0a

x+name·2`
bs in QR(n); and sends〈v, e, s〉 to the user by a secure

communication channel.

RegCheck. Once receiving the signature〈v, e, s〉 from the IM, the user verifiesve = a0a
x+name·2`

bs in
QR(n). The user sets her membership certificate tocertid = 〈v, e, s〉.
Sign. With a membership certificatecertid = 〈v, e, s〉 in hand, a user can compute a Hidden-IBS signature
σ for messagem. We design the signing algorithm by applying the Fiat-Shamir heuristic on an proof of
knowledge which is shown inFigure 8in the appendix. In the proof of knowledge, the user proves her
knowledge of the identity including the keyx and the namename, and of the membership certificate on the
identity from the IM. Also, the user proves her knowledge of the trapdoor〈x1, x2〉 of the keyx which can
be used to prevent the exculpability from the IM.

Next, we give the details. We let`n, `v, `e, `s, `name, `N denote the length of them. (i) The user uses
the CCA2-Paillier encryption [CS03] to encryptid = x + name · 2` into 〈C1, C2, C3〉: d

r← ±{0, 1}`N−2,

C1 = Gd in Z∗N2 , C2 = Hd
1 (1 + N)x+name·2`

in Z∗N2 , C3 = abs
(
H2H

hash(hk,C1,C2)
3)d

)
in Z∗N2 . Note

that hereabs(x) = x if x ≤ N2/2 and abs(x) = N2 − x otherwise. (ii) The user makes commit-
ments for the membership certificatecertid = (v, e, s), and the keyx and the corresponding trapdoor
(x1, x2): randomly selectr1, r2, r3

r← ±{0, 1}`n−2, computeT1 = gr1fx1
1 , T2 = gr2v, and T3 =

gr3fx
1 fx2

2 fname
3 fe

4fs
5fd

6 . (iii) The user deploys a three moveΣ-protocol to prove her knowledge of the under-
lying plaintextid = x+name·2` of the Paillier ciphertext, the underlying plaintextsv, e, s, x1, x2, d, x, name
of the commitments, and the relation between(v, e, s) andid, the relation betweenx and(x1, x2): com-
puter4 = r1x2 andr5 = r2e; randomly selectθx

r← ±{0, 1}λ0+λ1+µ′ , θx1 , θx2

r← ±{0, 1}λ0+λ1+µ′′ ,
θname

r← ±{0, 1}λ0+λ1+`name , θe
r← ±{0, 1}λ0+λ1+`e , θs

r← ±{0, 1}λ0+λ1+`s , θd
r← ±{0, 1}λ0+λ1+`d ,

θr1 , θr2 , θr3

r← ±{0, 1}λ0+λ1+`n−2, θr4

r← ±{0, 1}λ0+λ1+`n−2+µ′′ , θr5

r← ±{0, 1}λ0+λ1+`n−2+`e ; com-

puteB1 = g−θr1f
−θx1
1 , B2 = T

−θx2
1 gθr4fθx , B3 = T−θe

2 gθr5aθx+θname·2`
bθs , B4 = g−θr3f−θx

1 f
−θx2
2 f−θname

3

f−θe
4 f−θs

5 f−θd
6 , B5 = G−θd inZ∗N2 , B6 = H−θd

1 (1+N)−(θx+θname·2`) inZ∗N2 , B7 = (H2H
hash(hk,C1,C2)
3)−2θd

in Z∗N2 ; computec = H(m||T1||T2||T3||C1||C2||C3||B1||...||B7); then computeξx = θx + c · (x − 2`′),
ξx1 = θx1+c·(x1−2`′′), ξx2 = θx2+c·(x2−2`′′), ξe = θe+c·e, ξs = θs+c·s, ξd = θd+c·d, ξr1 = θr1+c·r1,
ξr2 = θr2 + c · r2, ξr3 = θr3 + c · r3, ξr4 = θr4 + c · r4, ξr5 = θr5 + c · r5. Therefore, the generated signature
for messagem is the tuple:σ = 〈T1, T2, T3, C1, C2, C3; c; ξid, ξx, ξx1 , ξx2 , ξe, ξs, ξd, ξr1 , ..., ξr5〉.
Verify. The verifier can verify a message-signature pair by the following checks:

ξx ∈? ±{0, 1}λ0+λ1+µ′+1, ξx1 , ξx2 ∈? ±{0, 1}λ0+λ1+µ′′+1, C1, C2, C3 ∈? Z∗N2 , C2 ≤? N2/2,

c =? H(
m||T1||T2||T3||C1||C2||C3

||(T1)cg−ξr1 f
−ξx1
1 ||T−ξx2

1 gξr4 fξx

1 ||(a0)cT−ξe

2 gξr5 a(ξx+ξname·2`)bξs

||(T3)cg−ξr3 f−ξx

1 f
−ξx2
2 f−ξname

3 f−ξe

4 f−ξs

5 f−ξd

6

||(C1)cG−ξd ||(C2)cH−ξd

1 (1 + N)−(ξx+ξname·2`)||(C3)2c(H2H
hash(hk,C1,C2)
3)−2ξd

)

Open. Given a message-signature pair as described above, the OA first verifies the message-signature pair.
Also the OA verifies the relationC2

3 = C
2(α2+α3hash(hk,C1,C2))
1 . Then the OA computeŝid = C2

2C−2α1
1 ,

andid = (îd · 2−1 mod N)/N . Finally, the OA parsedid into two parts,x andname.

Theorem 6.1. Our Hidden-IBS is correct and secure satisfying misidentification-forgery, exculpability and
CCA2-anonymity in the random oracle model under the Strong RSA, factoring and the DCR assumptions
and the UOHF assumption respectively.

15

References

[ACHdM05] Giuseppe Ateniese, Jan Camenisch, Susan Hohenberger, and Breno de Medeiros. Practical
group signatures without random oracles. InCryptology ePrint Archive, Report 2005/385,
2005.http://eprint.iacr.org/2005/385/ .

[ACJT00] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical and provably
secure coalition-resistant group signature scheme. In Mihir Bellare, editor,CRYPTO 2000,
volume 1880 ofLecture Notes in Computer Science, pages 255–270. Springer, 2000.

[AdM03] Giuseppe Ateniese and Breno de Medeiros. Efficient group signatures without trapdoors. In
Chi-Sung Laih, editor,ASIACRYPT 2003, volume 2894 ofLecture Notes in Computer Science,
pages 246–268. Springer, 2003.

[AST02] Giuseppe Ateniese, Dawn Xiaodong Song, and Gene Tsudik. Quasi-efficient revocation in
group signatures. In Matt Blaze, editor,Financial Cryptography 2002, volume 2357 ofLec-
ture Notes in Computer Science, pages 183–197. Springer, 2002.

[AT99] Giuseppe Ateniese and Gene Tsudik. Some open issues and new directions in group signa-
tures. In Matthew K. Franklin, editor,Financial Cryptography 1999, volume 1648 ofLecture
Notes in Computer Science, pages 196–211. Springer, 1999.

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian Cachin
and Jan Camenisch, editors,EUROCRYPT 2004, volume 3027 ofLecture Notes in Computer
Science, pages 56–73. Springer, 2004.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew K.
Franklin, editor,CRYPTO 2004, volume 3152 ofLecture Notes in Computer Science, pages
41–55. Springer, 2004.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing.J.
Cryptology, 17(4):297–319, 2004.

[BMW03] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group signatures:
Formal definitions, simplified requirements, and a construction based on general assumptions.
In Eli Biham, editor,EUROCRYPT 2003, volume 2656 ofLecture Notes in Computer Science,
pages 614–629. Springer, 2003.

[BNN04] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Security proofs for identity-
based identification and signature schemes. In Christian Cachin and Jan Camenisch, edi-
tors, EUROCRYPT 2004, volume 3027 ofLecture Notes in Computer Science, pages 268–
286. Springer, 2004. Full version athttp://www-cse.ucsd.edu/users/mihir/
papers/ibi.pdf .

[BS04] Dan Boneh and Hovav Shacham. Group signatures with verifier-local revocation. In Vi-
jayalakshmi Atluri, Birgit Pfitzmann, and Patrick Drew McDaniel, editors,CCS 2004, pages
168–177. ACM, 2004.

[BSZ05] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signatures: The case of
dynamic groups. In Alfred Menezes, editor,CT-RSA 2005, volume 3376 ofLecture Notes in
Computer Science, pages 136–153. Springer, 2005.

16

http://eprint.iacr.org/2005/385/�
http://www-cse.ucsd.edu/users/mihir/papers/ibi.pdf�
http://www-cse.ucsd.edu/users/mihir/papers/ibi.pdf�

[BW06] Xavier Boyen and Brent Waters. Compact group signatures without random oracles. In Serge
Vaudenay, editor,EUROCRYPT 2006, volume 4004 ofLecture Notes in Computer Science,
pages 427–444. Springer, 2006.

[Cam97] Jan Camenisch. Efficient and generalized group signatures. InEUROCRYPT 1997, pages
465–479, 1997.

[CG04] Jan Camenisch and Jens Groth. Group signatures: Better efficiency and new theoretical as-
pects. In Carlo Blundo and Stelvio Cimato, editors,SCN 2004, volume 3352 ofLecture Notes
in Computer Science, pages 120–133. Springer, 2004.

[CL01] Jan Camenisch and Anna Lysyanskaya. An identity escrow scheme with appointed verifiers.
In Joe Kilian, editor,CRYPTO 2001, volume 2139 ofLecture Notes in Computer Science,
pages 388–407. Springer, 2001.

[CL02a] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to efficient
revocation of anonymous credentials. In Moti Yung, editor,CRYPTO 2002, volume 2442 of
Lecture Notes in Computer Science, pages 61–76. Springer, 2002.

[CL02b] Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient protocols. In Stelvio
Cimato, Clemente Galdi, and Giuseppe Persiano, editors,SCN 2002, volume 2576 ofLecture
Notes in Computer Science, pages 268–289. Springer, 2002.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from
bilinear maps. In Matthew K. Franklin, editor,CRYPTO 2004, volume 3152 ofLecture Notes
in Computer Science, pages 56–72. Springer, 2004.

[CM98] Jan Camenisch and Markus Michels. A group signature scheme with improved efficiency.
In Kazuo Ohta and Dingyi Pei, editors,ASIACRYPT 1998, volume 1514 ofLecture Notes in
Computer Science, pages 160–174. Springer, 1998.

[CM99] Jan Camenisch and Markus Michels. Separability and efficiency for generic group signature
schemes. In Michael J. Wiener, editor,CRYPTO 1999, volume 1666 ofLecture Notes in
Computer Science, pages 413–430. Springer, 1999.

[CMS96] Jan Camenisch, Ueli M. Maurer, and Markus Stadler. Digital payment systems with passive
anonymity-revoking trustees. In Elisa Bertino, Helmut Kurth, Giancarlo Martella, and Emilio
Montolivo, editors,ESORICS 1996, volume 1146 ofLecture Notes in Computer Science,
pages 33–43. Springer, 1996.

[CP94] Lidong Chen and Torben P. Pedersen. New group signature schemes (extended abstract). In
EUROCRYPT 1994, pages 171–181, 1994.

[CS97] Jan Camenisch and Markus Stadler. Efficient group signature schemes for large groups (ex-
tended abstract). In Burton S. Kaliski Jr., editor,CRYPTO 1997, volume 1294 ofLecture
Notes in Computer Science, pages 410–424. Springer, 1997.

[CS03] Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption of discrete
logarithms. In Dan Boneh, editor,CRYPTO 2003, volume 2729 ofLecture Notes in Computer
Science, pages 126–144. Springer, 2003. Full version available athttp://shoup.net/
papers/verenc.pdf .

17

http://shoup.net/papers/verenc.pdf�
http://shoup.net/papers/verenc.pdf�

[CvH91] David Chaum and Eug̀ene van Heyst. Group signatures. InEUROCRYPT 1991, pages 257–
265, 1991.

[DF89] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Brassard, editor,CRYPTO
1989, volume 435 ofLecture Notes in Computer Science, pages 307–315. Springer, 1989.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The second-generation onion
router. InUSENIX Security Symposium 2004, pages 303–320. USENIX, 2004.

[FI05] Jun Furukawa and Hideki Imai. An efficient group signature scheme from bilinear maps. In
Colin Boyd and Juan Manuel González Nieto, editors,ACISP 2005, volume 3574 ofLecture
Notes in Computer Science, pages 455–467. Springer, 2005.

[FTY96] Yair Frankel, Yiannis Tsiounis, and Moti Yung. “Indirect Discourse Proof”: achieving ef-
ficient fair off-line e-cash. In Kwangjo Kim and Tsutomu Matsumoto, editors,ASIACRYPT
1996, volume 1163 ofLecture Notes in Computer Science, pages 286–300. Springer, 1996.

[FY04] Jun Furukawa and Shoko Yonezawa. Group signatures with separate and distributed authori-
ties. In Carlo Blundo and Stelvio Cimato, editors,SCN 2004, volume 3352 ofLecture Notes
in Computer Science, pages 77–90. Springer, 2004.

[GJKR99] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed
key generation for discrete-log based cryptosystems. InEUROCRYPT 1999, pages 295–310,
1999.

[GRS96] David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. Hiding routing information.
In Ross J. Anderson, editor,Information Hiding 1996, volume 1174 ofLecture Notes in Com-
puter Science, pages 137–150. Springer, 1996.

[Hel61] Joseph L. Heller.Catch-22. Simon & Schuster, 1961.

[KP98] Joe Kilian and Erez Petrank. Identity escrow. In Hugo Krawczyk, editor,CRYPTO 1998,
volume 1462 ofLecture Notes in Computer Science, pages 169–185. Springer, 1998.

[KTY04] Aggelos Kiayias, Yiannis Tsiounis, and Moti Yung. Traceable signatures. In Christian Cachin
and Jan Camenisch, editors,EUROCRYPT 2004, volume 3027 ofLecture Notes in Computer
Science, pages 571–589. Springer, 2004.

[KY03] Aggelos Kiayias and Moti Yung. Extracting group signatures from traitor tracing schemes. In
Eli Biham, editor,EUROCRYPT 2003, volume 2656 ofLecture Notes in Computer Science,
pages 630–648. Springer, 2003.

[KY05a] Aggelos Kiayias and Moti Yung. Efficient secure group signatures with dynamic joins and
keeping anonymity against group managers. In Ed Dawson and Serge Vaudenay, editors,
Mycrypt 2005, volume 3715 ofLecture Notes in Computer Science, pages 151–170. Springer,
2005. Full version athttp://eprint.iacr.org/2004/076/ .

[KY05b] Aggelos Kiayias and Moti Yung. Group signatures with efficient concurrent join. In Ronald
Cramer, editor,EUROCRYPT 2005, volume 3494 ofLecture Notes in Computer Science,
pages 198–214. Springer, 2005. Full version athttp://eprint.iacr.org/2005/
345/ .

18

http://eprint.iacr.org/2004/076/�
http://eprint.iacr.org/2005/345/�
http://eprint.iacr.org/2005/345/�

[NSN04] Lan Nguyen and Reihaneh Safavi-Naini. Efficient and provably secure trapdoor-free group
signature schemes from bilinear pairings. In Pil Joong Lee, editor,ASIACRYPT 2004, volume
3329 ofLecture Notes in Computer Science, pages 372–386. Springer, 2004.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
Jacques Stern, editor,EUROCRYPT 1999, volume 1592 ofLecture Notes in Computer Sci-
ence, pages 223–238. Springer, 1999.

[Pol75] J.M. Pollard. A Monte Carlo method for factorization.BIT, 15:331–334, 1975.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. InCRYPTO 1984, pages
47–53, 1984.

[Son01] Dawn Xiaodong Song. Practical forward secure group signature schemes. InCCS 2001, pages
225–234, 2001.

[Tor] Tor. http://tor.eff.org/ .

[TX03] Gene Tsudik and Shouhuai Xu. Accumulating composites and improved group signing. In
Chi-Sung Laih, editor,ASIACRYPT 2003, volume 2894 ofLecture Notes in Computer Science,
pages 269–286. Springer, 2003.

[vSN92] Sebastiaan H. von Solms and David Naccache. On blind signatures and perfect crimes.Com-
puters & Security, 11(6):581–583, 1992.

[Wik] Wikipedia. http://wikipedia.org/ .

[Wik06] Wikipedia. Advice to Tor users in China. May 2006.http://en.wikipedia.org/
wiki/Wikipedia:Tor .

[WYZ05] Victor K. Wei, Tsz Hon Yuen, and Fangguo Zhang. Group signature where group manager,
members and open authority are identity-based. In Colin Boyd and Juan Manuel González
Nieto, editors,ACISP 2005, volume 3574 ofLecture Notes in Computer Science, pages 468–
480. Springer, 2005.

A Appendix

A.1 Preliminaries

Bilinear Groups. Let G = 〈g〉 andĜ = 〈ĝ〉 be cyclic groups of prime orderp whereψ : Ĝ → G is an
isomorphism withψ(ĝ) = g ande : G × Ĝ → GT is a bilinear map, i.e., for all(u, û) ∈ G × Ĝ and
a, b ∈ Z, it holds thate(ua, ûb) = e(u, û)ab ande is non-trivial, i.e.,e(g, ĝ) 6= 1. Note that|GT | = p.

Linear Encryption. Boneh et al. [BBS04] proposed a variant of ElGamal encryption, called, Linear En-
cryption that is suitable for groups over which the DDH assumption fails. We call it LE for short.
Key Generation.The public key is a triple of generatorsu, v, w ∈ G and the secret key is the exponents
x, y ∈ Z∗p such thatux = vy = w.
Encryption. On input of a messagem ∈ G, choose random valuesa, b ∈ Zp, and output the triple
(ua, vb, wa+bm).
Encryption.Given a ciphertext〈U, V,W 〉, by using the secret keyx, y, we recover the plaintextm as follows
m = W

Ux·V y .

19

http://tor.eff.org/�
http://wikipedia.org/�
http://en.wikipedia.org/wiki/Wikipedia:Tor�
http://en.wikipedia.org/wiki/Wikipedia:Tor�

The Linear encryption is based on the Decision Linear Diffie-Hellman assumption, which was first
introduced by Boneh et al. [BBS04]. With g ∈ G as above, along with arbitrary generatorsu,v, andw ofG,
consider the following problem:

Definition A.1 (Decision Linear Diffie-Hellman Problem inG). Givenu, v, w, uα, vβ , wγ ∈ G as input,
output1 if α + β = γ and0 otherwise.

It is believed that DLDH is a hard problem even in bilinear groups where DDH is easy. Now we define
the advantage of an algorithmA in deciding the DLDH problem inG as

AdvADLDH =
∣∣∣∣

Pr[1 ← A(u, v, w, uα, vβ , wα+β) : u, v, w ∈ G, α, β ∈ Zp]
− Pr[1 ← A(u, v, w, uα, vβ, χ) : u, v, w, χ,∈ G, α, β ∈ Zp]

∣∣∣∣

Assumption A.2 (Decision Linear Diffie-Hellman Assumption).We say that the Decision Linear Diffie-
Hellman assumption holds inG if for all PPT algorithmsA it holds thatAdvADLDH is negligible in the security
parameterλ.

Boneh-Boyen Signature.Boneh and Boyen [BB04] propose a very efficient signature scheme secure in the
standard model under the Strong Diffie-Hellman (SDH) assumption.
Key Generation.Let 〈p, g, ĝ,G, Ĝ, ψ,GT , e〉 be bilinear groups parameter. Randomly selectx, y

r← Z∗p and

computeX̂ ← ĝx ∈ Ĝ and Ŷ ← ĝy ∈ Ĝ. Set public key〈p, g, ĝ,G, Ĝ, ψ,GT , e; X̂, Ŷ 〉 and secret key
〈x, y〉.
Signature Generation.On inputm ∈ Z∗p, randomly selectsr

r← Z∗p such thatx + m + yr 6≡ 0 mod p; and

computes = g
1

x+m+yr ∈ G. The signature form is (s, r).
Signature Verification.Given public key〈p, g, ĝ,G, Ĝ, ψ,GT , e; X̂, Ŷ 〉, messagem, and signature(s, r),
check thatm, r ∈ Z∗p, ande(s, X̂ĝmŶ r) = e(g, ĝ). If they hold, the verification is valid; otherwise invalid.

Definition A.3 (Strong Diffie-Hellman Assumption.). Given bilinear group parameter〈p, g, ĝ,G, Ĝ, ψ,GT , e〉,
theq-SDH problem is defined as follows: given a(q + 1)-tuple(g, ĝ, ĝx, ĝx2

, ĝx3
, ..., ĝxq

) as input, output

a pair(g
1

x+c , c) wherec ∈ Z∗p. Theq-SDH assumption suggests that any PPT algorithm solving theq-SDH
problem has negligible success probability in secure parameterλ.

Paillier-Encryption. Paillier proposed a very efficient homomorphic encryption [Pai99]:
Key Generation.Let P andQ be random primes for which it holdsP 6= Q, |P | = |Q| and gcd(PQ, (P −
1)(Q − 1)) = 1; let N = PQ, π = lcm(P − 1, Q − 1), K = π−1 mod N , andG = (1 + N); the public
key is〈N, G〉 while the secret key is〈P, Q〉.
Encryption.The plaintext set isZN ; given a plaintextm, choose a randomζ ∈ Z∗N , and let the ciphertext
beC = GmζN mod N2.
Decryption.Given a ciphertextC, let K = π−1 mod N and now observe thatCπK = Gm·πK · ζN ·πK =
Gm·πK mod N · ζN ·πK mod Nπ = Gm mod N · ζ0 mod Nπ = Gm = 1 + mN mod N2. Thus, it is possible to

recoverm = (CπK mod N2)−1
N mod N .

The cryptosystem above has been proven semantically secure if and only if the Decisional Composite
Residuosity (DCR) assumption [Pai99] is true. The advantage of an algorithmA in deciding the DCR
problem is defined as follows:

AdvADCR =
∣∣ Pr[1 ← A(z) : z ∈ Z∗N2]− Pr[1 ← A(z) : z ∈ HRN

N2]
∣∣

whereHRN
N2 is the subgroup ofN -th residues moduloN2.

20

Assumption A.4 (Decisional Composite Residuosity Assumption).We say that the DCR assumption
holds inG if for all PPT algorithmsA it holds thatAdvADCR is negligible in the security parameterλ.

Camenisch-Lysyanskaya Signature. Camenisch and Lysyanskaya [CL02a] proposes an efficient and
multi-functional signature scheme that is EU-CMA under the Strong RSA assumption. Here we give a
brief description of the scheme and the underlying assumption.

Key Generation.On input1λ, choose an RSA modulusn = pq, p = 2p′ + 1, q = 2q′ + 1 as a product of
safe primes. Randomly choosea0, a, b ∈ QR(n). The public key is〈n, a0, a, b〉 and the secret key is〈p, q〉.
Signature Generation.On inputm, choose a random numbere of length`e > `m +2, and a random number
s of length`s = `n + `m + λ, whereλ is a security parameter. Computev such thatve = a0a

mbs mod n.
The signature on messagem consists of〈v, e, s〉.
Signature Verification.Given public key〈n, a0, a, b〉 and messagem, and signature〈v, e, s〉, check that
ve = a0a

mbs mod n, and check that2`e > e > 2`e−1.

Definition A.5 (Strong RSA Assumption). Given a RSA compositen, andx ∈ QR(n), it is infeasible to
find y ∈ Z∗n ande > 1 such thatye ≡ x mod n in time polynomial in parameterλ.

A.2 Proofs

A.2.1 Proof ofTheorem 3.1

Proof. To prove the registration correctness, we need to verify a BB signature〈s = g
1

x+id+yr , r〉 based on
the public key〈X̂ = ĝx, Ŷ = ĝy〉:

e(s, X̂ĝidŶ r) = e(g
1

x+id+yr , ĝxĝid(ĝy)r) = e(g
1

x+id+yr , ĝx+id+yr) = e(g, ĝ)

Based on the registration correctness, next we prove the signing correctness. On input(m,σ) whereσ =
〈S, R̂, U, V, Ŵ ; c; ξid, ξr, ξr1 , ξr2 , ξk, ξl, ξδ1 , ..., ξδ5〉, we need to verify

c = H(
m||S||R̂||U ||V ||Ŵ

||U cu−ξk ||V cv−ξl ||Ŵ cŵ−(ξk+ξl)ĝ−ξid ||R̂cĝ−ξr2 ĥ−ξr1 Ŷ −ξr ||U−ξr1 uξδ1 ||V −ξr1 vξδ2 ||R̂−ξr1 ĝξδ3 ĥξδ4 Ŷ ξδ5

||e(g, X̂Ŵ R̂)ξr1 e(S, ŵ)(ξk+ξl)e(g, ŵ)−(ξδ1+ξδ1)e(S, ĝ)ξr2 e(g, ĝ)−ξδ3 e(S, ĥ)ξr1 e(g, ĥ)−ξδ4 (e(g, ĝ)/e(S, X̂Ŵ R̂))c
)

In fact we just need to verify the equations:B1 = U cu−ξk , B2 = V cv−ξl , B3 = Ŵ cŵ−(ξk+ξl), B4 =
R̂cĝ−ξr2 ĥ−ξr1 Ŷ −ξr , B5 = U−ξr1uξδ1 , B6 = V −ξr1vξδ2 , B7 = R̂−ξr1 ĝξδ3 ĥξδ4 Ŷ ξδ5 , B8 = e(g, X̂Ŵ R̂)ξr1

e(S, ŵ)(ξk+ξl)e(g, ŵ)−(ξδ1
+ξδ1

)e(S, ĝ)ξr2e(g, ĝ)−ξδ3e(S, ĥ)ξr1e(g, ĥ)−ξδ4 (e(g, ĝ)/e(S, X̂Ŵ R̂))c. We put
them in details:
B1 = u−θk = uck−ξk = (uk)cu−ξk = U cu−ξk

B2 = v−θl = vcl−ξl = (vl)cv−ξl = V cv−ξl

B3 = ŵ−(θk+θl)ĝ−θid = ŵck−ξk+cl−ξl ĝcid−ξid = (ŵk+lĝid)cŵ−(ξk+ξl)ĝ−ξid = Ŵ cŵ−(ξk+ξl)ĝ−ξid ,
B4 = ĝ−θr2 ĥ−θr1 Ŷ −θr = ĝcr2−ξr2 ĥcr1−ξr1 Ŷ cr−ξr = (ĝr2 ĥr1 Ŷ r)cĝ−ξr2 ĥ−ξr1 Ŷ −ξr = R̂cĝ−ξr2 ĥ−ξr1 Ŷ −ξr ,
B5 = U−θr1uθδ1 = U c·r1−ξr1u−c·δ1+ξδ1 = U−ξr1uξδ1 (U r1u−δ1)c = U−ξr1uξδ1 (ur1ku−r1k)c = U−ξr1uξδ1 ,
B6 = V −θr1vθδ2 = V c·r1−ξr1v−c·δ2+ξδ2 = V −ξr1vξδ2 (V r1v−δ2)c = V −ξr1vξδ2 (vr1kv−r1k)c = V −ξr1vξδ2 ,
B7 = R̂−θr1 ĝθδ3 ĥθδ4 Ŷ θδ5 = R̂cr1−ξr1 ĝ−cδ3+ξδ3 ĥ−cδ4+ξδ4 Ŷ −cδ5+ξδ5 = R̂−ξr1 ĝξδ3 ĥξδ4 Ŷ ξδ5 (R̂r1 ĝ−δ3 ĥ−δ4 Ŷ −δ5)c

= R̂−ξr1 ĝξδ3 ĥξδ4 Ŷ ξδ5 ((ĝr2 ĥr1 Ŷ r)r1 ĝ−r1r2 ĥ−r2
1 Ŷ −r1r)c = R̂−ξr1 ĝξδ3 ĥξδ4 Ŷ ξδ5 ,

B8 = e(g, X̂Ŵ R̂)θr1e(S, ŵ)θk+θle(g, ŵ)−(θδ1
+θδ1

)e(S, ĝ)θr2e(g, ĝ)−θδ3e(S, ĥ)θr1e(g, ĥ)−θδ4

= e(g, X̂Ŵ R̂)−cr1+ξr1e(S, ŵ)−c(k+l)+(ξk+ξl)e(g, ŵ)c(δ1+δ2)−(ξδ1
+ξδ2

)e(S, ĝ)−cr2+ξr2e(g, ĝ)cδ3−ξδ3

e(S, ĥ)−cr1+ξr1e(g, ĥ)cδ4−ξδ4

= e(g, X̂Ŵ R̂)ξr1e(S, ŵ)(ξk+ξl)e(g, ŵ)−(ξδ1
+ξδ2

)e(S, ĝ)ξr2e(g, ĝ)−ξδ3e(S, ĥ)ξr1e(g, ĥ)−ξδ4

21

(e(g, X̂Ŵ R̂)−r1e(S, ŵ)−(k+l)e(g, ŵ)(δ1+δ2)e(S, ĝ)−r2e(g, ĝ)δ3e(S, ĥ)−r1e(g, ĥ)δ4)c

Next, we just need to show
e(g, X̂Ŵ R̂)−r1e(S, ŵ)−(k+l)e(g, ŵ)(δ1+δ2)e(S, ĝ)−r2e(g, ĝ)δ3e(S, ĥ)−r1e(g, ĥ)δ4 = e(g, ĝ)/e(S, X̂Ŵ R̂)
i.e. show
e(S, X̂Ŵ R̂)e(g, X̂Ŵ R̂)−r1e(S, ŵ)−(k+l)e(g, ŵ)(δ1+δ2)e(S, ĝ)−r2e(g, ĝ)δ3e(S, ĥ)−r1e(g, ĥ)δ4 = e(g, ĝ)

Lefthand
= (e(S, X̂Ŵ R̂)e(g, X̂Ŵ R̂)−r1)(e(S, ŵ)−(k+l)e(g, ŵ)r1(k+l))(e(S, ĝ)−r2e(g, ĝ)r1r2)(e(S, ĥ)−r1e(g, ĥ)r2

1)
= e(Sg−r1 , X̂Ŵ R̂)e(Sg−r1 , ŵ)−(k+l)e(Sg−r1 , ĝ)−r2e(Sg−r1 , ĥ)−r1

= e(s, X̂Ŵ R̂)e(s, ŵ)−(k+l)e(s, ĝ)−r2e(s, ĥ)−r1

= e(s, X̂Ŵ R̂ŵ−(k+l)ĝ−r2 ĥ−r1)
= e(s, X̂ĝidŶ r)
= e(g

1
x+id+yr , ĝxĝid(ĝy)r)

= e(g, ĝ)
= Righthand

Based on the registration correctness and the signing correctness, now we prove the opening correctness.
On input(m,σ) whereσ = 〈S, R̂, U, V, Ŵ ; c; ξid, ξr, ξr1 , ξr2 , ξk, ξl, ξδ1 , ..., ξδ5〉, we computeW = ψ(Ŵ)
and use OA’s secret keyskOA = 〈ζ, η〉 to decrypt the triple〈U, V,W 〉 to obtaingid = W

UζV η . Then use brute
force, we can computeid from gid. Note that hereid is very short, so the brute force is feasible.

A.2.2 Proof ofTheorem 3.2

Proof. In order to prove the theorem above, we prove that any misidentification-forgery attacker in the
random oracle model against our Hidden-IBS can be transformed to an adaptive chosen message attacker in
the standard model against the BB signature.

LetA be a misidentification adversary as specified in the misidentification attack game that has access to
a random oracle. We will reduce this adversary to an adaptive chosen message adversary for the BB digital
signature.

Let us describe an adversaryB for the BB signature. First, the adversary is given the public key of the sig-
nature which is〈p, g, ĝ,G, Ĝ, ψ,GT , e, X̂, Ŷ 〉 as described in the generation of the public parameters. Now
B using this information samples all remaining public parameters for the Hidden-IBS as in theSetup proce-
dure, and the formed public parameters arepub = 〈p, g, ĝ,G, Ĝ, ψ,GT , e;h, ĥ; X̂, Ŷ ;u, v, w, û, v̂, ŵ;H〉.
Note thatB knows the secret key of the OA. However he does not know the secret of the IM, i.e.x = logbg X̂

andy = logbg Ŷ .
Before the simulation ofA, the BB-forgerB initializes a tableH for the simulation of the random oracle

that is employed byA. NowB starts the simulation of the adversaryA, andB has two modes.

• In mode 1,B is required to respond to the oracle queries below:

– For the random oracle queries,B uses the tableH: if the query is already on the table,B returns
the corresponding value; if not,B samples a random element inZp, places it in the table, and
returns it.

– Consider thatB does not know the IM secret key〈x, y〉. To answer the registration oracle
queries,B needs the help from the BB signing oracle. Be in detail,B receivesid from A; B
forwardsid to the BB-signing oracle; whenB receives from the BB-signing oracle the response
(s, r) such thate(s, X̂ĝidŶ r) = e(g, ĝ), he records〈id; s, r〉, and returns1 to theA.

22

– If A queries for corrupting a user withid, if the id has been registered, thenB sendsA the
recorded〈s, r〉, otherwise sends⊥.

– If A queries messagem for a signature from a registered user withid,B can generate a validσ =
〈S, R̂, U, V, Ŵ ; c; ξid, ξr, ξr1 , ξr2 , ξk, ξl, ξδ1 , ..., ξδ5〉 as that in the signing algorithm becauseB
knows the membership certificate(s, r) for the registeredid. ThenB returns suchσ toA.

After the queries,Awill output a message-signature pair(m∗, σ∗), whereσ∗ = 〈S∗, R̂∗, U∗, V ∗, Ŵ ∗;
c∗; ξ∗id, ξ∗r , ξ∗r1

, ξ∗r2
, ξ∗k, ξ∗l , ξ∗δ1 , ..., ξ

∗
δ5
〉.

With probability ε1, the generated pair can pass the verification and the signature cannot be opened
to any existing identities, then we take the forking technique from Pointcheval and Stern by using a
different challengẽc∗ 6= c∗ for the same queries(m∗, S∗, R̂∗, U∗, V ∗, Ŵ ∗) to the random oracle, and
we can extract all witnesses. With the witnessesk∗, l∗, we can obtaingid

∗
= W ∗w−(k∗+l∗) where

W ∗ = ψ(Ŵ ∗), and further obtainid∗ by brute-forcegid
∗
, whereid∗ is only log λ short; with the

witnessr∗1, we can obtains∗ = S∗g−r∗1 . So now we haveid∗ and its BB-signature(s∗, r∗). Consider
the signature cannot be opened to any existing identities which means theid∗ has never been queried.
Therefore,B can obtain a valid BB-forgery〈id∗; s∗, r∗〉.
If the generated pair can pass the verification, but the signature is opened to some registered but non-
corrupted identityid∗, and the messagem∗ has never been queried in the history of the user withid∗,
thenB just terminates.

• In mode 2,B responses the oracle queries below in a different way:

– For the random oracle queries,B uses the tableH by the same way in mode 1: if the query is
already on the table,B returns the corresponding value; if not,B samples a random element in
Zp, places it in the table, and returns it.

– B answers the registration oracle queries in a different way from that in the mode 1: whenB
receivesid fromA; B always returns1 to theA.

– If A queries for corrupting a user withid, thenB asks the help from the BB signing oracle to
generate a BB-signature(s, t) for id, and returns such(s, t) as the response toA.

– If A queries messagem for a signature from a registered user withid, B cannot generate a
valid signatureσ like that in mode 1, because now he does not know the membership certificate
(s, t) for id. However he can generateσ = 〈S, R̂, U, V, Ŵ ; c; ξid, ξr, ξr1 , ξr2 , ξk, ξl, ξδ1 , ..., ξδ5〉
which can pass the verification by patching the random oracle at(m||S||R̂||U ||V ||Ŵ ||B1||...
||B8) to equalc, whereB1, ...B8 can be reconstructed based on the signature and the public
information. After this,B returns suchσ toA.

After the queries,Awill output a message-signature pair(m∗, σ∗), whereσ∗ = 〈S∗, R̂∗, U∗, V ∗, Ŵ ∗;
c∗; ξ∗id, ξ∗r , ξ∗r1

, ξ∗r2
, ξ∗k, ξ∗l , ξ∗δ1 , ..., ξ

∗
δ5
〉.

With probability ε2, the generated pair can pass the verification and the signature is opened to an
honestid∗ which means theid∗ has appeared in the registration queries but not in the corruption
queries, alsom∗ has never been queried in the signing queries history for the registered user withid,
A will win andA is successful misidentification attacker. We again take the forking technique from
Poincheval and Stern by using a different challengec̃∗ 6= c∗ for the same queries(m∗, S∗, R̂∗, U∗, V ∗,
Ŵ ∗) for the random oracle, and we can extract all the witnesses. And from the witness, we obtain
a BB message-signature pair(id∗; s∗, r∗). Note thatid∗ has not appeared in the querying history of

23

the BB signing oracle, becauseB only queries the BB signing oracle when a corruption query fromA
happens. Therefore,B can obtain a valid BB-forger〈id∗; s∗, r∗〉.
If the generated pair can pass the verification, but the signature cannot be opened to any existing
identities, thenB just terminates.

NowB randomly choose mode 1 and mode 2, and theA cannot detect that which mode he is involved, so
B has probability1

2(ε1 + ε2) to obtain a successful BB-forgery. ConsiderA is a successful misidentification
attacker, soε1 andε2 cannot be negligible at the same time. Therefore,B can obtain a successful BB-forgery
with non-negligible probability which is against the SDH assumption.

A.2.3 Proof ofTheorem 3.3

Proof. To prove the theorem above, we prove that any anonymity attacker against our Hidden-IBS in the
random oracle model can be transformed to a CPA attacker against the Linear Encryption.

LetA be an anonymity attacker as specified in the CPA-anonymity attack game. Note thatA has access
to the random oracleH. We show how to transformA into a CPA adversaryB against the Linear Encryption.

First,B is given the public key of the Linear Encryption which is〈p, g, ĝ,G, Ĝ, ψ,GT , e, u, v, w, û, v̂, ŵ〉
as described in the generation of the public parameters. NowB using this information samples all remaining
public parameters for the Hidden-IBS as in theSetup procedure, and the formed public parameters are
pub = 〈p, g, ĝ,G, Ĝ, ψ,GT , e;h, ĥ; X̂, Ŷ ;u, v, w, û, v̂, ŵ;H〉. Note thatB knows the secret key of the IM.
However he does not know the secret of the OA, i.e.ζ, η such thatuζ = vη = w (i.e. ûζ = v̂η = ŵ).

Before the simulation ofA, the BB-forgerB initializes a tableH for the simulation of the random oracle
that is employed byA. Now B starts the simulation of the adversaryA, andB is required to simulate the
oracle queries below:

For the random oracle queries,B uses the tableH: if the query is already on the table,B returns the
corresponding value; if not,B samples a random element inZp, places it in the table, and returns it.

WhenA requests its CPA-anonymity challenge by providing two users’ identities,id0, id1, and a
messagem. In turnB requests its indistinguishability challenge by providinĝM0 = ĝid0 andM̂1 = ĝid1 .
It is given a Linear encryption〈Û , V̂ , Ŵ 〉 of M̂b = ĝidb , where bitb is chosen by the Linear Encryption
challenger. The tuple〈U, V,W 〉 can be computed by using the isomorphismψ.

B can respond with a validσ = 〈S, R̂, U, V, Ŵ ; c; ξid, ξr, ξr1 , ξr2 , ξk, ξl, ξδ1 , ..., ξδ5〉. Here we need
to patch the random oracle at(m||S||R̂||U ||V ||Ŵ ||B1||...||B8) to equalc, whereB1, ..., B8 are computed
from theσ and the public information.

Finally,A outputs a bitb∗. B returnsb∗ as the answer to its own challenge. It is easy to verify thatB is
a CPA adversary for the employed Linear Encryption, which is against the DLDH assumption.

24

pub = 〈n, a0, a, b;N, G,H1,H2,H3, hash, hk; g, f1, f2, f3, f4, f5, f6〉

User Verifier
x, name; v, e, s;x1, x2

x = x1x2, ve = a0a
x+name·2`

bs

r1, r2, r3
r← ±{0, 1}`n−2

d
r← ±{0, 1}`N−2, r4 = r1x2, r5 = r2e

T1 = gr1fx1
1 , T2 = gr2v

T3 = gr3fx
1 fx2

2 fname
3 fe

4fs
5fd

6

C1 = Gd (in Z∗N2),
C2 = Hd

1 (1 + N)x+name·2`

(in Z∗N2),

C3 = abs
(
(H2H

hash(hk,C1,C2)
3)d

)
(in Z∗N2),

θx
r← ±{0, 1}λ0+λ1+µ′

θx1 , θx2

r← ±{0, 1}λ0+λ1+µ′′

θname
r← ±{0, 1}λ0+λ1+`name

θe
r← ±{0, 1}λ0+λ1+`e , θs

r← ±{0, 1}λ0+λ1+`s

θd
r← ±{0, 1}λ0+λ1+`d ,

θr1 , θr2 , θr3

r← ±{0, 1}λ0+λ1+`n−2

θr4

r← ±{0, 1}λ0+λ1+`n−2+µ′′ ,
θr5

r← ±{0, 1}λ0+λ1+`n−2+`e ,

B1 = g−θr1 f
−θx1
1 , B2 = T

−θx2
1 gθr4 fθx

B3 = T−θe
2 gθr5 aθx+θname·2`

bθs ,

B4 = g−θr3 f−θx
1 f

−θx2
2 f−θname

3 f−θe
4 f−θs

5 f−θd
6

B5 = G−θd (in Z∗N2),
B6 = H−θd

1 (1 + N)−(θx+θname·2`) (in Z∗N2),

B7 = (H2H
hash(hk,C1,C2)
3)−2θd (in Z∗N2),

T1,T2,T3,C1,C2,C3;−−−−−−−−−−−−−→
B1,...,B7

c
r← {0, 1}λ0

ξname = θname + c · name c←−−−−−−−−−−−−−
ξx = θx + c · (x− 2`′),
ξx1 = θx1 + c · (x1 − 2`′′),
ξx2 = θx2 + c · (x2 − 2`′′)
ξe = θe + c · e, ξs = θs + c · s,
ξd = θd + c · d, ξr1 = θr1 + c · r1,
ξr2 = θr2 + c · r2, ξr3 = θr3 + c · r3,

ξr4 = θr4 + c · r4, ξr5 = θr5 + c · r5

ξname,ξx,ξx1 ,ξx2 ,ξe,ξs,ξd,

−−−−−−−−−−−−−−−→
ξr1 ,...,ξr5

ξx ∈? ±{0, 1}λ0+λ1+µ′+1

ξx1 , ξx2 ∈? ±{0, 1}λ0+λ1+µ′′+1

C1, C2, C3 ∈? Z∗N2 , C2 ≤? N2/2
gξr1 f

ξx1
1 B1 =? (T1)c,

T
ξx2
1 g−ξr4 f−ξx

1 B2 =? 1
T ξe

2 g−ξr5 a−(ξx+ξname·2`)b−ξsB3 =? (a0)c,

gξr3 fξx

1 f
ξx2
2 fξname

3 fξe

4 fξs

5 fξd

6 B4 =? (T3)c

GξdB5 =? (C1)c (in Z∗N2)
Hξd

1 (1 + N)ξx+ξname·2`

B6 =? (C2)c (in Z∗N2)

(H2H
hash(hk,C1,C2)
3)2ξdB7 =? (C3)2c (in Z∗N2)

Figure 8: The hidden identity-based identification protocol with exculpability.

25

