Offline/Online Mixing

Ben Adida!* and Douglas Wikstrém?2**

! Harvard, Center for Research on Computation and Society, ben@eecs.harvard.edu
2 douglas@wikstrom.net

Abstract. We introduce an offline precomputation technique for mix-
nets that drastically reduces the amount of online computation needed.
Our method can be based on any additively homomorphic cryptosystem
and is applicable when the number of senders and the maximal bit-size
of messages are relatively small.

1 Introduction

Suppose some senders Si,...,Sn, each with input m;, want to compute the
sorted list (m.q(1), ..., My (n)) while keeping the permutation 7 secret. A trusted
party can provide this service. First, it collects all messages. Then, it shuffles
the inputs according to 7 and outputs the result. A protocol, i.e. a list of ma-
chines M, ..., M}, that emulates this service is called a miz-net, and the parties
My, ..., My are referred to as mix-servers. The assumption is that each sender
S; trusts that a certain fraction of the mix-servers Mj,..., My is honest. The
notion of a mix-net was introduced by Chaum [8].

There are numerous proposals in the literature for how to construct a secure
mix-net, but there are also several attacks. A rigorous definition of security of
a mix-net was first given by Abe and Imai [1], though they did not construct a
scheme satisfying their construction. Wikstrém [19] gives the first definition of
a universally composable (UC) mix-net, and also the first UC-secure construc-
tion. In recent work, Wikstrom [20] gives a more efficient UC-secure scheme and
Wikstrom and Groth [22] describes an adaptively secure construction.

In this paper we assume that a statically UC-secure mix-net can be con-
structed, and consider to what extent offline precomputation can be used to
reduce the amount of online computation needed during execution.

1.1 Previous Work

General techniques, e.g., precomputation of re-encryption factors, fixed base ex-
ponentiation, and simultaneous exponentiation [15], can be used to lower the
online computational complexity of most mix-nets in the literature. However, for
the known constructions, it seems difficult to use these methods to completely

* Work done while at MIT, funded by the Caltech/MIT Voting Technology Project.
** Work done while at ETH Ziirich, Department of Computer Science.

remove the large number of exponentiations needed in the proofs of shuffles used
to provide security against active attacks.

We are not aware of any previous work on mix-nets using our approach, but
it is inspired by the ground-breaking work on homomorphic election schemes
introduced by Cohen® and Fischer [9] and further developed in a long line of
papers [4,10,14].

In recent work [3], we consider a related precomputation technique with
connections to public key obfuscation. By comparison, the solution we present
here requires an individual key for each sender but is much more efficient. Thus,
the two solutions are complementary.

1.2 Our Contributions

We describe a novel precomputation technique for mix-nets based on additively
homomorphic cryptosystems such as the Paillier [18] cryptosystem. Although our
technique is universally applicable, it only reduces the online complexity in terms
of computation and communication when the number of senders and the maximal
bit-size of their messages are reasonably small. We also introduce the notion of
concatenation-friendly cryptosystems as a separate tool and prove that such
schemes can be constructed from any additively homomorphic cryptosystem.
Our technique may be of great value in some practical applications where online
computational power is a scarce resource and the result is needed quickly.

1.3 Notation

We denote the natural numbers by N, the integers by Z, the integers modulo n
by Z,, the multiplicative group modulo n by Z7, and the subgroup of squares
modulo n by S@Q,,. We interpret strings as integers in base two when convenient.
We write al|b to denote the concatenation of the two strings a and b. We use
PT and PT* to denote the set of polynomial time and non-uniform polynomial
time Turing machines respectively, and let k be the main security parameter.
We say that a function e(k) is negligible if for every constant ¢ and sufficiently
large & it holds that e(k) < k~°. We denote by Sort the algorithm that, on
input a list of strings, outputs the same strings in lexicographical order. If pk is
the public key of a cryptosystem, we denote by Mk, Cpk, and Ry the plaintext
space, the ciphertext space, and the randomness space respectively. We state our
results using the Universal Composability (UC) framework [7]. We use slightly
non-standard notation in that we use an explicit communication model, denoted
Cz, that acts as a router between the parties. We refer the reader to [7,21] for
details on this variant of the UC model.

2 Additively Homomorphic Cryptosystems

There are several homomorphic cryptosystems in the literature, but not all are
additively homomorphic. For our new scheme, we do not require the cryptosys-

3 In his later work, Cohen published under the name Benaloh.

tem to have efficient decryption for all encrypted messages. More precisely, we
use the following definitions.

Definition 1. A weak cryptosystem CS = (Kg,E,D) is a cryptosystem except
we do not require that D run in polynomial time. If there exists polynomial T'(-)
and ks(k) > 0 such that {0,1}%* C Mp, and such that Dy (Epr(m)) outputs
m in time T(k) for every (pk,sk) = Kg(1*) and m € {0,1}"s, we call CS a
Ks-cryptosystem.

Definition 2. A weak cryptosystem CS is homomorphic if for every (pk, sk) =
Kg(1%):

1. The message space Mp and the randomizer space Ry are additive abelian
groups, and the ciphertext space Cpy is a multiplicative abelian group, and
the group operations can be computed in polynomial time given pk.

2. For every m,m' € My, and r,v’" € Ryp: Ep(m,r)Epr(m/,r') = Epr(m +
m',r+7").

Definition 3. A weak homomorphic cryptosystem CS is said to be additive if,
for every (pk, sk) = Kg(1¥) the message space M,y is the additive modular group
Zy, for some integer n > 1. In this case we identify the elements of Z,, with their
bit-string representations as integers in base two.

Efficient Examples. The Paillier cryptosystem [18,11] is additively homomor-
phic, since Mpy = Zp, Ry, = Z7,, and Cypp = Z},, where n is the k-bit modulus
contained in the public key pk. Similarly, the Okamoto-Uchiyama cryptosys-
tem [17], a precursor of the Paillier cryptosystem, is additively homomorphic,
since My, = Zp, Ryp = Zy, and Cpp = Z},, where n is the x-bit modulus
contained in the public key pk.

Inefficient Examples. The Goldwasser-Micali cryptosystem [13], when based on
quadratic residues, is additively homomorphic, since My, = Zs, Rpr, = SQ,,, and
Cpr is the subset of Z7 with Jacobi symbol 1. This example may be interesting
despite its inefficiency, since the quadratic residuosity assumption is considered
a very weak assumption. The Boneh-Goh-Nissim cryptosystem [5] can be viewed
as an additively homomorphic O(k)-cryptosystem. This is both inefficient and
based on a very strong assumption, but it may still be interesting in connection
with our ideas due to its special algebraic properties.

3 The Basic Idea

Our construction is simple provided that we use an additive homomorphic k-
cryptosystem such that Nk, < ks, where N is the maximal number of senders
and K, is the maximal bit-size of submitted messages.

The idea can be described as follows. Define B; = 20~ D#m for j =1,...,N.
The offline phase produces ciphertexts for the sequence of indexed positions

where the inputs will end up, namely Bj, ..., By. Then, still in the offline phase,
these ciphertexts are re-randomized and shuffled. Each sender is assigned one
such encrypted index to use as his effective public key. The sender uses the ad-
ditive homomorphic property of the cryptosystem to exponentiate his encrypted
index to his plaintext value m;, thereby creating a ciphertext of the value m;
offset to that sender’s bit position (which remains hidden from the sender). The
resulting ciphertext is then sent to the bulletin board. When all inputs are sub-
mitted, the offline phase ends. Then, they are aggregated using homomorphic
addition. The plaintext of the resulting single ciphertext is the concatenation of
all submitted messages, with each message at its appropriate offset. The idea is
illustrated in Figure 1.

[0001 0000 0000 0000 0000 0000 0000 0001 |™ [0000 0000 0000 m; |
[0000 0001 0000 0000 [0001 0000 0000 0000 ™ — | m, 0000 0000 0000 |
| 0000 0000 0001 0000 0000 0000 00010000 ™~ 00000000 ms 0000 |
[0000 0000 0000 0001 { 0000 0001 0000 0000 |4 [0000 m4 00000000 |
IT
| m2 M4 M3 M1 |
Dar (")

(m2, ma, m3, m1)

Fig. 1. The trivial ciphertexts are shuffled to produce a new list of re-encrypted and
permuted ciphertexts. Then each sender uses its assigned ciphertext as a public key
and the result is a new list of ciphertexts, where the messages of the senders are
embedded. Finally, the mix-servers take the product of the ciphertexts and decrypt a
single ciphertext to find the input messages, but in random order.

In the remainder of the paper we relax the restriction Nk, < kg, give a more
detailed description, and prove the security of the scheme, but, before we do so
we give a more detailed description of the simple case. In the offline-phase, the
mix-servers first form the list of trivial encryptions

(Ci,...,CnN) = (Epk(B1,0), ..., Epe(Bn,0)) .

Then, they mix the above list to produce a randomly re-encrypted and permuted
list of ciphertext on the form

(C1s-++,ON) = (Epp(Br1),51);- -+, Epe (B (), 5N)) -

The sender S; is then assigned the public key pk; = C}. To send a message
m; € {0,1}"=, the sender S; chooses r; € Ry, randomly, computes the ciphertext

¢i = pki“Epr(0,7i)

and writes it on the bulletin board. It also proves knowledge of r; € Ry and
m; € {0,1}"m such that the above holds. When the submission phase is over,
the mix-servers compute the product ¢ = Hf;l ¢i- Note that we have

N N N
c= H Pk:n’ Epk (07 ri) = Epk (05 T) H Epk (B7T(’l)7 Si)mi = Epk (Z Bﬂ(i)mia rl)

=1 i=1 i=1

N
— Ep (ZB”““mi,r') By (mam - [mams)

i=1

for r = Zf\il riand r' = r + Ei\; sim;, since m; € {0,1}*=. The mix-servers
jointly compute m/|| - - - |[|m’y = Dgx(c), and output Sort(m/,...,m'y).

The Relation With Homomorphic Election Schemes. Recall that the idea behind
the homomorphic election schemes [9] mentioned in the introduction is to use
an additive homomorphic ks-cryptosystem and let a sender S; encode a vote for
party j by a ciphertext ¢; = E,x(M7), where M is an integer larger than the
number of senders N. The point is that the plaintext of the ciphertext product
1Y, ¢ is of the form Zf;ol ajM7, where a; is the number of senders that voted
for candidate number j. If C' is the number of candidates, this approach requires
that Clog N < kg, but one can increase the number of candidates by using
several ciphertexts. In some sense, our approach follows by switching the roles
played by candidates and senders.

4 Model and Definitions

We define some ideal functionalities and the notion of concatenation-friendly
cryptosystems to allow us to state our results more easily.

4.1 The Ideal Bulletin Board

We assume the existence of an ideal authenticated bulletin board. Each party
can write to the bulletin board, nobody can erase anything from the bulletin
board, and the messages that appear on the bulletin board are indexed in the
order they appear We give a definition in Appendix B.

4.2 The Ideal Mix-Net

We use an ideal mix-net functionality similar to the one in [19]. The only essential
difference is that we explicitly allow the adversary to prohibit senders from
submitting an input. This makes the ideal functionality more realistic.

Functionality 1 (Mix-Net). The ideal functionality for a mix-net, Fyn, run-
ning with mix-servers Mj,..., M}, senders Si,...,Sn, and ideal adversary S
proceeds as follows

1. Initialize a list L = @, a database D, a counter ¢ = 0, and set Js =) and
Ju = 0.
2. Repeatedly wait for inputs
— Upon receipt of (S;,Send,m;) with m; € {0,1}*= and i ¢ Js from
Cz, store this tuple in D under the index ¢, set ¢ + ¢+ 1, and hand
(S, Si, Input,c) to Cz.
— Upon receipt of (M, Run) from Cz, store (M;,Run) in D under the index
¢, set ¢ < ¢+ 1, and hand (S, M;, Input,c) to Cz.
— Upon receipt of (S, AcceptInput,c) such that something is stored under
the index ¢ in D do
(a) If (S;,Send, m;) with i & Jg is stored under ¢, then append m; to L,
set Jg « Jg U {i}, and hand (S, S;, Send) to Cz.
(b) If (M;,Run) is stored under ¢, then set Jar + Jar U {j}. If |Jar| >
k/2, then sort the list L lexicographically to form a list L', hand
((8, M;,0utput, L'), {(M;, Output, L') }¥_) to Cz and ignore further
messages. Otherwise, hand Cz the list (S, Mj, Run).

4.3 The Ideal Mixer

Since our focus in this paper is to minimize the online work needed by the mix-
servers and not how to construct a secure mix-net from scratch, we assume the
existence of a powerful ideal functionality that allows us to invoke the different
phases of a mix-net without going into details. We use this functionality during
the offline phase only. Although it is essentially equivalent to an ideal mix-net, we
call it a mixer to distinguish it from the ideal mix-net above, and we parameterize
it by a cryptosystem. The functionality outputs a public key, waits for a list of
ciphertexts to mix, and then finally waits for ciphertexts to decrypt.

Functionality 2 (CS-Mixer). The ideal functionality for a CS-mixer, Fixer,
running with mix-servers My, ..., My, senders Si,...,Sn, and ideal adversary
S proceeds as follows

1. Set Jyr = 0, compute (pk, sk) = Kg(1*), and hand ((S,PublicKey, pk),
{(M;}, PublicKey, pk)}5_,) to Cz.

2. Wait for an input on the form (Mj,Mix, L;) with j ¢ Jy and set Jyr
I U {5}

(a) If there is an L = (c;)Y, such that L; = L for more than k/2 dis-
tinct j, where ¢; € Cpy, choose r; € Ry, randomly and compute L' =
(ex(1)Epk(0,71), - - -, cx(n)Epk(0,7n)) for a random m € Xv. Then hand
((8,Mixed, L), {(M;,Mixed, L' }¥_)) to Cz, and go to the next step.

(b) Otherwise hand (S, Mj,Mix, L;) to Cz and wait for another input.

3. Repeatedly wait for messages. Upon receiving (M}, Decrypt, ¢) check if ¢ has
been received. If so set J. < J. U {j}. Otherwise initialize J. = §. If |J.| >
k/2, then hand ((S,Decrypted,c, Dy(c)), {(M;,Decrypted,c, Dy (c))}r ;)
to Cz, and otherwise hand (S, M;, Decrypt,c) to Cz.

Proving that this functionality can be realized in an efficient and UC-secure
way is beyond the scope of this paper. It can be achieved following [20, 22].

4.4 Ideal Zero-Knowledge Proof of Knowledge of Plaintexts

We assume the existence of an ideal zero-knowledge proof of knowledge for cor-
rect encryption. The corresponding relation is defined below.

Definition 4 (Plaintext Knowledge). Define the relation Renc as consisting
of the pairs ((pk, pk',c), (m,r)) such that ¢ = (pk')™Ep(0,7) and m € {0,1}"m.

Functionality 3 (Zero-Knowledge Proof of Knowledge). Let £ be a lan-
guage given by a binary relation R. The ideal zero-knowledge proof of knowledge
functionality FJ of a witness w to an element z € £, running with provers
S1,...,Sn, and verifiers My, ..., My, proceeds as follows.

1. Upon receipt of (S;, Prover, z,w) from Cz, store w under the tag (S;, z), and
hand (S, S;,Prover, z, R(x,w)) to Cz. Ignore further messages from S;.

2. Upon receipt of (M}, Question, S;,z) from Cz, if Jg, , is not initialized set
Js;,e = 0 and otherwise Jg; ; + Js;,; U{j}. Let w be the string stored under
the tag (S;, z) (the empty string if nothing is stored). If |Js; ;| = k, then hand
((S, Mj,Verifier, S, z, R(z,w)), {(M;,Verifier, S;, z, R(z,w))}¥_,) to
Cz and otherwise (S, M, Question, S;,).

Note that the functionality synchronizes the response. For cryptosystems
such as Paillier [18] and ElGamal [12] with messages encoded in the exponent,
the above functionality can be efficiently realized using the Naor and Yung [16]
double ciphertext trick and an efficient proof of membership in an interval [6].

4.5 Concatenation Friendly Cryptosystems

To simplify the exposition, we introduce the notion of concatenation-friendly
cryptosystems. Informally, a concatenation-friendly cryptosystem allows con-
catenation of plaintexts under the cover of encryption. We show that this feature
can be obtained from any additively homomorphic ks-cryptosystem for an arbi-
trary ks > 0.

Definition 5. Let CS = (Kg,E,D) be a Nks-cryptosystem. We say that CS
is (N, km)-concatenation friendly if there exists Shift, Exp € PT, such that for
every £ € N and every (pk, sk) = Kg(1%):

1. For every m € {0,1}"™ we have Dk (Exp,;(Epr(0),m)) = 0.
2. For every 1 <t < N and m, € {0,1}"m:

D or, (Exp, 1, (Epic (Shift (), me)) = 00~ Do [0V =8)rm
3. For every my € {0,1}07D%n m_ € {0,1}*, m, € {0,1}(N=0)rm:
Dk (Ep (|07 || Epie (04 D5 |Im [0V 9%)) = iy [|me||m,

We abuse notation and write ¢™ instead of Exp,.(c,m), and also drop the
subscript pk from Shift, (-). We stress that, in general, the operation computed
by Exp is not the standard exponentiation operator.

Proposition 1. Let N, k., and ks > 0 be polynomially bounded. If there exists
a polynomially indistinguishable additively homomorphic ks-cryptosystem, then
there exists a (N, kn)-concatenation friendly and polynomially indistinguishable
N Ko, -cryptosystem.

Proof. Let CS*" = (Kg®", E2", D2") be a polynomially indistinguishable additively
homomorphic ks-cryptosystem for some polynomial ks(k) > 0. Define Kg equal
to Kg®".

The idea is to “pack” the bits of a message into a list of ciphertexts in such
a way that we can “concatenate” messages from {0,1}*™ under encryption as
required by the definition. We assume that an integer 0 < t,, < Kk has been fixed
and define t, = [k, /tm]. The integer ¢, decides into how many pieces we divide
a message m € {0,1}"™, and t,, decides how many bits we have in each such
piece. Note that we may choose a value of t,, lower than strictly necessary, so
that, later, we can optimize the number of bits encrypted under CS*" depending
on the specific values of NV, k,,, and k,, without breaking the symmetry required
for concatenation under the cover of encryption.

On input pk and m € {0,1}V*= the encryption algorithm E first writes
m = mql|...||mny with m; € {0,1}*~. Then it writes m; = mq || ...||my, ;
with m; ; € {0,1}t=. This gives a ¢, x N-matrix

mia1 M1z -+ M1,N

ma1 M2 -+ M2N
m =

Mg, 1 My, 2 Mg, N

where the jth column corresponds to m;. Then it defines

Mi ;= mg el - - - 1 jtas 60

for j =0,...,th, where t)s is chosen maximal under the restriction ¢ty < ks,
and ty, = N/ty — 1. Finally, the algorithm chooses r; ; € R} randomly and
defines .y
h L]
c= (E;k(Mi,jvri,j))i:1:\;’:0 .
The decryption algorithm D takes as input a secret key sk and a ciphertext
¢ = (¢;,;) and proceeds as follows. It first computes

(Mi;) = (D3k(eis)

fori=1,...,t,,j=0,...,t), and interprets M; ; as mj je,+1| == - || jenr+¢0s
by truncating the string in the natural way. Then, it outputs the concatenation
m of the columns in the matrix m = (m;,;), where i ranges over {1,...,¢,} and
I ranges over {1,...,N}.

The encryption and decryption algorithms obviously run in polynomial time,
since each individual operation does, and it is easy to see that an encrypted
message is always recovered. Thus, CS = (Kg, E,D) is a Nk,-cryptosystem.

The polynomial indistinguishability of the scheme follows by a standard hy-
brid argument, since a ciphertext essentially consists of a polynomial length list
of ciphertexts of a polynomially indistinguishable cryptosystem [13].

It remains to show that the scheme is (N, k,)-concatenation friendly. We de-
fine multiplication component-wise, i.e., cc’ = (ci,;)(c; ;) = (cijc; ;). The output
of Shift(t) is defined as the concatenation of the columns in the ¢, x N-matrix

(2:,1) where z;; = 0 for all elements except that 214 = 204 = ... = 2,4 = L.
In other words the tth column consists of ones and all other elements are zero.
Finally, we define the Exp algorithm as follows. We write m = (mq,...,my,)

with m; € {0,1}t™ as above. Then we define

c™ = (c:n]) .

Consider now ¢ and m, as in Definition 5, and denote by z = (z;;) = Shift(¢),
and define Z; j = 2i jipr41ll - - - |20 jens+tae fOr 5 =0,...,t,,. We have

Epi(Shift(t)™ = (3% (Zi;)) M)™ = (Eh(Zs)™) ™

i=1,j=0 i=1,j=0
J\ ot
— (B it [itmin)™) 0
If we write E?,};C(Zi,th+1|| Nzt ta)™ = Eap'}c(zé,th+l|| o2 g ttar), W
may conclude that z; , = 0 for all ¢ and [except that 2; , =m; fori=1,...,¢,.In

other words, the second requirement is satisfied. Note that if Shift(¢) is replaced
by 0 above, we see in a similar way that the first requirement is satisfied.

Consider now my, m., and m, as in Definition 5 and write m = my||0%™ ||m,
and m' = 0D ||m,[|0(N0Fm . We have

ot et
Epr(m)Ep(m') = (EpL(Mi ;)2 o (EpL (M)21 M

i=1,j=0
tot]
= (Epk(mi,thH” o ||mi,th+tM)Epk (mg,th+1|| o ||m;',th+tM))i:’1?§:0 .
From the additive homomorphism of CS*" we conclude that
[N R TIY | | TP TN | N (P | P 7 P

= Epk (M, jenr+1ll - - - 1M jenr+tar)

with m;; = m; for I # t and m;; = m;.,l otherwise. Thus, the third requirement
is satisfied.

Finally, note that it is an easy task to optimize the value of ¢,, with regards
to minimizing the number of individual ciphertexts.

5 Detailed Protocol and Security Analysis

We are now ready to describe the details of our scheme and prove its security.

Protocol 1 (Online/Offline Mix-Net). The online/offline mix-net ﬂﬁ,{ﬁ ex-
ecuting with senders Sy, ..., SN, mix-servers My, ..., M}, and ideal adversary S
proceeds as follows.

SENDER S;

1. Wait until (M, SenderPublicKeys, (pk;)Y ;) appears on Fgp for more than
k/2 distinct j.

2. Wait for an input (Send,m;) with m; € {0,1}"". Then choose r; € Ry

randomly and compute ¢; = pk; “E,;(0,7;).

Hand (Prover, (pk, pk;, i), (mqi,7:)) to Fze.

4. Hand (Send, Ci) to FBB.

@

MIx-SERVER M;
Offline Phase
1. Wait for a message (PublicKey, pk) from Frixer-
2. Form the list L = (Epx(Shift(1),0),..., Epx(Shift(N),0). Hand (Mix, L) to
Fmixer, and wait until it returns (Mixed, (pk;)Y,).
3. Hand (Write, SenderPublicKeys, (pk;)Y,) to Fap.
4. Initialize Jy; = 0 and repeatedly wait for new inputs or the next new message
on .7:]3]3.
— On input (Run), hand (Write,Run) to Fgg.
— If (M;,Run) appears on Fgg, then set Jas < Jar U {j}. If |Jns| > /2,
go to Step 5.
— If (S,,Send, ¢,) appears on Fgp for v ¢ Jg then do:
(a) Set Jg < Js U {v}.
(b) Hand (Question, S,, (pk, pk.,,cy)) to }'%zK and wait for a reply
(Verifier, S,, (pk, pk.,,c,),by) from f%%(

Online Phase

5. Let J; C Jg be the set of v such that b, = 1. Compute ¢ = H'YEJ'S Cy,
hand (Decrypt,c) t0 Fmixer, and wait until a message (Decrypted,c,m) is
returned by Fnixer-

6. Write m = my|| ... ||mn, where m; € {0,1}*, set m' = (my,...,my), and
return (Output, Sort(m')).

5.1 Online Complexity

The complexity of our scheme depends heavily on the application, the cryptosys-
tem used, the number of parties N and the maximal bit-size k,, of messages.
The setting where our techniques reduce the online complexity the most is when
the verification of the submissions can be considered part of the offline phase and
Nk, < O(k). For this case, the online complexity both in terms of computation
and communication between the mix-servers is drastically reduced, as illustrated
by the following example.

10

The most natural practical set-up is to use the Paillier cryptosystem [18]
with Nk, < O(k). In this case, the online complexity consists of performing
O(N) multiplications and O(1) joint decryptions. This can be done using O(k)
exponentiations, with a small hidden constant. The fastest mix-net based on
the Paillier cryptosystem requires at least (2(kN) exponentiations with small
constants with precomputation. Thus, we get a speed-up on the order of N.

We have chosen to consider the submission phase as part of the offline phase.
If this is not reasonable, then our techniques are still applicable, but they do
not reduce the complexity as much. In the Paillier example, this would give a
speedup on the order of k. We expect most applications with Nk < O(k) to be
somewhere between these to extremes.

5.2 Security Analysis

We denote by M; the set of static adversaries that corrupt at most [mix-servers
and arbitrarily many senders. The following proposition captures the security
properties of the protocol.

Proposition 2. Let CS be a concatenation-friendly and polynomially indistin-

guishable cryptosystem. Then wﬁ,{ﬁ securely realizes Fyn with respect to My,

adversaries in the (fBB,f%ng"“,fmixer)—hybrid model.

The proof, given in Appendix A, is a simplified version of the proof in [20].

6 Conclusion

A mix-net allows any polynomial number N of senders to send any of exponen-
tially many possible messages, i.e, the only restriction is that Nk, is polynomial
in k, where K, is the maximal bit-size of submitted messages.

The homomorphic election schemes may be viewed as a mix-net with the
restriction that 2mlog N < O(k), i.e., each sender can send one out of very
few messages, but there can be many senders. The advantage of this is that
homomorphic election schemes are much more efficient than general mix-nets.

In this paper we have considered the dual restriction k,, N < O(k), i.e., there
can be few senders, but each sender can send one out of many messages. We have
shown that, in this case also, there exists a solution that is much more efficient
than a general mix-net in the online phase.

References

1. M. Abe and H. Imai. Flaws in some robust optimistic mix-nets. In Australasian
Conference on Information Security and Privacy — ACISP 2003, volume 2727 of
Lecture Notes in Computer Science, pages 39-50. Springer Verlag, 2003.

2. B. Adida and D. Wikstrom. How to shuffle in public. Cryptology ePrint Archive,
Report 2005/394, 2005. http://eprint.iacr.org/.

11

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. B. Adida and D. Wikstrém. How to shuffle in public. In 4th Theory of Cryptography

Conference (TCC), volume 4392 of Lecture Notes in Computer Science, pages 555—
574. Springer Verlag, 2007. Accepted for publication at Theory of Cryptography
Conference 2007 (full version [2]).

J. Benaloh and D. Tuinstra. Receipt-free secret-ballot elections. In 26th ACM
Symposium on the Theory of Computing (STOC), pages 544-553. ACM Press,
1994.

D. Boneh, Eu-Jin Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts.
In 2nd Theory of Cryptography Conference (T'CC), volume 3378 of LNCS, pages
325-342. Springer Verlag, 2005.

F. Boudot. Efficient proofs that a committed number lies in an interval. In Ad-
vances in Cryptology — Eurocrypt 2000, volume 1807 of Lecture Notes in Computer
Science, pages 431-444. Springer Verlag, 2000.

R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd IEEE Symposium on Foundations of Computer Science (FOCS),
pages 136-145. IEEE Computer Society Press, 2001. (Full version at Cryptology
ePrint Archive, Report 2000/067, http://eprint.iacr.org, October, 2001.).

D. Chaum. Untraceable electronic mail, return addresses and digital pseudo-nyms.
Communications of the ACM, 24(2):84-88, 1981.

J. Cohen and M. Fischer. A robust and verifiable cryptographically secure election
scheme. In 28th IEEE Symposium on Foundations of Computer Science (FOCS),
pages 372-382. IEEE Computer Society Press, 1985.

R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally efficient
multi-authority election scheme. In Advances in Cryptology — Eurocrypt ’97, vol-
ume 1233 of Lecture Notes in Computer Science, pages 103-118. Springer Verlag,
1997.

I. Damgard and M. Jurik. A generalisation, a simplification and some applications
of paillier’s probabilistic public-key system. In Public Key Cryptography — PKC
2001, volume 1992 of Lecture Notes in Computer Science, pages 119-136. Springer
Verlag, 2001.

T. El Gamal. A public key cryptosystem and a signiture scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31(4):469-472, 1985.

S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28(2):270-299, 1984.

J. Katz, S. Myers, and R. Ostrovsky. Cryptographic counters and applications to
electronic voting. In Advances in Cryptology — Eurocrypt 2001, volume 2045 of
Lecture Notes in Computer Science, pages 78-92. Springer Verlag, 2001.

A. Menezes, P. Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1997.

M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen
ciphertext attack. In 22th ACM Symposium on the Theory of Computing (STOC),
pages 427-437. ACM Press, 1990.

T. Okamoto and S. Uchiyama. A new public-key cryptosystem as secure as factor-
ing. In Advances in Cryptology — Eurocrypt ’98, volume 1403 of Lecture Notes in
Computer Science, pages 308-318. Springer Verlag, 1998.

P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Advances in Cryptology — Eurocrypt ’99, volume 1592 of Lecture Notes in Com-
puter Science, pages 223-238. Springer Verlag, 1999.

D. Wikstrom. A universally composable mix-net. In 1st Theory of Cryptography
Conference (TCC), volume 2951 of Lecture Notes in Computer Science, pages 315—
335. Springer Verlag, 2004.

12

20. D. Wikstrom. A sender verifiable mix-net and a new proof of a shuffle. In Advances
in Cryptology — Asiacrypt 2005, volume 3788 of Lecture Notes in Computer Science,
pages 273-292. Springer Verlag, 2005. (Full version [21]).

21. D. Wikstrom. A sender verifiable mix-net and a new proof of a shuffle. Cryptology
ePrint Archive, Report 2004/137, 2005. http://eprint.iacr.org/.

22. D. Wikstrom and J. Groth. An adaptively secure mix-net without erasures.
In 38rdInternational Colloguium on Automata, Languages and Programming
(ICALP), volume 4052 of Lecture Notes in Computer Science, pages 276—287.
Springer Verlag, 2006.

A Omitted Proofs

Proof (Proposition 2). The proof is a simplified version of the proof in [20] and
proceeds by contradiction. We first describe an ideal adversary parameterized
by a hybrid adversary and then show that the resulting ideal model is indistin-
guishable from the hybrid model in which the adversary is executing.

The Ideal Adversary. Denote by A the hybrid adversary. The ideal adversary
S = S(A) runs the hybrid adversary as a black-box. The simplest way to describe
it is to assume that it simulates all parties in an execution of the hybrid model
except those corrupted by A. Denote by Ips and Is the indices of the corrupted
mix-servers and senders respectively. The honest mix-servers M; for j & Iu,
the honest senders S; for ¢ € Is, and the ideal functionalities Fg, Fmixer, and
F &, and the environment Z' are all simulated by S. Precisely how they are
simulated is described below. We stress that Z is the environment that tries to
distinguish the two models, whereas Z' is the environment simulated by S.

In the ideal model the ideal adversary S corrupts the dummy mix-servers
Mj for j € Iy; and the dummy senders S; fori € Ig, but it has no control over
the honest dummy mix-servers M ; for j & Ips or the honest dummy senders S;
for 4 g Is.

We now consider how S performs its simulation.

— Forwarding messages. Let j € I). Any message sent to Z' by M; is
forwarded to Z by M ;. Conversely, any message received by M ; is forwarded
to M; by Z'. Similarly, any message sent to Z’ by A is forwarded to Z by
S and any message received by S from Z is forwarded to A by Z'.

— Honest mix-servers. M; for j ¢ I is simulated honestly. However, when

S receives (Mj, Input,e) from Fyy it inputs (Run) to the simulated M.
When Fgp receives (Write, M;,Run) it interrupts the simulation of Fgs,
stores the value es of the second index in Fgp together with e, i.e., it stores
(Mj,e,es2), and continues the simulation of Fgpg.
Recall that A and S decides when the output of ideal functionalities are
delivered to the honest mix-servers. Without going into details we assume
that S instructs Jun to deliver an output to M; when A instructs Fmixer
to deliver the plaintext of the cryptotext submitted for decryption by the
mix-servers.

13

— Corrupt mix-servers. M; for j € I is controlled by the adversary, but
the corresponding corrupted dummy mix-server M]- must be behave in a
way that is consistent with M;. When Fggp receives (Write, M;,Run) the
simulation of Fgp is interrupted and J\7Ij sends (Run) to Fun. When S
receives (]\7[;, Input, e) from Fun it stores (M, e, e2), where e is the value
of the second index in the simulation of Fgg. Then the simulation of Fgg is
continued.

— Both honest and corrupt mix-servers. When Fgg is about to hand
(A,AcceptInput,e’) to Cz the simulation is interrupted. If (Mj,e,e') is
stored, then it is deleted and S hands (AcceptInput,e) to Fyn and waits
until it receives either (M, Run) or (M;,0utput, L') before it continues the
simulation of Fgp.

— Honest senders. S; for i € Ig is not simulated honestly. When S receives
(S;, Input,e) from Fyn it instructs S; to use 0 as its message and it is
instructed to replace the witness (m;,r;) in its message to ffﬁ“ by L. On
the other hand S instructs Foe to behave as if this was a valid witness.
When Fpg receives (Write, S;, Send, ¢;) it interrupts the simulation of Fgg
and stores (S;,¢;,e,es), where es is the current value of the second index
in Fgg. Then the simulation of Fgg is continued. Before the functionality
Freee hands ((S, Mj,Verifier, S;, (pk, pk;,c;),1),...) to Cz the simulation
is interrupted. If (S;, ¢;, e, e2) is stored, then this tuple is deleted and S hands
(AcceptInput,e) to Fun and waits until it receives (S;,Send). Then the
simulation of M is continued. Note that if some honest mix-server accepts
¢; as a valid input, then all honest mix-servers will eventually do so as well.

— Corrupt senders. S; for i € Ig is controlled by the adversary A, but we
must make sure that whenever a cryptotext is accepted in the simulated
hybrid model, the corresponding plaintext is input to Fyn by S; in the ideal
model. Before .7-'%%(hands ((S, Mj,Verifier, S;, (pk, pk;,ci),1),...) to Cz
the simulation is interrupted and S; is instructed to hand (Send,m;) to
Fun- When it returns (S, Input, €), then S immediately hands the message
(AcceptInput,e) to Fyn. When it returns (S;, Send) the simulation of Fee™
is continued. Note that Fyn receives and accepts as input the plaintext m;
of a corrupt sender if and only if m; will be part of the output of the honest
mix-servers in the simulation (if they give an output at all).

— Simulation of F,ixer- Note that now the ciphertexts of honest parties do
not contain the correct messages m;, but instead 0. This flaw in the simu-
lation is corrected by modifying Frixer- Recall that each sender is assigned
a public key pk;, where pk; = Epi(Shift(r~'(¢))) for some random permuta-
tion m € Y. The re-encryption and permutation needed to form (pk;)Y,
is performed honestly except that if ¢ ¢ Ig, then pk; is replaced by E,(0),
i.e., an encryption of zero. Note that the secret key is not needed during this
phase.

Decryption is also simulated without using the secret key. When it is about
to compute Dy (c), where ¢ is a cryptotext submitted for decryption by more
than k/2 mix-servers, it behaves as follows. Suppose Fyn outputs the list of

14

messages (mj, ..., my,). S appends zero-messages My, = My g = -.. =
m/y = 0 to this list. Then it chooses a random permutation ¢ € Xy under
the restriction that (i) = = (i) for all i € Is. Finally, it replaces Dy (c)
in its simulation by (mipu)v .. .,m&)(N)). To see that the above simulation
always can be performed, note that if F,ixer has received ¢ from more than
k/2 mix-servers, then Fyn has received (Run) from more than k/2 dummy
mix-servers, and already output the list of messages submitted by dummy
senders.

— Simulation of Fsp and F 5. These are simulated as described above.

Analysis of the Ideal Adversary. Our goal is to show that the distribution of
the environment when interacting with the ideal model is negligibly close to its
distribution when interacting with the hybrid model.

We first make two simple observations.

1. The message used by an honest sender S; to form its ciphertext ¢; using its
assigned public key pk; is always zero. It is easy to see that changing this
such that the correct value m; is used does not change the distribution of the
output of the environment, since the distribution of ¢; does not change by
this modification. This follows, since also pk; is an encryption of zero. Given
this modification we may also assume that }—%2}{ is simulated completely
honestly, since it no longer needs to lie on the behalf of honest senders, i.e.,
we may assume that S; uses a valid witness.

2. We may assume that ¢ = 7. This follows, since the distribution of (pk;)N,
is independent of the choice of 7 provided that = (i) = 9 (i) for ¢ € Is.

The proposition now follows from the indistinguishability of the underlying
cryptosystem by a standard hybrid argument. Denote by 7; a simulation of the
ideal model with the above two modifications, except that in the simulation of
Fmixer the public key pk; is computed honestly also for ¢ € Is provided that
i < [. By inspection we see that the distribution of the output of Ty is identical
to the distribution of the output of the environment Z in the hybrid model.

Thus, if the proposition is false then there exists an adversary 4 and an
environment Z such that |Pr[Ty = 1] — Pr[Tx = 1]| is non-negligible. A hybrid
argument implies that there exists some fixed [such that | Pr[T; = 1] —Pr[T}41 =
1]| is non-negligible.

Denote by A’ the adversary in an indistinguishability experiment executed
with the cryptosystem CS. It accepts a public key pk as input. Then it hands
(0, Shift(l + 1)) to the experiment and is given a cryptotext pk;,, such that
Dok (pk;y 1) equal either O or Shift(l + 1). Then it simulates T; except that
it uses the value of pk;,, instead of generating it. By construction, Pr[A’ =
1Dk (pkyy,) = 0] = Pr[T} = 1] and Pr[A" = 1|Dg(pk;,,) = Shift(l +1)] =
Pr[Ti4+1 = 1]. It follows that the indistinguishability of the cryptosystem is bro-
ken, and the proposition is true.

15

B The Ideal Bulletin Board

Functionality 4 (Bulletin Board). The ideal bulletin board functionality,
FBB, running with parties Py, ..., P, and ideal adversary S proceeds as follows.
Fsp holds two databases D; and D, indexed on integers. Initialize two counters
¢t =0and ¢ =0.

— Upon receiving (P;,Write, m;), m; € {0,1}*, from Cz, store (P;, m;) in D2 by
the index ¢ in the database, set ca < c2 + 1, and hand (S, Input, ¢2, P;, m;)
to CI.

— Upon receiving (S, AcceptInput, ¢) from Cz check if a tuple (P;, m;) is stored
in the database Dy under ¢. If so, then store (P;,m;) in D; under the index
c1, set ¢; « ¢; + 1, and hand (S, AcceptInput,c) to Cz.

— Upon receiving (P;,Read, ¢) from Cz check if a tuple (P;,m;) is stored in the
database D; under c. If so hand ((S, Pj,Read, ¢, P;, m), (P;,Read, ¢, P;, m;))
to Cz. If not, hand ((S, Pj, NoRead, ¢), (P;, NoRead, ¢)) to Cz.

16

