
TOWARDS GENERATING SECURE KEYS FOR BRAID

CRYPTOGRAPHY

KI HYOUNG KO, JANG WON LEE, AND TONY THOMAS

Abstract. Braid cryptosystem was proposed in CRYPTO 2000 as an alter-
nate public-key cryptosystem. The security of this system is based upon the
conjugacy problem in braid groups. Since then, there have been several at-
tempts to break the braid cryptosystem by solving the conjugacy problem in
braid groups. In this paper, we first survey all the major attacks on the braid
cryptosystem and conclude that the attacks were successful because the cur-
rent ways of random key generation almost always result in weaker instances of
the conjugacy problem. We then propose several alternate ways of generating
hard instances of the conjugacy problem for use braid cryptography.

1. Introduction

The braid group cryptography was born with the pioneering work of Anshel et al.
in 1999 [1] and Ko et al. in 2000 [20]. Since then, the braid groups have fascinated
many cryptologists with its hard problems and efficient algorithms for parameter
generation and group operations [5]. In particular, the conjugacy problem first
introduced in the 1920s, with no polynomial-time algorithm known till date (for
braid groups with index n ≥ 5), have been used in designing many public-key
cryptographic protocols [23], [7]. This has then accelerated the attempts to solve the
conjugacy problem in braid groups to break the security of the braid cryptosystems.

In this paper, we first survey and analyze all the well known solutions to the
conjugacy and related problems in braid groups and conclude that the attacks
on braid cryptosystems were successful because the current ways of random key
generation almost always result in weaker instances of the conjugacy problem. We
then propose several ways of generating hard instances of the conjugacy problem
for use braid cryptography. In Section 2, we briefly describe the braid groups, braid
cryptosystems and survey all the well known solutions to the conjugacy and related
problems in braid groups. In Section 3, we analyze the current ways of random key
generation for braid cryptography. In Section 4, we propose several ways for the
generation of secure keys for braid cryptography. The paper concludes with some
remarks in Section 5.

2. Braid Groups and the Conjugacy Problem

In this section, we give a brief review of the braid groups, braid cryptography
and known solutions to the conjugacy and related problems. A good introduction
to the braid groups is [2] and survey articles to braid cryptography are [23], [7].

2.1. Braid Groups. A braid is obtained by laying down a number of parallel
strands and intertwining them so that they run in the same direction. The number
of strands is called the braid index. Braids have the following geometric interpreta-
tion: an n-braid where (n > 0) is a set of disjoint n strands all of which are attached
to two horizontal bars at the top and bottom such that each strand always heads
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downwards as one moves along the strand from top to bottom. Two braids are
equivalent if one can be deformed to the other continuously in the set of braids.

Let Bn be the set of all n-braids. Bn has a natural group structure. Each Bn is
an infinite torsion-free noncommutative group and its elements are called n-braids.
The multiplication ab of two braids a and b is the braid obtained by positioning a
on the top of b. The identity e is the braid consisting of n straight vertical strands
and the inverse of a is the reflection of a with respect to a horizontal line.

Any braid can be decomposed as a product of simple braids. One type of simple
braids are the Artin generators σi, that have a single crossing between the ith strand
and the (i + 1)th strand with the convention that the ith strand crosses under the
(i + 1)th strand.

For each integer n ≥ 2, the n-braid group Bn has the Artin presentation by
generators σ1, σ2, . . . , σn−1 with relations,

σiσj = σjσi, where |i − j| ≥ 2, and

σiσi+1σi = σi+1σiσi+1, for 1 ≤ i ≤ n − 2.

Let Σn be the symmetric group on {1, . . . , n}. There is a natural homomorphism,
p : Bn → Σn, under which the generator σi of Bn maps to the transposition (i, i+1)
of Σn.

By B+
n , we denote the submonoid of Bn generated by {σ1, . . . , σn−1}. Elements

of B+
n are called the positive braids. A positive braid is characterized by the fact

that at each crossing the strand going from left to right undercrosses the strand
going from right to left.

A partial order ≺ on B+
n is given by saying that x ≺ y for x, y ∈ B+

n , if x is
a (left) subword of y, that is, xz = y for some z ∈ B+

n . Given x, y ∈ B+
n , the

(left) join x ∨ y of x and y is the minimal element with respect to ≺ among all z’s
satisfying that x ≺ z and y ≺ z, and the (left) meet x∧ y of x and y is the maximal
element with respect to ≺ among all z’s satisfying that z ≺ x and z ≺ y. One can
similarly define the right join and right meet.

The fundamental braid ∆ = (σ1 . . . σn−1)(σ1 . . . σn−2) . . . (σ1σ2)σ1 plays an im-
portant role in the study of Bn. Since, it represents a half twist as a geometric
braid, x∆ = ∆τ(x) for any braid where τ denotes the involution of Bn sending
σ1 to σn−i. It also has the property that σi ≺ ∆ for each i = 1, . . . , n − 1. For
Sn = {x ∈ B+

n | x ≺ ∆}, the restriction p : Sn → Σn becomes a 1 : 1 correspon-
dence and an element in Sn is called a permutation braid.

The product ab of a permutation braid a and a positive braid b is left weighted,
written a⌈b, if (a−1∆) ∧ b = e, where e denotes the trivial braid (empty word).
Each braid x ∈ Bn can be uniquely written as,

x = ∆ux1x2 . . . xk

where for each i = 1, . . . , k, xi ∈ Sn r {e, ∆} and xi⌈xi+1. This decomposition is
called the left weighted form of x. The weighted form provides a solution to the
word problem in Bn and the integers u, u + k and k are well-defined and are called
the infimum, supremum and the canonical length of x, denoted by inf(x), sup(x)
and ℓ(x) respectively.

2.2. Conjugacy Problem and Mathematical Solutions. The conjugacy prob-
lem asks whether given two braids in Bn are conjugate each other. The first algo-
rithmic solution to the conjugacy problem was due to Garside [12]. His solution
and all other mathematical solutions use some finite invariant subsets of conjugacy
classes as follows:

For x ∈ Bn, let C(x) = {a−1xa|a ∈ Bn} denote the conjugacy class of x. And
let I(x) be a subset of C(x) satisfying the following properties:
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(1) For any x ∈ Bn, the set I(x) ⊂ C(x) is finite, non-empty and only depends
on the conjugacy class of x. Two elements x, y ∈ Bn are conjugate if and
only if I(x) = I(y), or, equivalently, if and only if I(x) ∩ I(y) 6= ∅.

(2) Given any non-empty subset I of I(x), there is a finite process which either
proves that I = I(x) or produces an element z ∈ I and an element c ∈ Bn

such that c−1zc ∈ I(x) \ I.

Thus, given any x, y ∈ Bn, the solution to the conjugacy problem involves the
following steps:

(1) Find representatives x̃ ∈ I(x) and ỹ ∈ I(y);
(2) Repeatedly use the process (2) from above to construct new elements of

I(x) until ỹ is found as an element of I(x).

2.2.1. Invariant Subsets of a Conjugacy Class. Let infc(x) and supc(x) denote the
maximum of infimums and the minimum of supremums of all braids in the conjugacy
class C(x) of x. Given x = ∆ux1x2 . . . xk, in its left canonical form, there are two
useful conjugations of x called the cycling c(x) and the decycling d(x) defined as
follows:

c(x) = ∆ux2 . . . xkτu(x1) = τu(H(x)−1)xτu(H(x)),

d(x) = ∆uτu(xk)x1 . . . xk−1 = T (x)xT (x)−1.

A braid x is rigid if xk⌈τ
u(x1) for its weighted form x = ∆ux1x2 . . . xk. The summit

set

SS(x) = {y ∈ C(x) | inf(y) = infc(x)}

is finite and was introduced by Garside in [12] to solve the conjugacy problem in
Bn for the first time. The super summit set

SSS(x) = {y ∈ C(x) | inf(y) = infc(x) and sup(y) = supc(x)}

was introduced by El-Rifai and Morton in [8] to improve Garside’s solution. The
reduced super summit set

RSSS(x) = {y ∈ C(x) | cM (y) = y = dN (y) for some positive integers M, N}

was considered by Lee in his Ph.D. thesis [26] to give a polynomial-time solution
to the conjugacy problem in B4. Finally the ultra summit set

USS(x) = {y ∈ SSS(x) | cM (y) = y for some positive integer M}

was used by Gebhardt in [13] to propose a new algorithm together with experimental
data demonstrating the efficiency of his algorithm.

Then we have

SS(x) ⊃ SSS(x) ⊃ USS(x) ⊃ RSSS(x).

These inclusions are clear from the definitions except the third one which is a con-
sequence of the fact proved by El-Rifai and Morton [8] that if inf(x) < infc(x)
(sup(x) > supc(x), respectively), then a braid obtained from x by an iteration of
cycling (decycling, repectively) has a larger infimum (smaller supremum, repec-
tively).

If x is rigid, then cycling and decycling are predictable and have the same orbit
and so we have RSSS(x) = USS(x).
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2.2.2. Generating Invariant Subsets. The convexity theorem by Garside [12], El-
Rifai and Morton [8] says that if n-braids x and y are conjugate, there is a sequence
of braids x = x0, x1, . . . , xm = y such that for each 1 ≤ i ≤ n, xi = a−1xi−1a for
some a ∈ Sn. The required number of iterations of cycling or decycling to improve
an infimum or a supremum is shown to be at most n(n − 1)/2 by Birman, Ko
and Lee [4]. Thus for a given braid x, infc(x) and supc(x) can be obtained within
ℓ(x)n(n − 1)/2 iterations of cycling and decycling. Using these facts, the four
invariants sets can be generated in finite time since they are finite sets. From an
algorithmic point of view, the convexity theorem is not satisfactory since |Sn| = n!
is too large.

All the four invariant sets enjoy the property that if a−1ya ∈ I and b−1yb ∈ I for
y ∈ I and a, b ∈ Sn then (a∧ b)−1y(a∧ b) ∈ I where I denotes one of invariant sets.
So for y ∈ I, there is a minimal element a ∈ Sn such that a−1ya ∈ I. Franco and
González-Meneses[10] first proved this property for the super summit set and then
Gebhardt[13] did it for the ultra summit set. For an invariant set I(x) of a braid x
and y ∈ I(x), this property guarantees the existence of the unique minimal element
λi such that σi ≺ λi ≺ ∆ and λ−1

i yλi ∈ I(x). Thus they were able to generate an
invariant set more efficiently because there are at most n−1 such minimal elements.
Unfortunately there is no estimate for the sizes of the invariant sets and so we do
not know the complexity of any algorithm based on the generation of an invariant
set.

2.3. Hard Problems for Braid Cryptography. Most of cryptographic proto-
cols using the braid groups are based on potential hard mathematical problems as
follows.

(1) Conjugacy Search Problem (CSP)
Two braids a, b ∈ Bn are said to be conjugate if there is an element x ∈ Bn

such that b = x−1ax. Given two conjugate braids a, b ∈ Bn, the CSP is to
find an x ∈ Bn such that b = x−1ax.

(2) Multiple Simultaneous Conjugacy Problem (MSCP)
Given (a1, x

−1a1x), . . . , (ar, x
−1arx) ∈ Bn × Bn for some x ∈ Bn, the

MSCP is to find a y ∈ Bn such that,

y−1a1y = x−1a1x, . . . , y−1ary = x−1arx.

(3) Diffie-Hellman-Like Conjugacy Problem (DHCP)
Given a, x−1

1 ax1, x−1
2 ax2, where x1 and x2 belong to some known subgroups

of Bn with x1x2 = x2x1, the DHCP is to find x−1
2 x−1

1 ax1x2.

All of conjugacy related problems including MSCP and DHCP can easily be reduced
to CSP.

2.4. Proposed Cryptographic Protocols.

2.4.1. Commutator Key Agreement Protocol. In 1999, Anshel, Anshel and Gold-
feld [1] introduced a key agreement protocol based on combinatorial group theory.
They recommended Bn as a promising class of groups for such a construction.

Let SA and SB be the following subgroups of Bn:

SA = 〈a1, a2, . . . , ar〉, SB = 〈b1, b2, . . . , bs〉.

Let a1, a2, . . . , ar and b1, b2, . . . , bs ∈ Bn are publicly known.

(1) Secret Keys :
(a) Alice’s Secret Key : x = W (a1, a2, . . . , ar) ∈ SA.
(b) Bob’s Secret Key : y = V (b1, b2, . . . , bs) ∈ SB.

(2) Public Keys :
(a) Alice’s Public Key : (x−1b1x, . . . , x−1bsx).
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(b) Bob’s Public Key : (y−1a1y, . . . , y−1ary).
(3) Shared Key : x−1y−1xy.

Alice and Bob each can compute the shared key because

x−1y−1xy = x−1W (y−1a1y, . . . , y−1ary) = V −1(x−1b1x, . . . , x−1bsx)y.

However, the shared keys computed by Alice and Bob may be different as bit
strands. Anshel et al. [1], used the colored Burau representation for extracting the
same bit strand from x−1y−1xy.

2.4.2. Diffie-Hellman Type Key Agreement Protocol. In 2000 Ko et al. [20] proposed
the following key agreement protocol using the DHCP.

Consider the following two subgroups of Bn,

LBn = 〈σ1, . . . , σ⌊n

2 ⌋−1〉, and RBn = 〈σ⌊n

2 ⌋+1, . . . , σn−1〉.

Now, for any x ∈ LBn and y ∈ RBn , xy = yx. Here a ∈ Bn is publicly known.

(1) Secret Keys :
(a) Alice’s Secret Key : x ∈ LBn.
(b) Bob’s Secret Key : y ∈ RBn.

(2) Public Keys :
(a) Alice’s Public Key : x−1ax.
(b) Bob’s Public Key : y−1ay.

(3) Shared Key : y−1x−1axy.

Since xy = yx, Alice and Bob each can compute the shared key. The left-canonical
form is used as the final normal form for the shared key.

2.4.3. Braid Public-key Cryptosystem. In 2000 Ko et al. [20] proposed the following
public-key encryption protocol using the DHCP.

Let h : Bn → {0, 1}k be a secure hash function from the braid group Bn to the
message space.

(1) Key Generation:
(a) Choose a sufficiently complicated braid u ∈ Bn.
(b) Choose a braid a ∈ LBn.
(c) Public key is (u, v) where v = a−1ua ; Private key is a ∈ LBn .

(2) Encryption:
Given a message m ∈ {0, 1}k and a public key (u, v),
(a) Choose a braid b ∈ RBn;
(b) The ciphertext is (c, d) where c = b−1ub and d = h(b−1vb)

⊕

m.
(3) Decryption:

Given the ciphertext (c, d) and private key a, obtain m = h(a−1ca)
⊕

d.

Since ab = ba for i = 1, 2, h(a−1ca)
⊕

d = h(b−1vb)
⊕

h(b−1vb)
⊕

m = m and the
decryption recovers the original message m.

2.5. Attacks on the Conjugacy and Related Problems. We now review the
history of major attacks on the conjugacy and related problems since braid cryp-
tosystems were proposed.

2.5.1. Using Invariant Sets. The cardinality of any of conjugacy invariant sets is
unknown and hence the complexity of any attack based on an invariant set is not
known either. Nevertheless this kind of attack would be much more effective for
MSCP than for the ordinary CSP.

Lee and Lee [24] applied super summit set in solving the MSCP. Given (a1, . . . , ar)
and (c1, . . . , cr) where ci = x−1aix and inf(x) = 0 or 1, their method is to transform
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(c1, . . . , cr) into (d1, . . . , dr), where all di’s are conjugates of ai’s by a single conju-
gator whose word-length is smaller than |x| and then to find an x′ ∈ Bn satisfying
di = (x′)−1aix

′, ∀i. This attack can be improved as much as done in [10].

2.5.2. Length-Based Techniques. Given an element x and a conjugate a−1xa, it is
sometimes possible to recover the conjugating element a by repeatedly conjugating
a−1xa with short braids t such that t−1(a−1xa)t is shorter or less complicated than
a−1xa. They are frequently effective if x and a are chosen randomly. However,
attacks of this kind can be prevented by a careful choice of x and a; the idea is that
x and a−1xa should have the same length or complexity.

In the commutator key agreement protocol, the public key of Alice is (x−1b1x, . . . ,
x−1bsx) where x = W (a1, a2, . . . , ar) is Alice’s secret key. Hughes and Tannen-
baum [17] and Garber, Kaplan, Teicher, Tsaban and Vishne [11] proposed some
length based attacks on the commutator key agreement protocol for the case in
which |ai| for all ai was large. The natural method to recover x from the public
key is to find a ∈ {a1, . . . , ar, a

−1
1 , . . . a−1

r } such that |ax−1bjxa−1| is much smaller
than |x−1bjx| for the majority of j ∈ {1, . . . , s}. By repeating this, x is recovered.

2.5.3. Using Representations of Braid Groups. Let R be a ring and GLk(R) be the
general linear group. A representation of a group is a homomorphism from the
group to GLk(R). A representation is said to be faithful, if it is injective. The
Burau and the Lawrence Krammer representations of the braid groups have been
used to study the conjugacy and related problems.

The Burau representations, ρn : Bn → GLn(Z[t±1]) is defined by

ρn(σi) =









Ii−1 0 0

0

[

1 − t t
1 0

]

0

0 0 In−i−1









This representation is not faithful for n ≥ 5. For α ∈ Bn, ρn(α) is called the Burau
matrix.

Hughes [16] proposed a heuristic method using ρn to solve MSCP. Let {(a1, c1), . . . ,
(ar, cr) : ci = x−1aix, for 1 ≤ i ≤ r} ⊂ Bn × Bn be known, where x ∈ Bn is un-
known. His method is to compute ρB(x) from (a1, c1), . . . , (ar, cr) and then to
compute x ∈ Bn from ρB(x). He used some very fast linear algebra solvers called
banded solvers to compute ρB(x). Hughes empirically showed that, the first col-
umn containing the highest degree entry in ρB(x) tends to indicate a last Artin
generator of x, especially when |x| is small. Using this observation he computed x
from ρB(x) generator by generator.

Lee and Park also proposed solutions to CSP and DHCP using Burau represen-
tation by proposing two improvements to Hughes algorithm [25]. They showed that
the private-key could be recovered from the public-key for several parameters with
significant probability in a reasonable time. Comparing with his algorithm one is
more efficient with same success rate and the other has higher success rate with
less efficiency. They, also theoretically proved the Hughes empirical result that,
first column containing the highest degree entry in ρB(x) tends to indicate a last
Artin generator of x, especially when |x| is small and they computed x from ρB(x)
generator by generator like Hughes.

The Lawrence-Krammer representation ρK : Bn → GL n(n−1)
2

(Z[t±1, q±1]) =

Aut(V0), where V0 is the free module of rank n(n−1)
2 over Z[t±1, q±1] . With respect

to the free basis {xij}1≤i<j≤n of V0, the image of each Artin generator under ρK
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is given by

ρK(σk)(xij) =















































tq2xk,k+1, if i = k, j = k + 1;

(1 − q)xi,k + qxi,k+1, if j = k, i < k;

xik + tqk−i+1(q − 1)xk,k+1, if j = k + 1, i < k;

tq(q − 1)xk,k+1 + qxk+1,j , if i = k, k + 1 < j;

xkj + (1 − q)xk+1,j , if i = k + 1, k + 1 < j;

xi,j , if i < j < k or k + 1 < i < j;

xij + tqk−i(q − 1)2xk,k+1, if i < k < k + 1 < j.

where t and q are variables. This representation is faithful for all n. For α ∈ Bn,
ρK(α) is called the Lawrence-Krammer matrix.

Cheon and Jun [6] used the Lawrence-Krammer representation ρK to recover
the shared key in DHCP. The problem is as follows: given a, x−1ax, y−1ay ∈ Bn,
where x ∈ LBn and y ∈ RBn, find x−1y−1ayx. Their method is to compute
ρK(x−1y−1ayx) and then to recover x−1y−1ayx from it.

They first determine ρK(x) from (a, x−1ax) by solving XρK(b) = ρK(a)X , where
b = x−1ax, X = ρK(x) and using the constraint,

XρK(σi) = ρK(σi)X, ∀ i > ⌊
n

2
⌋.

Now ρK(x−1y−1ayx) is determined using the relation,

ρK(x−1y−1ayx) = X−1ρK(y−1ay)X.

Let z = x−1y−1ayx. Then z is recovered from ρK(z) by using the Laurent series of
ρK with respect to t, namely

ρK(z) =

u+l
∑

i=u

Ait
i, where Ai ∈ M n(n−1)

2 ×n(n−1)
2

(Z[q±1]), Au, Au+l 6= On(n−1)
2

.

The overall time complexity of the scheme is O(n14.4|x|3.2). We note that this
attack has not only relatively high complexity but also is hard to be implemented
because one has to deal with large matrices with entries in a noncommutative ring.

2.5.4. Attacks Based on Removing Redundancy. We now review some other attacks
that are effective when keys are randomly generated.

A simple heuristic approach to the conjugacy problem in braid groups was de-
scribed by D. Hofheinz and R. Steinwandt [15]. Although it did not provide a
general solution to the conjugacy problem, it demonstrated that various proposed
key parameters for braid cryptographic primitives do not offer acceptable crypto-
graphic security.

A. Myasnikov, V. Shpilrain and A. Ushakov proposed a practical heuristic solu-
tion for DHCP in Crypto 2005 [29]. Using the attack they were able to break the
key exchange protocol of Ko et al. in about 150 minutes with over 95% success rate
for typical parameters. One of the ideas behind the attack was using Dehornoy’s
handle reduction method as a counter measure to diffusion provided by the Gar-
side normal form and as a tool for simplifying braid words. Also, they solved the
decomposition problem in braid groups rather than the conjugacy problem.

S. Maffre [27] proposed an algorithm for the conjugacy problem which gives a
partial factorization of the secret: a divisor and a multiple. The efficiency of his
attack depends on the random generator used to create the key. His idea is related
to the one of Hofheinz and Stenwandt [15]. They proposed an algorithm which
computes a prefix of the secret (d ≺ a): afterwards, if the canonical length of
d−1a is 1, they map the problem to the symmetric group and conclude. But Maffre
proposed an algorithm which computes the multiple of a secret: knowing (x, axa−1)
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and the canonical length of a, it computes m such that a is a prefix of m (a ≺ m)
and axa−1 = mx̃m−1. This algorithm exploits the decomposition of braids into
products of canonical factors. It allows also to obtain a prefix of the secret: d ≺ a.
The knowledge of the canonical length of the secret is required.

All of these attacks take advantage of redundancy that every randomly generated
instances of CSP or DHCP must have. In the next section, we will show that a braid
chosen randomly has extremely simple USS and RSSS in overwhelming probability.
A random instance for DHCP has even more redundancy due to half braiding.

3. Analysis of the Current Attacks on Braid Cryptosystem

Except attacks based on a finite invariant conjugacy set or a representation of
the braid groups, all other attacks were based on heuristic algorithms removing
redundancies and therefore the attacks were concentrated on instances that are
randomly generated by some algorithms. In this section, we introduce two natural
ways of randomly generating braids and compare them. Then we discuss why
these heuristic attacks were effective and easy by presenting a fast solution to the
conjugacy problem that should be successful for random instances in overwhelming
probability.

3.1. Generating Random Braids. In the braid groups given by Artin’s presen-
tation, there are two natural ways of generating random words as follows:

(1) Choosing a sequence of random Artin generators and concatenate them;
(2) Choosing a sequence of random permutations and multiply them.

The fastest solution to the word problem in the braid group is to write a braid
word in its weighted form. In order to have a unique representation of braid words,
braids are coded in their unique weighted form. Factors in a weighted form can
be described by either a permutation or a product of Artin generators. Since the

average number of inversions in an n-permutation is n(n−1)
4 , so is the average word

length of a factor in a braid generated by multiplying random permutations. If a

factor is represented a product of Artin generator, we need on average n(n−1)
4 of

log n-bit integers. If a factor is represented by a permutation, we need an n-tuple
of logn-bit integers. Thus when we digitize a random braid from permutations, it is
more efficient to use permutations than Artin generators, especially as n becomes
large. On the contrary, we will see that it is more efficient to use Artin generators
to digitize a random braid from Artin generators.

3.2. Random Braids from Permutations. Most of the attacks on braid cryp-
tosystem have been carried out on braids generated by picking random permu-
tation braids and multiplying them. A random permutation is generated by for
i = 1, 2, . . . , n − 1, picking a random number between i and n. Then each permu-
tation can be chosen in the probability 1

n! . Recently, Ko and Lee [21] showed that
a random braid from permutations is already rigid and its USS (=RSSS) contains
at most 2 orbits in overwhelming probability. Using this fact, they were able to
propose a fast algorithm for the conjugacy problem that is successful on randomly
generated instances in overwhelming probability.

For integers 1 ≤ i < j ≤ n, a positive n-braid x is said to begin with an inversion
(i, j) if its head H(x) exchanges i and j as a permutation.

For permutation n-braids x1, x2, . . . , xk chosen randomly, let d(n, k) denote the
average contribution by the last factor xk, to the set of Artin generators that the
product x1x2 . . . xk begins with. They found an expression in terms of n and k of
an upper bound for d(n, k) and then showed that d(n, k) converges to 0 either as
k increases for fixed n or as n increases for a fixed k ≥ 3. Also they showed that
the larger the n, the faster it converges to 0 as k increases. Then they proved the
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following:

Theorem 3.1. [21] For k ≥ 5 and randomly chosen permutation n-braids x1, . . . , xk

and a random integer u, let x = ∆ux1 · · ·xk. Then

(1) The probability that cj(x) is rigid for some j ≤ ⌊k
2⌋ is greater than 1 −

2d(n, ⌊k
4 ⌋);

(2) The probability that the number of orbits in USS(x)=RSSS(x) is at most
two is also greater than 1 − 2d(n, ⌊k

4⌋)

Given a random braid x ∈ Bn, an algorithm to generate USS(x) proceeds as
follows:

(1) Compute y = cj(x) where j = ⌊ ℓ(x)
2 ⌋.

(2) Output either {ci(y), τ(ci(y)) | 0 ≤ i ≤ ℓ(x) − 1} if inf(y) is even, or
{ci(y) | 0 ≤ i ≤ 2ℓ(x) − 1} if inf(y) is odd.

Since the operation to convert into a weighted form has running time O(k2n logn)
and this algorithm requires k cycling operations, the overall running time is O(k3n log n).
For a given n-braid x of k random permutations, it generates USS(x) successfully
with probability greater than 1−2d(n, ⌊k

4 ⌋). For random braids from permutations,
the conjugacy problem generically becomes easier as either the braid index or the
canonical length increases, contrary to the common belief.

3.3. Pseudo-Anosov Braids. As a homeomorphism of a 2-dimensional disk that
preserves n distinct interior points and fixes the boundary of the disk, an n-braid
x is isotopic to one of the following three dynamic types known as the Nielson-
Thurston classification:

(1) periodic, if xp is the identity for some non-negative integer p;
(2) reducible, if x preserves a set of disjointly embedded circles;
(3) pseudo-Anosov, if it is neither periodic nor reducible.

The dynamic types are invariant under conjugation and taking powers. Ko and
Lee [22] proposed a polynomial-time algorithm to decide the dynamic type of a
given braid. The algorithm take advantage of the following facts:

Theorem 3.2. (1) [3, 22] A pseudo-Anosov braid becomes rigid up to iteration
of cycling and decycling and taking powers.

(2) [22] A reducible, rigid braid has a standard reduction circles up to a conju-
gation by a permutation braid.

Circles preserved by a reducible braid are standard if they really look like round
circles and can be detected by a polynomial-time algorithm. The conjugacy problem
for periodic braids is trivial. To solve the conjugacy problem for reducible braids, an
approach via finite conjugacy invariant sets may be difficult because USSS or RSSS
can be huge. Nonetheless we think that the problem becomes easier after reduction
circles are recognized. Pseudo-Anosov braids are generic among three dynamical
types and behave similar to random braids in high probability. But there are some
difficult instances of the conjugacy problem involving pseudo-Anosov braids as we
will see in Section 4.3 and 4.4.

3.4. Random Braids from Artin generators. We first consider the density of
braid words generated by concatenating Artin generators chosen randomly. The
following tables shows the average word length of an n-braid of k canonical factors
in its weighted form of a random braid from Artin generators. The experiments
were carried out 105 times. The second column is the average word length of

a factor obtained from random permutation. The column with the header w(k)
k

shows the average word length of a factor in random n-braids of the supremum
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k that are generated by concatenating random Artin generators. For each braid

index n, n(n−1)
4 is much larger than w(k)

k
and this means random braids from

permutation is much denser than those from Artin generators. This reconfirms
Dehornoy’s observation in [7] that when we generate random braid words, the
average canonical length of braids from random Artin generators are much larger

than those from random permutations. Furthermore w(k)
k

is even smaller than n
and this implies that it is more efficient to represent each factor by a word of Artin
generators than by a permutation.

n
n(n−1)

4
w(1)

1
w(2)

2
w(3)

3
w(4)

4
w(5)

5
w(6)

6
w(7)

7
w(8)

8
w(9)

9
w(10)

10

5 5 2.71 2.92 3.03 3.11 3.16 3.20 3.22 3.24 3.26 3.27

10 22.50 4.08 4.77 5.18 5.45 5.64 5.78 5.89 5.98 6.04 6.09

20 95 5.83 7.43 8.48 9.21 9.75 10.15 10.47 10.72 10.93 11.10

50 612.50 9.16 13.16 16.05 18.24 19.89 21.17 22.20 23.06 23.77 24.37

Let us now look at the ultra summit and the reduced super summit sets of ran-
dom braids from Artin generators. Our experiment on the number of cycling orbits
in the USS and RSSS of random braids from Artin generators are tabulated below.
The experiments were done by generating a random n-braids of the supremum k
by concatenate random Artin generators as long as the supremum of its weighted
form is k. The average values of the infimum (inf), maximum of infimums of all
braids in the conjugacy class (infc), supremum (sup), the minimum of supremums
of all braids in the conjugacy class (supc), the number of orbits in the ultra summit
set and the number of orbits in the reduced super summit set are tabulated. The
experiments were carried out 1000 times.

n k = sup inf infc supc USS RSSS
5 30 0.668 0.783 29.154 1.593 1.593
10 20 0 0 18.798 2.068 2.068
15 20 0 0 18.708 2.430 2.430
20 15 0 0 13.777 4.211 4.211
25 15 0 0 13.785 7.011 7.011
30 15 0 0 13.801 11.411 11.411

In the table we can observed that the numbers of orbits in USS and RSSS, denoted
by USS and RSSS repetively, are the same. This means that these random braids
become rigid after iteration of cycling and decyling in overwhelming probability.
The number of orbits in USS and RSSS are small but are not 2 as for random
braids from permutations. This means it is easier to obtain a braid with large RSSS
using random braids from Artin generators. In the previous section we saw that it
is almost impossible to obtain a braid with large RSSS from random braids from
permutations. In fact we will give an example of pseudo-Anosov braids generated
by concatenating random Artin generators that has very large RSSS.

4. Potential Hard Instances of Conjugacy Problem

The generation of the finite conjugacy invariant sets USS or RSSS is state-of-
the-art when we try to solve the conjugacy probem for all possible instances. Since
RSSS is the smallest invariant set, we need to consider RSSS more seriously in the
following discussion. Thus braids with large RSSS are obvious candidates for hard
instances of the conjugacy problem. In order to make applications to cryptography,
we need security parameters that control the difficulty of the conjugacy problem.
The obvious choices are the braid index n and the canonical length k. For random
braids discussed in the previous section, the distribution of braids with large RSSS
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is getting sparse as either n or k increase and so random instances become easier
to solve.

USS or RSSS are disjoint unions of orbits. Since each orbit in USS or RSSS
is not complex and is rather easy to generate, the difficulty of using USS or RSSS
to solve the conjugacy problem depends more on the number of orbits than on the
size of each orbit. When we suggest a class of braids that give potentially hard
instances for the conjugacy problem, we need to demonstrate that the number of
orbits in USS or in RSSS increases rapidly as either n or k increase so that n and
k play the role of security parameter.

We now construct three distinct classes of braids for which the numbers of orbits
in USS and RSSS, denoted by USS and RSSS, are large and rapidly increasing
with respect to the braid index n and the canonical length k.

4.1. Split Braids. In this section, we consider a class of reducible braids called
split braids. For i ∈ {1, 2, . . . , n − 1}, let Bi

n be the subgroup of Bn generated by
the elements σ1, . . . , σi−1, σi+1, . . . , σn−1. The elements of Bi

n are called split braids
of two components. We give some examples of such braids for various values of the
braid index n and canonical length k.

In the following examples, braids are given in their weighted forms where each
factor is a permutation over {1, 2, . . . , n}. All of the examples are made rigid so
that they are already in their RSSS.
Example 1. The braid in B4

8 given by

(4 3 2 1 7 8 6 5)(3 4 2 1 7 5 6 8)(2 3 1 4 5 8 5 7)
(1 2 3 4 8 6 7 5)(1 2 3 4 8 5 7 6)

has inf = infc = 0, sup = supc = 5, USS = 136 and RSSS = 104.
Example 2. The braid in B4

8 given by

(4 3 2 1 6 8 5 7)(4 3 2 1 8 6 7 5)(4 3 2 1 8 5 7 6)(4 2 3 1 7 8 6 5)
(2 1 3 4 8 5 6 7)(1 2 3 4 5 7 8 6)(1 2 3 4 6 8 5 7)(1 2 3 4 5 7 8 6)

has inf = infc = 0, sup = supc = 8, USS = 5890 and RSSS = 3072.
Example 3. The braid in B5

10 given by

(5 4 3 2 1 10 6 8 7 9)(5 4 3 2 1 8 10 6 7 9)(4 3 5 2 1 7 10 6 9 8)
(1 2 3 4 5 10 8 9 7 6)(1 2 3 4 5 9 8 7 10 6)

has inf = infc = 0, sup = supc = 5, USS = 5028 and RSSS = 1160.
Example 4. The braid in B5

10 given by

(5 4 3 2 1 6 8 10 7 9)(5 4 3 2 1 6 9 8 10 7)(1 4 3 2 5 8 10 6 7 9)
(1 3 2 4 5 9 10 6 8 7)(3 5 1 2 4 6 10 8 7 9)(4 5 2 3 1 8 10 7 9 6)
(1 2 3 4 5 10 7 6 9 8)(1 2 3 4 5 9 8 10 6 7)

has inf = infc = 0, sup = supc = 5, USS = 78105 and RSSS = 27790.
We remark that examples above has the following characteristics:

(1) One of split components has the infimum 1 and the other has the infimum
0;

(2) Canonical lengths of split components are relatively prime.

We can construct reducible braids from split braids by multiplying a pure outer
braid while maintaining RSSS and RSSS.

4.2. Cabled Braids. Let α be an n-braid such that some 1 ≤ i ≤ n, the strand of
α that starts at the i-th spot, also ends at the i-th spot. Let α̃ be the (n+1)-braid,
obtained from α by adding a strand on the right of the i-th strand and parallel to
it. The crossings made by the i-th and the new strands with the other strands are
identical. We call such a braid a cabled braid obtained from α along the i-th strand.

In the following examples, the braids are given in their weighted forms.
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Example 1.

α = (5 4 3 2 1)(5 4 2 3 1)(3 2 5 4 1)(5 2 1 4 3)(5 1 2 3 4)(1 2 3 5 4)

and

α̃ = (6 4 5 3 2 1)(6 5 2 3 4 1)(3 2 5 6 4 1)(6 2 1 5 3 4)(6 1 2 3 4 5)(1 2 3 4 6 5).

Example 2.

α =(5 4 3 2 1)(3 2 1 5 4)(2 5 1 4 3)(4 3 5 2 1)(5 4 2 1 3)(5 3 4 2 1)(2 1 4 5 3)

(1 2 5 3 4)(1 3 4 5 2)(1 3 2 4 5)(1 3 2 4 5).

and

α̃ =(5 6 4 3 2 1)(3 2 1 6 4 5)(2 6 1 4 5 3)(5 4 6 2 3 1)(6 4 5 2 1 3)(6 4 5 2 3 1)

(3 1 2 5 6 4)(1 2 3 6 4 5)(1 2 4 5 6 3)(1 2 4 3 5 6)(1 2 4 3 5 6)

Example 3.

α = (9 8 7 6 5 4 3 2 1)(9 8 7 4 3 2 6 1 5)(4 9 7 5 6 3 2 8 1)(3 8 9 1 2 4 5 6 7)

and

α̃ =(10 9 8 7 5 6 4 3 2 1)(10 9 8 5 3 4 2 7 1 6 )(4 10 7 8 5 6 3 2 9 1)

(3 9 10 1 2 4 5 6 7 8).

Example 4.

α =(9 8 7 6 5 4 3 2 1)(9 5 1 4 3 2 8 7 6)(7 8 5 6 4 9 2 3 1)(1 8 9 2 5 6 3 4 7)

(1 3 5 6 4 7 8 2 9)(1 8 2 5 3 4 6 7 9)(1 3 5 7 4 6 9 2 8)(7 9 4 6 3 5 2 8 1)

(2 6 9 5 8 7 1 4 3)(3 2 9 1 6 5 8 4 7).

and

α̃ =(10 9 8 7 6 5 3 4 2 1)(10 6 1 2 5 4 3 9 8 7)(7 8 9 5 6 4 10 2 3 1)

(1 9 10 2 6 7 3 4 5 8)(1 3 5 6 7 4 8 9 2 10)(1 9 2 6 3 4 5 7 8 10 )

(1 3 5 6 8 4 7 10 2 9)(8 10 5 7 3 4 6 2 9 1)(2 6 9 10 5 8 7 1 4 3)

(3 2 10 1 6 5 9 4 7 8).

These examples have the properties as in the following table:

Example n k USS(α) RSSS(α) USS(α̃) RSSS(α̃)
1 5 5 3 3 2983 9
2 5 10 1 1 12609 18
3 9 3 2 2 36456 3
4 10 10 18 18 > 611000 35

We remark that the cycling orbit of a cabled braid α̃ of α has length 2 and
USS(α̃) = |SSS(α)|/2. Thus USS(α̃) can be huge. However RSSS(α̃) is rather
small and so this class will not pose hard instances for the conjugacy problem.

4.3. Quasi-reducible Braids. In this section, we consider a class of pseudo-
Anosov braids that are almost reducible so that they still possess some of char-
acteristics of reducible braids, such as large USS and RSSS. Thus we call braids
in this class quasi-reducible. It seems natural to believe that pseudo-Anosov braids
give rise to harder instances than reducible braids do when their invariant sets are
similar in size. This is because the braid index that is one of security parameters
can be reduced if some of reducing circles of a reducible braid are revealed. Thus
the class of quasi-reducible braids is interesting.

It is difficult to give a precise definition of quasi-reducible braids other than they
are pseudo-Anosov braids with some characteristics of reducible braids. Basically a
pseudo-Anosov braid is quasi-reducible if it becomes reducible after nullifying “few”
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crossings. The word “few” may depend on how many inner braids are formed.
In the following examples, pseudo-Anosov braids split into two inner braids after
nullifying crossings in one factor.
Example 1. The 8-braid given by

(4 3 1 2 6 8 5 7)(3 8 1 2 5 4 7 6)(1 3 2 8 4 6 5 7)(3 4 2 7 8 1 6 5)

has k = 4, RSSS = 60, and |RSSS| = 240.
Example 2. The 8-braid given by

(4 2 3 1 8 6 7 5)(1 3 4 2 8 5 7 6)(2 4 1 3 6 8 5 7)(2 3 4 1 8 6 7 5)
(4 1 2 3 7 6 8 5)(3 4 5 2 8 7 1 6)(2 4 1 3 5 8 7 6)(2 4 8 1 3 7 6 5).

has k = 8, RSSS = 72, and |RSSS| = 576.
Example 3. The 10-braid given by

(5 4 2 3 1 9 6 8 7 10)(1 3 5 4 2 6 10 8 7 9)(3 6 4 5 2 9 10 1 8 7)
(5 3 2 4 10 1 7 9 6 8)

has k = 4, RSSS = 130, and |RSSS| = 520.
Example 4. The 10-braid given by

(5 4 3 1 2 10 9 7 8 6)(3 4 2 5 1 10 6 8 7 9)(5 2 1 3 4 8 10 7 9 6)
(5 2 3 4 1 6 10 8 9 7)(4 1 3 10 2 6 8 7 9 5)(2 4 3 1 6 5 9 7 8 10)
(5 3 4 2 7 1 6 9 8 10)(1 4 3 5 2 8 7 10 6 9)

has k = 8, RSSS = 840, and |RSSS| = 6720.
Let x be one of examples above. Then we note that x has the following charac-

teristics:

(1) x is a pseudo-Anosov, rigid braid;
(2) x becomes a split braid by nullify one crossing;
(3) There are positive braids γ, γ′ such that

(i) γxγ−1 and γ′xγ′−1 are in RSSS(x);
(ii) γγ′ = γ′γ;
(iii) ℓ(γ), ℓ(γ′) ≥ 2.

4.4. Quisi-reducible Braid from Artin-generator. The following example were
found during an experiment to generate random braids by concatenating Artin
generators. Since this method generates random braids that are sparser than the
method using permutations, we have a fair amount of chance to obtain a quasi-
reducible braid with large RSSS.
Example 1. The 10-braid given by

(1 3 2 5 4 7 6 9 8 10)(1 3 2 5 4 9 7 8 6 10)
(2 4 3 6 1 10 5 8 7 9) (1 3 10 2 5 4 7 6 9 8)

has the following properties:

(1) It is rigid and k = 4;
(2) RSSS = 780;
(3) βσ−1

5 is split where β = (σ2
4σ6σ7σ8σ9)α(σ2

4σ6σ7σ8σ9)
−1.

Example 2. The 10-braid given by

(2 4 1 3 5 7 6 8 10 9)(5 1 3 2 4 7 6 8 10 9) (1 3 2 5 4 7 6 8 10 9)
(1 3 2 6 5 8 4 7 9 10)(1 3 2 4 10 5 7 6 8 9)

has the following properties:

(1) It is rigid and k = 5;
(2) RSSS = 1008;
(3) βσ−1

5 is split where β = (σ4σ6σ7σ8σ9)α(σ4σ6σ7σ8σ9)
−1.
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5. Conclusion

In this paper, we first discussed various attacks on the conjugacy problems of
the braid groups and the cryptosystems based on them. We explained why some
of attacks were successful by showing that the conjugacy problem of the braid
groups is rather easy for instances generated randomly. We proposed several ways
of generating instances for the conjugacy problem that seems secure under the most
sophisticated attack based on current knowledge. These classes of braids should be
interesting not only to cryptoanalysts but also to mathematicians who work on the
braid groups.
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[28] J. González-Meneses, Improving an algorithm to solve multiple simultaneous conjugacy prob-
lems in braid groups, http://arxiv.org/abs/math/0212150.

[29] A. Myasnikov, V. Shpilrain and A. Ushakov, A practical heuristic attack on the Ko-Lee key

exchange prtocol, Advances in Cryptology: Proceedings of CRYPTO 2005, Lecture Notes in
Computer Science, Springer-Verlag, 3621 (2005) 86-96.

[30] A. C. Rosader, The Use of Inversions as a Test of Random Order, Journal of the American
Statistical Association, Volume 37, No. 219 (1942) 352-358.

Department of Mathematics, Korea Advanced Institute of Science and Technology,

Daejeon, 305-701, Korea

E-mail address: {knot,leejw,thomas}@knot.kaist.ac.kr


