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Abstract

Motivated by the challenging task of designing “secure” vote storage mechanisms, we deal
with information storage mechanisms that operate in extremely hostile environments. In such
environments, the majority of existing techniques for information storage and for security are
susceptible to powerful adversarial attacks. In this setting, we propose a mechanism for storing
a set of at most K elements from a large universe of size N on write-once memories in a
manner that does not reveal the insertion order of the elements. We consider a standard model
for write-once memories, in which the memory is initialized to the all 0’s state, and the only
operation allowed is flipping bits from 0 to 1. Whereas previously known constructions were
either inefficient (required ©(K?) memory), randomized, or employed cryptographic techniques
which are unlikely to be available in hostile environments, we eliminate each of these undesirable
properties. The total amount of memory used by the mechanism is linear in the number of stored
elements and poly-logarithmic in the size of the universe of elements.

In addition, we consider one of the classical distributed computing problems: conflict reso-
lution in multiple-access channels. By establishing a tight connection with the basic building
block of our mechanism, we construct the first deterministic and non-adaptive conflict resolution
algorithm whose running time is optimal up to poly-logarithmic factors.
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1 Introduction

We consider the abstract problem of storing a set of at most K elements taken from a large universe
of size N, while minimizing the total amount of allocated memory. We design a storage mechanism
which is deterministic, history-independent, and tamper-evident. Our mechanism supports insert
operations, membership queries, and enumeration of all stored elements. Whereas previously known
constructions were either inefficient, randomized, or employed cryptographic techniques that require
secure key storage, we make a concentrated effort to eliminate these undesirable properties.

Our motivation emerges from the task of designing vote storage mechanisms', recently studied
by Molnar, Kohno, Sastry and Wagner [15]. They described the desirable security goals of such
mechanisms and suggested simple constructions. Without a “secure” vote storage mechanism, an
adversary may be able to undetectably tamper with the voting records or compromise voter privacy.
A typical threat is a corrupt poll worker who has complete access to the vote storage mechanism at
some point during or after the election process. In order to prevent the adversary from modifying
the stored votes, a vote storage mechanism should be tamper-evident. Moreover, as the order in
which votes are cast must be hidden to protect the privacy of the voters, a vote storage mechanism
should be history-independent as well. We refer the reader to [15] for a detailed list of the security
goals of vote storage mechanisms.

In this paper we deal with the design of information storage mechanisms that operate in ex-
tremely hostile environments. In such environments, the majority of existing techniques for infor-
mation storage and for security are susceptible to powerful adversarial attacks. In order to prevent
such attacks, we study storage mechanisms with special properties.

Deterministic strategies. Randomization is an important ingredient in the design of efficient
systems. However, for systems that operate in hostile environments, randomization can assist the
adversary in attacking the system. First, as sources of random bits are typically obtained from
the environment, it is quite possible that the adversary can corrupt these sources. In such cases,
we usually have no guarantees on the expected behavior of the system. Second, even when truly
random bits are available, these bits may be revealed to the adversary in advance, and serve as a
crucial tool in the attack. Third, a randomized storage strategy may enable a subliminal channel:
As multiple valid representations for the same abstract state exist, a malicious storage mechanism
can secretly embed information into the stored data by choosing one of these representations.
Applications such as voting protocols may run in completely untrusted environments. In such
cases, deterministic strategies have invaluable security benefits.

History-independence. Many systems give away much more information than they were in-
tended to. When designing a data structure whose memory representation may be revealed, we
would like to ensure that an adversary will not be able to infer information that is not available
through the system’s legitimate interface. Computer science is rich with tales of cases where this
was not done, such as files containing information whose creators assumed had been erased, only to
be revealed later in embarrassing circumstances. Very informally, we consider a period of activity
after which an adversary gains complete control over the data structure. In particular, the memory
representation of the data is revealed to the adversary. The data structure is history-independent

"We note that for vote storage mechanisms it is sufficient to support only insert operations and enumeration of
all stored elements. Our mechanism supports (efficient) membership queries as well, although we did not set out to
implement this property.



if the adversary will not be able to deduce any more about the sequence of operations that led to
the current content than the content itself yields (concrete definitions will be given in Section 1.3).

Tamper-evident write-once storage. A data structure is tamper-evident if any unauthorized
modification of its content can be detected. Tamper-evidence is usually provided by a mixture
of physical assumptions (such as secure processors) and cryptographic tools (such as signature
schemes). Unfortunately, the majority of cryptographic tools require secure key storage, which is
unlikely to be available in a hostile environment. Our construction follows the approach of Molnar
et al. [15], who exploited the properties of write-once memories to provide tamper-evident storage.
They introduced an encoding scheme in which flipping some of the bits of any valid codeword
from 0 to 1 will never lead to another valid codeword?. In the voting scenario, this prevents any
modification to the stored ballots after the polls close, and prevents poll workers from tampering
with the content of the data structure while the storage device is in transit. This approach does
not require any cryptographic tools or computational assumptions, which makes it very suitable
for the setting of hostile environments. The additional memory allocation required by the encoding
is only logarithmic in the size of the stored data, and can be handled independently of the storage
strategy. For simplicity of presentation, we ignore the encoding procedure, and refer the reader’s
attention to the fact that our storage strategy is indeed write-once (i.e., the memory is initialized
to the all 0’s state, and the only operation allowed is flipping bits from 0 to 1).

Conflict resolution. In this paper we also address a seemingly unrelated problem: conflict
resolution in multiple-access channels. A fundamental problem of distributed computing is to
resolve conflicts that arise when several stations transmit simultaneously over a single channel. A
conflict resolution algorithm schedules retransmissions, such that each of the conflicting stations
eventually transmits singly to the channel. Such an algorithm is non-adaptive if the choice of the
transmitting stations in each step does not depend on information gathered from previous steps.
The efficiency measure for conflict resolution algorithms is the total number of steps it takes to
resolve conflicts in the worst case?.

We consider the standard model in which N stations are tapped into a single channel, and there
are at most K conflicting stations. In 1985, Komlés and Greenberg [13] provided a non-constructive
proof for the existence of a deterministic and non-adaptive algorithm that resolves conflicts in
O(K log(N/K)) steps. However, no explicit algorithm with a similar performance guarantee was
known. By establishing a tight connection between this problem and the basic building block
of our storage mechanism, we construct the first efficient deterministic and non-adaptive conflict
resolution algorithm.

1.1 Owur Contributions

We construct a deterministic mechanism for storing a set of at most K elements on write-once
memories. The elements are given one at a time, and stored in a manner that does not reveal
the insertion order. Our mechanism is immune to a large class of attacks that made previous
constructions unsuitable for extremely hostile environments. Whereas previous constructions were
either inefficient (required ©(K?) memory), randomized, or employed cryptographic techniques

2Consider the encoding F(x) = = || wt(Z)2, obtained by concatenating the string = with the binary representation
of the Hamming weight of its complement. Flipping any bit of = from 0 to 1 decreases wt(Z)2, and requires flipping
at least one bit of wt(Z)2 from 1 to 0.

3Worst case refers to the maximum over all possible sets of conflicting stations.



that require secure key storage, we eliminate each of these undesirable properties. Our main result
is the following®:

Theorem 1.1. There exists an explicit, deterministic, history-independent, and write-once mech-
anism for storing a set of at most K elements from a universe of size N, such that:

1. The total amount of allocated memory is O(K - polylog(N)).
2. The amortized insertion time and the worst-case look-up time are O(polylog(IN)).

In addition, our construction yields a non-constructive proof for the existence of the following
storage mechanism:

Theorem 1.2. There exists a deterministic, history-independent, and write-once mechanism for
storing a set of at most K elements from a universe of size N, such that:

1. The total amount of allocated memory is O(K log(N/K)).
2. The amortized insertion time is O(log(N/K)).
3. The worst-case look-up time is O(log N -log K).

Finally, by adapting our technique to the setting of conflict resolution, we devise the first efficient
deterministic and non-adaptive algorithm for this problem. The number of steps required by our
algorithm to resolve conflicts matches the non-explicit upper bound of Komlés and Greenberg [13]
up to poly-logarithmic factors. More specifically, we prove the following theorem:

Theorem 1.3. For every N and K there exists an explicit, deterministic, and non-adaptive algo-
rithm that resolves any K conflicts among N stations in O(K - polylog(N)) steps.

Paper organization. The rest of the paper is organized as follows. In the remainder of this
section we review related work and provide essential definitions. In Section 2 we present our main
security goals and threat model. In Section 3 we present an overview of our storage mechanism,
which is then described in Section 4. In Section 5 we provide constructions of the random-looking
bipartite graphs that serve as the main building block of our storage mechanism. Finally, in Section
6 we show that our technique can be adapted to devise a deterministic and non-adaptive conflict
resolution algorithm.

1.2 Related Work

The problem of constructing history-independent data structures was first formally considered by
Micciancio [14], who devised a variant of 2-3 trees that satisfies a property of this nature. Micciancio
considered a rather weak notion of history-independence, which required only that the shape of the
trees does not leak information. We follow Naor and Teague [17] and consider a stronger notion
— data structures whose memory representation does not leak information (see Section 1.3 for a
formal definition and for related work that considered this definition and its variants). Naor and
Teague focused on dictionaries, and constructed very efficient hash tables in which the cost of each
operation is constant.

4For simplicity, throughout the paper we refer to the amount of allocated memory as the number of allocated
memory words, each of length log N bits. We assume that the mechanism can read and write a memory word in
constant time.



In the context of write-once memories, Rivest and Shamir [19] initiated the study of codes for
write-once memory, by demonstrating that such memories can be “rewritten” to a surprising degree.
Irani, Naor and Rubinfeld [11] explored the time and space complexity of computation using write-
once memories, i.e., whether “a pen is much worse than a pencil”. Specifically, they proved that a
Turing machine with write-once polynomial space decides exactly the class of languages P.

History-independence on write-once memories. Molnar et al. [15] studied the task of de-
signing a vote storage mechanism, and suggested constructions of history-independent storage mech-
anisms on write-once memories. Among their suggestions is a deterministic mechanism based on
an observation of Naor and Teague [17], stating that one possible way of ensuring that the memory
representation is determined by the content of a data structure is to store the elements in lexico-
graphical order. This way, any set of elements has a single canonical representation, regardless of
the insertion order of its elements. When dealing with write-once media, however, we cannot sort
in-place when a new element is inserted. Instead, on every insertion, we compute the sorted list
that includes the new element, copy the contents of this list to the next available memory position,
and erase the previous list. We refer to this solution as a copy-over list, as suggested by Molnar et
al. [15]. The main disadvantage of copy-over lists is that any insertion requires copying the entire
list. Therefore, storing K elements requires ©(K?2) memory®.

In an attempt to improve the amount of allocated memory, Molnar et al. suggested using a hash
table in which each entry is stored as a separate copy-over list. The copy-over lists are necessary
when several elements are mapped to the same entry. However, with a fixed hash function the
worst-case behavior of the table is very poor, and therefore the hash function must be randomly
chosen and hidden from the adversary. Given the hash function, the mechanism is deterministic
and we refer to such a strategy as an off-line randomized strategy. For instance, the mechanism
may choose a pseudo-random function as its hash function. However, this approach is not suitable
for hostile environments, where secure storage for the key of the hash function is not available.

Molnar et al. also showed that an on-line randomized strategy can significantly improve the
amount of allocated memory. A simple solution is to allocate an array of 2K entries, and insert
an element by randomly probing the array until an empty entry is found. However, as mentioned
earlier, such a strategy may enable subliminal channels: a malicious storage mechanism can secretly
embed information into the stored data by choosing among the multiple valid representations of
the same data.

Tamper-evidence without write-once memories. Whereas the constructions of Molnar et al.
achieved tamper-evidence by exploiting the properties of write-once memories, a different approach
was taken by Bethencourt, Boneh and Waters [2]. They designed a history-independent tamper-
evident storage mechanism by constructing a signature scheme which signs sets of elements such that
the order in which elements were added cannot be determined, and elements cannot be deleted from
the set. Even though their solution uses only O(K) memory to store K elements, it is randomized
and requires secure storage for cryptographic keys (as well as computational assumptions).

5 . . . .

°When dealing with a small universe, a better solution is to pre-allocate memory to store a bounded unary counter
for each element. However, this may not be suitable for vote storage in cases where write-in candidates are allowed
(as common in the U.S.) or when votes are subsets or rankings (as common in many countries).



1.3 Formal Definitions

A data structure is defined by a list of operations. We construct a data structure that supports
the following operations:

1. Insert(x) - stores the element x.

2. Seal() - finalizes the data structure (after this operation no Insert operations are allowed).
3. LookUp(z) - outputs FOUND if and only if = has already been stored.

4. RetrieveAll() - outputs all stored elements.

We say that two sequences of operations, S and Ss, yield the same content if for all suffixes
T, the results returned by T when the prefix is S; are identical to those returned by 7" when the
prefix is So.

Definition 1.4. A deterministic data structure is history-independent if any two sequences of
operations that yield the same content induce the same memory representation.

In our scenario, two sequences of operations yield the same content if and only if the corre-
sponding sets of stored elements are identical. The above definition is a simplification of the one
suggested by Naor and Teague [17], when dealing only with deterministic data structures. Naor
and Teague also considered a stronger definition, in which the adversary gains control periodically,
and obtains the current memory representation at several points along the sequence of operations.
This definition has also been studied by Hartline et al. [10] and by Buchbinder and Petrank [3].
Since we deal only with deterministic data structures, in our setting the definitions are equivalent.

2 Security Goals and Threat Model

Our approach in defining the security goals and threat model is motivated by the possible attacks
on an electronic voting system. To make the discussion clearer, we frame the threat model in
terms of a vote storage mechanism. In an actual voting scenario, we think of ballot casting as an
Insert operation. In the most trivial case, the element inserted is simply the chosen candidate’s
name. In more complex voting schemes, the inserted element may be a ranking of the candidates,
an encrypted form of the ballot, or a combination of multiple choices. These possibilities are the
reason for viewing the “universe of elements” as large, while the actual number of elements inserted
is small (at most the number of voters). Once the voting is complete (e.g., the polls close), the
Seal operation is performed. The purpose is to safeguard the ballots during transport (and for
possible auditing). Finally, to count the votes, the RetrieveAll operation is performed. Note that
in a standard voting scenario, Lookup is not needed — we provide it here only for completeness.
The main security goals we would like our storage mechanism to achieve are the following®:

1. Tamper-evidence: Any modification or deletion of votes after they were cast must be
detected.

2. Privacy: No information about the order in which votes were cast should be revealed.

3. Robustness: No adversary should be able to cause the election process to fail.

SFor simplicity we focus on the main and most relevant security goals. We refer the reader to [15] for a more
detailed list.



We consider extremely powerful adversaries: Computationally unbounded adversaries that can
adaptively corrupt any number of voters (i.e., the adversary can choose to perform arbitrary Insert
operations at arbitrary points in time). In addition, we assume the adversary can modify the mech-
anism’s program code before the election process begins, as long as the resulting code creates a
“correct-looking” data structure (so that for any sequence of operations, a tester cannot distin-
guish between the memory representation output by the adversary’s program and the memory
representation output by a correct program). In our case, since our mechanism is deterministic,
“correct-looking” is equivalent to actually being correct (whereas a randomized mechanism can
enable in such a case a subliminal channel, as mentioned earlier).

The extent to which each of the above goals can be achieved depends on the assumed access that
the adversary has to the mechanism. More specifically, we consider differing levels of adversarial
access:

The full-access adversary. In the worst case, the adversary gains complete control of the mech-
anism at some point in time. After this point, the adversary has full read-write access both to the
stored data and to the program code. The only limitation on the adversary’s capabilities is our
physical write-once assumption: The adversary cannot flip bits from 1 to 0 in the stored data.
Such an adversary can always erase existing information (by setting all bits to 1), thus causing the
election to fail. Such an adversary can also change the program code, so it can both record and
change any votes cast. The best we can hope for in this case is a guarantee about operations that
took place before the attack. The adversary should not be able to undetectably modify or delete
votes that were previously cast, or to gain information about the order in which these votes were
cast (beyond the order of the votes cast by corrupt voters).

The limited-access adversary. A slightly more optimistic case is when the adversary has write
access only to the stored data, but not to the program code. Such an assumption may be plausible
if the program code is stored in a read-only memory, or if the adversary gains access to the machine
only after the election process has concluded. In this case, the adversary can still cause the election
to fail (e.g., by erasing all stored data). However, the adversary should not be able to undetectably
modify or delete any vote cast (except by corrupt voters). Moreover, the adversary should not
gain any information about the order in which votes were cast beyond what would be gained by
executing RetrieveAll() at any point in which the adversary has access to the mechanism.

The read-only adversary. In a best case scenario, the adversary has read-only access to the
mechanism. This may occur if the adversary’s access to the machine is through a programming
bug, for instance. In this case, in addition to the security guarantees that we expect from the
limited-access adversary, we would like to guarantee robustness as well: The adversary should not
be able to cause the election to fail. This guarantee is not trivial, since the read-only adversary
can still adaptively corrupt any number of voters.

Maliciously adding votes. An adversary with write access to the storage memory can always
add votes (by simply executing the Insert operation). To detect such tampering, we combine two
strategies: The first is adding a Seal operation to the mechanism, after which the Insert operation
is no longer allowed. This will detect any tampering that occurs after the election process has
concluded (as suggested by Molnar et al. [15]). The second is maintaining an independent count of
the number of votes cast (e.g., voter lists maintained by election officials). Since our construction



guarantees that votes cannot be deleted, if an adversary adds bogus votes then the counts will not
match up. Note that an independent count prevents adversaries from adding votes even if they
gain access to the mechanism during the election process.

3 Overview of the Construction

Our construction relies on the fundamental technique of storing elements in a hash table and
resolving collisions separately in each entry of the table. More specifically, our storage mechanism
incorporates two “strategies”: a global strategy that maps elements to the entries of the table, and
a local strategy that resolves collisions that occur when several elements are mapped to the same
entry. As long as both strategies are deterministic, history-independent and write-once, the entire
storage mechanism will also share these properties.

The local strategy. We resolve collisions by storing the elements mapped to each entry of the
table in a separate copy-over list. Copy-over lists were introduced by Molnar et al. [15], and are
based on an observation by Naor and Teague [17], stating that one possible way of ensuring that the
memory representation is determined by the content of a data structure is to store the elements in
lexicographical order. When dealing with write-once media, however, we cannot sort in-place when
a new element is inserted. Instead, on every insertion, we compute the sorted list that includes the
new element, copy the contents of this list to the next available memory position, and erase the
previous list (by setting all the bits to 1). Note that storing K elements in a copy-over list requires
O(K?) memory, and therefore is reasonable only for small values of K.

The global strategy. Our goal is to establish a deterministic strategy for mapping elements to
the entries of the table. However, for any fixed hash function, the set of inserted elements can be
chosen such that the load in at least one of the entries will be too high to be efficiently handled
by our local strategy. Therefore, in order to ensure that the number of elements mapped to each
entry remains relatively small (in the worst case), we must apply a more sophisticated strategy.

Our global strategy stores the elements in a sequence of tables, where each table enables us to
store a fraction of the elements. Each element is first inserted into several entries of the first table.
When an entry overflows (i.e., more than some pre-determined number of elements are inserted
into it), the entry is “permanently deleted”. In this case, any elements that were stored in this
entry and are not stored elsewhere in the table are inserted into the next table in a similar manner.
Thus, we are interested in finding a sequence of functions that map the universe of elements to the
entries of the tables, such that the total number of tables, the size of each table, and the number of
collisions are minimized. We view such functions as bipartite graphs G = (L, R, F), where the set
of vertices on the left, L, is identified with the universe of elements, and the vertices on the right,
R, are identified with the entries of a table. Given a set of elements S C L to store, the number of
elements mapped to each table entry y € R is the number of neighbors that y has from the set S.
We would like the set S C L to have as few as possible overflowing entries, i.e., as few as possible
vertices y € R with many neighbors in S.

More specifically, we are interested in bipartite graphs G = (L, R, F) with the following prop-
erty: Every set S C L of size at most K contains “many” vertices with low-degree neighbors. We
refer to such graphs as bounded-neighbor expanders’. Our global strategy will map all the elements

"The definition is motivated by the notion of bipartite unique-neighbor expanders presented by Alon and Capalbo
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in S which have a low-degree neighbor to those neighbors, and this guarantees that the table entries
corresponding to those neighbors will not overflow at any stage. However, not every element in S
will have a low-degree neighbor. For this reason, we use a sequence of bipartite graphs, all sharing
the same left set L. Each graph will enable us to store a fraction of the elements in S. Formally,
we define:

Definition 3.1. Let G = (L, R, E) be a bipartite graph. We say that a vertex x € L has an
{-degree neighbor with respect to S C L, if it has a neighbor y € R with no more than ¢ incoming
edges from S.

Definition 3.2. A bipartite graph G = (L, R, E) is a (K, a, £)-bounded-neighbor expander, if every
S C L of size K contains at least «|S| vertices that have an ¢-degree neighbor with respect to S.

We denote |L| = N. In addition, we assume that all the vertices on the left side have the same
degree D. We discuss and provide constructions of bounded-neighbor expander graphs in Section
5.

4 The Construction

Let Gy,...,G; denote a sequence of bounded-neighbor expanders G; = (L = [N], R;, E;) with
left-degree D;. The graphs are constructed such that:

e Gy is a (Ko = K, ag,{p)-bounded-neighbor expander, for some g and .

e Forevery 1 <i <t, G;isa (Kj;,a,{;)-bounded-neighbor expander, for some «; and ¢;, where
Ki=(1—-a;_1)Ki1.

As described in Section 3, the elements are stored in a sequence of tables, Tp, ..., T;. Each table
T; is identified with the right set R; of the bipartite graph G;, and contains |R;| entries denoted by
T;[1],...,T;[|Ri|]. The elements are mapped to the entries of the tables and are stored there using a
separate copy-over list at each entry. The copy-over list at each entry of table T; will store at most
?; elements. We denote by |T;[y]| the number of elements stored in the copy-over list T;[y], and
use the notation T;[y] = * to indicate that the copy-over list T;[y] overflowed and was permanently
deleted.

In order to insert or look-up an element x, we execute Insert(x,Ty) or LookUp(z,Tp), re-
spectively. The Seal() operation is performed as in [15] by using the encoding discussed in the
introduction. The operations Insert(z,T;), LookUp(z,T;), and RetrieveAll() are described in
Figure 1.

We first prove that the storage mechanism is history-independent, i.e., any two sequences of
insertions that yield the same content, induce the same memory representation. Then, we show
that each table indeed stores a fraction of the elements. Finally we summarize the properties of
the constructions.

Lemma 4.1. For every set S C [N] of size at most K, any insertion order of its elements induces
the same memory representation.

Proof. Let S C [N] of size at most K. We prove by induction on 0 < ¢ < ¢ that the memory
representation of table T; is independent of the insertion order.



Insert(x, T;):
1: for all neighbors y of x in the graph G; do
if T;[y] = % then
Continue to the next neighbor of x
else if |T;[y]| < ¢; then
Store x in the copy-over list T;[y]
else
for all 2’ in T;[y] such that 2’ does not appear in any other list in 7; do
Execute Insert(z’,Tjt1)
9: Set T;[y] < * // erase the memory blocks of T;[y]
10: if x was not stored in any copy-over list in the previous step then
11:  Execute Insert(z,T;+1)

.

LookUp(x, T;):
1: for all neighbors y of z in the graph G; do
2:  if x is stored in the copy-over list T;[y] then
return FOUND and halt
if = was not found in a previous step and i = t then
return NOT FOUND
else
return LookUp(z, T;41)

RetrieveAll():

1: for all tables T; do

2:  for all copy-over lists T;[y] do

3: if T;[y] # * then

4: Output all elements of T;[y] that have not yet been output

Figure 1: The Insert, LookUp, and RetrieveAll operations.

For ¢ = 0, denote by Yy the set of vertices in Ry that have no more than £y incoming edges from
S in the graph Gy. Then, it is clear that for every y € Y; and for any insertion order, the copy-over
list in entry Tp[y] never contains more than ¢ elements, and therefore never erased. Moreover, this
list will always contain the same elements (all the neighbors of y in S) which will be stored in a
history-independent manner. In addition, for every y € Ry \ Yy and for any insertion order, the
copy-over list at entry Tp[y] will be erased at some point (since it will exceed the £y upper bound),
and will contain a fixed number of erased blocks. Therefore, the memory representation of Ty is
independent of the insertion order.

Suppose now that the memory representation of Tp,...,7T;—1 is independent of the insertion
order. In particular this implies that for every set S there exists a fixed S; C S such that the
elements of S; are all stored in Tp,...,T;—1. Let S; = S\ S;. Then, in any insertion order, only
the elements of S} are inserted into table 7; (not necessarily successfully, i.e., will remain in 7;).
Now, denote by Y; the set of vertices in R; that have no more than ¢; incoming edges from S; in
the graph G;. Then, for every y € Y; and for any insertion order, the copy-over list in entry T;[y]
will never contain more than ¢; elements, and therefore will store all the neighbors of y from S/ in
a history independent manner. In addition, for every y € R; \ Y; and for any insertion order, the
copy-over list at entry 7T;[y] will be erased at some point (since it will exceed the ¢; upper bound),
and will contain a fixed number of erased blocks. Therefore, the memory representation of T is
independent of the insertion order as well. [




Lemma 4.2. For every set S C [N] of size at most K, for every insertion order of its elements,
and for every 0 < ¢ < t, the number of Insert(-,T;) calls is at most K;. In particular, if there
exists an a > 0 such that o; > a for every G;, then setting t = (%W guarantees that every such
set S is successfully stored.

Proof. We prove the first part of the lemma by induction on ¢. For ¢ = 0, it is clear that the
number of Insert(-,Tp) calls is at most Ko = K, since S contains at most K elements.

Suppose now that the number of Insert(:,T;) calls is at most K;. Fix an insertion ordering,
and denote by S; the set of elements x for which an Insert(x,T;) call was executed. An element z’
will be inserted by Insert(x’,T;y1) only if it was previously inserted by Insert(z’,T;), and then
either did not find an available copy-over list to enter, or was erased when a copy-over list exceeded
the ¢; upper bound. Notice that in the graph G;, if some = € S; has a neighbor y € R; with at
most ¢; incoming edges from S;, then x will be successfully placed in the copy-over list T;[y]. This
is due to the fact that y has at most ¢; incoming edges from S;, and therefore the copy-over list
Tiy] will not be erased.

This implies that the number of Insert(-,7T;+1) calls is upper bounded by the number of vertices
in S; which do not have an /¢;-degree neighbor with respect to S; in G;. We now claim that the
number of such vertices is at most (1 — «;)K; = K;;1. Extend S; arbitrarily to a set S. of size
ezactly K;. Then, Definition 3.2 implies there are at least aK; vertices in S} that have an ¢;-degree
neighbor with respect to S;. Since S; C S}, then any vertex that has an ¢;-degree neighbor with
respect to S/, also has (the same) ¢;-degree neighbor with respect to S;. Therefore, there are at
least a; K; vertices in S} that have an ¢;-degree neighbor with respect to S;. This implies that at
most (1 — o) K; vertices in S} do not have an ¢;-degree neighbor with respect to S;. In particular,
since S; C S}, there are at most (1 — «;)K; vertices in S; that do not have an ¢;-degree neighbor
with respect to S;.

Now, if there exists an a > 0 such that «; > « for every G;, then in particular the number of
Insert(-,7}) calls is at most

t—1
K=K J[Q-a)<K-(1-a)<K-e*<1.
i=0
Thus, at most one element is inserted into the last table T, and therefore the set S is successfully
stored in the sequence of ¢ + 1 tables. [

Lemma 4.3. The storage mechanism has the following properties:
1. The total amount of allocated memory is at most 3 i_, |Ry| - £2.
2. The amortized insertion time is at most & - (30_ |Ri| - £2).
3. The worst-case look-up time is at most ZE:O D;- E?.

Proof. Each table T; contains | R;| entries, each of which stores at most ¢; elements in a copy-over
list by using at most E? memory blocks. Therefore, the total amount of allocated memory is at most
Zfzo |R;| - 7. Moreover, since the storage strategy is write-once, then the total time for storing K
elements is upper bounded by the amount of memory in which the elements are stored. Therefore,
the amortized insertion time is at most % : (ZEZO |R;| E?) When searching for an element, each
table has to be accessed at only D; entries, where each entry contains at most 622 memory blocks.
Therefore, The worst-case look-up time is at most ZE:O D; 612 [
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Theorems 1.1 and 1.2 now follow by instantiating the mechanism with the bounded-neighbor
expanders from Corollary 5.7 and Theorem 5.1, respectively. The proof of Theorem 1.1 is provided
below, and the proof of Theorem 1.2 is almost identical and therefore omitted.

Proof of Theorem 1.1. When the sequence of graphs Gy, ..., Gy are constructed according to
Corollary 5.7 with € = 1/2, we have that every G; is a (K, a;, ¢;)-bounded-neighbor expander, such
that

R S Ky 1 c B c

" 4D;K; T log}(N) 4AD;K;  4D;log*(N)  4Dlog?(N) '

for some constant ¢ > 0 and D = polylog(/N). Therefore, by Lemma 4.2, we can set ¢ = P“—L

o

where a = ng(]\[). Now, Lemma 4.3 states that the total amount of allocated memory is
! —— AD;K; o K2 16D? log
S - = 3l (M) =10 Zym ZK
i=0 i=0 v
16K D2 log Zt: o) < 16KD2 log’(N) 1 64KD3 logf ()
- por c a c2 ’

Thus, the required memory allocation is O(K - polylog(/N)). Lemma 4.3 further implies that the
amortized insertion time and the worst-case look-up time are O(polylog(N)). |

5 Constructions of Bounded-Neighbor Expanders

Given N and K we are interested in constructing a (K, «,f)-bounded-neighbor expander G =
(L = [N], R, E), such that « is maximized, and ¢ and |R| are minimized. We first present a non-
constructive proof of the existence of a bounded-neighbor expander that enjoys “the best of the
two worlds”: o = 1/2, £ = 1, and almost linear |R|. Then, we provide an explicit construction
of bounded-neighbor expanders, by showing that any disperser [20] is in fact a bounded-neighbor
expander.

5.1 A Non-Constructive Proof
We prove the following theorem:

Theorem 5.1. For every N and K, there exists a (K,1/2,1)-bounded-neighbor expander G =
(L,R,E), with |[L| = N, |R| = O(K log(N/K)) and left-degree D = O(log(N/K)).

In order to prove the theorem, we show that for every N and K, there exists a family H
containing O(log(N/K)) functions h : [N] — [3K]| with the following property: For every S C [N]
of size K, there exists a function h € H such that h restricted to S maps at least K/2 elements
of S to unique elements of [3K]. Alternatively, we can view each function h as a bipartite graph
Gy, = ([N],[3K], E}), where (x,y) € Ej, if and only if h(z) = y, and ask that for every S C [N] of
size K there exists a function h € H such that at least K /2 elements in S have 1-degree neighbors
with respect to S in Gp,.

Given such a family H = {hy, ..., h}, we define a bipartite graph G = (L = [N], R, E') where R
contains ¢t = O(log(N/K)) copies of [3K]. Each copy represents a function in H. More specifically,
each vertex x € [N] has t outgoing edges, where the i-th edge is connected to h;(z) in the i-th copy
of [3K]. See Figure 2 for an illustration of the constructed graph.
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Figure 2: The constructed bounded-neighbor expander for the case t = 3.

Lemma 5.2. Let X denote the number of bins that contain exactly one ball, when K balls are
placed independently and uniformly at random in 3K bins. Then,

Pr(X < K/2] < exp(—K/48) .

Proof. For every 1 <i < K, denote by X; the Boolean random variable that equals 1 if and only
if the ¢-th ball is placed in a bin that does not contain any other balls. Then X = Zfil X;. Note
that since K balls are placed in 3K bins, then there are always at least 2K empty bins. Therefore,
for every @ € {0,1}%~1 and for every 1 <i < K,

Pr[Xi =1 (X1, Xi1, Xivr, .o, Xp) =@ > 2/3 .

Let Y7,...,Yx denote K independent and identically distributed Boolean random variables such
that Pr[Y; =1] = 2/3, and let Y = Zfi . Y;. A standard coupling argument shows that for every
t > 0 it holds that Pr[X < t] < Pr[Y < t]. Therefore, by applying a Chernoff bound for Y, we
obtain

Pr[X < K/2] < Pr[Y < K/2] < exp(—K/48) .

The following lemma proves the existence of the family H, which is used to construct the
bounded-neighbor expander as explained above.

Lemma 5.3. For every N and K, there exists a family H containing O(log(N/K)) functions
h : [N] — [3K], such that for every S C [N] of size K, there exists a function h € H whose
restriction to S maps at least K/2 elements of S to unique elements of [3K].

Proof. We apply a hitting-set argument. For every fixed S C [N] of size K, Lemma 5.2 implies
that with probability at least 1 —exp(—K/48) over the choice of a random function h : [N] — [3K],
we have that the restriction of h to S maps at least K/2 elements of S to unique elements of
[3K]. Therefore, there exists a function h; which have this property with respect to at least
(1 —exp(—K/48)) (%) sets of size K. We eliminate all of these sets, and start again with the
remaining sets. This way, we get that the size of the family H satisfies

(exn(—1/48)™ () <1

which is obtained for |H| = O(log(N/K)). u
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5.2 An Explicit Construction

We provide an explicit construction of bounded-neighbor expanders by showing that any disperser
is a bounded-neighbor expander. Dispersers [20] are combinatorial objects with many random-
like properties. Dispersers can be viewed as functions that take two inputs: a string that is not
uniformly distributed, but has some randomness; and a shorter string that is completely random,
and output a string whose distribution is guaranteed to have a large support. Dispersers have
found many applications in computer science, such as simulation with weak sources, deterministic
amplification, and many more (see [18] for a comprehensive survey). We now formally define
Dispersers, and then show that any disperser is a bounded-neighbor expander.

Definition 5.4. A bipartite graph G = (L, R, F) is a (K, ¢)-disperser if for every S C L of size at
least K, it holds that |I'(S)| > (1 — €)|R|, where I'(S) denotes the set of neighbors of the vertices
in S.

Lemma 5.5. Any (K, ¢€)-disperser G = (L, R, E) with left-degree D is a (K, a, {)-bounded-neighbor
expander, for a = (1;De)I|(R| and £ =1/a.

Proof. We have to show that every set S C L of size K contains least «|S| vertices that have an
¢-degree neighbor with respect to S (that is, a neighbor that has at most ¢ incoming edges from
S). We can focus only the subgraph G’ = (S,T'(S), E’), where E’ are all the outgoing edges of S.
There are exactly DK edges in G', and therefore the average degree of the vertices of I'(S) in G’ is

DK _ DK ¢
L)~ (A=l 2

This implies that at least |I'(S)|/2 vertices in I'(S) have degree at most ¢ in G’. Thus, the number
of vertices in S which have an ¢-degree neighbor with respect to S is at least

IT(S)| - (1—¢[R]  (1—¢)lR|
> = . = .
2D — 2D opr 1SI=als]

Lemma 5.5 can be instantiated with the following disperser construction of Ta-Shma, Umans
and Zuckerman [22].

Theorem 5.6 ([22]). For every n, k, and constant € > 0, there exists an efficiently computable
(K = 2F ¢)-disperser G = (L, R, E), with |[L| = N = 2", |R| = O(K/log*(N)) and left-degree
D = polylog(N).

Corollary 5.7. For every n, k and constant ¢ > 0, there exists an efficiently computable (K =

2k« 1/a)-bounded-neighbor expander G = (L, R, E), with |L| = N = 2", |R| = O(K/log3(N)),

_ _ (1—¢)|R]
left-degree D = polylog(N), and o = 57—

An alternative approach for constructing bounded-neighbor expanders is via loss-less con-
densers®. This approach guarantees constant o and very small ¢, but larger |R|. The recent
construction of Guruswami, Umans and Vadhan [9] yields a bounded-neighbor expander with
|R| = O(K'*€), for every constant ¢ > 0. Therefore, this is preferable only when dealing with

relatively small values of K, such as K = polylog(N).

8We note that unbalanced expanders have been already considered for storing sets of elements by Buhrman,
Miltersen, Radhakrishnan and Venkatesh [4] and by Ta-Shma [21] with the property that membership queries can be
answered by querying just one bit.
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6 A Deterministic Non-Adaptive Conflict Resolution Algorithm

In the conflict resolution problem, N stations are tapped into a multiple-access channel, and the
goal is to resolve conflicts that arise when K stations transmit simultaneously over the channel. A
conflict resolution algorithm schedules retransmissions, such that each of the conflicting stations
eventually transmits singly to the channel. At each step, if more than one station transmits, then
all packets are lost. After each step the transmitting stations receive feedback indicating only the
success or failure of their transmission. A station that successfully transmits halts, and waits for
the algorithm to terminate.

A conflict resolution algorithm is non-adaptive if the choice of the transmitting stations in each
step does not depend on information gathered from previous steps. The efficiency measure for
conflict resolution algorithms is the total number of steps it takes to resolve conflicts in the worst
case, where worst case refers to the maximum over all possible sets of K conflicting stations.

Several deterministic adaptive solutions are known. Capetanakis’s tree algorithms [5, 6], that
resolve conflicts in O(K log(N/K)) steps, were devised almost three decades ago. Greenberg and
Winograd [8] showed that any deterministic algorithm must run for Q(K (log N)/log K) steps. In
1985, Komlds and Greenberg [13] provided a non-constructive proof for the existence of a deter-
ministic and non-adaptive algorithm that resolves conflicts in O(K log(N/K)) steps. However,
no explicit algorithm with a similar performance guarantee was known. As noted by Komlés
and Greenberg, a very simple deterministic and non-adaptive algorithm can resolve conflicts in
O(K?log N) steps. This simple solution will be used by our algorithm in order to “locally” resolve
a small number of conflicts.

6.1 Overview of the Algorithm

We adapt the main idea underlying our storage mechanism by following similar “strategies”: A
global strategy that maps stations to time intervals, and a local strategy that schedules retransmis-
sions inside the intervals. The global strategy is identical to that of the storage mechanism: We
map the N stations to time intervals using a sequence of bounded-neighbor expanders. The local
strategy schedules retransmissions inside the intervals by associating the stations with codewords
of a superimposed code [12]. Given N and ¢, a binary superimposed code of size N guarantees
that any codeword is not contained in the bit-wise or of any other ¢ — 1 codewords. We use the
following result of Erdos, Frankel and Fiiredi [7].

Theorem 6.1 ([7]). For every N and ¢ there exists an efficiently computable code C : [N] — {0, 1}¢
where d < 16¢21log N, such that for every distinct x1, ... ,x; € [N] it holds that C(z1) \/f:2 C(zi).

In every interval, we associate each station x that is mapped to the interval with a codeword
C(z) € {0,1}%. Each interval contains d steps, and the station x transmits at its j-th step if
and only if the j-th entry of C(z) is 1. The superimposed code guarantees that if at most ¢
stations are mapped to an interval, then each station will successfully transmit. This approach
provides a deterministic and non-adaptive algorithm that resolves conflicts among any ¢ stations
in d = O(f?log N) steps.

6.2 The Algorithm

Let Gy, ...,G; denote a sequence of bounded-neighbor expanders G; = (L = [N], R;, E;) with left-
degree D;, and let Cy, ..., C; denote a sequence of codes C; : [N] — {0,1}%. The graphs and codes
are constructed such that:
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e Gy is a (Ko = K, ag,{p)-bounded-neighbor expander, for some g and .

e Forevery 1 <i <t, G;isa (K;, «a;,{¢;)-bounded-neighbor expander, for some «; and ¢;, where
Ki=(1—-a;_1)K;1.

e For every 0 < i <t, C; has the property that for every distinct x1, ...,z € [N] it holds that
Ci(1) € Vg Cilx;).

The algorithm runs in a sequence of intervals Iy,...,I;. Each interval T; is identified with
the right set R; of the bipartite graph G;, and is divided into |R;| sub-intervals denoted by
L], ...,L[|Ri|]]. A station x € [N] participates in sub-interval I;[y] if and only if z is adja-
cent to y in the graph G;. The sub-interval I;[y] contains d; steps, and a participating station z
transmits at its j-th step if and only if the j-th entry of Cj(z) is 1.

The following lemma summarizes the properties of the algorithm. The proof is almost identical
to the proof of the corresponding properties of the storage mechanism in Section 4, and is therefore
omitted. Theorem 1.3 is proved by instantiating the algorithm with the explicit family of bounded-
neighbor expanders constructed in Section 5. Again, the proof is almost identical to the proof of
Theorem 1.1, and is omitted.

Lemma 6.2. The following properties hold:

1. For every set of K conflicting stations and for every 0 < i <t, the number of active stations
at the beginning of interval I; is at most K;.

2. For every set of K conflicting stations, the algorithm terminates in 16 (Z';:O |R;| - 612) -log N
steps.

7 Concluding Remarks

Non-amortized insertion time. The amortized insertion time of our storage mechanism is at
most poly-logarithmic. However, the worst-case insertion time may be larger, since an insertion
may have a cascading effect. In some cases, this might enable a side-channel attack in which the
adversary exploits the insertion times in order to obtain information on the order in which elements
were inserted. We note that if multiple writes are allowed, then by combining our global strategy
with the hashing method of Naor and Teague [17], we can achieve a poly-logarithmic worst-case
insertion time, as well as linear memory allocation. Whether this is possible using write-once
memory remains an open problem.

Bounded-neighbor expanders. The explicit construction of bounded-neighbor expanders in
Section 5 does not achieve the parameters that one can hope for according to Theorem 5.1. It
would be interesting to improve our explicit construction, as any such improvement will in turn
lead to a more efficient instantiation of our storage mechanism.

Memory lower bound. The total amount of allocated bits required by the mechanism stated
in Theorem 1.2 is O(K log(N)log(N/K)). This leaves a gap between the optimal construction
using multiple-writes (that requires only O(K log(/N/K)) bits) and our construction using write-
once memory. An interesting open question is whether this gap is an unavoidable consequence of
using write-once memory. This can be alternatively formulated as follows: find the minimal integer
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M = M (N, K) such that any set S C [N] of size at most K can be mapped to a set Vs C [M], with
the property that Vg, C Vg, whenever S; C S2. Note that any solution to this vector assignment
problem can be translated into a write-once strategy that requires a memory of size M bits.

Dealing with multi-sets. Our storage mechanism can be easily adapted to store multi-sets of K
elements taken from a universe of size N. This setting can be viewed as dealing with a universe of
size N’ = NK, and storing an element = € [N] as (z,4) where i € [K] is the appearance number of
the element. Note that in order to insert an element x we first need to retrieved its current number
of appearances. This number can be retrieved using log K invocations of the LookUp procedure
in order to identify the maximal i € [K] such that (x,7) is stored (using a binary search). These
modifications only add poly-logarithmic factors to the performance of the mechanism, and therefore
Theorem 1.1 holds in this setting as well.

Robustness, efficiency and “lunchtime attacks”. A limited-access adversary may launch a
“lunchtime attack”: an attack in which the adversary has a short window of write-access to the
machine (but cannot change its program memory). In this case, depending on the error handling
procedures for the algorithm, it may be possible for the history-independence property of the data
structure to be violated. For example, the adversary can make sure a specific item cannot be
inserted by erasing all the relevant memory locations. If such an error causes the machine to halt,
then the adversary will be able to determine which items were inserted before the “marked” item.
A trivial way to prevent this is by verifying that the data structure is correct before each Insert
operation. This, however, increases the amortized time complexity of insertion considerably. By
sacrificing some robustness properties of the data structure under such an attack (e.g., flagging
errors, but possibly loosing data) it is possible to maintain history-independence without a loss of
efficiency.
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