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Abstract. The cipher CTC (Courtois Toy Cipher) described in [4] has
been designed to demonstrate that it is possible to break on a PC a block
cipher with good diffusion and very small number of known (or chosen)
plaintexts. It has however never been designed to withstand all known
attacks on block ciphers and Dunkelman and Keller have shown [13]
that a few bits of the key can be recovered by Linear Cryptanalysis (LC)
– which cannot however compromise the security of a large key. This
weakness can easily be avoided: in this paper we give a specification of
CTC2, a tweaked version of CTC. The new cipher is MUCH more secure
than CTC against LC and the key scheduling of CTC has been extended
to use any key size, independently from the block size. Otherwise, there
is little difference between CTC and CTC2. We will show that up to 10
rounds of CTC2 can be broken by simple algebraic attacks.
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1 Introduction

Claude Shannon, the father of information security as a science, has once advised
that, breaking a good cipher should require “as much work as solving a system
of simultaneous equations in a large number of unknowns”, see [20]. This is
an important and very explicit recommandation, yet it was ignored and nearly
forgotten for more than 50 years. The public research in symmetric cryptography
have concentrated on local and statistical aspects of ciphers, and have overlooked
the natural “global” approach of the problem. The secret key is defined as a
solution of a system of algebraic equations that describes the whole cipher. This
system should not be too simple, otherwise somebody might be able solve it...

Algebraic cryptanalysis of block ciphers took long, long time to take off. For
example, we can quote [19, 14, 16] for early work on algebraic cryptanalysis of
DES, and a recent paper [5] shows how to break 6 rounds of DES given only 1
known plaintext. The first example of a full-round industrial block cipher broken
in practice by algebraic attacks has been found in February 2007, see [6]. In this
paper we are interested in breaking a toy cipher, the only purpose of which is to
study cryptanalysis of block ciphers.



2 The Description of CTC2

CTC2 means for Courtois Toy Cipher, Version 2. It is quite similar to Serpent,
except that it is much simpler, and the key schedule is a simple permutation of
key bits, like in DES. It is exactly the same as CTC described in [4] except for
the equation (5) below that was modified very slightly, and the key scheduling
have been generalised and improved.

1. The S-box is the following permutation on s = 3 bits that has been chosen
as a random non-linear permutation: {7, 6, 0, 4, 2, 5, 1, 3}. We will number its
bits as follows: the input of the S-box is: 4 ·x3 +2 ·x2 +x1, while the output
is 4 · y3 + 2 · y2 + y1.

2. This S-box gives r = 14 fully quadratic equations with t = 22 terms, i.e.
equations of the type:∑

αijxixj +
∑

βijyiyj +
∑

γijxiyj +
∑

δixi +
∑

εiyi + η = 0

To be more precise, these equations are exactly:

0 = x1x2 + y1 + x3 + x2 + x1 + 1

0 = x1x3 + y2 + x2 + 1

0 = x1y1 + y2 + x2 + 1

0 = x1y2 + y2 + y1 + x3

0 = x2x3 + y3 + y2 + y1 + x2 + x1 + 1

0 = x2y1 + y3 + y2 + y1 + x2 + x1 + 1

0 = x2y2 + x1y3 + x1

0 = x2y3 + x1y3 + y1 + x3 + x2 + 1

0 = x3y1 + x1y3 + y3 + y1

0 = x3y2 + y3 + y1 + x3 + x1

0 = x3y3 + x1y3 + y2 + x2 + x1 + 1

0 = y1y2 + y3 + x1

0 = y1y3 + y3 + y2 + x2 + x1 + 1

0 = y2y3 + y3 + y2 + y1 + x3 + x1

(1)

One should note that there are many other ways of writing the equations
that will also lead to interesting attacks.

3. The number of rounds is Nr.
4. Let B = 1, 2, . . . , 128 be the number of S-boxes in each round. There are

B ∗ s bits in each round. We number them 0..Bs − 1, and we have in order
0 being x1 of the first S-box, then we have x2, x3 of the first S-box, then
x1, x2, x3 of the second S-box (if any), etc.

5. The key size is equal to the block size and has Hk bits, with Hk = 1, 2, 3, . . ..
The key is: k = (k0, . . . , kHk−1). In comparison, in the older specification
CTC one had Hk = B ∗ s. We note that when Hk = B ∗ s and also when
Hk ≤ B ∗ s, one known plaintext will be (on average) sufficient to determine
(more or less uniquely) the secret key. When Hk ≤ 2 ∗B ∗ s we will need to
plaintexts etc.



6. Each round i consists of the XOR with the derived key Ki−1, a parallel
application of the B S-boxes, and then of a linear diffusion layer D is applied
(this replaces the simple permutation of wires used in [9]).
For the last round an additional derived key KNr

is XORed (as in AES).
7. We denote Xi j , for i = 1..Nr, j = 0..Bs− 1, the inputs of the i− th round

after the XOR with the derived key.
8. We denote Zi j , for i = 1..Nr, j = 0..Bs− 1, the outputs of the i− th round

before the XOR with the next derived key.

-
���

6

K0

X1 Y1 Z1

S

S
D -

���
6

K1

-
���

6

KNr−1

XNr YNr ZNr

S

S
D -

���
6

KNr

Fig. 1. A toy cipher with B = 2 S-boxes per round

9. I order to have uniform notations, we may also denote the plaintext by Z0

and the ciphertext by XNr+1. These should not considered as variable names,
but as abbreviations that denote (known) constant values.

10. There is no S-boxes in the key schedule and the derived key in round i, Ki

is obtained from the global secret key bits k = (k1, . . . , kHk
) as follows (with

i = 0, 1, . . . , Nr):

Ki j
def
= k(j+i·509 mod Hk). (2)

In comparison, the older version CTC from [4] used the following:

Ki j
def
= K0 (j+i mod Bs). (3)

11. With all these notations, the linear equations from the key schedule are as
follows:

Xi+1 j = Zi j ⊕Ki j for all i = 0..Nr. (4)
12. The diffusion part D of the cipher is defined as follows:

Zi (j·1987+257 mod Bs) = Yi j ⊕ Yi (j+137 mod Bs) ⊕ Yi (j+274 mod Bs)

if j = 257 mod Bs

Zi (j·1987+257 mod Bs) = Yi j ⊕ Yi (j+137 mod Bs)

otherwise
(5)

In comparison, the older version CTC from [4] uses the following:
Zi (j·1987+257 mod Bs) = Yi j

if j = 0
Zi (j·1987+257 mod Bs) = Yi j ⊕ Yi (j+137 mod Bs)

otherwise

(6)



3 Cryptanalytic Results on CTC2

We did some trials in which we applied to CTC2 the same attacks that were
applied to CTC in [4], as well as the conversion to SAT described in [3] and the
MiniSat 2.0. algorithm [15].

3.1 How to Generate Equations

A windows executable program CTC2.exe can be downloaded from www.cryptosystem.
net/aes/toyciphers.html. This program is public domain, though the source
code is not currently available. The command line options of this program are:

CTC2.exe B Nr /insX [/fixY] [/cp] [/keyZ].
-B=number of S-boxes per round,
-Nr=number of rounds,
-/insX means use X plaintext/ciphertext pairs,
-/fixY means fix Y first key bits to their values to reduce the key space,
-with the option /cp the plaintexts are chosen to be consecutive,
it is in fact a counter mode,
-the option /keyZ modifies the size of the key, default is Z=B*3
which is equal to the block size.

The program generates two files in the current directory. One is the set of
equations, the second is the solution (key). The solution is useful for verification
and can be also used to design clever guess-then-algebraic attacks.

3.2 Achievement Metrics

Depending on the block size and the key size that remains to be found, we
estimate the time of one encryption with CTC2 to be roughly between 27 and
29 CPU clocks. As a consequence, in one second one try between 222 and 224

keys on a 2 GHz CPU. Thus, in 256 seconds one can try between 230 and 232

keys and in one hour one can try between about 234 and 236 keys.
To conclude, in this paper we estimate that if we recover 36-bits of the key in

less than one hour, or similarly if we compute 32-bits of the key in less than 256
seconds, the attack is faster than exhaustive search. These are rough estimates.

3.3 Results with Key Size Equal to Block Size

The results are very similar as for CTC, i.e. the same instances are broken within
comparable time.

Example of a Successful Attack No 1. For 40 S-boxes per round, 5 rounds,
2 chosen plaintext-ciphertext pairs that differ by only one bit, 120-bit key, and
85 first key bits fixed to their values, the remaining 35 bits of the key are found in
less than 100 s with the simple ElimLin method described in [4]. This is clearly
faster that exhaustive search, as explained in the previous section.



Note: As for CTC, we will also describe an attack on 6 rounds, when we do
complete it. So far were already able to compute several key bits faster than by
exhaustive search, but not yet the whole key.

3.4 Results with Key Size 6= Block Size

When the key size is larger than the block size, one can break 7 and more rounds
of CTC2. In this case, the cost of guessing all key bits in the first round is less
than the exhaustive search. Still, it is not so easy to break more than 6 rounds.

3.5 Results with Larger Key and Very Small Block Sizes

For 2 S-boxes per round, the block size is 6 bits. There are are (26)! ≈ 2296

permutations on 6 bits. Therefore it makes perfect cryptographic sense to build
a cipher with 6-bit block size and key of up to 256 bits and beyond.

If the key size is n bits, we need at least dn/6e known (or chosen) plaintexts
to be able to uniquely determine the key. Then any attack faster than exhaustive
search breaks the cipher, and the attack is even more interesting if it uses very
small number of known or chosen plaintexts, the minimum being dn/6e.

Example of a Successful Attack No 2. For 2 S-boxes per round, 7 rounds,
6 known (not chosen) plaintext-ciphertext pairs, and 32-bit key, the key is re-
covered in 123 s with ”conversion to MiniSat” method, see [5, 3, 15] This is (only
very slightly) faster than brute force.

3.6 Results with Key Size 6= Block Size and Larger Block Sizes

Example of a Successful Attack No 3. For 12 S-boxes per round, (36-bit
blocks), 10 rounds, 1 known plaintext-ciphertext pairs, 256-bit key and 224 first
key bits assumed to be known and fixed to their values, the remaining 32 bits
of the key are found in 2.5 s with ”conversion to MiniSat” method, see [5]. This
is about 100 times faster than brute force.

Example of a Successful Attack No 4. For 32 S-boxes per round, (96-bit
blocks), 7 rounds, 8 plaintext-ciphertext pairs with plaintexts that are consec-
utive as in the counter mode (it is a chosen-plaintext attack), 256-bit key and
220 first key bits assumed to be known and fixed to their values, the remaining
36 bits of the key are found in 1400 s with the ElimLin method described in [4].
This is about twice faster than brute force.

Example of a Successful Attack No 5. For 64 S-boxes per round, (192-bit
blocks), 7 rounds, only 1 known plaintext, 256-bit key and 220 first key bits
assumed to be known and fixed to their values, the remaining 36 bits of the key
are found in 250 s with the ElimLin method described in [4]. This is substantially
faster than brute force.



Example of a Successful Attack No 6. For 32 S-boxes per round, (96-bit
blocks), 10 rounds, 1 known plaintext-ciphertext pairs, 256-bit key and 224 first
key bits assumed to be known and fixed to their values, the remaining 32 bits
of the key are found in 29 s with ”conversion to MiniSat” method, see [5]. This
is about 10 times faster than brute force.

4 Open Problems and Further Research

At present time, when the key size equals block size, nobody is able to break 7
rounds of CTC2. Only attacks that require a very small number of (say at most
1024) known or chosen plaintexts should apply.

When the key size is longer than the block size, we can currently break up
to 10 rounds of CTC2. More can probably be done for instances with artificially
large key size.

All the attacks in this paper can be considered as simple and trivial, once
they have been discovered, but in fact it seems that nobody has anticipated their
existence, and a lot of energy were spend working in totally different directions.
The goal for further research is to see if better results can be obtained. We
encourage other researchers to try to solve the equations of CTC2 by their
favorite method.



5 Conclusion

CTC2 is a simple toy cipher that allows to study algebraic attacks on block
ciphers. Most researchers believe that algebraic attacks on block ciphers should
use sophisticated Gröbner bases algorithms that work at high degree and should
avoid reduction to 0. Recently however, Courtois has shown that among differ-
ent systems of equations that can be written in algebraic cryptanalysis, some
are much easier to solve than expected. Many systems are solved at degree 2,
by ElimLin that is much simpler than any existing Gröbner bases algorithm, or
by SAT solvers. The extreme sparsity and specific structure of equations derived
from block ciphers, allows to manipulate and solve in practice much larger sys-
tems of equations than expected. For example, up to 10 rounds of CTC2 can be
broken at present time, and here we only tried the most obvious attacks.

The attacks described in this paper can be treated as a reference point for fu-
ture work on algebraic cryptanalysis. In order to encourage competition between
researchers that work on systems that solve large sparse systems of multivariate
equations, we have made our tool to generate equations publicly available.

It is a pity that we understand so little about cryptanalysis of block ci-
phers. Papers like this one, are frequently judged as of relatively small interest.
Yet, arguably until now, there was no sensible metric of achievement in crypt-
analysis, and certain fundamental questions regarding what is easy and what
is hard to achieve were misunderstood. It appears that the whole research in
symmetric cryptography is heavily distorted: impractical attacks (that require
unrealistic quantities of known plaintexts) occupy a dominant position, while
important practical attacks (maybe computation-intensive but using a handful
of known/chosen plaintexts) are being spectacularly neglected and disregarded.

Currently, since nobody cannot break more than 10 rounds of CTC2 with
algebraic attacks, it may be very difficult to ever hope to break modern block ci-
phers such as AES that have 10 substantially more complex rounds. However one
should understand why is it so: this is because the designers of such ciphers have
considerably increased the number of rounds, in order to avoid the aforemen-
tioned classical cryptographic attacks, that are all pure theory and can only be
executed in fictional scenarios. With this (excessively large) number of rounds,
we conjecture for the time being, that ciphers such as AES should also be secure1

against algebraic cryptanalysis, which maybe finally happens by accident.
From the research perspective however, if we want to learn anything about

cryptanalysis, we really need to study the science of breaking ciphers from the
start and in realistic conditions: when the number of rounds is not excessive
and the plaintext material is scarce. It is amazing to see that nobody has
addressed such fundamental questions before. A lot remains to be done.

1 Still, this is to some extent impossible to know because only algebraic attacks with
very small computing power, mostly at degree 2, and with poor handling of sparsity
have been studied so far. These attacks are still very new, important improvements
can still be found.
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