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Abstract. We have designed three fast implementations of recently proposed family of hash func-
tions Edon–R. They produce message digests of length 256, 384 and 512 bits. We have defined huge
quasigroups of orders 2256, 2384 and 2512 by using only bitwise operations on 32 bit values (additions
modulo 232, XORs and left rotations) and achieved processing speeds of the Reference C code of
16 cycles/byte, 25.75 cycles/byte and 33.63 cycles/byte on x86 (Intel and AMD microprocessors).
In this paper we give their full description, as well as an initial security analysis.
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1 Introduction

On Second NIST Hash Workshop a family of hash functions Edon–R was proposed [1]. The initial design
was by general quasigroups of relatively small order (up to 256), and the approach was without concrete
realization of those hash functions. No concrete measurements about the speed of those hash functions
were given, although the authors admitted that computational speed of their design is slow.

In this paper we will describe three concrete realizations of Edon–R that will produce hash outputs
of 256, 384 and 512 bits. We have used bitwise operations on 32 bit values (additions modulo 232,
XORs and left rotations) to construct quasigroups of huge order (2256, 2384 and 2512) and then we have
used those quasigroups as a basis for implementing the compression function of Edon–R. We will show
that the designed quasigroups of huge order lack some of the laws that are satisfied in groups such as
commutativity and associativity. That is similar to the approach in the original proposal for the Edon–R
family of cryptographic hash functions. Thus, we are relying our claims about the security of our concrete
realization of Edon–R hash functions on the difficulty of solving general quasigroup equations.

The organization of the paper is as follows: In Section 2 we give some basic mathematical definitions,
a definition of a general compression function of Edon–R with only three blocks, and a definition of
three huge quasigroups of orders 2256, 2384 and 2512, in Section 3 we define three hash functions Edon–
R(256, 384, 512), in Section 4 we give some implementation characteristics, in Section 5 we give an initial
security analysis of the proposed hash functions, in Section 6 we give a design rationale and we conclude
the paper by Section 7.

2 Mathematical preliminaries and notation

In this section we need to repeat some parts of the definition of the class of one-way candidate functions
R1 recently defined in [1, 2]. For that purpose we will need also several brief definitions for quasigroups
and quasigroup string transformations.

A quasigroup (Q, ∗) is an algebraic structure consisting of a nonempty set Q and a binary operation
∗ : Q2 → Q with the property each of the equations

a ∗ x = b
y ∗ a = b

(1)



to have unique solutions x and y in Q. Closely related combinatorial structures to finite quasigroups are
the Latin squares, since the main body of the multiplication table of a quasigroup is just a Latin square.
More detailed information about theory of quasigroups, quasigroup string processing, Latin squares and
hash functions you can find in [3–6].

For the description of the algorithm we will use the following definitions:

Definition 1. ([2] Quasigroup reverse string transformation R1 : Qr → Qr)
Let r be a positive integer, let (Q, ∗) be a quasigroup and aj , bj ∈ Q. For each fixed m ∈ Q define first

the transformation Qm : Qr → Qr by

Qm(a0, a1, . . . , ar−1) = (b0, b1, . . . , br−1) ⇐⇒ bi :=
{

m ∗ a0, i = 0
bi−1 ∗ ai, 1 ≤ i ≤ r − 1.

Then define R1 as composition of transformations of kind Qm, for suitable choices of the indexes m,
as follows:

R1(a0, a1, . . . , ar−1) := Qa0(Qa1 . . . (Qar−1(a0, a1, . . . , ar−1))).
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Table 1. a. Schematic presentation of the function R1 for r = 3, b. Conjectured one-wayness of R1 comes from
the difficulty to solve a system of three equations where b0, b1 and b2 are given, and a0 = x0, a1 = x1 and a2 = x2

are indeterminate variables.

It was conjectured in [1, 2] thatR1 is one-way function (under some assumptions about the underlying
quasigroup (Q, ∗)) and that the complexity of its inverting is exponential i.e. that inverting R1 has a
complexity O(|Q| r

3 ), where |Q| is the size of the set Q.
In our construction of Edon–R(n), n = 256, 384, 512, we will use the function R1 with r = 3. The

transformation can be schematically presented by the Table 1a.
The conjectured one-wayness of R1 can be explained by Table 1b. Namely, let us take that only the

values b0, b1 and b2 are given. Then, in order to find pre-image values a0 = x0, a1 = x1 and a2 = x2 we
can use the Definition 1 and we will obtain the following equalities for the elements of Table 1b:
x

(1)
0 = x2 ∗ x0; x

(1)
1 = (x2 ∗ x0) ∗ x1; x

(1)
2 = ((x2 ∗ x0) ∗ x1) ∗ x2; x

(2)
0 = x1 ∗ (x2 ∗ x0); x

(2)
1 =

(x1 ∗ (x2 ∗ x0)) ∗ ((x2 ∗ x0) ∗ x1); x
(2)
2 =

(
(x1 ∗ (x2 ∗ x0)) ∗ ((x2 ∗ x0) ∗ x1)

) ∗ (
((x2 ∗ x0) ∗ x1) ∗ x2

)
.

From them, we can obtain the following system of quasigroup equations with indeterminate x0, x1, x2:




b0 = x0 ∗ (x1 ∗ (x2 ∗ x0))
b1 = b0 ∗

(
(x1 ∗ (x2 ∗ x0)) ∗ ((x2 ∗ x0) ∗ x1)

)

b2 = b1 ∗
((

(x1 ∗ (x2 ∗ x0)) ∗ ((x2 ∗ x0) ∗ x1)
) ∗ (

((x2 ∗ x0) ∗ x1) ∗ x2

))
.

One can show that for any given a0 = x0 ∈ Q either there are values of a1 = x1 and a2 = x2 as
a solution or there is no solution. However, if the quasigroup operation is non-commutative and non-
associative, and if the size of the quasigroup is very big (for example 2256, 2384 or 2512) then solving



this simple system of three quasigroup equations is hard. Actually there is no known efficient method
for solving such systems of quasigroup equations.

Of coarse, one inefficient method for solving that system would be to try every possible value for
a0 = x0 ∈ Q until obtaining other two indeterminates a1 = x1 and a2 = x2. That brute force method
would require in average 1

2 |Q| attempts to guess a0 = x0 ∈ Q before solving the system.

2.1 Definition of quasigroups of huge order

In this section we will describe the construction of quasigroups of huge orders (2256, 2384 and 2512). We
will use the following notation: Q is a set of cardinality 2n, and elements x ∈ Q will be represented in
their bitwise form as n-bit words

x ≡ (x0, x1, . . . , xn−2, xn−1) ≡ x0 · 2n−1 + x1 · 2n−2 + . . . + xn−2 · 2 + xn−1

where xi ∈ {0, 1}.
Let us start first with the following simple (and obvious) proposition:

Proposition 1. For any finite set Q of cardinality 2n the operation “Bitwise eXlusive OR” ⊕n : Q2 → Q
is quasigroup operation. ut

Let π1, π2, π3 : Q → Q be three permutations on the set Q.
Proposition 2. For any finite set Q of cardinality 2n the operation ∗ : Q2 → Q defined as:

a ∗ b ≡ π1(π2(a)⊕n π3(b))

is a quasigroup operation. ut
Proposition 3. If permutations π2 and π3 are not equal, then the quasigroup (Q, ∗) is non-commutative.

ut
Let us denote by Q256 = {0, 1}256, Q384 = {0, 1}384 and Q512 = {0, 1}512 the corresponding sets

of 256–bit, 384–bit and 512–bit words. Since our intention is to define Edon–R by bitwise operations
on 32 bit values, we will introduce the following convention: elements X ∈ Q256 will be represented as
X = (X0, X1, . . . , X7), elements X ∈ Q384 will be represented as X = (X0, X1, . . . , X11), and elements
X ∈ Q512 will be represented as X = (X0, X1, . . . , X15), where Xi are 32–bit words.

Further, let us denote by ROTL(Y, k) left rotation of a 32–bit word Y by k positions, by Y ⊕ Z
ordinary bitwise XOR operations between two 32–bit words Y and Z, and by Y + Z addition modulo
232.

We will give the formal definitions for the following permutations: π1,256, π2,256, π3,256, π1,384, π2,384, π3,384,
π1,512, π2,512, π3,512 where the corresponding three digit index (256, 384 or 512) denotes the cardinality
of the set Q over which they are defined.

Definition 2. Transformation π1,256 : Q256 → Q256 is defined as:

π1,256(X0, X1, X2, X3, X4, X5, X6, X7) = (X5, X6, X7, X0, X1, X2, X3, X4)

Lemma 1. Transformation π1,256 is permutation. ut
Definition 3. Transformation π2,256 : Q256 → Q256 is defined as:

π2,256(X0, X1, X2, X3, X4, X5, X6, X7) = (Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7)

where 



T0 = ROTL((X1 + X2 + X4 + X6 + X7), 1);
T1 = ROTL((X0 + X1 + X3 + X4 + X7), 3);
T2 = ROTL((X0 + X1 + X2 + X6 + X7), 4);
T3 = ROTL((X1 + X3 + X4 + X5 + X6), 5);
T4 = ROTL((X0 + X3 + X4 + X5 + X6), 7);
T5 = ROTL((X0 + X2 + X4 + X5 + X7), 8);
T6 = ROTL((X0 + X1 + X2 + X3 + X5), 10);
T7 = ROTL((X2 + X3 + X5 + X6 + X7), 13);

and





Y0 = ROTL((T0 ⊕ T3 ⊕ T5), 1);
Y1 = ROTL((T2 ⊕ T5 ⊕ T6), 4);
Y2 = ROTL((T3 ⊕ T4 ⊕ T5), 8);
Y3 = ROTL((T0 ⊕ T2 ⊕ T7), 9);
Y4 = ROTL((T1 ⊕ T2 ⊕ T7), 10);
Y5 = ROTL((T1 ⊕ T3 ⊕ T6), 12);
Y6 = ROTL((T4 ⊕ T6 ⊕ T7), 13);
Y7 = ROTL((T0 ⊕ T1 ⊕ T4), 14);



Lemma 2. Transformation π2,256 is permutation.

Proof. It is elementary exercise to check that the matrix A1,1 =




0 1 1 0 1 0 1 1
1 1 0 1 1 0 0 1
1 1 1 0 0 0 1 1
0 1 0 1 1 1 1 0
1 0 0 1 1 1 1 0
1 0 1 0 1 1 0 1
1 1 1 1 0 1 0 0
0 0 1 1 0 1 1 1




which correspond

to the additions for obtaining temporal variables Ti is nonsingular in (Z232 ,+). Thus the operations of
additions are permutations over Q256.

Similarly, the matrix A1,2 =




1 0 0 1 0 1 0 0
0 0 1 0 0 1 1 0
0 0 0 1 1 1 0 0
1 0 1 0 0 0 0 1
0 1 1 0 0 0 0 1
0 1 0 1 0 0 1 0
0 0 0 0 1 0 1 1
1 1 0 0 1 0 0 0




which correspond to the bitwise XoRs for obtaining

final values Yi is nonsingular in GF (2), so the operations of XoRs are permutations over Q256.
Since the left rotations are also permutations, by composition of all permutations we get that the

transformation π2,256 is permutation. ut

Definition 4. Transformation π3,256 : Q256 → Q256 is defined as:

π3,256(X0, X1, X2, X3, X4, X5, X6, X7) = (Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7)

where




T0 = ROTL((X1 + X4 + X5 + X6 + X7), 2);
T1 = ROTL((X1 + X2 + X4 + X6 + X7), 5);
T2 = ROTL((X0 + X1 + X3 + X6 + X7), 6);
T3 = ROTL((X0 + X2 + X3 + X5 + X6), 7);
T4 = ROTL((X2 + X3 + X4 + X5 + X7), 8);
T5 = ROTL((X0 + X3 + X4 + X5 + X6), 10);
T6 = ROTL((X0 + X1 + X2 + X3 + X4), 11);
T7 = ROTL((X0 + X1 + X2 + X5 + X7), 14);

and





Y0 = ROTL((T0 ⊕ T2 ⊕ T3), 3);
Y1 = ROTL((T0 ⊕ T3 ⊕ T5), 4);
Y2 = ROTL((T2 ⊕ T4 ⊕ T5), 6);
Y3 = ROTL((T1 ⊕ T4 ⊕ T7), 8);
Y4 = ROTL((T0 ⊕ T1 ⊕ T6), 9);
Y5 = ROTL((T1 ⊕ T2 ⊕ T7), 11);
Y6 = ROTL((T5 ⊕ T6 ⊕ T7), 12);
Y7 = ROTL((T3 ⊕ T4 ⊕ T6), 13);

Without proof (since it is similar to the proof for π2,256) we give the following lemma:

Lemma 3. Transformation π3,256 is permutation. ut

Theorem 1. Operation ∗256 : Q2
256 → Q256 defined as:

a ∗256 b = π1,256(π2,256(a) ⊕256 π3,256(b))

is a non-commutative and non-associative quasigroup operation that is not a loop.

Proof. The proof that the operation ∗256 is quasigroup operation follows immediately from the previous
propositions and lemmas. The non-associativity can be easily checked. Namely,

(1 ∗256 2) ∗256 3 6= 1 ∗256 (2 ∗256 3)

where 1, 2 and 3 are represented as 256–bit words.



The only non-obvious part is to show that ∗256 is not a loop i.e. that there is no element e ∈ Q256

such that for every a ∈ Q256, a ∗256 e = a = e ∗256 a. Let us suppose that there is a neutral element
e ∈ Q256. Let us first put

π2,256(e)⊕256 π3,256(e) = Conste

where Conste ∈ Q256 is a constant element.
If we apply concrete definition of the quasigroup operation ∗256 for the neutral element e we will get:

π1,256(π2,256(e)⊕256 π3,256(a)) = π1,256(π2,256(a)⊕256 π3,256(e))

Since π1,256 is a permutation we can remove it from the last equation and we will get:

π2,256(e)⊕256 π3,256(a) = π2,256(a)⊕256 π3,256(e)

and if we rearrange the last equation we will get:

π2,256(a)⊕256 π3,256(a) = π2,256(e)⊕256 π3,256(e) = Conste

The last equation states that for every a ∈ Q256 the expression π2,256(a)⊕256 π3,256(a) is a constant
and it is not true (for example π2,256(1)⊕256 π3,256(1) 6= π2,256(2)⊕256 π3,256(2). Thus we conclude that
∗256 is not a loop. ut

Definition 5. Transformation π1,384 : Q384 → Q384 is defined as:

π1,384(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11) = (X7, X8, X9, X10, X11, X0, X1, X2, X3, X4, X5, X6)

Lemma 4. Transformation π1,384 is permutation. ut

Definition 6. Transformation π2,384 : Q384 → Q384 is defined as:

π2,384(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11) = (Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10, Y11)

where




T0 = ROTL((X1 + X2 + X3 + X7 + X8 + X10 + X11), 1);
T1 = ROTL((X0 + X1 + X4 + X5 + X6 + X8 + X10), 3);
T2 = ROTL((X0 + X2 + X4 + X5 + X9 + X10 + X11), 4);
T3 = ROTL((X1 + X3 + X4 + X5 + X6 + X7 + X11), 5);
T4 = ROTL((X0 + X1 + X3 + X7 + X8 + X9 + X11), 7);
T5 = ROTL((X0 + X2 + X4 + X5 + X6 + X7 + X8), 8);
T6 = ROTL((X0 + X1 + X2 + X3 + X4 + X9 + X10), 10);
T7 = ROTL((X0 + X2 + X5 + X6 + X8 + X9 + X11), 13);
T8 = X3 + X4 + X5 + X7 + X8 + X9 + X10;
T9 = X0 + X3 + X4 + X6 + X7 + X10 + X11;
T10 = X1 + X2 + X5 + X6 + X7 + X9 + X10;
T11 = X1 + X2 + X3 + X6 + X8 + X9 + X11;

and





Y0 = ROTL((T0 ⊕ T4 ⊕ T5 ⊕ T6 ⊕ T9), 1);
Y1 = ROTL((T2 ⊕ T3 ⊕ T7 ⊕ T9 ⊕ T11), 4);
Y2 = ROTL((T1 ⊕ T3 ⊕ T6 ⊕ T7 ⊕ T8), 8);
Y3 = ROTL((T0 ⊕ T2 ⊕ T8 ⊕ T9 ⊕ T10), 9);
Y4 = ROTL((T2 ⊕ T4 ⊕ T5 ⊕ T6 ⊕ T10), 10);
Y5 = ROTL((T1 ⊕ T3 ⊕ T9 ⊕ T10 ⊕ T11), 12);
Y6 = ROTL((T5 ⊕ T6 ⊕ T7 ⊕ T8 ⊕ T11), 13);
Y7 = ROTL((T1 ⊕ T3 ⊕ T4 ⊕ T7 ⊕ T10), 14);
Y8 = T0 ⊕ T1 ⊕ T2 ⊕ T6 ⊕ T11;
Y9 = T1 ⊕ T2 ⊕ T5 ⊕ T8 ⊕ T9;
Y10 = T0 ⊕ T3 ⊕ T4 ⊕ T8 ⊕ T11;
Y11 = T0 ⊕ T4 ⊕ T5 ⊕ T7 ⊕ T10;

Lemma 5. Transformation π2,384 is permutation. ut

Definition 7. Transformation π3,384 : Q384 → Q384 is defined as:

π3,384(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11) = (Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10, Y11)



where




T0 = ROTL((X4 + X5 + X6 + X7 + X9 + X10 + X11), 2);
T1 = ROTL((X1 + X2 + X3 + X7 + X8 + X10 + X11), 5);
T2 = ROTL((X0 + X1 + X2 + X3 + X7 + X9 + X10), 6);
T3 = ROTL((X0 + X2 + X4 + X5 + X7 + X8 + X9), 7);
T4 = ROTL((X1 + X3 + X4 + X6 + X7 + X9 + X11), 8);
T5 = ROTL((X0 + X1 + X2 + X5 + X6 + X9 + X10), 10);
T6 = ROTL((X0 + X1 + X4 + X6 + X8 + X10 + X11), 11);
T7 = ROTL((X0 + X2 + X3 + X4 + X8 + X9 + X11), 14);
T8 = X0 + X1 + X5 + X6 + X7 + X8 + X11;
T9 = X0 + X3 + X5 + X6 + X8 + X9 + X10;
T10 = X2 + X3 + X4 + X5 + X6 + X7 + X8;
T11 = X1 + X2 + X3 + X4 + X5 + X10 + X11;

and





Y0 = ROTL((T0 ⊕ T1 ⊕ T2 ⊕ T3 ⊕ T8), 3);
Y1 = ROTL((T0 ⊕ T4 ⊕ T5 ⊕ T6 ⊕ T9), 4);
Y2 = ROTL((T4 ⊕ T5 ⊕ T6 ⊕ T8 ⊕ T11), 6);
Y3 = ROTL((T1 ⊕ T3 ⊕ T6 ⊕ T10 ⊕ T11), 8);
Y4 = ROTL((T0 ⊕ T2 ⊕ T5 ⊕ T8 ⊕ T10), 9);
Y5 = ROTL((T3 ⊕ T4 ⊕ T7 ⊕ T8 ⊕ T11), 11);
Y6 = ROTL((T2 ⊕ T3 ⊕ T5 ⊕ T7 ⊕ T9), 12);
Y7 = ROTL((T1 ⊕ T5 ⊕ T6 ⊕ T7 ⊕ T10), 13);
Y8 = T2 ⊕ T3 ⊕ T4 ⊕ T9 ⊕ T10;
Y9 = T1 ⊕ T2 ⊕ T4 ⊕ T7 ⊕ T11;
Y10 = T0 ⊕ T1 ⊕ T9 ⊕ T10 ⊕ T11;
Y11 = T0 ⊕ T6 ⊕ T7 ⊕ T8 ⊕ T9;

Lemma 6. Transformation π3,384 is permutation. ut

Theorem 2. Operation ∗384 : Q2
384 → Q384 defined as:

a ∗384 b = π1,384(π2,384(a) ⊕384 π3,384(b))

is a non-commutative and non-associative quasigroup operation that is not a loop. ut

Definition 8. Transformation π1,512 : Q384 → Q384 is defined as:

π1,384(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15) =
(X9, X10, X11, X12, X13, X14, X15, X0, X1, X2, X3, X4, X5, X6, X7, X8)

Lemma 7. Transformation π1,512 is permutation. ut

Definition 9. Transformation π2,512 : Q512 → Q512 is defined as:

π2,512(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15) =
(Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10, Y11, Y12, Y13, Y14, Y15)

where




T0 = ROTL((X0 + X2 + X3 + X4 + X6 + X9 + X10 + X13 + X15), 1);
T1 = ROTL((X0 + X1 + X3 + X4 + X6 + X8 + X10 + X13 + X15), 3);
T2 = ROTL((X0 + X1 + X3 + X6 + X7 + X10 + X11 + X12 + X14), 4);
T3 = ROTL((X1 + X3 + X4 + X6 + X8 + X10 + X11 + X14 + X15), 5);
T4 = ROTL((X0 + X1 + X2 + X4 + X7 + X8 + X9 + X11 + X13), 7);
T5 = ROTL((X1 + X2 + X4 + X5 + X7 + X8 + X9 + X10 + X12), 8);
T6 = ROTL((X0 + X5 + X7 + X9 + X10 + X11 + X12 + X13 + X14), 10);
T7 = ROTL((X0 + X3 + X5 + X8 + X9 + X11 + X12 + X13 + X14), 13);
T8 = X0 + X1 + X2 + X3 + X4 + X5 + X9 + X13 + X15;
T9 = X0 + X1 + X2 + X3 + X5 + X6 + X8 + X9 + X15;
T10 = X1 + X2 + X6 + X8 + X11 + X12 + X13 + X14 + X15;
T11 = X3 + X5 + X7 + X10 + X11 + X12 + X13 + X14 + X15;
T12 = X2 + X3 + X5 + X6 + X7 + X9 + X12 + X13 + X14;
T13 = X0 + X4 + X5 + X6 + X7 + X9 + X11 + X12 + X15;
T14 = X2 + X4 + X5 + X6 + X7 + X8 + X10 + X11 + X14;
T15 = X1 + X2 + X4 + X7 + X8 + X10 + X12 + X14 + X15;

and





Y0 = ROTL((T1 ⊕ T5 ⊕ T7 ⊕ T8 ⊕ T11 ⊕ T12 ⊕ T14), 1);
Y1 = ROTL((T2 ⊕ T5 ⊕ T7 ⊕ T9 ⊕ T11 ⊕ T12 ⊕ T14), 4);
Y2 = ROTL((T2 ⊕ T4 ⊕ T5 ⊕ T8 ⊕ T9 ⊕ T13 ⊕ T15), 8);
Y3 = ROTL((T0 ⊕ T2 ⊕ T5 ⊕ T7 ⊕ T9 ⊕ T12 ⊕ T13), 9);
Y4 = ROTL((T3 ⊕ T5 ⊕ T6 ⊕ T10 ⊕ T12 ⊕ T14 ⊕ T15), 10);
Y5 = ROTL((T0 ⊕ T3 ⊕ T6 ⊕ T11 ⊕ T13 ⊕ T14 ⊕ T15), 12);
Y6 = ROTL((T1 ⊕ T2 ⊕ T3 ⊕ T4 ⊕ T6 ⊕ T8 ⊕ T15), 13);
Y7 = ROTL((T1 ⊕ T2 ⊕ T4 ⊕ T6 ⊕ T7 ⊕ T10 ⊕ T15), 14);
Y8 = T6 ⊕ T7 ⊕ T8 ⊕ T10 ⊕ T11 ⊕ T12 ⊕ T14;
Y9 = T4 ⊕ T7 ⊕ T10 ⊕ T11 ⊕ T12 ⊕ T13 ⊕ T14;
Y10 = T0 ⊕ T3 ⊕ T4 ⊕ T5 ⊕ T7 ⊕ T9 ⊕ T10;
Y11 = T0 ⊕ T1 ⊕ T2 ⊕ T4 ⊕ T6 ⊕ T8 ⊕ T9;
Y12 = T0 ⊕ T1 ⊕ T4 ⊕ T8 ⊕ T10 ⊕ T11 ⊕ T15;
Y13 = T1 ⊕ T2 ⊕ T3 ⊕ T8 ⊕ T10 ⊕ T13 ⊕ T14;
Y14 = T0 ⊕ T1 ⊕ T3 ⊕ T9 ⊕ T12 ⊕ T13 ⊕ T15;
Y15 = T0 ⊕ T3 ⊕ T5 ⊕ T6 ⊕ T9 ⊕ T11 ⊕ T13;

Lemma 8. Transformation π2,512 is permutation. ut

Definition 10. Transformation π3,512 : Q512 → Q512 is defined as:

π3,512(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15) =
(Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10, Y11, Y12, Y13, Y14, Y15)



where




T0 = ROTL((X1 + X2 + X3 + X4 + X8 + X10 + X11 + X13 + X14), 2);
T1 = ROTL((X0 + X1 + X3 + X6 + X7 + X11 + X13 + X14 + X15), 5);
T2 = ROTL((X0 + X3 + X5 + X6 + X8 + X10 + X12 + X14 + X15), 6);
T3 = ROTL((X0 + X2 + X4 + X6 + X9 + X10 + X11 + X12 + X15), 7);
T4 = ROTL((X0 + X3 + X4 + X5 + X7 + X9 + X10 + X12 + X13), 8);
T5 = ROTL((X2 + X4 + X5 + X6 + X8 + X10 + X12 + X14 + X15), 10);
T6 = ROTL((X1 + X3 + X4 + X7 + X8 + X9 + X11 + X12 + X14), 11);
T7 = ROTL((X2 + X4 + X5 + X7 + X9 + X11 + X13 + X14 + X15), 14);
T8 = X1 + X5 + X6 + X7 + X9 + X10 + X11 + X13 + X14;
T9 = X0 + X1 + X2 + X3 + X7 + X8 + X9 + X10 + X15;
T10 = X0 + X1 + X2 + X3 + X5 + X6 + X11 + X12 + X14;
T11 = X0 + X1 + X5 + X6 + X7 + X8 + X11 + X12 + X13;
T12 = X1 + X3 + X4 + X5 + X8 + X10 + X12 + X13 + X15;
T13 = X0 + X1 + X2 + X4 + X6 + X7 + X8 + X9 + X10;
T14 = X0 + X2 + X7 + X8 + X9 + X12 + X13 + X14 + X15;
T15 = X2 + X3 + X4 + X5 + X6 + X9 + X11 + X13 + X15;

and





Y0 = ROTL((T0 ⊕ T5 ⊕ T6 ⊕ T7 ⊕ T9 ⊕ T12 ⊕ T15), 3);
Y1 = ROTL((T2 ⊕ T4 ⊕ T5 ⊕ T8 ⊕ T9 ⊕ T10 ⊕ T12), 4);
Y2 = ROTL((T1 ⊕ T2 ⊕ T4 ⊕ T7 ⊕ T9 ⊕ T11 ⊕ T13), 6);
Y3 = ROTL((T1 ⊕ T3 ⊕ T5 ⊕ T7 ⊕ T8 ⊕ T13 ⊕ T14), 8);
Y4 = ROTL((T1 ⊕ T2 ⊕ T6 ⊕ T8 ⊕ T11 ⊕ T14 ⊕ T15), 9);
Y5 = ROTL((T0 ⊕ T1 ⊕ T3 ⊕ T7 ⊕ T9 ⊕ T11 ⊕ T13), 11);
Y6 = ROTL((T0 ⊕ T2 ⊕ T5 ⊕ T6 ⊕ T10 ⊕ T13 ⊕ T15), 12);
Y7 = ROTL((T0 ⊕ T1 ⊕ T3 ⊕ T6 ⊕ T8 ⊕ T10 ⊕ T12), 13);
Y8 = T0 ⊕ T2 ⊕ T3 ⊕ T4 ⊕ T8 ⊕ T12 ⊕ T15;
Y9 = T4 ⊕ T5 ⊕ T6 ⊕ T11 ⊕ T12 ⊕ T13 ⊕ T14;
Y10 = T4 ⊕ T7 ⊕ T8 ⊕ T9 ⊕ T10 ⊕ T13 ⊕ T15;
Y11 = T2 ⊕ T3 ⊕ T4 ⊕ T9 ⊕ T10 ⊕ T14 ⊕ T15;
Y12 = T0 ⊕ T2 ⊕ T6 ⊕ T7 ⊕ T9 ⊕ T11 ⊕ T14;
Y13 = T3 ⊕ T5 ⊕ T11 ⊕ T12 ⊕ T13 ⊕ T14 ⊕ T15;
Y14 = T1 ⊕ T3 ⊕ T4 ⊕ T5 ⊕ T6 ⊕ T10 ⊕ T11;
Y15 = T0 ⊕ T1 ⊕ T7 ⊕ T8 ⊕ T10 ⊕ T12 ⊕ T14;

Lemma 9. Transformation π3,512 is permutation. ut

Theorem 3. Operation ∗512 : Q2
512 → Q512 defined as:

a ∗512 b = π1,512(π2,512(a) ⊕512 π3,512(b))

is a non-commutative and non-associative quasigroup operation that is not a loop. ut

Having defined three quasigroup operations ∗256, ∗384 and ∗512 we will define three one-way functions
R1,256, R1,384 and R1,512 as follows:

Definition 11. 1. R1,256 : Q3
256 → Q3

256 ≡ R1 where R1 is defined as in Definition 1 over Q256 with
the quasigroup operation ∗256.

2. R1,384 : Q3
384 → Q3

384 ≡ R1 where R1 is defined as in Definition 1 over Q384 with the quasigroup
operation ∗384.

3. R1,512 : Q3
512 → Q3

512 ≡ R1 where R1 is defined as in Definition 1 over Q512 with the quasigroup
operation ∗512.

3 Edon–R(256, 384, 512) hash algorithm

Having one-way quasigroup functions R1,256, R1,384 and R1,512, we now define three hash algorithms
Edon–R(256), Edon–R(384) and Edon–R(512) that map a messages M of arbitrary length of l bits
(l ≤ 2128) into a hash value of 256, 384 or 512 bits.

3.1 Padding

Padding of the messages M of arbitrary length of l bits is done by the standard Merkle-Damg̊ard
strengthening. Let us shortly denote all three hash functions as Edon–R(n) where the parameter n can
take the values 256, 384 or 512.

The padding of a message M that is long l bits by Edon–R(n) is done by the following procedure:

1. Append the bit 1 at the end of the message.
2. Append the smallest amount l1 of zero bits, such that l + 1 + l1 + 128 ≡ 0 (mod n).
3. Represent the original length l of the message M as an 128–bit number and append it at the end of

the message. The length of the appended message M ′ becomes multiple of n bits. Let represent the
appended message as M ′ = M1M2 . . . MN where Mi is n–bit long block.



3.2 Initial predetermined values

The definition of Edon–R(n) hash function includes one initial string H0 of length 2n bits. That initial
string is given as follows (represented in hexadecimal as concatenation of 32-bits chunks):

1. For n = 256, H0 = 0x01020304, 0x05060708, 0x090A0B0C, 0x0D0E0F10, 0x11121314, 0x15161718,
0x191A1B1C, 0x1D1E1F20, 0x21222324, 0x25262728, 0x292A2B2C, 0x2D2E2F30, 0x31323334,
0x35363738, x393A3B3C, 0x3D3E3F40.

2. For n = 384, H0 = 0x01020304, 0x05060708, 0x090A0B0C, 0x0D0E0F10, 0x11121314, 0x15161718,
0x191A1B1C, 0x1D1E1F20, 0x21222324, 0x25262728, 0x292A2B2C, 0x2D2E2F30, 0x31323334,
0x35363738, 0x393A3B3C, 0x3D3E3F40, 0x41424344, 0x45464748, 0x494A4B4C, 0x4D4E4F50,
0x51525354, 0x55565758, 0x595A5B5C, 0x5D5E5F60.

3. For n = 512, H0 = 0x01020304, 0x05060708, 0x090A0B0C, 0x0D0E0F10, 0x11121314, 0x15161718,
0x191A1B1C, 0x1D1E1F20, 0x21222324, 0x25262728, 0x292A2B2C, 0x2D2E2F30, 0x31323334,
0x35363738, 0x393A3B3C, 0x3D3E3F40, 0x41424344, 0x45464748, 0x494A4B4C, 0x4D4E4F50,
0x51525354, 0x55565758, 0x595A5B5C, 0x5D5E5F60, 0x61626364, 0x65666768, 0x696A6B6C,
0x6D6E6F70, 0x71727374, 0x75767778, 0x797A7B7C, 0x7D7E7F80.

The initial values are obtained by concatenation of the 8–bit representation of the numbers 1, 2, . . . , 128.

3.3 Edon–R(n) hash function

Input: n and M , where: n is 256, 384 or 512, and M is the message to be hashed.
Output: A hash of length n bits.

1. Pad the message M , so the length of the padded message M ′ is multiple of n–bit words i.e. |M ′| =
N × n.

2. Initialize H0.
3. Compute the hash with the following iterative procedure:

For i = 1 to N do
Hi = R1,n(Hi−1||Mi) mod 22n;

Output:
Edon-R(n)(M) = HN mod 2n

Since the one-way functions R1,n are considered as transformations {0, 1}3n → {0, 1}3n for obtaining
the intermediate value Hi, we apply the operation mod 22n that takes the last two n–bit words from
the result of R1,n. Finally, since the requested output from the hash function is n bits, we take just the
last n–bit word from the HN and that is denoted as the operation mod 2n.

4 Design rationale

4.1 Choosing basic 32–bit operations

We have decided to choose 32–bit operations of addition modulo 232, XOR-ing and left rotations as an
optimum choice that can be efficiently implemented both on low-end 8–bit and 16–bit processors, as well
as on modern 32–bit and 64–bit CPUs. In the past several cryptographic primitives have been designed
following the same rationale as well, such as: Salasa20 [14], The Tiny Encryption Algorithm [15], or
IDEA [16] - to name a few.



4.2 Choosing permutations π1, π2 and π3

Our goal was to design a structure that is non-commutative and non-associative quasigroup of huge
orders (2256, 2384 and 2512) in order to apply the principles of the hash family Edon–R. We have found
a way how to construct such a structure by applying some basic permutations π1, π2 and π3 on the sets
{0, 1}256, {0, 1}384 and {0, 1}512.

The permutations π1,256, π1,384 and π1,512 are simple rotations on 256, 384 or 512–bit words. They
can be effectively realized just by appropriate referencing of the 32–bit variables (after performing per-
mutations π2 and π3). While the permutations π2 and π3 do the work of diffusion and nonlinear mixing
separately on the first and the second argument of the quasigroup operations, after their outputs are
XORed, the permutations π1 introduce additional diffusion on the whole n–bit word. That diffusion
then have influence on the next application of the quasigroup operation ∗n (since we apply three such
operations in every row).

For the choice of the permutations π1 and π2 we had plenty of possibilities. However, since our
design is based on quasigroups, it was natural choice to use Latin squares in the construction of those
permutations. Actually there is a long history of using Latin squares in the randomized experimental
design (see for example [17]) as well as in cryptography [18–22].

Since for the permutations π2,256 and π3,256 we wanted bijectively to mix eight 32–bit variables we
have used the following 8× 8 Latin squares:

L1 =




2 1 7 6 3 4 0 5
4 3 2 5 0 7 1 6
7 0 1 4 6 2 5 3
6 7 0 1 4 5 3 2
1 4 6 3 5 0 2 7

0 6 5 2 1 3 7 4
5 2 3 0 7 6 4 1
3 5 4 7 2 1 6 0




=

(
L1,1

L1,2

)
L2 =




5 7 0 3 4 6 1 2
6 2 1 0 7 3 4 5
7 1 3 6 5 4 2 0
4 6 7 5 2 0 3 1
1 4 6 2 3 5 0 7

2 5 4 1 0 7 6 3
3 0 5 4 1 2 7 6
0 3 2 7 6 1 5 4




=

(
L2,1

L2,2

)

Then we have split L1 and L2 on two (upper and lower) Latin rectangles L1,1, L1,2, L2,1 and L2,2. We
used the columns of upper rectangles as index sets (block designs) for the variables that are bijectively
transformed by addition modulo 232 and the columns of lower rectangles as index sets (block designs)
for the variables that are bijectively transformed by XORing of 32–bit variables. More concretely:

L1,1 ⇒ A1,1 =




0 1 1 0 1 0 1 1
1 1 0 1 1 0 0 1
1 1 1 0 0 0 1 1
0 1 0 1 1 1 1 0
1 0 0 1 1 1 1 0
1 0 1 0 1 1 0 1
1 1 1 1 0 1 0 0
0 0 1 1 0 1 1 1




L1,2 ⇒ A1,2 =




1 0 0 1 0 1 0 0
0 0 1 0 0 1 1 0
0 0 0 1 1 1 0 0
1 0 1 0 0 0 0 1
0 1 1 0 0 0 0 1
0 1 0 1 0 0 1 0
0 0 0 0 1 0 1 1
1 1 0 0 1 0 0 0




As we mentioned in Section 2.1 matrix A1,1 is nonsingular in (Z232 ,+) and matrix A1,2 is nonsingular
in GF (2). Similarly from Latin rectangles L2,1 and L2,2 we got the nonsingular matrices A2,1 and A2,2.

Analogously, in what follows, without further explanation we will give corresponding Latin squares
L3 and L4 of order 12× 12 for Edon–R(384) and L5 and L6 of order 16× 16 for Edon–R(512).



L2,1 ⇒ A2,1 =




0 1 0 0 1 1 1 1
0 1 1 0 1 0 1 1
1 1 0 1 0 0 1 1
1 0 1 1 0 1 1 0
0 0 1 1 1 1 0 1
1 0 0 1 1 1 1 0
1 1 1 1 1 0 0 0
1 1 1 0 0 1 0 1




L2,2 ⇒ A2,2 =




1 0 1 1 0 0 0 0
1 0 0 1 0 1 0 0
0 0 1 0 1 1 0 0
0 1 0 0 1 0 0 1
1 1 0 0 0 0 1 0
0 1 1 0 0 0 0 1
0 0 0 0 0 1 1 1
0 0 0 1 1 0 1 0




L3 =




11 0 9 6 3 4 10 8 5 7 1 2
3 10 2 11 8 7 1 6 4 0 5 9
1 5 0 7 9 8 4 11 10 3 2 6
2 4 10 1 7 5 0 9 8 11 6 3
10 1 11 5 0 6 3 2 9 4 7 8
7 8 5 4 1 2 9 0 3 6 10 11
8 6 4 3 11 0 2 5 7 10 9 1

0 9 6 10 5 3 7 1 2 8 11 4
6 2 3 8 10 1 5 4 11 9 0 7
4 11 7 2 6 9 8 10 0 1 3 5
5 7 1 9 4 10 11 3 6 2 8 0
9 3 8 0 2 11 6 7 1 5 4 10




L4 =




11 10 9 5 7 0 4 8 1 6 2 3
4 7 0 8 11 2 10 9 6 5 3 1
9 1 3 2 4 5 6 0 8 10 7 11
5 11 1 9 6 10 8 3 7 0 4 2
6 8 2 7 3 1 11 4 0 9 5 10
7 3 10 4 1 9 0 2 11 8 6 5
10 2 7 0 9 6 1 11 5 3 8 4

2 9 11 1 8 7 3 5 10 4 0 6
8 0 4 6 5 11 9 10 3 2 1 7
3 6 5 10 0 8 2 1 4 7 11 9
1 5 8 3 10 4 7 6 2 11 9 0
0 4 6 11 2 3 5 7 9 1 10 8




L5 =




4 10 11 1 2 5 7 3 13 0 8 14 9 12 6 15
0 15 1 10 8 7 13 12 9 3 14 11 6 5 2 4
15 3 6 4 1 9 10 14 0 2 11 12 13 7 5 8
6 1 3 11 0 2 14 8 5 9 15 13 7 4 10 12
10 4 0 6 9 8 12 13 1 5 2 15 3 11 14 7
13 0 14 3 4 10 9 11 15 8 1 5 12 6 7 2
2 13 7 8 11 12 5 9 3 15 6 10 14 0 4 1
3 6 10 15 13 4 11 0 2 1 12 7 5 9 8 14
9 8 12 14 7 1 0 5 4 6 13 3 2 15 11 10

5 9 15 2 12 14 8 6 11 4 7 1 10 13 3 0
14 5 13 9 10 15 6 7 8 11 4 0 1 2 12 3
1 11 5 13 14 0 2 4 7 12 3 6 8 10 15 9
8 12 2 7 5 11 3 10 14 13 9 4 15 1 0 6
11 7 8 5 3 6 1 15 12 10 0 2 4 14 9 13
12 14 9 0 15 13 4 2 6 7 10 8 11 3 1 5
7 2 4 12 6 3 15 1 10 14 5 9 0 8 13 11




L6 =




3 14 8 12 4 15 7 11 6 10 0 5 1 2 13 9
1 3 5 0 10 4 9 7 11 2 14 12 13 6 8 15
2 11 6 9 12 5 8 14 10 3 1 13 15 7 0 4
4 13 10 11 9 14 3 15 1 7 2 6 8 0 12 5
11 0 15 10 7 6 14 4 13 1 12 8 5 9 2 3
8 15 12 6 0 2 4 13 5 9 3 7 10 1 14 11
13 7 0 2 3 10 1 9 14 8 5 11 12 4 15 6
10 1 14 4 5 12 11 2 9 15 6 0 3 8 7 13
14 6 3 15 13 8 12 5 7 0 11 1 4 10 9 2

7 9 11 3 1 13 2 6 15 4 8 14 0 12 5 10
12 10 7 5 2 3 13 8 0 11 9 4 14 15 6 1
9 5 13 8 11 7 6 0 4 12 15 10 2 3 1 14
0 4 2 14 15 1 5 12 8 6 10 3 9 13 11 7
5 8 4 1 6 9 0 10 2 13 7 15 11 14 3 12
6 12 9 13 14 0 15 1 3 5 4 2 7 11 10 8
15 2 1 7 8 11 10 3 12 14 13 9 6 5 4 0




5 Implementation characteristics of Edon–R(256, 384, 512)

We have initial implementation of all three functions Edon–R(256, 384, 512) in C. We have run tests
compiling both on Microsoft Visual C++ 6.0 and GNU C for x86 processors in 32–bit mode. Microsoft
compiler gave around 30% – 40% faster code. However, in both cases we did not use 64 or 128 bit SSE
and SSE2 registers as well as their SIMD capabilities. The initial processing speeds obtained by Microsoft
Visual C++ 6.0 compiler (optimized for speed) are given in the Table 2.

We project that significant improvements (at least twofold increasing) in the speed can be achieved
by using SIMD instructions and capabilities of modern CPUs.

On the other hand, measuring of the performances of Edon–R(256, 384, 512) on 8–bit platforms still
have to be done, but we hope that the speeds will be relatively fast due to the fact that we are using
only basic 32–bit operations such as addition modulo 232, eXlusive OR and rotations.



n cycles/byte
256 16.01
384 25.75
512 33.63

Table 2. Speed of the Reference C code for Edon–R(n) on x86 platforms in 32–bit mode.

By careful analysis of the order of operations performed in Edon–R(256, 384, 512) one can notice that
there are two types of parallelism of operations:

1. Operations inside the permutations π2 and π3 can be executed in parallel.
2. Pipelining of quasigroup operations: after the first quasigroup operation in the firs row, two quasi-

group operations can be performed in parallel (one on the first row and one on the second row), and
then similarly three quasigroup operations (in all three rows) can be performed in parallel.

This property can lead to hardware implementation of Edon–R(256, 384, 512) that can achieve even
higher speeds.

6 Security analysis of the algorithm

The design of Edon–R(n) is based on Merkle-Damg̊ard iterating principles [7–9]. In the light of latest
attacks with multi-collisions, the design of Edon–R has incorporated the suggestions of Lucks [10] and
Coron et al. [11]. Namely, by setting the size of the internal memory of the iterated compression function
to be twice as much as the output length, weaknesses against generic attacks of Joux [12], and Kelsy and
Schneier [13] are eliminated.

Doubling of the internal memory in our design is done by the fact that in every iterative step of its
compression function, the strings of length 3n bits are mapped to strings of length 3n bits and then only
the last significant 2n bits are kept for the next iterative step.

6.1 Testing avalanche properties of Edon–R(n)

First we will show the the avalanche propagation of the initial one bit differences of the compression
function of Edon–R(n) during their evolution in all 9 quasigroup operations ∗n, (n = 256, 384, 512).

We have used two experimental settings:

1. Examining the propagation of the initial 1–bit difference in a message consisting of all zeroes
2. Examining the propagation of the initial 1–bit difference in a randomly generated messages of n–bits.

The results for n = 256 are shown in Table 3. Notice that the level of Hamming distance equal to
1
2n = 128 which would be expected in theoretical models of ideal random functions is achieved after
applying quasigroup operations that lie on the down-right half of the tables (in bold).

The results for n = 384 are shown in Table 4. Notice again that the level of Hamming distance equal
to 1

2n = 192 which would be expected in theoretical models of ideal random functions is achieved after
applying quasigroup operations that lie on the down-right half of the tables (in bold), but some close
values are obtained also after the second quasigroup operation (in italic).

The results for n = 512 are shown in Table 5. There also the level of Hamming distance equal to
1
2n = 256 which would be expected in theoretical models of ideal random functions is achieved after
applying quasigroup operations that lie on the down-right half of the tables (in bold), but some close
values are obtained also after the second quasigroup operation (in italic).

One possible explanation about the reasons why Edon–R(384) and Edon–R(512) come slightly faster
to the level of ideal random function than Edon–R(256) may lie in the fact that permutations π2 and
π3 for n = 384, 512 are defined by bigger Latin squares of order 12× 12 and 16× 16 (see the Section 4).
Thus they are more complex then corresponding permutations π2 and π3 for n = 256.



Min = 15
Avr = 15
Max = 15

Min = 86
Avr = 108.44
Max = 133

Min = 107
Avr=127.43
Max = 153

Min = 80
Avr = 110.84
Max = 142

Min = 103
Avr=128.17
Max = 160

Min = 100
Avr=127.43
Max = 151

Min = 103
Avr=127.54
Max = 148

Min = 102
Avr=127.25
Max = 146

Min = 105
Avr=127.86
Max = 148

Min = 15
Avr = 26.59
Max = 74

Min = 76
Avr = 113.68
Max = 149

Min = 102
Avr=128.11
Max = 154

Min = 73
Avr = 115.93
Max = 155

Min = 103
Avr=128.09
Max = 158

Min = 95
Avr=127.75
Max = 155

Min = 101
Avr=128.07
Max = 153

Min = 100
Avr=128.01
Max = 154

Min = 95
Avr=127.67
Max = 155

a. b.

Table 3. a. Avalanche propagation of the Hamming distance between two 256–bit words M1 and M2 that
initially differs in one bit and where M1 = 0 (minimum, average and maximum) b. Avalanche propagation of
the Hamming distance between two 256–bit words M1 and M2 that initially differs in one bit (minimum, average
and maximum)

Min = 23
Avr = 30.33
Max = 35

Min = 162
Avr=190.28
Max = 255

Min = 166
Avr=190.89
Max = 219

Min = 162
Avr=190.87
Max = 218

Min = 166
Avr=192.17
Max = 218

Min = 160
Avr=192.40
Max = 222

Min = 162
Avr=191.40
Max = 225

Min = 168
Avr=192.11
Max = 223

Min = 160
Avr=192.15
Max = 221

Min = 23
Avr = 52.54
Max = 103

Min = 157
Avr=191.69
Max = 227

Min = 163
Avr=192.31
Max = 222

Min = 166
Avr=192.17
Max = 225

Min = 164
Avr=191.41
Max = 222

Min = 166
Avr=191.88
Max = 222

Min = 166
Avr=192.68
Max = 217

Min = 160
Avr=191.90
Max = 216

Min = 167
Avr=191.99
Max = 218

a. b.

Table 4. a. Avalanche propagation of the Hamming distance between two 384–bit words M1 and M2 that
initially differs in one bit and where M1 = 0 (minimum, average and maximum) b. Avalanche propagation of
the Hamming distance between two 384–bit words M1 and M2 that initially differs in one bit (minimum, average
and maximum)

Min = 27
Avr = 39.50
Max = 51

Min = 199
Avr=252.46
Max = 289

Min = 222
Avr=256.031
Max = 296

Min = 220
Avr=254.93
Max = 293

Min = 222
Avr=255.25
Max = 283

Min = 227
Avr=257.01
Max = 288

Min = 224
Avr=256.36
Max = 287

Min = 222
Avr=255.54
Max = 290

Min = 227
Avr=255.89
Max = 295

Min = 27
Avr = 73.00
Max = 142

Min = 209
Avr=254.54
Max = 288

Min = 222
Avr=255.34
Max = 288

Min = 214
Avr=255.49
Max = 287

Min = 226
Avr=255.85
Max = 290

Min = 226
Avr=256.50
Max = 287

Min = 217
Avr=255.35
Max = 286

Min = 225
Avr=256.38
Max = 288

Min = 221
Avr=256.402
Max = 297

a. b.

Table 5. a. Avalanche propagation of the Hamming distance between two 512–bit words M1 and M2 that
initially differs in one bit and where M1 = 0 (minimum, average and maximum) b. Avalanche propagation of
the Hamming distance between two 512–bit words M1 and M2 that initially differs in one bit (minimum, average
and maximum)

6.2 Description of all possible collision paths in the compression function R1 and
infeasibility of finding local collisions

Although the general design of Edon–R(n) follows Merkle-Damg̊ard iterating principles, the design of
the compression function R1 is pretty different than the design of compression functions of known hash



function that are designed from scratch. While other compression functions have 64, 80 or even more
iterating steps, R1 has 9 steps. So far, all successful attacks against the MDx and SHA families of hash
functions exploited local collisions in the processing of the data block. Local collisions are collisions that
can be found within few steps of the compression function.

∗n B1 = {b1} B2 = {b1, b2}

A1 = {a1} C1 = {c1}
where a1 ∗n b1 = c1

C2 = {c1, c2}
where a1 ∗n b1 = c1

and a1 ∗n b2 = c2

A2 = {a1, a2}
C2 = {c1, c2}

where a1 ∗n b1 = c1

and a2 ∗n b1 = c2

C2 = {c1, c2}
where a1 ∗n b1 = c1

and a2 ∗n b2 = c2

or
C1 = {c1}

where a1 ∗n b1 = c1

and a2 ∗n b2 = c1

Table 6. Definition of quasigroup operation between one or two-element sets.

The small number of steps in the compression function R1 as well as the algebraic properties of
quasigroup operations will allow us to describe all possible collision paths within the compression function.

{a0} {a1} {x1, x2}

{x1, x2} {c1, c2} {c3, c4} {c9, c10}

{a1} {c5, c6} {c11, c12} {c13, c14}

{a0} {c7, c8} {c15, c16} {c17}

{a0} {a1} {x1, x2}

{x1, x2} {c1, c2} {c3, c4} {c9, c10}

{a1} {c5, c6} {c11, c12} {c13}

{a0} {c7, c8} {c14} {c15}
a. b.

{a0} {a1} {x1, x2}

{x1, x2} {c1, c2} {c3, c4} {c9, c10}

{a1} {c5, c6} {c11} {c12, c13}

{a0} {c7, c8} {c14, c15} {c16}

{a0} {a1} {x1, x2}

{x1, x2} {c1, c2} {c3, c4} {c9}

{a1} {c5, c6} {c10, c11} {c12, c13}

{a0} {c7, c8} {c14, c15} {c16}
c. d.

Table 7. Description of all possible differential paths in the compression function R1 that can give collisions.

In order to track the collision paths for the compression function R1 we will introduce a definition
for quasigroup operation between sets of cardinality one and two.

Definition 12. Let A1 = {a1}, A2 = {a1, a2}, B1 = {b1}, B2 = {b1, b2}, C1 = {c1}, C2 = {c1, c2} be sets
of cardinality one or two and where ai, bi and ci ∈ Qn(n = 256, 384, 512). The operation of quasigroup
multiplication ∗n between these sets is defined by the Table 6:

Following directly by the properties of unique solutions of equations of type (1) it is easy to prove the
following two propositions:

Proposition 4. If b1 6= b2 then {a1} ∗n {b1, b2} = {c1, c2} such that c1 6= c2. ut
Proposition 5. If a1 6= a2 then {a1, a2} ∗n {b1} = {c1, c2} such that c1 6= c2. ut



However if both a1 6= a2 and b1 6= b2 then {a1, a2} ∗n {b1, b2} can be either {c1, c2} or {c1} and that
is formulated in the following proposition:

Proposition 6. If a1 6= a2 and b1 6= b2 then {a1, a2} ∗n {b1, b2} can be either {c1, c2} (where c1 6= c2)
or {c1}. ut

We will formalize the notion of collisions for the compression function R1 by the following definition:

Definition 13. Let (a0, a1, x1), (a0, a1, x2) ∈ Qn×Qn×Qn where a0 and a1 are initial constants defined
in Subsection 3.2. If R1(a0, a1, x1) = (c0, c1, y) and R1(a0, a1, x2) = (d0, d1, y) then we say that the pair
{x1, x2} is a collision for R1.

Using the Definition 12 and Definition 13 we can trace all possible paths that can produce collisions
in the compression function R1. That is formulated in the following theorem:

Theorem 4. If x1 6= x2 are two values in Qn, then all possible differential paths starting with the set
{x1, x2} that can produce collisions in the compression function R1 are described in Table 7. ut





c17 = c15 ∗n c13

c17 = c16 ∗n c14

c15 = c7 ∗n c11

c13 = c11 ∗n c9

c16 = c8 ∗n c12

c14 = c12 ∗n c10

c7 = a0 ∗n c5

c11 = c5 ∗n c3

c9 = c3 ∗n x1

c8 = a0 ∗n c6

c12 = c6 ∗n c4

c10 = c4 ∗n x2

c5 = a1 ∗n c1

c3 = c1 ∗n a1

c6 = a1 ∗n c2

c4 = c2 ∗n a1

c1 = x1 ∗n a0

c2 = x2 ∗n a0





c15 = c14 ∗n c13

c14 = c7 ∗n c11

c14 = c8 ∗n c12

c13 = c11 ∗n c9

c13 = c12 ∗n c10

c7 = a0 ∗n c5

c11 = c5 ∗n c3

c8 = a0 ∗n c6

c12 = c6 ∗n c4

c9 = c3 ∗n x1

c10 = c4 ∗n x2

c5 = a1 ∗n c1

c3 = c2 ∗n a1

c6 = a1 ∗n c2

c4 = c2 ∗n a1

c1 = x1 ∗n a0

c2 = x2 ∗n a0





c16 = c14 ∗n c12

c16 = c15 ∗n c13

c14 = c7 ∗n c11

c12 = c11 ∗n c9

c15 = c8 ∗n c11

c13 = c11 ∗n c10

c7 = a0 ∗n c5

c11 = c5 ∗n c3

c11 = c6 ∗n c4

c9 = c3 ∗n x1

c8 = a0 ∗n c6

c10 = c4 ∗n x2

c5 = a1 ∗n c1

c3 = c1 ∗n a1

c6 = a1 ∗n c2

c4 = c2 ∗n a1

c1 = x1 ∗n a0

c2 = x2 ∗n a0





c16 = c14 ∗n c12

c16 = c15 ∗n c13

c14 = c7 ∗n c10

c12 = c10 ∗n c9

c15 = c8 ∗n c11

c13 = c11 ∗n c9

c7 = a0 ∗n c5

c10 = c5 ∗n c3

c9 = c3 ∗n x1

c9 = c4 ∗n x2

c8 = a0 ∗n c6

c11 = c6 ∗n c4

c5 = a1 ∗n c1

c3 = c1 ∗n a1

c4 = c2 ∗n a1

c6 = a1 ∗n c2

c1 = x1 ∗n a0

c2 = x2 ∗n a0

a. b. c. d.
Table 8. Concrete systems of quasigroup equations that can give collisions in the compression function R1

From Table 7 it is clear that for the collision in Table 7a., there are no local collisions. For the other
three cases there are local collisions {c13} and {c14} in Table 7b., {c11} in Table 7c. and {c9} in Table
7d. In Table 8 we give four systems of quasigroup equations that are following directly from collision
paths described in Table 7. From the complexity of the given quasigroup equations we can say that in
this moment we see that it is infeasible even to find local collisions. As a support for that claim we can
point out that the position of all local collisions lie in the areas that are reaching the level of randomness
that is characteristic for a random Boolean functions (see bolded parts in Table 3, 4 and 5 and a position
of local collisions in Table 7b., 7c. and 7d.).

6.3 Infeasibility of going backward and infeasibility of finding free start collisions

According to the conjectured one-wayness of the function R1, iterating backward Edon–R(n) is in-
feasible. The conjecture is again based on the infeasibility of solving nonlinear quasigroup equations



in non-commutative and non-associative quasigroups. From this it follows that the workload for finding
preimages and second-preimages for any hash function of the family Edon–R(n) is 2n hash computations.

Moreover, inverting one-way function R1 would imply that finding free start collisions is feasible for
the whole function Edon–R(n). Consequently, we base our conjecture that it is infeasible to find free
start collisions for Edon–R(n) on the infeasibility of inverting the one-way function R1.

We will elaborate our claims more concretely by the following discussion:

Definition 14. Let (a0, a1, x1), (b0, b1, x2) ∈ Qn×Qn×Qn. If R1(a0, a1, x1) = (c0, c1, y) and R1(b0, b1, x2) =
(d0, d1, y) then we say that the pair ((a0, a1, x1), (b0, b1, x2)) is a free start collision for Edon–R(n).

The free start collision situation is described in the Table 9.

a0 a1 x1

x1 x
(1)
0 x

(1)
1 x

(1)
2

a1 x
(2)
0 x

(2)
1 x

(2)
2

a0 c0 c1 y

b0 b1 x2

x2 y
(1)
0 y

(1)
1 y

(1)
2

b1 y
(2)
0 y

(2)
1 y

(2)
2

b0 d0 d1 y
a. b.

Table 9. a. Schematic presentation of the function R1(a0, a1, x1) = (c0, c1, y), b. Schematic presentation of the
function R1(b0, b1, x2) = (d0, d1, y).

In this moment we see two ways how to find free start collisions for Edon–R(n):

1. Generate a random y ∈ Qn. Construct vectors (c0, c1, y) and (d0, d1, y) where c0, c1, d0, d1 ∈ Qn are
randomly chosen. Try to find R−1

1 (c0, c1, y) and R−1
1 (d0, d1, y).

2. Generate a random (a0, a1, x1) and compute R1(a0, a1, x1) = (c0, c1, y). Construct vector (d0, d1, y)
where d0, d1 ∈ Qn are randomly chosen. Try to find R−1

1 (d0, d1, y).

Both ways need inversion of R1 and as we already said we see that as an infeasible task.

7 Conclusions

We have designed a concrete realization of the family of hash functions Edon–R with message digests
of 256, 384 and 512 bits by defining huge non-commutative and non-associative quasigroups that are
not loops of orders 2256, 2384 and 2512. The definition of quasigroups involve 32–bit operations of ad-
dition modulo 232, bitwise XORing and left rotations. Those operations are very fast on most modern
microprocessors but they can be also efficiently realized on low-end 8–bit and 16–bit processors. By our
reference C code implementation on x86 platforms we have achieved processing speeds of 16 cycles/byte,
25.75 cycles/byte and 33.63 cycles/byte.

In the forthcoming period we will do additional security analysis and we will try to develop some
optimized implementations for different platforms.
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