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Abstract

Non-interactive zero-knowledge proofs and non-interactive witness-indistinguishable proofs have
played a significant role in the theory of cryptography. However, lack of efficiency has prevented them
from being used in practice. One of the roots of this inefficiency is that non-interactive zero-knowledge
proofs have been constructed for general NP-complete languages such as Circuit Satisfiability, causing
an expensive blowup in the size of the statement when reducing it to a circuit. The contribution of this
paper is a general methodology for constructing very simple and efficient non-interactive zero-knowledge
proofs and non-interactive witness-indistinguishable proofs that work directly for groups with a bilinear
map, without needing a reduction to Circuit Satisfiability.

Groups with bilinear maps have enjoyed tremendous success in the field of cryptography in recent
years and have been used to construct a plethora of protocols. This paper provides non-interactive witness-
indistinguishable proofs and non-interactive zero-knowledge proofs that can be used in connection with
these protocols. Our goal is to spread the use of non-interactive cryptographic proofs from mainly theo-
retical purposes to the large class of practical cryptographic protocols based on bilinear groups.
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1 Introduction

Non-interactive zero-knowledge proofs and non-interactive witness-indistinguishable proofs have played a
significant role in the theory of cryptography. However, lack of efficiency has prevented them from being
used in practice. Our goal is to construct efficient and practical non-interactive zero-knowledge (NIZK)
proofs and non-interactive witness-indistinguishable (NIWI) proofs.

Blum, Feldman and Micali [BFM88] introduced NIZK proofs. Their paper and subsequent work, e.g.
[FLS99, Dam92, KP98, DDP02], demonstrates that NIZK proofs exist for all of NP. Unfortunately, these
NIZK proofs are all very inefficient. While leading to interesting theoretical results, such as the construction
of public-key encryption secure against chosen ciphertext attack by Dolev, Dwork and Naor [DDN00], they
have therefore not had any impact in practice.

Since we want to construct NIZK proofs that can be used in practice, it is worthwhile to identify the roots
of the inefficiency in the above mentioned NIZK proofs. One drawback is that they were designed with a
general NP-complete language in mind, e.g. Circuit Satisfiability. In practice, we want to prove statements
such as “the ciphertextc encrypts a signature on the messagem” or “the three commitmentsca, cb, cc contain
messagesa, b, c soc = ab”. An NP-reduction of even very simple statements like these gives us big circuits
containing thousands of gates and the corresponding NIZK proofs then become very large.

While we want to avoid an expensive NP-reduction, it is still desirable to have a general way to express
statements that arise in practice instead of having to construct non-interactive proofs on an ad hoc basis. A
useful observation in this context is that many public-key cryptography protocols are based on finite abelian
groups. If we can capture statements that express relations between group elements, then we can express
statements that come up in practice such as “the commitmentsca, cb, cc contain messages soc = ab” or
“the plaintext ofc is a signature onm”, as long as those commitment, encryption, and signature schemes
work over the same finite group. In the paper, we will therefore construct NIWI and NIZK proofs forgroup-
dependentlanguages.

The next issue to address is where to find suitable group dependent languages. We will look at state-
ments related to groups with a bilinear map, which have become widely used in the design of cryptographic
protocols. Not only have bilinear groups been used to give new constructions of such cryptographic staples
as public-key encryption, digital signatures, and key agreement (see [DBS04] and the references therein),
but bilinear groups have enabled the first constructions achieving goals that had never been attained be-
fore. The most notable of these is the Identity-Based Encryption scheme of Boneh and Franklin [BF03]
(see also [Wat05]), and there are many others, such as Attribute-Based Encryption [SW05, GPSW06],
Searchable Public-Key Encryption [BCOP04, BSW06, BW06], and One-time Double-Homomorphic En-
cryption [BGN05]. For an incomplete list of papers (currently over 200) on the application of bilinear groups
in cryptography, see [Bar06].

1.1 Our Contribution

In this work, we develop a general set of highly efficient techniques for proving statements involving bilinear
groups. The generality of our work extends in two directions. First, we formulate our constructions in terms
of modules over commutative rings with an associated bilinear map. This framework captures all known bi-
linear groups with cryptographic significance – for both supersingular and ordinary elliptic curves, for groups
of both prime and composite order. Second, we consider all mathematical operations that could take place
in the context of a bilinear group – exponentiation, addition or multiplication of exponents, multiplication
of group elements and use of the bilinear map. We also allow both group elements and exponents to be
“unknowns” in the statements to be proven.

With our level of generality, for example it would be easy to write down a short statement, using the
operations above, that encodes “c is an encryption of the value committed to ind under the product of the
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two keys committed to ina andb” where the encryptions and commitments being referred to are existing
cryptographic constructions based on bilinear groups. Logical operations like AND and OR are also easy to
encode into our framework using standard techniques in arithmetization.

The proof systems we build arenon-interactive. This allows them to be used in contexts where interaction
is undesirable or impossible. We first build highly efficient witness-indistinguishable proof systems, which
are of independent interest. We then show how to transform these into zero-knowledge proof systems. We
also provide a detailed examination of the efficiency of our constructions in various settings (depending on
what type of bilinear group is used).

The security of constructions arising from our framework can be based onanyof a variety of computa-
tional assumptions about bilinear groups (3 of which we discuss in detail here). Thus, our techniques do not
rely on any one assumption in particular.

Informal statement of our results. We consider equations over variables fromG1, G2 andZn as described
in Figure 1. We construct efficient witness-indistinguishable proofs for the simultaneous satisfiability of a
set of such equations. The witness-indistinguishable proofs have perfect completeness and there are two
computationally indistinguishable types of common reference strings giving respectively perfect soundness
and perfect witness indistinguishability. We refer to Section 2 for precise definitions.

We also consider the question of non-interactive zero-knowledge. We say a set of equations istractable
if it is possible to compute a satisfiability witness in the easier setting where we allow the exponent variables
φ1, . . . , φK , θ1, . . . , θL to take different values in each equation. We offer a technique to transform a set of
equations into an equivalent tractable set of equations. Tractable equations have efficient non-interactive zero-
knowledge proofs with perfect completeness and two types of computationally indistinguishable common
reference strings giving respectively perfect soundness and perfect zero-knowledge simulation.

Instantiation 1: Subgroup decision. Throughout the paper, we will give a general description of our tech-
niques. We will also offer three instantiations that illustrate the use of our techniques. The first instantiation
is based on the composite order groups introduced by Boneh, Goh and Nissim [BGN05]. LetG,GT be
cyclic groups of ordern = pq, wherep,q are primes. Letg be a generator ofG. Let e : G × G → GT

be a non-degenerate bilinear map, i.e.,e(g, g) generatesGT and for alla, b we havee(ga, gb) = e(g, g)ab.
[BGN05] gives an example of a way to set up such groups such that all operations are efficiently computable
and membership ofG,GT can be decided efficiently.

We can writeG = Gp × Gq, whereGp, Gq are the subgroups of orderp andq respectively. The
subgroup decision problem is to distinguish a random element fromG from a random element fromGq. In
this paper, we will demonstrate that assuming the hardness of the subgroup decision problem there exists a
witness-indistinguishable proof for satisfiability of a set of equations from Figure 1 in the subgroupGp and
the orderp subgroup ofGT .

Instantiation 2: XDH and SXDH. Let G1, G2, GT be groups of prime orderp with a non-degenerate
bilinear mape : G1×G2 → GT . The external Diffie-Hellman (XDH) assumption is that the decisional Diffie-
Hellman (DDH) problem is hard in one of the groupsG1 orG2 [Sco02, BBS04, BGdMM05, GR04, Ver04].
The Symmetric XDH assumption is that the DDH problem is hard in bothG1 andG2. We will construct
a witness-indistinguishable proof for these groups under the SXDH assumption. We will also observe that
given only the XDH assumption, we can still give NIWI proofs for some interesting special cases.

Instantiation 3: DLIN. Let G,GT be groups of prime orderp with a non-degenerate bilinear mape :
G×G→ GT . The decisional linear assumption (DLIN) introduced by Boneh, Boyen and Shacham [BBS04]
states that given three random generatorsf, h, g andf r, hs, gt, it is hard to distinguish the caset = r + s
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Variables: x1, . . . , xM ∈ G1 , y1, . . . , yN ∈ G2 , φ1, . . . , φK , θ1, . . . , θL ∈ Zn.

Pairing product equation:
Q∏

q=1

e(aq

M∏
m=1

x
αqm
m , bq

N∏
n=1

y
βqn
n ) = T ,

for constantsaq ∈ G1, bq ∈ G2, T ∈ GT , αqm, βqn ∈ Zn.

Multi-exponentiation in G1:
L∏

`=1

aθ`
` ·

M∏
m=1

x
∑L

`=1 αm`θ`+βm
m = t1,

for constantsa`, t1 ∈ G1 andαm`, βm ∈ Zn.

Multi-exponentiation in G2:
K∏

k=1

bφk
k ·

N∏
n=1

y
∑K

k=1 αnkφk+βn
n = t2,

for constantsbk, t2 ∈ G2 andαnk, βn ∈ Zn.

General arithmetic gate:

K∑
k=1

αkφk +
L∑

`=1

β`θ` +
K∑

k=1

L∑
`=1

γk`φkθ` = τ,

for constantsαk, β`, γk`, τ ∈ Zn.

Figure 1: Equations over groups with bilinear map.

from t random. They offer an example of such a group based on elliptic curves, where the DLIN problem
is assumed hard. Assuming the hardness of the DLIN problem, we will suggest a witness-indistinguishable
proof for satisfiability of a set of equations from Figure 1.

The instantiations illustrate the variety of ways bilinear groups can be constructed. We can choose prime
order groups or composite order groups, we can haveG1 = G2 andG1 6= G2, and we can make various
cryptographic assumptions. All three security assumptions have been used in the cryptographic literature to
build interesting protocols.

For all three instantiations, the techniques presented here yield very efficient witness-indistinguishable
proofs. In particular, the cost in proof size of each extra equation is constant and independent of the number
of variables in the equation. The size of the proofs, can be computed by adding the cost, measured in group
elements fromG1 or G2, of each variable and each equation listed in Figure 2. We refer to Section 9 for
more detailed tables.

1.2 Related Work

As we mentioned before, early work on NIZK proofs demonstrated that all NP-languages have non-
interactive proofs, however, did not yield efficient proofs. One cause for these proofs being inefficient in
practice was the need for an expensive NP-reduction to e.g. Circuit Satisfiability. Another cause of ineffi-
ciency was the reliance on the so-called hidden bits model, which even for small circuits is inefficient.
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Subgroup decision SXDH DLIN
Variable inG1 orG2 1 2 3
Variable inZn or Zp 1 2 3
Paring product equation 1 8 9
Multi-exponentiation inG1 orG2 1 6 9
General arithmetic gate 1 4 6

Figure 2: Number of group elements each variable or equation costs.

Groth, Ostrovsky, and Sahai [GOS06b, GOS06a] investigated NIZK proofs for Circuit Satisfiability using
bilinear groups. This addressed the second cause of inefficiency since their techniques give efficient proofs for
Circuit Satisfiability, but to use their proofs one must still make an NP-reduction to Circuit Satisfiability thus
limiting the applications. We stress that while [GOS06b, GOS06a] used bilinear groups, their application
was to build proof systems for circuit satisfiability. Here, we devise entirely new techniques to deal with
general statementsaboutbilinear groups, without having to reduce to an NP-complete language.

Addressing the issue of avoiding an expensive NP-reduction we have works by Boyen and Waters [BW06,
BW07] that suggest efficient NIWI proofs for statements related to group signatures. These proofs are based
on bilinear groups of composite order and rely on the subgroup decision assumption.

Groth [Gro06] was the first to suggest a general group-dependent language and NIZK proofs for state-
ments in this language. He investigated a restricted kind of pairing product equation in which only group
elements can be variables. He also looked only at the special case of prime order groupsG,GT with a bilin-
ear mape : G×G→ GT and, based on the decisional linear assumption [BBS04], constructed NIZK proofs
for such restricted pairing product equations. However, even for very small statements, the very different and
much more complicated techniques of Groth yield proofs consisting of thousands of group elements (whereas
ours would be in the tens)1. Our techniques are much easier to understand, significantly more general, and
vastly more efficient.

We summarize our comparison with other works on NIZK proofs in Figure 3.

Inefficient Efficient
Circuit Satisfiability E.g. [KP98] [GOS06b, GOS06a]
Pairing Product Equations[Gro06] (restricted case) This work

Figure 3: Classification of NIZK proofs according to usefulness.

We note that there have been many earlier works (starting with [GMR89]) dealing with efficientinterac-
tivezero-knowledge protocols for a number of algebraic relations. Here, we focus onnon-interactiveproofs.
We also note that even for interactive zero-knowledge proofs, no set of techniques was known for dealing
with general algebraic assertions arising in bilinear groups, as we do here.

1.3 New Techniques

[GOS06b, GOS06a, Gro06] start by constructing non-interactive proofs for simple statements and then com-
bine many of them to get more powerful proofs. The main building block in [GOS06b], for instance, is a
proof that a given commitment contains either 0 or 1, which has little expressive power on its own. Our

1Furthermore, even when limited to the restricted types of statements considered by [Gro06], there are examples of families of
statements for which there is anarbitrary polynomial gapbetween the efficiency of the proof systems of [Gro06] and ours. Thus,
our construction not only dominates that of [Gro06] in terms of typical use, but also in asymptotic terms.
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approach is the opposite: we directly construct proofs for very expressive languages; as such, our techniques
are very different from previous work.

The way we construct our efficient yet powerful NIWI proofs is by viewing the groupsG1, G2, GT as sub-
modules of appropriately chosen modulesM1,M2,MT . Furthermore, from the bilinear mape : G1×G2 →
GT , we can construct a bilinear mapE : M1 ×M2 → MT . We introduce a number of new techniques for
building NIWI proofs in this setting. The primary advantage of the modular setting is that it permits char-
acterizing witness-indistinguishability in a very simple way. Moreover, witness-indistinguishability relies on
high-level properties of modules over a commutative ring so our approach becomes very general and covers
a wide range of different types of bilinear groups.

1.4 Applications

There are many applications of our NIWI proofs and NIZK proofs. Subsequent to this work, Chandran, Groth
and Sahai [CGS07] construct ring-signatures of sublinear size using the NIWI proofs in the first instantiation,
which is based on the subgroup decision problem. Groth and Lu [GL07] use the NIWI and NIZK proofs from
instantiations 1 and 3 to construct non-interactive proofs for the correctness of a shuffle. We note that the
proofs of Boyen and Waters [BW06, BW07] used to construct group signatures can be seen as examples
of the NIWI proofs in instantiation 1. Also, by attaching NIZK proofs to semantically secure public-key
encryption in any instantiation we get an efficient non-interactive verifiable cryptosystem. Boneh [Bon06]
has suggested using this for optimistic fair exchange [Mic03], where two parties use a trusted but lazy third
party to guarantee fairness.

2 Non-interactive Witness-Indistinguishable Proofs

LetR be an efficiently computable ternary relation. For triplets(σ, x, w) ∈ R we callx the statement andw
the witness. Given someσ we letL be the language consisting of statements inR. For a relation that ignores
σ this is of course the standard definition of an NP-language.

A non-interactive proof system for a relationR consists of a three probabilistic polynomial time algo-
rithms: a CRS generation algorithmK, a proverP and a verifierV . The CRS generation algorithm produces
a common reference stringσ. The prover takes as input(σ, x, w) and produces a proofπ. The verifier takes
as input(σ, x, π) and outputs 1 if the proof is acceptable and 0 if rejecting the proof. We call(K,P, V ) a
non-interactive proof system forR if it has the completeness and soundness properties described below.

PERFECT COMPLETENESS. For all adversariesA we have

Pr
[
σ ← K(1k); (x,w)← A(σ);π ← P (σ, x, w) : V (σ, x, π) = 1 if (σ, x, w) ∈ R

]
= 1.

PERFECT SOUNDNESS. For all adversariesA we have

Pr
[
σ ← K(1k); (x, π)← A(σ) : V (σ, x, π) = 0 if x /∈ L

]
= 1.

COMPOSABLE WITNESS INDISTINGUISHABILITY. In this paper, we will use a strong definition of witness
indistinguishability. We introduce a reference string simulatorS that generates a simulated CRS. We require
that the adversary cannot distinguish a real CRS from a simulated CRS. Then we require that on a simulated
CRS, it isperfectlyindistinguishable, which witness the prover used.

In other words, for all non-uniform polynomial time adversariesA we have

Pr[σ ← K(1k) : A(σ) = 1] ≈ Pr[σ ← S(1k) : A(σ) = 1]
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and

Pr
[
σ ← S(1k); (x,w0, w1)← A(σ);π ← P (σ, x, w0) : A(π) = 1

]
= Pr

[
σ ← S(1k); (x,w0, w1)← A(σ);π ← P (σ, x, w1) : A(π) = 1

]
,

where we require(σ, x, w0), (σ, x, w1) ∈ R.

COMPOSABLE ZERO-KNOWLEDGE. Composable zero-knowledge [Gro06] is a strengthening of the usual
notion of non-interactive zero-knowledge. First, we require that an adversary cannot distinguish a real CRS
from a simulated CRS. Second, we require that the adversary,even when it gets access to the secret simulation
keyτ , cannot distinguish real proofs on a simulated CRS from simulated proofs.

In other words, there exists a polynomial time simulator(S1, S2) so for all non-uniform polynomial time
adversariesA we have

Pr
[
σ ← K(1k) : A(σ) = 1

]
≈ Pr

[
(σ, τ)← S1(1k) : A(σ) = 1

]
,

and

Pr
[
(σ, τ)← S1(1k); (x,w)← A(σ, τ);π ← P (σ, x, w) : A(π) = 1 and(x,w) ∈ R

]
= Pr

[
(σ, τ)← S1(1k); (x,w)← A(σ, τ);π ← S2(σ, τ, x) : A(π) = 1 and(x,w) ∈ R

]
.

3 Commitment from Modules

Let (R,+, ·, 0, 1) be a commutative ring. Recall, that anR-module is an abelian group(M, ·, 1) such that for
all r, s ∈ R andu, v ∈M we have2

ur+s = urus and (uv)r = urvr.

Let u1, . . . , uI be elements in anR-moduleM . Consider an elementx ∈ M . We may commit tox by
choosingr1, . . . , rI ← R at random and letting the commitment be

c := x
I∏

i=1

uri
i .

DefineU to be the submodule generated byu1, . . . , uI . In casex ∈ U , the messagex is perfectly hidden.
On the other hand,c uniquely determinesx in the factor groupM/U , so if u1, . . . , uI do not generateM ,
thenc contains non-trivial information aboutx.

Peeking a little ahead, we will be interested in modules, where it is hard to tell whetherM = U . The com-
mon reference string for our NIWI proofs will contain a set ofui’s. If they generateM , we will get perfect
witness indistinguishability. On the other hand, if they do not generateM , we will get perfect soundness.

Instead of committing to messages fromM , we may be interested in committing to a ring elementφ ∈ R.
Consider therefore a setup, where haveu ∈ M andu1, . . . , uI . We can commit toφ by selectingr1, . . . , rI
at random and computing the commitment

c := uφ
I∏

i=1

uri
i .

2Note that our modules will correspond to the groups underlying our cryptographic constructions. In order to maintain crypto-
graphic tradition, we therefore write modules with multiplicative notation. This breaks mathematics tradition in which modules are
written with additive notation. Such differences in notation are common in the cryptographic literature.
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In case,u ∈ U this perfectly hides the message. On the other hand, sincec ∈ M/U determines a unique
valueuφ ∈M/U , the commitment contains non-trivial information aboutφ if u /∈ U .

As we shall see below, our treatment of commitments using the language of modules generalizes sev-
eral previous works dealing with commitments over bilinear groups, including [BGN05, GOS06b, GOS06a,
Gro06, Wat06].

Instantiation 1: Subgroup decision. Based on the subgroup decision assumption, we can set up a com-
mitment scheme as follows. We have an elementh ∈ G and commit tox ∈ G by pickingr ← Zn at random
and computing the commitmentc := xhr. In case,h has ordern this commitment is perfectly hiding. On the
other hand, ifh has orderq, thenc ∈ G/Gq determinesx ∈ Gp uniquely. Actually, given the factorization
of n we can also decrypt the commitment asx = cq(q−1 mod p) ∈ Gp.

If we want to commit to ring elements, we letg be a generator ofG. A commitmentc = gφhr is perfectly
hiding in caseh has ordern. In caseh has orderq, the commitment uniquely determinesφ mod p. The
latter setup was used in [BGN05] to construct a cryptosystem that is both additively homomorphic and also
has a one-time multiplication map.

Instantiation 2: XDH and SXDH. Consider a cyclic groupG of prime orderp, where the DDH problem is
hard. By entry-wise multiplication we get an abelian groupG2, which is a module overZp. Let (g, h), (u, v)
be two elements inG2. We can commit to(1, x) ∈ G2 as c := (g, h)r(u, v)t(1, x) = (grut, hrvrx).
If there existss ∈ Zp so (u, v) = (g, h)s, then the commitment corresponds to ElGamal encryption of
x, i.e., c = (gr+st, hr+stx). On the other hand, if(g, h) and (u, v) are linearly independent, thenc is a
perfectly hiding commitment tox. Distinguishing between(g, h) and(u, v) being linearly independent or
not corresponds to the DDH problem.

To commit to a ring element, we use the following approach. We have a setup with elements(g, h) and
(u, v). Under the DDH assumption, we cannot tell whether these elements are linearly independent or not.
We commit toφ ∈ Zp, by choosingr at random and settingc := (g, h)φ(u, v)r. In case,(g, h), (u, v) are
linearly independent this determinesφ ∈ Zp uniquely, but if(g, h) = (u, v)s for somes ∈ Zp, then we have
a perfectly hiding Pedersen commitment toφ.

Instantiation 3: DLIN. Let f, h, g be three random generators ofG so f = gα, h = gβ. The DLIN
assumption states that it is hard to tell whether three elements(u, v, w) = (f ru , hsv , gtw) have the property
that tw = ru + sv. We will look at theZp-moduleG3 formed by entry-wise multiplication. Consider
three elements(f, 1, g), (1, h, g), (u, v, w) in G3. To commit to a message(x1, x2, x3) we computec :=
(x1, x2, x3)(f, 1, g)r(1, h, g)s(u, v, w)t for randomr, s, t ∈ Zp. In case,(f, 1, g), (1, g, h), (u, v, w) are
linearly independent they generate all ofG3 and thus we have a perfectly hiding commitment. On the
other hand, in case(u, v, w) = (f ru , hsv , gru+sv) for someru, sv ∈ Zp, we have thatc−1/α

1 c
−1/β
2 c3 =

x
−1/α
1 x

−1/β
2 x3 is uniquely determined. In particular, if we commit to(1, 1, x), then we can with knowledge

of α, β extractx from the commitment. This commitment scheme coincides with the scheme of [Wat06]. We
note that the different, and less efficient, commitment scheme of [Gro06] can be similarly described in our
language of modules, as well.

To commit to a messageφ ∈ Zp we also consider a setup with three elements(f, 1, g), (1, h, g), (u, v, w).
We commit toφ by choosingr, s at random and computingc := (f, 1, g)r(1, h, g)s(u, v, w)φ. In case
(u, v, w) can be written as(f ru , hsv , gru+sv) this is a perfectly hiding commitment scheme. But if
(f, 1, g), (1, h, g), (u, v, w) are linearly independent, the commitment scheme determinesφ ∈ Zp uniquely.
This coincides with the scheme of [GOS06a].
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4 Setup

Let M1,M2,MT beR-modules. Let furthermore,E : M1 × M2 → MT be a bilinear map, i.e., for all
r, s ∈ R andu, u′ ∈M1, v, v

′ ∈M2 we have

E(uru′, v) = E(u, v)rE(u′, v) and E(u, vsv′) = E(u, v)sE(u, v′).

In the paper, we will always assume a setup withR-modulesM1,M2,MT and bilinear mapE : M1×M2 →
MT . Let u1, . . . , uI be elements inM1 andv1, . . . , vJ be elements inM2. LetU be the submodule ofM1

generated byu1, . . . , uI andV be the submodule ofM2 generated byv1, . . . , vJ .
There areIJ not necessarily distinct elementsE(ui, vj) in MT . They give rise to anR-linear map

µ : RIJ →MT (ρ11, . . . , ρIJ) 7→
I∏

i=1

J∏
j=1

E(ui, vj)ρij .

Trivially, (0, . . . , 0) always belongs to the kernel ofE, however, there may or may not be more vectors in the
kernel. Letη1, . . . , ηH ∈ RIJ beH vectors inRIJ that generate the kernel ofµ. In other words, given any
vectorρ = (ρ11, . . . , ρIJ) so

I∏
i=1

J∏
j=1

E(ui, vj)ρij = 1,

there existst1, . . . , tH ∈ R so it can be written as

ρ =
H∑

h=1

thηh that is (ρ11, . . . , ρIJ) = (
H∑

h=1

thηh11, . . . ,
H∑

h=1

thηhIJ).

Looking ahead, the CRS for the NIWI proofs we are about to suggest will containu1, . . . , uI ∈ M1

andv1, . . . , vJ ∈ M2, as well asη1, . . . , ηH . Depending on how we generate the CRS we will get either
perfect soundness or perfect witness indistinguishability. In the perfect witness indistinguishability case, we
will require thatη1, . . . , ηH generate the kernel of the mapµ. For perfect soundness, we do not make such
a requirement, however, notice that common reference string for perfect soundness and simulated common
reference strings for perfect witness indistinguishability must be computationally indistinguishable, so in the
perfect soundness case we also haveµ(ηh) = 1 for all η1, . . . , ηH .

The symmetric setting. In the next section, we will offer NIWI proofs based on this kind of setup. In some
cases, we will haveM = M1 = M2, which may yield some efficiency improvements. We may use the same
set of vectors, i.e., instead of working withu1, . . . , uI andv1, . . . , vJ we may simplify to the case where
we just haveu1, . . . , uI ∈ M . Similarly, for commitments to exponents we useu = v. Finally,E may be
symmetric, i.e., for allu, v ∈M we haveE(u, v) = E(v, u). We call this thesymmetric setting.

Instantiation 1: Subgroup decision. Recall in this setting we have two cyclic groupsG,GT of order
n = pq and a bilinear mape : G × G → GT . The subgroup decision assumption says that we cannot
distinguish whether an elementh has orderq or ordern. We will useh of orderq to get perfect soundness,
while we will useh of ordern to get perfect witness indistinguishability. Sincee is non-degenerate,e(h, h)
generatesGT whenh has ordern. This means the mapµ : Zn → GT given byρ 7→ e(h, h)ρ has trivial
kernel0.

8



Instantiation 2: XDH and SXDH. Here we have three prime order groups with a bilinear mape : G1 ×
G2 → GT . As described in the previous section, we getZp modulesM1 = G2

1,M2 = G2
2. Entry-wise

multiplication also makesMT = G4
T aZp-module. There is a bilinear map given by

E4 : G2
1 ×G2

2 → G4
T ((

a
b

), (x, y)) 7→
(
e(a, x) e(a, y)
e(b, x) e(b, y)

)
.

It is easy to see that

E4((
1
g1

), (1, g2)) , E4((
1
g1

), (g2, 1)) , E4((
g1
1

), (1, g2)) , E4((
g1
1

), (g2, 1))

form a basis forG4
T sincee(g1, g2) generatesGT . By the bilinear properties ofE4 we therefore have that

E4(u1, v1) , E4(u1, v2) , E4(u2, v1) , E4(u2, v2)

form a basis forG4
T , wheneveru1, u2 are linearly independent inG2

1 andv1, v2 are linearly independent in
G2

2. Therefore, when they are linearly independent the map

µ4 : Z4
p → G4

T (ρ11, ρ12, ρ21, ρ22) 7→
2∏

i=1

2∏
j=1

E4(ui, vj)ρij

has trivial kernel(0, 0, 0, 0).

Instantiation 3: DLIN. In this setting we have a bilinear mape : G × G → GT . With entry-wise
multiplication, we get theZp-modulesM1 = M2 = G3. In the main body of the paper, we will use the
moduleMT = G6

T given by entry-wise multiplication. In special cases, the moduleG9
T will be more useful,

see Section 8.
We will use the symmetric bilinear mapE6 : G3 ×G3 → G6

T given by

(

 a
b
c

 , (x, y, z)) 7→

 e(a, x) e(a, y)e(b, x) e(a, z)e(c, x)
e(b, y) e(b, z)e(c, y)

e(c, z)

 .

The corresponding map

µ6 : Z9
p → G6

T (ρ11, . . . , ρ33) 7→
3∏

i=1

3∏
j=1

E(ui, uj)ρij

has a non-trivial kernel. Ifu1, u2, u3 form a basis forG3, the three identitiesE6(ui, uj)E6(uj , ui)−1 = 1
yield a basis for the kernel ofµ6. This basis consists of the vectors

η1 = (0, 1, 0,−1, 0, 0, 0, 0, 0) , η2 = (0, 0, 1, 0, 0, 0,−1, 0, 0) and η3 = (0, 0, 0, 0, 0, 1, 0,−1, 0).

For any linearly independentu1, u2, u3 we have that

E6(u1, u1) , E6(u1, u2) , E6(u1, u3) , E6(u2, u2) , E6(u2, u3) , E6(u3, u3)

form a basis forG6
T .
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5 Pairing Product Equations

In this section, we will assume that we have already committed to the variables. We will offer a method to
construct non-interactive proofs for the committed values satisfying a pairing product equation. Our method
yields proofs with perfect completeness, perfect soundness and on a simulated common reference string with
perfectly hiding commitments it gives us proofs with perfect witness-indistinguishability.

A simple pairing product equation. We have commitmentsc1, . . . , cQ ∈ M1 andd1, . . . , dQ ∈ M2. We
will look at the satisfiability of the following simple pairing product equation over variablesx1, . . . , xQ ∈
M1, y1, . . . , yQ ∈M2 andrqi, sqj ∈ R.

Q∏
q=1

E(xq, yq) = T and cq = xq

I∏
i=1

u
rqi

i , dq = yq

J∏
j=1

v
sqj

j ,

whereT is a constant inMT .
Suppose, we havexq, yq, rqi, sqi so the equations described above hold. For arbitrarytij , th ∈ R we have

the following equality, which is central to this paper:

Q∏
q=1

E(cq, dq) · T−1 =
Q∏

q=1

E(xq

I∏
i=1

u
rqi

i , yq

J∏
j=1

v
sqj

j ) · T−1

=
Q∏

q=1

E(xq, yq) · T−1 ·
Q∏

q=1

I∏
i=1

E(urqi

i , yq

J∏
j=1

v
sqj

j ) ·
Q∏

q=1

J∏
j=1

E(xq, v
sqj

j )

= 1 ·
I∏

i=1

E(ui,

Q∏
q=1

d
rqi
q ) ·

J∏
j=1

E(
Q∏

q=1

x
sqj
q , vj)

=
I∏

i=1

E(ui,
J∏

j=1

v
tij
j ·

Q∏
q=1

d
rqi
q ) ·

J∏
j=1

E(
I∏

i=1

u
−tij
i ·

Q∏
q=1

x
sqj
q , vj)

=
I∏

i=1

E(ui,

J∏
j=1

v
tij
j ·

Q∏
q=1

d
rqi
q ) ·

J∏
j=1

E(
I∏

i=1

u
−tij+

∑H
h=1 thηhij

i ·
Q∏

q=1

x
sqj
q , vj).

Write

πi :=
J∏

j=1

v
tij
j ·

Q∏
q=1

d
rqi
q and ψj :=

I∏
i=1

u
∑H

h=1 thηhij

i ·
I∏

i=1

u
−tij
i ·

Q∏
q=1

x
sqj
q ,

to get the simpler

Q∏
q=1

E(cq, dq) = T ·
I∏

i=1

E(ui, πi) ·
J∏

j=1

E(ψj , vj). (1)

We shall useπi’s andψj ’s computed in this way as witness-indistinguishable proofs. In those proofs, we
will choose thetij ’s and theth’s at random fromR. Perfect completeness of the NIWI proofs will follow
from Equation 1. Perfect soundness of our proofs will follow from the fact that for anyxq, yq such that there
existsrqi, sqj socq = xq

∏I
i=1 u

rqi

i , dq =
∏J

j=1 v
sqj

j valid proofs satisfying Equation (1) imply

Q∏
q=1

E(xq, yq) · T−1 ∈
I∏

i=1

E(ui,M2) ·
J∏

j=1

E(M1, vj).
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To prove witness indistinguishability, the following lemma will be useful.

Lemma 1 Assume we haveu1, . . . , uI ∈ M1 and v1, . . . , vJ ∈ M2 andη1, . . . , ηH generating the kernel
of µ. Consider two witnessesxq, yq, rqi, sqj andx′q, y

′
q, r

′
qi, s

′
qj satisfying the equations. If for allq we have

xq, x
′
q ∈ U, yq, y

′
q ∈ V and we pick thetij ’s andth’s at random fromR, then the distribution of the resulting

proofsπi, ψj ’s andπ′i, ψ
′
j ’s are identical.

Proof. Consider a witness,xq, yq, rqi, sqj as specified in the lemma. This gives usπ1, . . . , πI ∈ V
and ψ1, . . . , ψJ ∈ U . Since we pick thetij ’s at random, theπi’s are distributed uniformly at ran-
dom in V . Consider any fixed tuple(π1, . . . , πI) of elements fromV . The correspondingψj ’s in U

satisfy
∏J

j=1E(ψj , vj) =
∏Q

q=1E(cq, dq) · T−1
∏I

i=1E(ui, πi)−1. Sinceη1, . . . , ηH generate the ker-
nel of µ, by picking theth’s at random in the construction of theψj ’s, we get randomψj ’s from U

such that
∏J

j=1E(ψj , vj) =
∏Q

q=1E(cq, dq) · T−1
∏I

i=1E(ui, πi)−1. We conclude that with the witness

xq, yq, rqi, sqj we get a uniform random sample ofπi, ψj under the restriction that
∏Q

q=1E(cq, dq) =
T ·

∏I
i=1E(ui, πi) ·

∏J
j=1E(ψj , vj). By a similar argument the other witness,x′q, y

′
q, r

′
qi, s

′
qj gives

exactly the same distribution onπ′i, ψ
′
j . �

The symmetric setting. In the symmetric setting, whereM = M1 = M2 and we use the same generators
u1, . . . , uI for both modules andE is symmetric, we can simplify the expression by collapsing the proofs.
We have

Q∏
q=1

E(cq, dq) · T−1 =
I∏

i=1

E(ui, πi) ·
I∏

j=1

E(ψj , uj) =
I∏

i=1

E(ui, πiψi).

This may lead to protocols with higher efficiency.

General pairing product equations. In the general case, we are interested in variablesx1, . . . , xM ∈
M1, y1, . . . yN ∈M2 andrmi, snj ∈ R so

Q∏
q=1

E(aq

M∏
m=1

x
αqm
m , bq

N∏
n=1

y
βqn
n ) = T , cm = xm

I∏
i=1

urmi
i , dn = yn

J∏
j=1

v
snj

j ,

for constantscm, aq ∈M1, dn, bq ∈M2, T ∈MT , αqm, βqn ∈ R.
The commitments are homomorphic, we have

aq

M∏
m=1

c
αqm
m = aq

M∏
m=1

(xm

I∏
i=1

urmi
i )αqm = aq

M∏
m=1

x
αqm
m ·

I∏
i=1

u
∑M

m=1 αqmrmi

i .

This means, anybody can compute commitments toaq
∏M

m=1 x
αqm
m . In a similar fashion, anybody can com-

pute commitments tobq
∏N

n=1 y
βqn
n . The general case of pairing product equations, can therefore be reduced

to the simpler case we have looked at in this section.

Instantiation 1: Subgroup decision. We are now ready to present our first witness-indistinguishable proof.
The common reference string will be(n, G,GT , e, h), whereh has orderq. On a simulation reference string,
we useh of ordern. Whenh has ordern, the kernel ofµ is trivial, so on neither type of reference string do
we need to concern ourselves with generators for the kernel.
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The statement consists of commitmentsc1, d1, . . . , cQ, dQ ∈ G andT ∈ GT , and we claim thatcq, dq

are commitments toxq, yq ∈ Gp so
∏Q

q=1 e(xq, yq) = Tp, whereTp = Tq(q−1 mod p), i.e.,T restricted to
the orderp subgroup ofGT .

Suppose we have a witness,xq, yq ∈ G, rq, sq ∈ Zn so

Q∏
q=1

e(xq, yq) = T , cq = xqh
rq , dq = yqh

sq .

Since we are in the symmetric setting we can construct a proofπ :=
∏Q

q=1 x
sq
q d

rq
q so

Q∏
q=1

E(cq, dq) = E(h, π).

This will be our witness-indistinguishable proof.

Lemma 2 The non-interactive proof system has perfect completeness, perfect soundness and composable
witness indistinguishability. The size of the proof is 1 element fromG.

Proof. Perfect completeness follows from Equation (1). The hardness of the subgroup decision problem
implies that it is hard to distinguish a common reference string withh of orderq from a simulated common
reference string withh of ordern. From Lemma 1 we get perfect witness indistinguishability whenh has
ordern.

It remains to prove that in caseh has orderq, we get perfect soundness. Defineλ ∈ Zn to be the number
soλ = 1 mod p, λ = 0 mod q. Observe,cλq defines a uniquexq ∈ Gp socq = xqh

rq for somerq ∈ Zn.
Similarly, dq defines a uniqueyq ∈ Gp sodq = yqh

sq . We have

Q∏
q=1

e(xq, yq) · T−1 ∈ e(h,G),

so if we letTp = T λ then we can conclude
∏Q

q=1 e(xq, yq) = Tp in Gp. �
It is worth noting that if we know the factorization ofn, then we can extractxq, yq ∈ Gp from the

commitments, so the scheme is a perfect proof of knowledge.

Instantiation 2: XDH and SXDH. We will construct a NIWI proof for the existence of committed
x1, . . . , xQ ∈ G1, y1, . . . , yQ ∈ G2 so

∏Q
q=1 e(xq, yq) = T for a constantT ∈ GT . The common reference

string will contain a description of the groups we are working over and four vectorsu1, u2 ∈ G2
1, v1, v2 ∈ G2

2,
such thatu1 = ur

2, v1 = vs
2 for somer, s ∈ Zp. This meansu1, u2 are linearly dependent and span a 1-

dimensional subspace ofG2
1, andv1, v2 are linearly dependent and span a 1-dimensional subspace ofG2

2. We
also require that these vectors are linearly independent of(1, g1) ∈ G2

1, (1, g2) ∈ G2
2, whereg1 generatesG1

andg2 generatesG2.
The commitments to thexq ’s will be of the formcq = (1, xq)u

rq1

1 u
rq2

2 and the commitments to theyq ’s
will be of the formdq = (1, yq)v

sq1

1 v
sq2

2 , for randomrq1, rq2, sq1, sq2 ∈ Zp. We construct the proofs as

π1 := vt11
1 vt12

2

Q∏
q=1

d
rq1
q , π2 := vt21

1 vt22
2

Q∏
q=1

d
rq2
q , ψ1 := u−t11

1 u−t21
2

Q∏
q=1

x
sq1
q , ψ2 := u−t12

1 u−t22
2

Q∏
q=1

(1, xq)sq2 ,

for randomly chosentij ← Zp. The proofs satisfy

Q∏
q=1

E(cq, dq) =
(

1 1
1 T

)
E(u1, π1)E(u2, π2)E(ψ1, v1)E(ψ2, v2), 3

3Please, keep in mind that we use entry-wise multiplication, matrix multiplication is not even defined here.
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this is what the verifier checks.

Lemma 3 The scheme described above has perfect completeness, perfect soundness and composable witness
indistinguishability. The size of the proof is 4 elements fromG1 and 4 elements fromG2.

Proof. Perfect completeness follows from Equation (1) and the fact that all operations are efficiently com-
putable. By the SXDH assumption, we cannot distinguish the common reference string from a simulated
reference string, whereu1 andu2 are linearly independent, andv1 andv2 are linearly independent. When
both these pairs are linearly independent, we haveU = G2

1 andV = G2
2, and therefore(1, xq) ∈ U and

(1, yq) ∈ V . Lemma 1 then gives us perfect witness indistinguishability.
It remains to prove that we have perfect soundness on a real common reference string. Sinceu1, u2 span

a 1-dimensional vector space, which does not contain(1, g1) eachcq has a uniquexq socq = (1, xq)u
rq1

1 u
rq2

2 .
Similarly, eachdq defines a uniqueyq sodq is a commitment to(1, yq). A valid proof implies

Q∏
q=1

E((
1
xq

), (1, yq))
(

1 1
1 T−1

)
∈ E(u1, G

2
2)E(u2, G

2
2)E(G2

1, v1)E(G2
1, v2).

Let us consider the possible values the bilinear map can take when used on the vectorsu1, u2, v1, v2.
Sinceu1 andu2 are set up so they’re linearly dependent we haveE(u1, G

2
2)E(u2, G

2
2) = E(u2, G

2
2), and

similarly sincev1 andv2 are linearly dependent we haveE(G2
1, v1)E(G2

1, v2) = E(G2
1, v2). Let us now

consider what the vectors in these two sets look like. Writeu2 = (g1, gα
1 ) andv2 = (g2, g

β
2 ) for α, β ∈ Zp.

For any vector(x, y) ∈ G2
2 we have

E(u2, (x, y)) = E((
g1
gα
1

), (x, y)) =
(

e(g1, x) e(g1, y)
e(g1, x)α e(g1, y)α

)
.

Similarly, for any(a, b) ∈ G2
1 we have

E((
a
b

), v2) = E((
a
b

), (g2, g
β
2 )) =

(
e(a, g2) e(a, g2)β

e(b, g2) e(b, g2)β

)
.

The existence of proofsπ1, π2, ψ1, ψ2 implies the existence ofa, b, x, y so(
1 1
1

∏Q
q=1 e(xq, yq) · T−1

)
=

(
e(g1, x)e(a, g2) e(g1, y)e(a, g2)β

e(g1, x)αe(b, g2) e(g1, y)αe(b, g2)β)

)
.

This meanse(g1, x) = e(a, g2)−1. Inserting this in entry(1, 2) gives usy = xβ. While inserting it in entry
(2, 1) shows thatb = aα. Inserting these three observations in entry(2, 2) we conclude

Q∏
q=1

e(xq, yq) = Te(g1, y)αe(b, g2)β = T (e(g1, x)e(a, g2))αβ = T.

�
If we know the appropriate discrete logarithms, then we can decrypt the ElGamal ciphertextcq, dq and

extractxq, yq. In other words, we have a perfect proof of knowledge.

Instantiation 3: DLIN. Let us return to the symmetric setting using the DLIN assumption. We set up the
common reference string with three vectorsu1 = (f, 1, g), u2 = (1, h, g), u3 = (u, v, w) such that they form
a 2-dimensional subspace ofG3 andf, h, g all are generators ofG. We require that(1, 1, g) /∈ U . Each
commitmentcq, dq therefore uniquely definesxq, yq socq = (1, 1, xq)

∏3
i=1 u

rqi

i , dq = (1, 1, yq)
∏J

j=1 u
sqj

j .
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We are interested in the statement
∏Q

q=1 e(xq, yq) = T . Following Equation 1 in the symmetric setting, we
let the proof consist ofπ1, π2, π3 given by

πi =
3∏

j=1

u
∑3

h=1 thηhij

j ·
Q∏

q=1

(1, 1, xq)sqid
rqi
q .

The verifier checks that
Q∏

q=1

E6(cq, dq) =

 1 1 1
1 1

T

 3∏
i=1

E6(ui, πi).

Lemma 4 The proof has perfect completeness, perfect soundness and composable witness indistinguishabil-
ity. The proof consists of 9 elements fromG.

Proof. Perfect completeness follows from Equation (1) and the fact that we can compute all operations effi-
ciently. By the DLIN assumption the common reference string is indistinguishable from a common reference
string withu1, u2, u3 being linearly independent. In the latter setting, we haveU = G3 and therefore all
(1, 1, xq), (1, 1, yq) ∈ U . By Lemma 1 we therefore have perfect witness indistinguishability on this kind of
reference string.

It remains to prove perfect soundness. Since(1, 1, g) /∈ U , each commitmentcq, dq specifies unique
messages(1, 1, xq), (1, 1, yq). Since(1, 1, g) is linearly independent ofu1, u2 we have

Q∏
q=1

E6(

 1
1
xq

 , (1, 1, yq))

 1 1 1
1 1

T

−1

∈ E6(u1, G
3)E6(u2, G

3)

implies
∏Q

q=1 e(xq, yq) = T . �
Given the relevant discrete logarithms off, h with respect tog it is possible to decrypt the commitments

cq anddq to get out the plaintextsxq, yq. We therefore have a perfect proof of knowledge.

6 General Arithmetic Gates

The common reference string contains,u, u1, . . . , uI ∈ M1 andv, v1, . . . , vJ ∈ M2 as well asIJ vectors
η1, . . . , ηH . The common reference string should be indistinguishable from a simulated reference string, and
on a simulated reference string we requireu ∈ U, v ∈ V andη1, . . . , ηH generate the kernel ofµ.

We will focus on the following simple case first. We have commitmentsc1, . . . , cq ∈ M1, d1, . . . , dq ∈
M2 and interested in the existence ofφq, rqi, θq, sqj so

cq = uφq

I∏
i=1

u
rqi

i , dq = vθq

J∏
j=1

v
sqj

j and
Q∑

q=1

φqθq = 0.

It follows from Equation 1 that if this is the case, then for arbitrarytij , th ∈ R we have

Q∏
q=1

E(cq, dq) =
I∏

i=1

E(ui, πi) ·
J∏

j=1

E(ψj , vj),

where

πi :=
J∏

j=1

v
tij
j ·

Q∏
q=1

d
rqi
q and ψj :=

I∏
i=1

u
∑H

h=1 thηhij

i ·
I∏

i=1

u
−tij
i ·

Q∏
q=1

uφqsqj .

This will give us perfect completeness. Perfect witness-indistinguishability on a simulated reference
string, whereu ∈ U, v ∈ V follows from the following corollary to Lemma 1.
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Corollary 5 If u ∈ U andv ∈ V then for any set ofφq, rqi, θq, sqj satisfying the equation above, by picking
tij , th at random fromR we get the same distribution ofπi, ψj ’s.

To argue perfect soundness, we will use that a valid proof implies

E(u, v)
∑Q

q=1 φqθq ∈
I∏

i=1

E(ui,M2)
J∏

j=1

E(M1, vj),

for any possible way of writingcq = uφq
∏I

i=1 u
rqi

i anddq = vθq
∏J

j=1 v
sqj

j .

The symmetric case. In the symmetric case, whereE is symmetric andu = v, I = J, u1 = v1, . . . , uI =
vj , we obtain a computational saving by combining the proofs. The verifier checks

∏Q
q=1E(cq, dq) =∏I

i=1E(ui, πiψi).

General arithmetic gate. In evaluating a general arithmetic gate, we have commitmentsc1, . . . , cK ∈
M1, d1, . . . , dL ∈M2 and constantsαk, β`, γk`, τ ∈ R. A witness will be on the formφk, rki, θ`, s`j ∈ R so

K∑
k=1

αkφk +
L∑

`=1

β`θ` +
K∑

k=1

L∑
`=1

γk`φkθ` = τ, ck = uφk

I∏
i=1

urki
i , d` = vθ`

J∏
j=1

v
s`j

j .

Let us observe that due to the homomorphic properties of the commitment schemes, this case can be
reduced to the simpler case that we just handled. Anybody can easily compute trivial commitments inM2

to theαk’s asvαk . Similarly, anybody can compute commitments toβ` in M1 asuβ` . Given a commitment
to φk of the formck = uφk

∏I
i=1 u

rki
i , it is for anyγk` ∈ R straightforward to compute a commitment to

γk`φk ascγk`
k = uγk`φk

∏I
i=1 u

γk`rki
i . Finally,u−τ is a commitment to−τ andu, v are commitments to1 in

respectivelyM1 andM2. Rewriting the general equation as

K∑
k=1

φk · αk +
L∑

`=1

β` · θ` +
K∑

k=1

L∑
`=1

(γk`φk) · θ` + (−τ) · 1 = 0,

shows that we can make a NIWI proof for the general arithmetic gate using the NIWI proof given earlier.

Instantiation 1: Subgroup decision. The common reference string now contains two group elements
g, h, with g playing the role ofu andh playing the role ofu1. The elementg is a generator, whileh has
orderq. We will suggest a NIWI proof for the statement thatc1, . . . , cQ, d1, . . . , dQ are commitments to
φ1, . . . , φQ, θ1, . . . , θQ ∈ Zp so

∑Q
q=1 φqθq = 0 mod p. Sinceh has orderq, these commitments define

φq, θq ∈ Zp uniquely.
Given a witnessφ1, . . . , φQ, θ1, . . . , θQ ∈ Zn andrq, sq ∈ Zn so

cq = gφqhrq , dq = gθqhsq ,

Q∑
q=1

φqθq = 0 mod n,

we simply carry out the NIWI proof from the previous section withxq = gφq , yq = gθq . We have the
following corollary to Lemma 2.

Lemma 6 The NIWI proof has perfect completeness, perfect soundness and composable witness indistin-
guishability. The size of the proof is 1 group element fromG.
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Instantiation 2: XDH and SXDH. The common reference string will contain two linearly indepen-
dent vectorsu, u1 ∈ G2

1 and two linearly independent vectorsv, v1 ∈ G2
2, whereas in the simulation we

chooseu ∈ U and v ∈ V . Given a witnessφq, rq, θq, sq ∈ Zp so
∑Q

q=1 φqθq = 0 mod p , cq =
uφqu

rq

1 , dq = vθqv
sq

1 , we make proofs

π := vt
1 ·

Q∏
q=1

d
rq
q and ψ := u−t

1 ·
Q∏

q=1

uφqsq ,

for a randomly selectedt← Zp. The verifier accepts if

Q∏
q=1

E4(cq, dq) = E4(u1, π)E4(ψ, v1).

Lemma 7 The proof has perfect completeness, perfect soundness and composable witness indistinguishabil-
ity assuming the SXDH problem is hard. It consists of 2 elements fromG1 and 2 elements fromG2.

Proof. Perfect completeness follows by inspection. By the SXDH assumption a common reference string
as described above is indistinguishable from a simulated reference string whereu = ur

1 andv = vs
1 for

somer, s ∈ Zp. In this latter case, we haveu ∈ U andv ∈ V , so by Corollary 5 we have perfect witness
indistinguishability on this kind of common reference string.

It remains to argue perfect soundness, whenu, u1 andv, v1 are linearly independent. Note, in this case
the commitments are perfectly binding toφq, θq. We have

E4(u, v)
∑Q

q=1 φq ,θq ∈ E4(u1, G
2
2) · E4(G2

1, v1).

By the linear independence of the vectorsu, u1 and v, v1, E4(u, v), E4(u1, v), E4(u, v1), E4(u1, v1) is a

basis forG4
T . This impliesE4(u, v)

∑Q
q=1 φqθq = 1, so

∑Q
q=1 φqθq = 0 mod p. �

Instantiation 3: DLIN. We set up the common reference string, so it has three elementsu1 =
(f, 1, g), u2 = (1, h, g), andu which is linearly independent ofu1, u2. The simulated reference string,
will containu ∈ U . SinceE6 is symmetric we haveE6(u1, u2) = E6(u2, u1). The vectorη = (0, 1,−1, 0)
is a basis for the kernel ofµ.

Given commitmentscq, dq we are interested in the existence ofφq, rqi, θq, sqi ∈ Zp so

Q∑
q=1

φqθq = 0 , cq = uφqu
rq1

1 u
rq2

2 , dq = uθqu
sq1

1 u
sq2

2 .

From a satisfying witnessφqrq1, rq2, θq, sq1, sq2 we can create a proof

π1 := ut
2

Q∏
q=1

d
rq1
q uφqsq1 , π2 := u−t

1

Q∏
q=1

d
rq2
q uφqsq2 ,

for randomly chosent← Zp. The verifier accepts if and only if

Q∏
q=1

E6(cq, dq) = E6(u1, π1)E6(u2, π2).
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Lemma 8 The proof has perfect completeness, perfect soundness and composable witness indistinguishabil-
ity. The proof consists of 6 elements fromG.

Proof. Completeness follows from Equation 1. By the DLIN assumption, we cannot distinguish the common
reference string from a simulated reference string whereu ∈ U . With the latter type of common reference
string we have perfect witness indistinguishability according to Corollary 5.

It remains to prove perfect soundness. We have

E6(u, u)
∑Q

q=1 φqθq ∈ E6(u1, G
3)E6(u2, G

3).

Sinceu is linearly independent ofu1, u2 this means
∑Q

q=1 φqθq = 0 mod p. �

7 Multi-exponentiation

We will without loss of generality consider the task of making a multi-exponentiation of elements inM1.
The case of multi-exponentiation inM2 is of course similar.

The common reference string will contain,u1, . . . , uI ∈ M1 and v, v1, . . . , vJ ∈ M2 as well as
η1, . . . , ηH . On a simulated reference string, we will havev ∈ V andη1, . . . , ηH generating the kernel
of µ.

We will first look at a simple case, and treat the general multi-exponentiation case later. The input
consists of commitmentsc1, . . . , cQ ∈ M1 andd1, . . . , dQ ∈ M2. We are interested in the existence of a
witnessxq ∈M1, rqi, θq, sqj ∈ R so

cq = xq

I∏
i=1

u
rqi

i , dq = vθq

J∏
j=1

v
sqj

j and
Q∏

q=1

x
θq
q = t1,

for a constantt1 ∈M1.
Given a satisfying witnessxq, rqi, θq, sqj , we get from Equation 1 that for arbitrarytij , th ∈ R

Q∏
q=1

E(cq, dq) · E(t1, v)−1 =
I∏

i=1

E(ui, πi) ·
J∏

j=1

E(ψj , vj), (2)

where

πi :=
J∏

j=1

v
tij
j ·

Q∏
q=1

d
rqi
q and ψj :=

I∏
i=1

u
∑H

h=1 thηhij

i ·
I∏

i=1

u
−tij
i ·

Q∏
q=1

x
sqj
q .

Perfect completeness follows from this. To argue perfect witness-indistinguishability on a simulated common
reference string we have the following corollary to Lemma 1.

Lemma 9 If v ∈ V and η1, . . . , ηH generate the kernel ofµ, then for any witnessxq, rqi, θq, sqj so
x1, . . . , xQ ∈ U we get the same distribution of proofsπi, ψj .

Perfect soundness will follow from the fact that a valid proof implies

E(
Q∏

q=1

x
θq
q t

−1
1 , v) ∈

I∏
i=1

E(ui,M2) ·
J∏

j=1

E(M1, vj)

for any way of writingcq = xq
∏I

i=1 u
rqi

i , dq = vθq
∏J

j=1 v
sqj

j .
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The symmetric case. We may haveM1 = M2 andE symmetric. In case there is overlap between
u1, . . . , uI and v1, . . . , vJ we may save computation by combining the relevant proofs. We refer to the
instantiations for a concrete treatment of this issue.

General multi-exponentiation relationship in M1. In the general multi-exponentiation case, we are in-
terested in the existence ofxm ∈M1, θ`, rmi, s`j ∈ R so

cm = xm

I∏
i=1

urmi
i , d` = vθ`

J∏
j=1

v
s`j

j and
L∏

`=1

aθ`
` ·

M∏
m=1

x
∑L

`=1 αm`θ` + βm
m = t1,

for constantscm ∈ M1, a`, d`, t2 ∈ M2, αm`, βm ∈ R. In other words,c1, . . . , cM are commitments to
variablesx1, . . . , xM andd1, . . . , dL are commitments to variablesθ1, . . . , θL so the equation is satisfied.

By the homomorphic properties of the commitment scheme,

vβm

L∏
`=1

dαm`
` = v

∑L
`=1 αm`θ`+βm

J∏
j=1

v
∑L

`=1 αm`s`j

j

is a commitment to
∑L

`=1 αm`θ` + βm. Furthermore,a` can be seen as a commitment toa` with randomness
s`j = 0. We now have commitments inM2 to θ1, . . . , θL,

∑L
`=1 α1`θ` + β1, . . . ,

∑L
`=1 αm`θ` + βM and

commitments inM1 to a1, . . . , aL, x1, . . . , xM . We have reduced the general multi-exponentiation case, to
the special case we treated above.

Instantiation 1: Subgroup decision. The common reference string containsg, h, whereh has orderq.
Given a witnessxq ∈ G, rq, θq, sq ∈ Zn so

cq = xqh
rq , dq = gθqhsq and

Q∏
q=1

x
θq
q = t,

we compute a proof of the form

ψ :=
Q∏

q=1

d
rq
q x

sq
q .

The verifier accepts if and only if
Q∏

q=1

e(cq, dq) = e(t, g)e(ψ, h).

We have the following corollary to Lemma 2.

Lemma 10 The proof has perfect completeness, perfect soundness and assuming the subgroup decision
problem is hard it has composable witness indistinguishability. The size is 1 group element.

Instantiation 2: XDH and SXDH. The common reference string will containu1, u2 ∈ G2
1 so(1, g1) /∈ U

andv, v1 ∈ G2
2 sov /∈ V . Given a witnessxq ∈ G1, rq1, rq2, θq, sq ∈ Zp so

cq = (1, xq)u
rq1

1 u
rq2

2 , dq = vθqv
sq

1 and
Q∏

q=1

x
θq
q = t1,
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we construct a NIWI proof as

π1 := vt11

Q∏
q=1

d
rq1
q , π2 := vt21

Q∏
q=1

d
rq2
q , ψ := u−t11

1 u−t21
2

Q∏
q=1

(1, xq)sq ,

for randomly chosent11, t21 ← Zp. The verifier accepts if and only if

Q∏
q=1

E4(cq, dq) = E4((1, t1), v)E4(u1, π1)E4(u2, π2)E4(ψ, v1).

Lemma 11 The proof has perfect completeness, perfect soundness, and assuming the SXDH problem is hard
it has composable witness indistinguishability. A proof consists of 2 elements fromG1 and4 elements from
G2.

Proof. Perfect completeness on both real and simulated common reference strings follows from Equation
2. Perfect witness-indistinguishability follows from Lemma 9. To argue perfect soundness, note that the
commitmentscq anddq definexq andθq uniquely. We have

E4(
Q∏

q=1

(1, xq)θq · (1, t−1
1 ), v) ∈ E4(u1, G

2
2) · E4(G2

1, v1),

sinceu1, u2 are linearly dependent. The linear inpendence of(1, g) andu1, and the linear independence
of v andv1 implies thatE4((1, g), v), E4(u1, v), E4((1, g), v1), E4(u1, v1) is a basis forG4

T . This implies∏Q
q=1 x

θq
q = t1. �

Instantiation 3: DLIN. The common reference string contains vectorsu1 = v1 = (f, 1, g), u2 = v2 =
(1, h, g) andu3, v so u3 = ur

1u
s
2 for somer, s ∈ Zp while v /∈ V . We have thatη = (0, 1,−1, 0, 0, 0)

corresponding to the identityE6(u1, v2) = E6(u2, v1) generates the kernel ofµ. Given a witnessxq ∈
G, rq1, rq2, rq3, θq, sq1, sq2 ∈ Zp so

cq = (1, 1, xq)
3∏

i=1

u
rqi

i , dq = vθq

2∏
j=1

v
sqj

j and
Q∏

q=1

x
θq
q = t,

we construct a proof as

π1 := ut12
2 ut13

3

Q∏
q=1

d
rq1
q (1, 1, xq)sq1 , π2 := u−t12

1 ut23
3

Q∏
q=1

d
rq2
q (1, 1, xq)sq2 , π3 := u−t13

1 ut23
2

Q∏
q=1

d
rq3
q ,

for randomly chosent12, t13, t23 ← Zp. The verifier checks that

Q∏
q=1

E6(cq, dq) = E6((1, 1, t1), v)E6(u1, π1)E6(u2, π2)E6(u3, π3).

Lemma 12 The proof has perfect completeness, perfect soundness and assuming the DLIN problem is hard
it has composable witness indistinguishability. The proof consists of 9 group elements.
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Proof. Perfect completeness follows from Equation (2). Perfect witness-indistinguishability on a simula-
tion reference string follows from Lemma 9. To argue perfect soundness observe that the commitmentscq
anddq definexq andθq uniquely. Sinceu3 is linearly dependent onu1, u2 we haveE6(

∏Q
q=1(1, 1, xq)θq ·

(1, 1, t)−1, v) ∈ E6((f, 1, g), G3)E6((1, h, g), G3). Write v = (1, 1, g)δuδ1
1 u

δ2
2 , then we have 1 1 1

1 1
e(

∏Q
q=1 x

θq
q · t−1, g)

 ∈ E6(

 f
1
g

 , G3)E6(

 1
h
g

 , G3).

This implies
∏Q

q=1 x
θq
q = t as required. �

8 The One-Sided Case

We have given NIWI proofs for the general case, where we have commitments in bothM1 andM2. If all
the commitments in one of the modules are trivial, i.e., we just have constants in eitherM1 orM2 it may be
possible to give simpler NIWI proofs. In this section, we will offer simpler NIWI proofs for the one-sided
case.

We remark that the NIWI proofs based on the subgroup decision problem are already so efficient that
there is no saving to be made by considering the one-sided case. We therefore only consider the instantiations
based on the DLIN assumption and the SXDH assumption. Moreover, in the one-sided case we only need the
DDH assumption to hold in one of the groups. We can therefore restrict ourselves to the XDH assumption.

8.1 Pairing Product Equations

In case all the commitments inM1 or M2 are trivial we may simplify our NIWI proofs. Without loss of
generality, let us look at the case where all the commitments inM2 are trivial, i.e., we have public elements
b1, . . . , bQ. Given satisfyingxq, rqi we have for arbitraryth ∈ R,

Q∏
q=1

E(cq, bq) · T−1 =
Q∏

q=1

E(xq

I∏
i=1

u
rqi

i , bq) · T−1

=
Q∏

q=1

E(xq, bq) · T−1 ·
Q∏

q=1

I∏
i=1

E(urqi

i , bq)

= 1 ·
I∏

i=1

E(ui,

Q∏
q=1

b
rqi
q ) (3)

=
I∏

i=1

E(ui,

J∏
j=1

v

∑
thηhij

j ·
Q∏

q=1

b
rqi
q )

=
I∏

i=1

E(ui, πi),

whereπi :=
∏J

j=1 v

∑
thηhij

j ·
∏Q

q=1 b
rqi
q .

Perfect completeness will follow from this equation. The following lemma will give us perfect witness
indistinguishability on a simulated common reference string.

20



Lemma 13 Assume we haveu1, . . . , uI ∈M1 andv1, . . . , vJ ∈M2 andη1, . . . , ηH generates the kernel of
µ. In the special case described above, all witnesses withx1, . . . , xQ ∈ U and constantsb1, . . . , bQ ∈ V
yield the same distribution of proofsπi if we choose theth’s at random fromR.

Proof. Sincecq ∈ U, bq ∈ V andη1, . . . , ηH generates the kernel ofµ, we get a uniform distribution of the
proofsπi that satisfy the equation by choosing theth’s at random fromR. �

Perfect soundness will follow from the implication of a valid proof that

Q∏
q=1

E(xq, bq) · T−1 ∈
I∏

i=1

E(ui,M2),

whenever we can writecq = xq
∏Q

q=1 u
rqi

i .

Instantiation 2: XDH and SXDH. The XDH assumption states that in one of the groups the DDH problem
is hard. Assume without loss of generality that in groupG1 the DDH problem is hard. This suffices to
construct a witness-indistinguishable proof for the special case whered1, . . . , dQ are commitments with
trivial randomness, i.e., on the form(1, b1), . . . , (1, bQ). The common reference string contains descriptions
of the group andu1, u2 that form a 1-dimensional subspace ofG2

1. Now there is a NIWI proof consisting of
2 elements inG2 for the commitmentsc1, . . . , cQ containing(1, x1), . . . , (1, xQ) so

∏Q
q=1 e(xq, bq) = T .

The prover has witnessxq ∈ G1 and rqi ∈ Zp so cq = (1, xq)u
rq1

1 u
rq2

2 and
∏Q

q=1 e(xq, bq) =
1. The proof consists ofπ1 :=

∏Q
q=1(1, bq)

rq1 and π2 :=
∏Q

q=1(1, bq)
rq2 . The verifier checks that∏Q

q=1E4(cq, dq) =
(

1 1
1 T

) ∏2
i=1E4(ui, πi).

Lemma 14 The NIWI proof for the one-sided case has perfect completeness, perfect soundness and com-
posable witness indistinguishability assuming the DDH problem is hard inG1. The proof consists of 2 group
elements inG2.

Proof. Perfect completeness follows from Equation 3. A simulation string containsu1, u2 that are linearly
independent. By the DDH assumption inG1, it is indistinguishable from a common reference string, where
u1 andu2 are linearly dependent. On a simulation string,u1 andu2 form a basis forG2

1 and therefore
(1, xq) ∈ U . By Lemma 13 we get perfect witness indistinguishability.

To prove soundness, we use the fact thatE4(u1, G
2
2) = E4(u2, G

2
2). The proof therefore shows

Q∏
q=1

E4((1, xq), (1, bq))
(

1 1
1 T−1

)
∈ E4(u1, G

2
2).

Since(1, g1) is linearly independent ofu1 this implies
∏Q

q=1 e(xq, bq) = T . �

Instantiation 3: DLIN. It turns out that in the one-sided case, we get simpler proofs by using the bilinear
mapE9 defined below instead ofE6. The mapE9 is not symmetric, however, we observe that in the one-sided
case symmetry will not be needed. We use the moduleMT = G9

T and the bilinear mapE9 : G3×G3 → G9
T

given by

(

 a
b
c

 , (x, y, z)) 7→

 e(a, x) e(a, y) e(a, z)
e(b, x) e(b, y) e(b, z)
e(c, x) e(c, y) e(c, z)

 .

If we have linearly independent elementsu1, u2, u3 ∈ G3, then the mapµ9 : Z9
p → G9

T has trivial kernel
and the nine different combinationsE9(ui, uj) form a basis ofG9

T .
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We will consider the simplified case, where thedq ’s are trivial commitments, i.e.,dq = (1, 1, bq) for
public bq. We still havecq ∈ G3 andT ∈ GT and want to prove the existence ofxq, rqi so

Q∏
q=1

e(xq, bq) = T , cq = xq

3∏
i=1

u
rqi

i ,

whereu1, u2, u3 are set up as in the previous example. It turns out that in the one-side case, it is more
convenient for us to use the mapE9 instead ofE6, so we will do that. As a consequence, the mapµ9 has
trivial kernel, which will make our protocol simpler.

A real common reference string will haveu3 = ur
1u

s
2 for somer, s, such thatcq is a perfectly binding

commitment toxq. On the other hand, a simulated common reference string will haveu1, u2, u3 linearly
independent, so the commitment is perfectly hiding. The proof is

π1 :=
Q∏

q=1

d
rq1
q , π2 :=

Q∏
q=1

d
rq2
q , π3 :=

Q∏
q=1

d
rq3
q .

The verifier checks,
Q∏

q=1

E9(cq, dq) =

 1 1 1
1 1 1
1 1 T

 3∏
i=1

E9(ui, πi).

Please note, sincedq = (1, 1, bq), the proof only consists of 3 group elements.

Lemma 15 The proof has perfect completeness, perfect soundness and composable witness indistinguisha-
bility assuming the DLIN problem is hard. The proof consists of 3 group elements.

Proof. Perfect completeness, no matter whether it is a real common reference string or a simulated reference
string, follows from Equation 3. By the DLIN assumption, common reference strings and simulated reference
strings are indistinguishable. On a simulated reference string,u1, u2, u3 are linearly independent, soU = G3.
Therefore, by Lemma 13 we have perfect witness indistinguishability.

It remains to consider perfect soundness on a common reference string, whereu3 is linearly dependent
onu1 = (f, 1, g), u2 = (1, h, g). From the verification, we getcq are commitments to uniquexq so

Q∏
q=1

E9(

 1
1
xq

 , (1, 1, bq))

 1 1 1
1 1 1
1 1 T

−1

∈ E9(u1, G
3)E9(u2, G

3).

This implies the existence ofa, b, c, x, y, z ∈ G so 1 1 1
1 1 1
1 1

∏Q
q=1 e(xq, bq) · T−1

 = E9(u1, (a, b, c))E9(u2, (x, y, z)).

Since(1, 1, g) is linearly independent ofu1, u2 we have
∏Q

q=1 e(xq, bq) = T . �

8.2 General Arithmetic Gates: Linear Relations

An interesting special case, is the situation where we have commitmentsc1, . . . , cK and are interested in
equations over variablesφk, rki ∈ R of the form

ck = uφk

I∏
i=1

urki
i and

K∑
k=1

φkβk = τ,
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for constantsβk, τ ∈ R. Given variablesφk, rki ∈ R satisfying the equation, we have for arbitraryth ∈ R

K∏
k=1

E(ck, vβk) · E(u, v)−τ =
I∏

i=1

E(ui, πi) where πi := v
∑K

k=1 βkrki ·
J∏

j=1

v
∑H

h=1 thηhij

j .

We get the following corollary to Lemma 13.

Lemma 16 If u ∈ U and v ∈ V , then no matter the witnessφk, rki, we get identical distributions of
π1, . . . , πK .

For perfect soundness, we will use that for any way of writingck = uφk
∏I

i=1 u
rqi

i a valid proof implies

E(u, v)
∑K

k=1 φkβk−τ ∈
I∏

i=1

E(ui,M2).

Instantiation 2: XDH and SXDH. The special case, where we have commitmentsc1, . . . , cK and con-
stantsβ1, . . . , βK , τ and want to prove

∑K
k=1 φkθk = τ is easily solvable. The common reference string will

containu, u1 that spanG2
1 and we selectv = (1, g2) ∈ G2

2. Assuming the XDH assumption, with the DDH
problem being hard inG1, we cannot distinguish this kind of reference string from one whereu ∈ U . The
NIWI proof is π :=

∏K
k=1 v

βkrk . The size is only 1 group elements fromG2 sincev = (1, g2). The verifier
checks that

K∏
k=1

E4(ck, vβk) = E4(u, v)τE4(u1, π).

Lemma 17 The proof has perfect completeness, perfect soundness and composable witness indistinguisha-
bility under the XDH assumption. The proof consists of 1 group element fromG2.

Proof. Perfect completeness follows from Equation 1. The hardness of the DDH problem inG1 means that
we cannot distinguish common reference strings withu, u1 linearly independent from simulated reference
strings withu ∈ U . Perfect witness indistinguishability on simulated reference strings now follows from the
fact thatπ = (1, x) is uniquely determined by the verification, so all witnesses yield the same proof. For

perfect soundness, we observeE4(u, v)
∏K

k=1 φkβk−τ ∈ E4(u1, G
2
2) implies

∏K
k=1 φkβk = τ sinceu, u1 are

linearly independent. �

Instantiation 3: DLIN. Consider a common reference string set up in the same way as before. In the linear
case, we have commitmentsck and constantsβ1, . . . , βK , τ . The witness will be of the formφk, rk1, rk2 so

K∑
k=1

φkβk = τ , ck = uφkurk1
1 urk2

2 .

Definev = (1, 1, g). We can compute the proofπ1 := v
∑K

k=1 βkrk1 andπ2 := v
∑K

k=1 βkrk2 . This consists of
2 group elements. The verifier checks

K∏
k=1

E9(ck, vβk) = E9(u, v)τ · E9(u1, π1)E9(u2, π2).

Lemma 18 The proof has perfect completeness, perfect soundness and composable witness indistinguisha-
bility under the DLIN assumption. The proof consists of 2 group elements.
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Proof. Perfect completeness follows from Equation 3. By the DLIN assumption, we cannot distinguish
whetheru ∈ U or not, so common reference string and simulated reference strings are indistinguishable.
There are unique proofsπ1, π2 satisfying the equation, so no matter which witness we have, we get the same
proofs. To prove perfect soundness whenu /∈ U , observe that the commitments defineφk, rk1, rk2 uniquely.
We have

E9(u, v)φkβk−τ ∈ E9(u1, G
3)E9(u2, G

3).

Sinceu, u1, u2 are linearly independent we haveE9(u, v)
∑K

k=1 φkβk−τ = 1, which implies
∑K

k=1 φkβk = τ .
�

8.3 Multi-exponentiation of Constants

We have elementsa1, . . . , aL ∈ M1 and commitmentsd1, . . . , dL ∈ M2 and are interested in the existence
of θ`, s`j so

d` = vθ`

J∏
j=1

v
s`j

j and
L∏

`=1

aθ`
` = t1,

for a constantt1 ∈M1.
Givenθ`, s`j so the equations are satisfied, we get from Equation 3 that for arbitrarytij , th ∈ R

L∏
`=1

E(a`, d`) · E(t1, v)−1 =
J∏

j=1

E(ψj , vj),

where

ψj =
I∏

i=1

u
∑H

h=1 thηhij

i ·
L∏

`=1

a
s`j

` .

We have the following corollary to Lemma 13.

Lemma 19 If v ∈ V , a1, . . . , aL ∈ U andη1, . . . , ηH generates the kernel ofE, then for any witnessθ`, s`j

we get the same distribution of proofsψj .

Instantiation 2: XDH and SXDH. In the special case, where we are just looking at a multi-exponentiation
of constants, we do not needu1, u2. The witness isθ`, s` so

d` = vθ`vs`
1 and

L∏
`=1

aθ`
` = t.

We construct a proof as

ψ :=
L∏

`=1

as`
` .

The verifier accepts if and only if

L∏
`=1

E4((1, a`), d`) = E4((1, t), v)E4(ψ, v1).

Lemma 20 The proof has perfect completeness, perfect soundness, and assuming the DDH problem is hard
in G2 we have composable witness indistinguishability. The size of the proof is 2 elements fromG1.
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Proof. Perfect completeness follows by inspection. Perfect witness-indistinguishability on a simulated refer-
ence string follows from Lemma 13. To argue perfect soundness, notice thatv, v1 being independent implies
thatdq defines a uniqueθ` ∈ Zp. We haveE4((1,

∏L
`=1 a

θ`
` · t

−1), v) ∈ E4(G2
1, v1). This is only possible if∏L

`=1 a
θ`
` = t. �

Instantiation 3: DLIN. We have a common reference string withu, u1, u2 sou is linearly independent of
u1, u2. the witness isθ`, s`1, s`2 so

d` = uθ`u`s`1
1 u`2

2 ,

θ∏̀
`=1

= t.

The proof is

π1 :=
L∏

`=1

(1, 1, a`)s`1 , π2 :=
L∏

`=1

(1, 1, a`)s`2 .

The verifier checks that

L∏
`=1

E9((1, 1, a`), d`) = E9((1, 1, t1), u)E9(π1, u1)E9(π2, u2).

Observe, only the last entries inπ1, π2 are non-trivial, so the proof consists of 2 group elements.

Lemma 21 The proof has perfect completeness, perfect soundness and assuming the DLIN problem is hard
it has composable witness indistinguishability. The proof consists of 2 group elements.

Proof. Perfect completeness can be verified directly. Perfect witness-indistinguishability follows from
Lemma 13 on simulation reference string whereu is linearly dependent onu1, u2. To argue perfect
soundness, observe thatu, u1 = (f, 1, g), u2 = (1, h, g) being independent implies thatd` definesθ`

uniquely. We haveE9(
∏L

`=1(1, 1, a`)θ`(1, 1, t)−1, u) ∈ E9((f, 1, g), G3)E9((1, h, g), G3). Write u =
(1, 1, g)δ(f, 1, g)δ1(1, h, g)δ2 for δ ∈ Z∗

p, to see that this implies
∏L

`=1 a
θ`
` = t. �

9 Witness-indistinguishable Proofs

We will now present the witness-indistinguishable proof for equations over modules. The setup consists of
R-modulesM1,M2,MT and a bilinear mapE : M1 ×M2 →MT . We have a commitment scheme that we
can use to commit to elements inM1 andM2 given by elementsu1, . . . , uI ∈ M1, v1, . . . , vJ ∈ M2. We
also have elementsu, u′1, . . . , u

′
I′ ∈ M1, v, v

′
1, . . . , v

′
J ′ ∈ M2, which gives us a commitment scheme for the

ring elements. For all relevant combinations of these elements, which may or may not have some overlap,
we also have generatorsη1, . . . , ηH for the kernels of the corresponding mapsµ.

Consider a set of equations over variablesx1, . . . , xM ∈ M1, y1, . . . , yN ∈
M2, φ1, . . . , φK , θ1, . . . , θL ∈ R. We have the following witness-indistinguishable protocol that takes
as input the common reference string and a witness for simultaneous satisfiability of all equations.

1. Commit to all variables. Pickrmi, snj , ρki, σ`j ∈ R at random and set

cm := xm

I∏
i=1

urmi
i , dn := yn

J∏
j=1

v
snj

j , c′k := uφk

I′∏
i=1

(u′i)
ρki , d′` := vθ`

J ′∏
j=1

(v′j)
σ`j .
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2. For each pairing product equation make a proof as described in Section 5. This costsI elements inM2

andJ elements inM1 for each pairing product equation.

3. For each multi-exponentiation relationship inM1 make a proof as described in Section 7. This costs
J ′ elements fromM1 andI elements fromM2.

4. For each multi-exponentiation relationship inM2 make a proof as described in Section 7. This costsJ
elements fromM1 andI ′ elements fromM2.

5. For each general arithmetic gate, make a NIWI proof as described in Section 6. Each proof consists of
J ′ elements fromM1 andI ′ elements fromM2.

NIWI proofs for bilinear groups. The overarching goal of this paper is to obtain non-interactive witness-
indistinguishable proofs for equations over groups with a bilinear map. We now have the following method
to construct such proofs.

1. Embed the bilinear groups into appropriately chosen modules with a bilinear map.

2. Express group elements and equations as elements and equations in the modules.

3. Use the witness-indistinguishable proof described above.

Instantiation 1: Subgroup decision. Given an orderp subgroup of the composite order group
(n, G,GT , e, g, gq)← G(1k), we will set up the witness-indistinguishable proof as follows.

CRS generation: Chooseh = gr
q for r ← Z∗

n. The CRS isσ := (n, G,GT , e, g, h).

Simulated CRS generation: Chooseh = gr for r ← Z∗
n. The simulated CRS isσ := (n, G,GT , e, g, h).

Proof: Given a witness on the formxm ∈ G,φk ∈ Zn
4, we can pick randomizersrm, ρk and commit

to them ascm := xmh
rm andc′k := gφkhρk . For each type of equation, we now make a witness-

indistinguishable proof as described in the previous sections.

Verification: Check the proof for each equation.

Theorem 22 The proof has perfect completeness, perfect soundness with respect to the orderp subgroups,
and assuming the subgroup decision problem is hard it has composable witness indistinguishability. The size
of the proof can be found by adding the costs of variables and equations found in Figure 4.

Proof. Lemmas 2, 6, 10 prove this theorem. �

Subgroup Decision DLIN DLIN one-sided
Variablexm (equal toym) 1 3 3
Variableφk (equal toθk) 1 3 3
Pairing product equation 1 9 3
Multi-exponentiation 1 9 2
General arithmetic gate 1 6 2

Figure 4: Cost of each variable and equation measured in group elements fromG.

4Since this is the symmetric setting, we do not need to separate the variables intoxm, yn andφk, θ`.
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Instantiation 2: XDH and SXDH. Given(p, G1, G2, GT , e, g1, g2)← G(1k), we will set up the witness-
indistinguishable proof as follows.

CRS generation: We choosex1, x2, y1, y2, r, s ← Z∗
p andt1, t2 ← Zp. We setu1 := (g1, gx1

1 ), u2 := ur
1

and u := ut1
1 (1, g1)y1 . We setv1 := (g2, gx2

2 ), v2 := vs
1 and v := vt2

1 (1, g2)y2 . This way, we
haveu1, u2 are linearly dependent and independent from(1, g1), whileu, u1 are linearly independent.
Similarly, we havev1, v2 being linearly dependent and both independent from(1, g2), while v, v1 are
linearly independent. Setσ := (p, G1, G2, GT , e, g1, g2, u1, u2, u, v1, v2, v).

Simulated CRS generation: We choosex1, x2, y1, y2, r, s ← Z∗
p and t1, t2 ← Zp. We setu1 :=

(g1, gx1
1 ), u := ur

1 andu1 := ut1
1 (1, g1)y1 . We setv1 := (g2, gx2

2 ), v := vs
1 andv2 := vt2

1 (1, g2)y2 .
This way, we haveu1, u2 are linearly independent, whileu, u1 are linearly dependent. Simi-
larly, we havev1, v2 being linearly independent, whilev, v1 are linearly dependent. Setσ :=
(p, G1, G2, GT , e, g1, g2, u1, u2, u, v1, v2, v)

Proof: We have a witnessxm ∈ G1, yn ∈ G2, φk, θ` ∈ Zp. We pick randomizersrmi, snj , ρk, σ` ← Zp and
commit to the witness asck := (1, xm)urm1

1 urm2
2 , dk := (1, yn)vsn1

1 vsn2
2 , c′k := uφkuρk

1 , d
′
k := vθ`vσ`

1 .
For each equation, we make a witness indistinguishable proof as described in the previous sections.

Verification: Check the proof for each equation.

Theorem 23 The proof has perfect completeness, perfect soundness, and assuming the SXDH problem is
hard it has composable witness indistinguishability. The size of the proof can be found by adding the costs in
Figure 5.

Proof. Lemmas 3, 7, 11 prove this theorem. �

SXDH XDH (one-sided)
G1 G2 G1 G2

Variablexm 2 0 2 0
Variableyn 0 2 N/A N/A
Variableφk 2 0 2 0
Variableθ` 0 2 N/A N/A
Pairing product equation 4 4 0 2
Multi-exponentiation inG1 2 4 N/A N/A
Multi-exponentiation inG2 4 2 0 2
General arithmetic gate 2 2 0 1

Figure 5: Cost of each variable and equation measured in group elements fromG1 andG2.

Instantiation 3: DLIN. We have a group with a bilinear map(p, G,GT , e, g) ← G(1k). We set up the
proof as follows.

CRS generation: Pick α, β, t ← Z∗
p and r3, s3, r, s ← Zp. Set f := gα, h := gβ . We setu1 :=

(f, 1, g), u2 := (1, h, g), u3 := ur3
1 u

s3
2 , u := ur

1u
s
2(1, 1, g)

t. This way we haveu1, u2, u3 being lin-
early independent of(1, 1, g) andu. Setσ := (p, G,GT , e, g, u1, u2, u3, u).

Simulated CRS generation: Pick α, β, t ← Z∗
p andr3, s3, r, s ← Zp. Setf := gα, h := gβ . We set

u1 := (f, 1, g), u2 := (1, h, g), u3 := ur3
1 u

s3
2 (1, 1, g)t, u := ur

1u
s
2. This way we haveu1, u2, u3 being

linearly independent, andu ∈ U . Setσ := (p, G,GT , e, g, u1, u2, u3, u).

27



Proof: We have a witnessxm ∈ G,φk ∈ Zp satisfying a set of equations. We pick randomizers
rm1, rm2, rm3, ρk1, ρk2 ← Zp∗ and commit to the witness asck := (1, 1, xm)

∏3
i=1 u

rmi
i and

dk := uφk
∏2

i=1 u
ρki
i . For each equation, we make a proof as described in the previous sections.

Verification: Verify the proof for each equation.

Theorem 24 The proof has perfect completeness, perfect soundness and assuming the DLIN problem is hard
it has composable witness indistinguishability. The increase in proof size that each variable and equation
costs is given in Figure 4.

Proof. Lemmas 4, 8, 12 prove this theorem. �

For comparison, we also list the cost of the general protocol in Figure 6 both for the general case, where
M1 6= M2, and the symmetric case whereM1 = M2 andE is symmetric. The figure also contains the price
to pay in case the equation is one-sided, in which case savings may be obtained.

Asymmetric Symmetric One-sided
M1 M2 M1 = M2 M1 M2

Variablexm 1 0 1 1 0
Variableyn 0 1 1 N/A N/A
Variableφk 1 0 1 1 0
Variableθ` 0 1 1 N/A N/A
Pairing product equation J I I 0 I
Multi-exponentiation inM1 I J ′ I N/A N/A
Multi-exponentiation inM2 I ′ J I 0 I ′

General arithmetic gate J ′ I ′ I ′ 0 I ′

Figure 6: Cost of each variable and equation measured in elements fromM1 andM2.

10 Non-interactive Zero-Knowledge Proofs

We have presented some very efficient NIWI proofs for sets of equations over bilinear groups. In this section,
we will show that in many cases our techniques can also be used to construct efficient NIZK proofs.

Suppose we have a set of equations over variablesx1, . . . , xM ∈ G1, y1, . . . , yN ∈
G2, φ1, . . . , φK , θ1, . . . , θL ∈ R and we want to prove a set of equations are simultaneously satisfiable.
An obvious strategy would be to use the witness and make a NIWI proof that the equations are satisfiable.
There is also an obvious problem with this strategy, the simulator does not know a witness and therefore it
cannot simulate a proof.

It turns out that the strategy is better than it seems at first glance. In the NIWI proof we have described, we
make a proof for each single equation by itself and each individual proof is witness-indistinguishable. In the
simulation, the commitments are perfectly hiding and therefore we may imagine using trapdoor commitments
and opening the commitments to different exponents for each equation and witness-indistinguishable proof.
In particular, to commit to an exponentφ, we computec := uφ

∏I
i=1 u

ri
i . If we know a linear relation

ξ1, . . . , ξI so u =
∏i

i=1 u
ξi
i , we can open it to any given messageφ′ asc := uφ′

∏I
i=1 u

ri+ξi(φ−φ′)
i . We

define a NIWI proof to beindividual composable witness-indistinguishable, if it is composable witness-
indistinguishable, the simulation reference string sets up perfect hiding commitments to the group elements
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and perfect trapdoor commitments for the exponents and each equation gets it own witness-indistinguishable
proof.

We call a setS of equations over variablesx1, . . . , xM ∈ G1, y1, . . . , yN ∈ G2, φ1, . . . , φK , θ1, . . . , θL ∈
R tractable if it is possible to deterministically5 compute a satisfiability witness for each individual equation,
such that all witness use the samex1, . . . , xM , y1, . . . , yN , but may varyφ1, . . . , φK , θ1, . . . , θL freely from
equation to equation.

Theorem 25 For a set of tractable equations over bilinear groups(n, G1, G2, GT , e, g1, g2) with an individ-
ual composable witness-indistinguishable proof, there is a composable zero-knowledge simulator.

Proof. The simulatorS1 creates a simulated reference string and outputs also the trapdoors for the commit-
ment schemes used to commit to the exponents.

The simulatorS2 gets the tractable set of equations and computes a satisfiability witnessw such
that x1, . . . , xM , y1, . . . , yM are the same in each equation, whileφ1, . . . , φK , θ1, . . . , θL may vary
from equation to equation. It commits tox1, . . . , xM , y1, . . . , yM , while making trapdoor commitments
c1, . . . , cK , d1, . . . , dL to the exponents. For each equation, it opens the trapdoor commitments to get satis-
fying x1, . . . , xM , y1, . . . , yN , φ1, . . . , φK , θ1, . . . , θL and makes a witness-indistinguishable proof.

We will now prove that on a simulation reference string, we have perfect zero-knowledge. We are given
a witness for simultaneous satisfiability of all equations and have to show that on a simulation reference
string, it is perfectly indistinguishable whether we create a proof using the witness or we use the simulator
to create the proof. Consider the following hybrid experiment, where we run the simulator to generate the
commitments but then open all the commitments (using brute force) to the witness and make real witness-
indistinguishable proofs for each equation. Since each individual proof is perfectly witness-indistinguishable,
this is perfectly indistinguishable from the simulation. On the other hand, since each commitment is perfectly
hiding the hybrid experiment is also perfectly indistinguishable from running the real prover on a simulated
reference string. �

Corollary 26 Tractable equations in the subgroup decision, SXDH and DLIN cases described in this paper
have composable zero-knowledge proofs with perfect completeness and perfect soundness, computational
indistinguishability between real common reference strings and simulated reference strings, and perfect zero-
knowledge on simulated reference strings.

Making sets of equations tractable. There is a technique to make sets of equations tractable. We introduce
some extra variables, among themφ, θ ∈ R. We will also introduce some extra equations, among them
φ = 0, θ = 0. Note, we can commit to them asc := 1, d := 1, so there is no extra cost here.

Let us start with the general arithmetic gate. We can modify it to

φ · 1 +
K∑

k=1

αkφk +
L∑

`=1

β`θ` +
K∑

k=1

L∑
`=1

γk`φkθ` = τ,

for constantsαk, β`, γk`, τ ∈ Zn. Sinceφ can be opened to anything, it is now easy to see that we can
satisfy any individual general arithmetic gate equation. Since the proof size is independent of the number of
variables, this modification costs nothing.

For a multi-exponentiation equation inG1, we can introduce an extra variablez ∈ G1 and use

L∏
`=1

aθ`
` ·

M∏
m=1

x
∑L

`=1 αm`θ`+βm
m · t−1

1 = zθ,

5We define tractability in terms of a deterministic witness-computing algorithm because we want it to be possible to check directly
whether a set of equations is tractable or not.
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for constantsa`, t1 ∈ G1 andαm`, βm ∈ Zn. For this equation we can useθ = 1 and just setz to be the
product given in the equation, so the equation is now trivially satisfiable. Multi-exponentiation equations in
G2 work similarly.

The most complicated type of equation to make tractable is the pairing product equation. The problem is
that it may be hard to compute group elementsa′1, b

′
1, . . . , a

′
Ω, b

′
Ω so

∏Ω
ω=1 e(a

′
ω, b

′
ω) = T . However, assume

T is on a form such that this is possible, then we can move this part to the other side of the equation. This
reduces the problem to the caseT = 1.

We introduce variablesz1, . . . , zQ and rewrite the pairing product equation as

Q∏
q=1

e(zq, bq
N∏

n=1

y
βqn
n ) = 1 , zq = (aq

M∏
m=1

x
αqm
m )1−θ,

which is solvable by pickingz1 = · · · = zQ = 1 andθ = 1.
The case of pairing product equations point to a fundamental difference between witness-

indistinguishable proofs and zero-knowledge proofs using our techniques. NIWI proofs can handle any
targetT , whereas zero-knowledge proofs can only handle special types of targetT . Second, even ifT = 1 it
seems like in the most general case the cost is linear inQ for pairing product equations, whereas in the NIWI
proofs the cost of such an equation is constant.

11 Conclusion and an Open Problem

Our main contribution in this paper is the construction of efficient non-interactive cryptographic proofs for
use in bilinear groups. Our proofs can be instantiated with many different types of bilinear groups and
the security of our proofs can be based on many different types of intractability assumptions, of which we
have given three instantiations: the subgroup decision assumption, the SXDH assumption and the DLIN
assumption.

Since we have been interested in bilinear groups we have in our instantiations based the modules on
bilinear groups. It is possible that other types of modules with a bilinear map exist, which are not constructed
from bilinear groups. The existence of such modules might lead to efficient NIWI and NIZK proofs based on
entirely different intractability assumptions. We leave the construction of such modules with a bilinear map
as an interesting open problem.
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