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Abstract

Non-interactive zero-knowledge proofs and non-interactive witness-indistinguishable proofs have
played a significant role in the theory of cryptography. However, lack of efficiency has prevented them
from being used in practice. One of the roots of this inefficiency is that non-interactive zero-knowledge
proofs have been constructed for general NP-complete languages such as Circuit Satisfiability, causing
an expensive blowup in the size of the statement when reducing it to a circuit. The contribution of this
paper is a general methodology for constructing very simple and efficient non-interactive zero-knowledge
proofs and non-interactive witness-indistinguishable proofs that work directly for groups with a bilinear
map, without needing a reduction to Circuit Satisfiability.

Groups with bilinear maps have enjoyed tremendous success in the field of cryptography in recent
years and have been used to construct a plethora of protocols. This paper provides non-interactive witness-
indistinguishable proofs and non-interactive zero-knowledge proofs that can be used in connection with
these protocols. Our goal is to spread the use of non-interactive cryptographic proofs from mainly theo-
retical purposes to the large class of practical cryptographic protocols based on bilinear groups.

Keywords: Non-interactive witness-indistinguishability, non-interactive zero-knowledge, common refer-
ence string, bilinear groups.

*Work presented and part of work done while participating in Securing Cyberspace: Applications and Foundations of Cryptog-
raphy and Computer Security, Institute of Pure and Applied Mathematics, UCLA, 2006.

TSupported by NSF ITR/Cybertrust grant No. 0456717.

This research was supported in part from grants from the NSF ITR and Cybertrust programs (including grants 0627781,
0456717, and 0205594), a subgrant from SRI as part of the Army Cyber-TA program, an equipment grant from Intel, and an
Alfred P. Sloan Foundation Research Fellowship.



1 Introduction

Non-interactive zero-knowledge proofs and non-interactive witness-indistinguishable proofs have played a
significant role in the theory of cryptography. However, lack of efficiency has prevented them from being
used in practice. Our goal is to construct efficient and practical non-interactive zero-knowledge (NIZK)
proofs and non-interactive witness-indistinguishable (NIWI) proofs.

Blum, Feldman and Micali [BFM88] introduced NIZK proofs. Their paper and subsequent work, e.g.
[FLS99, Dam92, KP98, DDP02], demonstrates that NIZK proofs exist for all of NP. Unfortunately, these
NIZK proofs are all very inefficient. While leading to interesting theoretical results, such as the construction
of public-key encryption secure against chosen ciphertext attack by Dolev, Dwork and Naor [DDNQQ], they
have therefore not had any impact in practice.

Since we want to construct NIZK proofs that can be used in practice, it is worthwhile to identify the roots
of the inefficiency in the above mentioned NIZK proofs. One drawback is that they were designed with a
general NP-complete language in mind, e.g. Circuit Satisfiability. In practice, we want to prove statements
such as “the ciphertextencrypts a signature on the messageor “the three commitments,, ¢;, c. contain
messages, b, ¢ soc = ab”. An NP-reduction of even very simple statements like these gives us big circuits
containing thousands of gates and the corresponding NIZK proofs then become very large.

While we want to avoid an expensive NP-reduction, it is still desirable to have a general way to express
statements that arise in practice instead of having to construct non-interactive proofs on an ad hoc basis. A
useful observation in this context is that many public-key cryptography protocols are based on finite abelian
groups. If we can capture statements that express relations between group elements, then we can express
statements that come up in practice such as “the commitnagnts, c. contain messages $0= ab” or
“the plaintext ofc is a signature omn”, as long as those commitment, encryption, and signature schemes
work over the same finite group. In the paper, we will therefore construct NIWI and NIZK proofsdop-
dependentanguages.

The next issue to address is where to find suitable group dependent languages. We will look at state-
ments related to groups with a bilinear map, which have become widely used in the design of cryptographic
protocols. Not only have bilinear groups been used to give new constructions of such cryptographic staples
as public-key encryption, digital signatures, and key agreement (see [DBS04] and the references therein),
but bilinear groups have enabled the first constructions achieving goals that had never been attained be-
fore. The most notable of these is the Identity-Based Encryption scheme of Boneh and Franklin [BF03]
(see also [Wat05]), and there are many others, such as Attribute-Based Encryption [SW05, GPSWO06],
Searchable Public-Key Encryption [BCOP04, BSW06, BW06], and One-time Double-Homomorphic En-
cryption [BGNO5]. For an incomplete list of papers (currently over 200) on the application of bilinear groups
in cryptography, see [Bar06].

1.1 Our Contribution

In this work, we develop a general set of highly efficient techniques for proving statements involving bilinear
groups. The generality of our work extends in two directions. First, we formulate our constructions in terms
of modules over commutative rings with an associated bilinear map. This framework captures all known bi-
linear groups with cryptographic significance — for both supersingular and ordinary elliptic curves, for groups
of both prime and composite order. Second, we consider all mathematical operations that could take place
in the context of a bilinear group — exponentiation, addition or multiplication of exponents, multiplication
of group elements and use of the bilinear map. We also allow both group elements and exponents to be
“unknowns” in the statements to be proven.

With our level of generality, for example it would be easy to write down a short statement, using the
operations above, that encodesis an encryption of the value committed todrunder the product of the



two keys committed to im andb” where the encryptions and commitments being referred to are existing
cryptographic constructions based on bilinear groups. Logical operations like AND and OR are also easy to
encode into our framework using standard techniques in arithmetization.

The proof systems we build anen-interactive This allows them to be used in contexts where interaction
is undesirable or impossible. We first build highly efficient witness-indistinguishable proof systems, which
are of independent interest. We then show how to transform these into zero-knowledge proof systems. We
also provide a detailed examination of the efficiency of our constructions in various settings (depending on
what type of bilinear group is used).

The security of constructions arising from our framework can be basedypaf a variety of computa-
tional assumptions about bilinear groups (3 of which we discuss in detail here). Thus, our techniques do not
rely on any one assumption in particular.

Informal statement of our results. We consider equations over variables frém G5 andZ,, as described
in Figure 1. We construct efficient witness-indistinguishable proofs for the simultaneous satisfiability of a
set of such equations. The witness-indistinguishable proofs have perfect completeness and there are two
computationally indistinguishable types of common reference strings giving respectively perfect soundness
and perfect witness indistinguishability. We refer to Section 2 for precise definitions.

We also consider the question of non-interactive zero-knowledge. We say a set of equdtixialide
if it is possible to compute a satisfiability witness in the easier setting where we allow the exponent variables
o1,...,0K,01,...,0r to take different values in each equation. We offer a technique to transform a set of
eqguations into an equivalent tractable set of equations. Tractable equations have efficient non-interactive zero-
knowledge proofs with perfect completeness and two types of computationally indistinguishable common
reference strings giving respectively perfect soundness and perfect zero-knowledge simulation.

Instantiation 1: Subgroup decision. Throughout the paper, we will give a general description of our tech-
niques. We will also offer three instantiations that illustrate the use of our techniques. The first instantiation
is based on the composite order groups introduced by Boneh, Goh and Nissim [BGNOX}, Getbe
cyclic groups of orden = pq, wherep, q are primes. Lely be a generator aff. Lete : G x G — Gr
be a non-degenerate bilinear map, i€g, g) generates;r and for alla, b we havee(g?, ¢°) = e(g, g)®.
[BGNO5] gives an example of a way to set up such groups such that all operations are efficiently computable
and membership aif, G can be decided efficiently.

We can writeG = G x G4, whereGy, G4 are the subgroups of ordgr and q respectively. The
subgroup decision problem is to distinguish a random element ¢dnom a random element froi¥q. In
this paper, we will demonstrate that assuming the hardness of the subgroup decision problem there exists a
witness-indistinguishable proof for satisfiability of a set of equations from Figure 1 in the sub@goapd
the orderp subgroup of7p.

Instantiation 2: XDH and SXDH. Let Gy, G2, G be groups of prime ordgp with a hon-degenerate
bilinear mape : Gy xGy — Gr. The external Diffie-Hellman (XDH) assumption is that the decisional Diffie-
Hellman (DDH) problem is hard in one of the grou@s or G, [Sco02, BBS04, BGAMMO05, GR04, Ver04].

The Symmetric XDH assumption is that the DDH problem is hard in lgéthand G,. We will construct

a witness-indistinguishable proof for these groups under the SXDH assumption. We will also observe that
given only the XDH assumption, we can still give NIWI proofs for some interesting special cases.

Instantiation 3: DLIN. Let G, G be groups of prime ordgs with a non-degenerate bilinear map:
G x G — Gp. The decisional linear assumption (DLIN) introduced by Boneh, Boyen and Shacham [BBS04]
states that given three random generafris, g and f”, h*%, ¢, it is hard to distinguish the cage= r + s



Variables: T1,...,x0m € Gy, yl,...,yNEGg, D1y O, 01,...,0 € L.

Pairing product equation:
Q

M N
H e(aq H xgmqmabq H ynqn) =T,
m=1 n=1

q=1
for constantsi, € G1,by € G2, T € G, 0y, Bgn € Zn.

Multi-exponentiation in G:
L

M 0
I | 0[ | | =1 ¥me ,Bm
ag N x% o ¢ — t P
= m=1

for constantsi,, t1 € G andayy,e, B € Zn.

Multi-exponentiation in Gs:
o LSk s
| QnkPrtOn
H bﬁk ' H yn =1 KO = to2,
k=1 n=1

for constantdy, to € G2 anday,, B € Zn.

General arithmetic gate:

K L K L
D ardr + Y Bl + D> ) ety = T,
k=1 =1

k=1 ¢=1

for constantsyy, B, Ve, T € Z.

Figure 1: Equations over groups with bilinear map.

from ¢ random. They offer an example of such a group based on elliptic curves, where the DLIN problem
is assumed hard. Assuming the hardness of the DLIN problem, we will suggest a withess-indistinguishable
proof for satisfiability of a set of equations from Figure 1.

The instantiations illustrate the variety of ways bilinear groups can be constructed. We can choose prime
order groups or composite order groups, we can l@ve= Go andG; # G, and we can make various
cryptographic assumptions. All three security assumptions have been used in the cryptographic literature to
build interesting protocols.

For all three instantiations, the techniques presented here yield very efficient withess-indistinguishable
proofs. In particular, the cost in proof size of each extra equation is constant and independent of the number
of variables in the equation. The size of the proofs, can be computed by adding the cost, measured in group
elements from7; or G5, of each variable and each equation listed in Figure 2. We refer to Section 9 for
more detailed tables.

1.2 Related Work

As we mentioned before, early work on NIZK proofs demonstrated that all NP-languages have non-
interactive proofs, however, did not yield efficient proofs. One cause for these proofs being inefficient in
practice was the need for an expensive NP-reduction to e.g. Circuit Satisfiability. Another cause of ineffi-
ciency was the reliance on the so-called hidden bits model, which even for small circuits is inefficient.



Subgroup decision SXDH DLIN
Variable inG; or Go 1 2 3
Variable inZy, or Zy 1 2 3
Paring product equation 1 8 9
Multi-exponentiation inG; or Go 1 6 9
General arithmetic gate 1 4 6

Figure 2: Number of group elements each variable or equation costs.

Groth, Ostrovsky, and Sahai [GOS06b, GOS06a] investigated NIZK proofs for Circuit Satisfiability using
bilinear groups. This addressed the second cause of inefficiency since their techniques give efficient proofs for
Circuit Satisfiability, but to use their proofs one must still make an NP-reduction to Circuit Satisfiability thus
limiting the applications. We stress that while [GOS06b, GOS06a] used bilinear groups, their application
was to build proof systems for circuit satisfiability. Here, we devise entirely new techniques to deal with
general statemengoutbilinear groups, without having to reduce to an NP-complete language.

Addressing the issue of avoiding an expensive NP-reduction we have works by Boyen and Waters [BWO06,
BWO07] that suggest efficient NIWI proofs for statements related to group signatures. These proofs are based
on bilinear groups of composite order and rely on the subgroup decision assumption.

Groth [Gro06] was the first to suggest a general group-dependent language and NIZK proofs for state-
ments in this language. He investigated a restricted kind of pairing product equation in which only group
elements can be variables. He also looked only at the special case of prime order@réypwith a bilin-
earmape : G x G — G and, based on the decisional linear assumption [BBS04], constructed NIZK proofs
for such restricted pairing product equations. However, even for very small statements, the very different and
much more complicated techniques of Groth yield proofs consisting of thousands of group elements (whereas
ours would be in the tens) Our techniques are much easier to understand, significantly more general, and
vastly more efficient.

We summarize our comparison with other works on NIZK proofs in Figure 3.

Inefficient Efficient
Circuit Satisfiability E.g. [KP98] [GOS06b, GOS06a]
Pairing Product Equations[Gro06] (restricted case)) This work

Figure 3: Classification of NIZK proofs according to usefulness.

We note that there have been many earlier works (starting with [GMR89]) dealing with effitiersc-
tive zero-knowledge protocols for a number of algebraic relations. Here, we foauseimteractiveproofs.
We also note that even for interactive zero-knowledge proofs, no set of techniques was known for dealing
with general algebraic assertions arising in bilinear groups, as we do here.

1.3 New Techniques

[GOS06b, GOS06a, Gro06] start by constructing non-interactive proofs for simple statements and then com-
bine many of them to get more powerful proofs. The main building block in [GOS06b], for instance, is a
proof that a given commitment contains either 0 or 1, which has little expressive power on its own. Our

'Furthermore, even when limited to the restricted types of statements considered by [Gro06], there are examples of families of
statements for which there is anbitrary polynomial gapbetween the efficiency of the proof systems of [Gro06] and ours. Thus,
our construction not only dominates that of [Gro06] in terms of typical use, but also in asymptotic terms.



approach is the opposite: we directly construct proofs for very expressive languages; as such, our techniques
are very different from previous work.

The way we construct our efficient yet powerful NIWI proofs is by viewing the gr@eps=2, G as sub-
modules of appropriately chosen modules, M», M. Furthermore, from the bilinear map G, x Gy —
G, we can construct a bilinear mdp : M; x My — Mp. We introduce a number of new techniques for
building NIWI proofs in this setting. The primary advantage of the modular setting is that it permits char-
acterizing witness-indistinguishability in a very simple way. Moreover, witness-indistinguishability relies on
high-level properties of modules over a commutative ring so our approach becomes very general and covers
a wide range of different types of bilinear groups.

1.4 Applications

There are many applications of our NIWI proofs and NIZK proofs. Subsequent to this work, Chandran, Groth
and Sahai [CGSO07] construct ring-signatures of sublinear size using the NIWI proofs in the first instantiation,
which is based on the subgroup decision problem. Groth and Lu [GLO7] use the NIWI and NIZK proofs from
instantiations 1 and 3 to construct non-interactive proofs for the correctness of a shuffle. We note that the
proofs of Boyen and Waters [BW06, BW07] used to construct group signatures can be seen as examples
of the NIWI proofs in instantiation 1. Also, by attaching NIZK proofs to semantically secure public-key
encryption in any instantiation we get an efficient non-interactive verifiable cryptosystem. Boneh [Bon06]
has suggested using this for optimistic fair exchange [Mic03], where two parties use a trusted but lazy third
party to guarantee fairness.

2 Non-interactive Witness-Indistinguishable Proofs

Let R be an efficiently computable ternary relation. For tripletsz, w) € R we callx the statement and
the witness. Given somewe let L be the language consisting of statementRiror a relation that ignores
o this is of course the standard definition of an NP-language.

A non-interactive proof system for a relatidt consists of a three probabilistic polynomial time algo-
rithms: a CRS generation algorithi, a proverP and a verifie”. The CRS generation algorithm produces
a common reference string The prover takes as inp(#, =, w) and produces a proaf. The verifier takes
as input(o, z, ) and outputs 1 if the proof is acceptable and O if rejecting the proof. W& &alP, V') a
non-interactive proof system fat if it has the completeness and soundness properties described below.

PERFECT COMPLETENESSFor all adversariegl we have

Pr [a — K(lk); (x,w) — A(o);m « P(o,z,w) : V(o,z,m) = 1if (0,2,w) € R} =1.

PERFECT SOUNDNESSFor all adversariegl we have

Pr [0 — K(1%);(z,7) — A(0) : V(o,z,m) = 0if = ¢ L] = 1.

COMPOSABLE WITNESS INDISTINGUISHABILITY. In this paper, we will use a strong definition of witness
indistinguishability. We introduce a reference string simul&tdinat generates a simulated CRS. We require
that the adversary cannot distinguish a real CRS from a simulated CRS. Then we require that on a simulated
CRS, it isperfectlyindistinguishable, which witness the prover used.

In other words, for all non-uniform polynomial time adversatie€s/e have

Prjoc — K(1%) : A(0) = 1] = Prjo — S(1¥) : A(0) = 1]



and
Pr |:0' — S(1%); (2, wo, w1) — A(0); 7 «— P(o,z,wp) : A(r) = 1]

= Pr|o— S(M): (@,wo,wr) = A(0)im — Ploya,wy) : Alm) = 1]
where we requiréo, x, wy), (o, z,w1) € R.
COMPOSABLE ZERGKNOWLEDGE. Composable zero-knowledge [Gro06] is a strengthening of the usual
notion of non-interactive zero-knowledge. First, we require that an adversary cannot distinguish a real CRS
from a simulated CRS. Second, we require that the adveearg,when it gets access to the secret simulation
keyr, cannot distinguish real proofs on a simulated CRS from simulated proofs.

In other words, there exists a polynomial time simuldty, S2) so for all non-uniform polynomial time
adversariesA we have

Pr |:0' — K(1%): A(o) = 1] ~ Pr |:(J, 7) — S1(1%) : A(o) = 1},
and
Pr [(0, ) S1(1%); (z,w) — A(o,7); 7 «— P(o,z,w) : A(w) = 1 and(z,w) € R}

= Pr [(a, 7) — S1(1%); (z,w) — A(o,7); 7 — Sa(o,7,2) : A(m) = 1 and(z, w) € R}.

3 Commitment from Modules

Let (R, +,-,0,1) be acommutative ring. Recall, that &amodule is an abelian groug/, -, 1) such that for
allr,s € Randu,v € M we havé

u't ="y’ and (uv)" =u"v".
Letuy,...,ur be elements in a®-module M. Consider an element € M. We may commit tor by
choosingry,...,r; < R atrandom and letting the commitment be
I
ci=x H (TS
i=1

DefineU to be the submodule generateddy . .., u;. In caser € U, the message is perfectly hidden.
On the other hand; uniquely determines in the factor groupV//U, so if uy,...,u; do not generaté/,
thenc contains non-trivial information about

Peeking a little ahead, we will be interested in modules, where it is hard to tell whdtheU. The com-
mon reference string for our NIWI proofs will contain a setgk. If they generate\/, we will get perfect
witness indistinguishability. On the other hand, if they do not genévhtave will get perfect soundness.

Instead of committing to messages framh we may be interested in committing to a ring elemgrt R.
Consider therefore a setup, where have M andu, ..., u;. We can commit t@ by selectingy,...,rs
at random and computing the commitment

2Note that our modules will correspond to the groups underlying our cryptographic constructions. In order to maintain crypto-
graphic tradition, we therefore write modules with multiplicative notation. This breaks mathematics tradition in which modules are
written with additive notation. Such differences in notation are common in the cryptographic literature.



In case,u € U this perfectly hides the message. On the other hand, siree\//U determines a unique
valueu® € M /U, the commitment contains non-trivial information abeuf v ¢ U.

As we shall see below, our treatment of commitments using the language of modules generalizes sev-
eral previous works dealing with commitments over bilinear groups, including [BGN05, GOS06b, GOS06a,
Gro06, Wat06].

Instantiation 1. Subgroup decision. Based on the subgroup decision assumption, we can set up a com-
mitment scheme as follows. We have an elenteatG and commit tar € G by pickingr — Z,, at random
and computing the commitment= xh". In caseh has orden this commitment is perfectly hiding. On the
other hand, if» has ordek, thenc € G/Gq determines: € G, uniquely. Actually, given the factorization
of n we can also decrypt the commitmentias- ¢a(4~' mod p) ¢ Gp.

If we want to commit to ring elements, we lkebe a generator af. A commitment: = g®h" is perfectly
hiding in caseh has ordem. In caseh has orderg, the commitment uniquely determingésmod p. The
latter setup was used in [BGNO5] to construct a cryptosystem that is both additively homomorphic and also
has a one-time multiplication map.

Instantiation 2: XDH and SXDH. Consider a cyclic grougr of prime ordemp, where the DDH problem is
hard. By entry-wise multiplication we get an abelian grakf which is a module ovet,,. Let (g, k), (u, v)

be two elements iz2. We can commit to1,z) € G* asc := (g,h)"(u,v)!(1,2) = (g"ul, h"v"z).

If there existss € Z, so (u,v) = (g,h)*, then the commitment corresponds to ElGamal encryption of
z, i.e.,c = (¢" "t A" 5tz). On the other hand, ifg, h) and (u,v) are linearly independent, thenis a
perfectly hiding commitment te. Distinguishing betweefg, 1) and(u, v) being linearly independent or
not corresponds to the DDH problem.

To commit to a ring element, we use the following approach. We have a setup with eldméntand
(u,v). Under the DDH assumption, we cannot tell whether these elements are linearly independent or not.
We commit tog € Zj, by choosing- at random and setting:= (g, 2)?(u,v)". In case|g, h), (u,v) are
linearly independent this determingss Zj,, uniquely, but if(g, h) = (u, v)® for somes € Zy, then we have
a perfectly hiding Pedersen commitmentto

Instantiation 3: DLIN. Let f,h, g be three random generators Gfso f = ¢®, h = ¢°. The DLIN
assumption states that it is hard to tell whether three elententsw) = (f™, h*v, g*») have the property
thatt, = r, + s,. We will look at theZ,-module G® formed by entry-wise multiplication. Consider
three elementsf, 1, g), (1,h, g), (u,v,w) in G3. To commit to a messager;, 2, z3) We computec :=
(z1, 29, 23)(f,1,9)" (1, h, g)*(u,v,w)" for randomr, s,t € Zy. In case,(f,1,9),(1,9,h), (u,v,w) are
linearly independent they generate all @f and thus we have a perfectly hiding commitment. On the
other hand, in caséu,v,w) = (f™,h, g™ %) for somer,,s, € Zp, we have thatfl/acgl/ﬁcg =
a:l_l/axgl/ﬂxg is uniquely determined. In particular, if we commit(th 1, x), then we can with knowledge
of a, 8 extractz from the commitment. This commitment scheme coincides with the scheme of [Wat06]. We
note that the different, and less efficient, commitment scheme of [Gro06] can be similarly described in our
language of modules, as well.

To commit to a messageec Z, we also consider a setup with three elemérfits, g), (1, ~, g), (u, v, w).
We commit tog by choosingr, s at random and computing := (f,1,9)"(1, h, 9)*(u,v,w)®. In case
(u,v,w) can be written ag f™, %, g™ %) this is a perfectly hiding commitment scheme. But if
(f,1,9),(1,h,g), (u,v,w) are linearly independent, the commitment scheme determired., uniquely.
This coincides with the scheme of [GOS06a].



4 Setup

Let My, Mo, My be R-modules. Let furthermorely : My x Ms — My be a bilinear map, i.e., for all
r,s € Randu,u’ € My,v,v € My we have

E ™, v) = E(u,v)"E(u,v) and E(u,v*v") = E(u,v)°E(u,v").

In the paper, we will always assume a setup witmodulesi,, My, My and bilinear magF : My x My —
My, Letuq,...,ur be elements i/, andwvy,...,v; be elements inV/,. Let U be the submodule aff;
generated byi1, ..., u; andV be the submodule aff; generated by, ..., v .

There arel J not necessarily distinct elemeri§u;, v;) in M7. They give rise to aRk-linear map

I J
,u:R”—>MT (pll,...,p[J)'—)HHE(ui,Uj)pij.
i=1j=1
Trivially, (0,...,0) always belongs to the kernel &f, however, there may or may not be more vectors in the
kernel. Letny,...,ny € R be H vectors inR!” that generate the kernel pf In other words, given any
vectorp = (p11,...,p1s) SO

I J
H H E(ui,vj)Pi =1,

i=1j=1
there existg4,...,ty € R so it can be written as

H

H H
p=> twmn  thatis  (pu,..oprs) = O thnmans - Y thnar)-
h=1 h=1 h=1

Looking ahead, the CRS for the NIWI proofs we are about to suggest will comtain.,u; € M;
andwvy,...,vy € My, as well asy,...,ny. Depending on how we generate the CRS we will get either
perfect soundness or perfect witness indistinguishability. In the perfect witness indistinguishability case, we
will require thatn, ..., ng generate the kernel of the map For perfect soundness, we do not make such
a requirement, however, notice that common reference string for perfect soundness and simulated common
reference strings for perfect witness indistinguishability must be computationally indistinguishable, so in the
perfect soundness case we also haftg,) = 1 forall ny, ..., ng.

The symmetric setting. In the next section, we will offer NIWI proofs based on this kind of setup. In some
cases, we will havd! = M; = M,, which may yield some efficiency improvements. We may use the same
set of vectors, i.e., instead of working with, . ..,u; andvy,...,v; we may simplify to the case where
we just haveuy,...,u; € M. Similarly, for commitments to exponents we use- v. Finally, E may be
symmetric, i.e., for al,, v € M we haveE(u,v) = E(v,u). We call this thesymmetric setting

Instantiation 1: Subgroup decision. Recall in this setting we have two cyclic groups G of order

n = pq and a bilinear map : G x G — G7p. The subgroup decision assumption says that we cannot
distinguish whether an elemehthas ordeky or ordern. We will useh of orderq to get perfect soundness,
while we will useh of ordern to get perfect witness indistinguishability. Sinces non-degenerate(h, h)
generate€sr whenh has ordem. This means the map : Z, — Gr given byp — e(h, h)? has trivial
kernel0.



Instantiation 2: XDH and SXDH. Here we have three prime order groups with a bilinear mag-; x
G2 — Gr. As described in the previous section, we ggt modules)M; = G%,Mz = Gg. Entry-wise
multiplication also makes/r = G4 aZp,-module. There is a bilinear map given by

E,:G?x G2 — G4 (( Z ), (2, 1)) — < e(a,m)) e(a,y) )

It is easy to see that

1 1

Ei(( ) (Lg2) o Ea(( | )lg21) . BEa(( M), (Lg2) . Ea(( ), (92.1))
g1 g1 1 1

form a basis foiG4. sincee(g1, g2) generates:r. By the bilinear properties of, we therefore have that
Ey(ui,v1) ,  Eg(ur,v2) ,  Eg(uz,vi) ,  Ey(ug,vo)

form a basis foiG%, wheneven, u; are linearly independent i@ andv;, v, are linearly independent in
G3. Therefore, when they are linearly independent the map

2 2

e Zf, — Gt (P11, p125 P21, p22) > H H Ey(ui, v5)P9
i=1j=1

has trivial kernel0, 0, 0, 0).

Instantiation 3: DLIN. In this setting we have a bilinear map: G x G — Gp. With entry-wise
multiplication, we get theZ,-modules)M; = M, = G3. In the main body of the paper, we will use the
moduleMy = G§. given by entry-wise multiplication. In special cases, the modiflewill be more useful,
see Section 8.

We will use the symmetric bilinear mais : G3 x G* — G%. given by

a e(a,x) e(a,y)e(b,x) e(a,z)e(c, x)
(1 b ) (zy2)— e(b, y) e(b, z)e(c,y)
c e(c, z)
The corresponding map
3 3
pe : 3 — G (P117-~-,P33)HHHE(Ui,Uj)p”

i=1j=1

has a non-trivial kernel. Ifi, us, u3 form a basis foiG?, the three identitie®s (u;, u;) Eg(uj, u;) ™' = 1
yield a basis for the kernel @fs. This basis consists of the vectors

m= (07 1707 _17070707070) , T2 = (O)O> 15050707 _1)050) and n3 = (0505070707 1707 _170)
For any linearly independent, , us, ug we have that
Eg(u,u1) , Eg(ui,u2) , Eg(ui,uz), Ee(uz,u2), Eg(uz,us), Eg(us,us)

form a basis foiGS.



5 Pairing Product Equations

In this section, we will assume that we have already committed to the variables. We will offer a method to
construct non-interactive proofs for the committed values satisfying a pairing product equation. Our method
yields proofs with perfect completeness, perfect soundness and on a simulated common reference string with
perfectly hiding commitments it gives us proofs with perfect witness-indistinguishability.

A simple pairing product equation. We have commitments;,...,cg € M; anddy,...,dg € M>. We

will look at the satisfiability of the following simple pairing product equation over variables. .,z €
My, y1,--. yYQ € Mo andrqi, Sqj € R.

Q I J
H E(xg,y,) =T and Cq = T4 Hu:qz , dy =y, H vjs.””,
a=1 i=1 j=1

whereT is a constant id/.
Suppose, we have,, y,, 74, 54; SO the equations described above hold. For arbitrary, € R we have
the following equality, which is central to this paper:

Q Q I J
HE(Cq’dq) T = HE(quu£Qi’quv;qj)'T_l
q=1 g=1 i=1 j=1

Q Q I J Q J
= HE(:Unyq)'T_l ) HHE(uquyquU;qj) ) HHE(xtb”]s‘w)
q=1 g=li=1 J=1 g=1j=1
I Q Q
Tqi S
= 1[I B, [T - TTEA] 22 v)
=1 g=1 j=1 q=1
I J Q J I Q
= [1E@. v T1de) - TTEqQw "™ T v)
i=1 j=1 q=1 j=1 =1 q=1
I J Q ‘ J CoH Q
= 1B ITv - TLde) - TTEQTu = T i vy),
i=1 j=1 q=1 j=1 i=1 q=1
Write
4 tis < ! SH ¢ ! t <
mo= Lo [L i and = L= T - T 50,
J=1 q=1 i=1 i=1 q=1
to get the simpler
Q I J
[1Eqd) = T - T[] ECui,mi) - T E(s,09). (1)
=1 i=1 j=1

We shall user;’s and);’s computed in this way as witness-indistinguishable proofs. In those proofs, we
will choose thet;;'s and thet,’s at random fromR. Perfect completeness of the NIWI proofs will follow
from Equation 1. Perfect soundness of our proofs will follow from the fact that forcgny, such that there

existsrq;, s S0¢q = zq [[1—y u;", dy = [/, v valid proofs satisfying Equation (1) imply
Q I J
1 E@evq) - T7" € T E(ui, M) - [] E(My, ;).
g=1 i=1 j=1

10



To prove witness indistinguishability, the following lemma will be useful.

Lemma 1 Assume we have,,...,u; € M; anduvy,.. UJ € M, andny,...,ny generating the kernel
of 1. Consider two Witnessesl,_yq,rqi, Sqj andx;,y;, a0 qj satisfying the equations. If for afl we have
Zq, x' € U, yq, yfl € V and we pick the;;’s andt;,’s at random fromR, then the distribution of the resulting

proofsm, ;s and ) W 's are identical.

Proof. Consider a witnessz,, yq, 74, Sqj as specified in the lemma. This gives ms,..., 71 € V
and vy,...,v; € U. Since we pick thet;;’s at random, ther;’s are distributed uniformly at ran-
dom in V. Consider any fixed tuplér,..., ;) of elements from\/. The corresponding;’s in U

satisfy [, E(¥;,v;) = [1%, E(cq,dg) - T~ ]y E(us,m;)~. Sincen, ..., ny generate the ker-
nel of 4, by picking thet,’s at random in the construction of thg;'s, we get randomy;’s from U
such thatH}]:1 E(j,v;) = Hngl E(cg,dy) - T~ I, E(ui,m)~". We conclude that with the witness
Zq,YqsTqi, Sqj WE get a uniform random sample of,); under the restriction tha]t‘[?zlE(cq,dq) =
1) E(ui,m) - TI—, E(¥;,v;). By a similar argument the other witness), 1/, ;. s/, gives
exactly the same distribution orf, 1. O

The symmetric setting. In the symmetric setting, whe® = M; = M> and we use the same generators

u1,...,us for both modules and’ is symmetric, we can simplify the expression by collapsing the proofs.
We have

Q I I I

[[Ecqd) -7 = [[E(ui,mi) - [ E@yws) = J] B, mis).

q=1 i=1 j=1 i=1

This may lead to protocols with higher efficiency.

General pairing product equations. In the general case, we are interested in variables. ., zy; €
Ml,yl, ..LYN € Moy andrmi, Snj € R so

M N I J

- i Snj
I1# B | e e | e ) VO
¢=1 m=1 n=1 i=1 j=1

for constants:,,,, a, € My, dp, by € Mo, T € My, 0gm, Bgn € R.
The commitments are homomorphic, we have

M I y
(0% (07 _ 1 Tmi
aq | | cm" = ag | | T | |ur"” )rm = ag | | ™ | |uiz’”—1 amime
m=1 i=1

This means, anybody can compute commltmentsltp[ iz z,d™. In a similar fashion, anybody can com-

pute commitments to, Hn 1yn‘1” The general case of pairing product equations, can therefore be reduced
to the simpler case we have looked at in this section.

Instantiation 1: Subgroup decision. We are now ready to present our first withess-indistinguishable proof.
The common reference string will ba, G, G, e, h), whereh has ordery. On a simulation reference string,
we useh of ordern. Whenh has ordemn, the kernel ofu is trivial, so on neither type of reference string do
we need to concern ourselves with generators for the kernel.

11



The statement consists of commitmeaisdy, ..., cq,dg € G andT € Gr, and we claim that,, d,
are commitments ta,, y, € Gp SOT; e(wq,yq) = Tp, WhereT}, = T9(@™" modP) je T restricted to
the orderp subgroup of7;.

Suppose we have a witness, y, € G, 74, 4 € Zyn SO

H e(xg,yq) =T , cqg=a4h"" , dy=ysh®.

Since we are in the symmetric setting we can construct a pm@f]"[?zl To'dy" SO

Q
1] E(cq. dg) = E(h, ).
q=1

This will be our witness-indistinguishable proof.

Lemma 2 The non-interactive proof system has perfect completeness, perfect soundness and composable
witness indistinguishability. The size of the proof is 1 element &om

Proof. Perfect completeness follows from Equation (1). The hardness of the subgroup decision problem
implies that it is hard to distinguish a common reference string with orderq from a simulated common
reference string withh of ordern. From Lemma 1 we get perfect witness indistinguishability wheras
ordern.

It remains to prove that in cagehas ordery, we get perfect soundness. Define Z,, to be the number
S0\ = 1 mod p, A = 0 mod q. Observer; defines a unique, € G, soc, = z,h" for somer, € Zy.
Similarly, d, defines a uniqug, € G, sodq = yqh®. We have

H e(xq, Yq) Lee(h, @),

so if we letT}, = T then we can concludE[S; e(wg, yq) = Tp in Gp. O
It is worth noting that if we know the factorization af, then we can extract,,y, € G, from the
commitments, so the scheme is a perfect proof of knowledge.

Instantiation 2: XDH and SXDH. We will construct a NIWI proof for the existence of committed
Z1,...,2Q € G1,y1,...,Y9 € G squQ:l e(xq,yq) = T for a constanfl” € Gr. The common reference
string will contain a description of the groups we are working over and four vegtots € G%, v1, V9 € G%,
such thatu; = u5,v; = v for somer,s € Z,. This meansy;, us are linearly dependent and span a 1-
dimensional subspace 6£, andv;, v, are linearly dependent and span a 1-dimensional subspdeg d¥e
also require that these vectors are linearly independe(it 9f) € G3, (1, g2) € G3, whereg, generates:;
andg, generategss.

The commitments to the,’s will be of the forme, = (1, z,)u;" u,™ and the commitments to thg'’s

Sq1_.Sq2

will be of the formd, = (1, y4)v;" vy, for randomryy, 742, sq1, qu € Z We construct the proofs as

Q Q
t t T t t Tq2 —t —t S —t —t
T = viiht H dqql | Ty 1= iyl H dg™ | Py =y Mg ™ H g Wby = uy 2y 22 H(qu)s,ﬁ’
q=1 q=1
for randomly chosew;; «+ Zy. The proofs satisfy

Q
1 E(cqdg) = < 1 % > E(u1, m1)E(ug, m2) E(¢1, v1) E(th, va), 3
q=1

®Please, keep in mind that we use entry-wise multiplication, matrix multiplication is not even defined here.

12



this is what the verifier checks.

Lemma 3 The scheme described above has perfect completeness, perfect soundness and composable withess
indistinguishability. The size of the proof is 4 elements f@and 4 elements fror@s.

Proof. Perfect completeness follows from Equation (1) and the fact that all operations are efficiently com-
putable. By the SXDH assumption, we cannot distinguish the common reference string from a simulated
reference string, where, andus are linearly independent, and andwv, are linearly independent. When
both these pairs are linearly independent, we Have: G3 andV = G3, and thereforé1,z,) € U and
(1,y4) € V. Lemma 1 then gives us perfect witness indistinguishability.

It remains to prove that we have perfect soundness on a real common reference string; Sipspan
a 1-dimensional vector space, which does not corftaigy ) eachc, has a unique,, soc, = (1, z,)u;" us®.
Similarly, eachd, defines a uniqug, sod, is a commitment tg1, y,). A valid proof implies

? 1 1 1 2 2 2 2
ITE« . ),(1,yq))< 1 71 ) € E(u1, G3)E(uz, G3) E(GY, v1) E(GY, v2).
q=1 a

Let us consider the possible values the bilinear map can take when used on the ¥geigrs, , vo.
Sinceu; anduy are set up so they're linearly dependent we h&ve,, G3)E(ug, G3) = E(u2, G3), and
similarly sincev; andw, are linearly dependent we hav®(G?, v1)E(G2,v2) = E(G2,v2). Let us now
consider what the vectors in these two sets look like. Write= (g1, gf') andvy = (gg,gg) fora, 8 € Zyp.
For any vectolz, y) € G3 we have

Bl (o) = B(C % o) = (00 o).

I e(g1, )" e(g1,9)*

Similarly, for any(a, b) € G? we have

. “ e\a, ela, B
E(( ) ),v2) = B(( ) (92.93)) = < (a,92) e( gg)ﬂ )
The existence of proofs;, w2, 11,2 implies the existence af, b, z, y S0

( 1 1 ) _ < e(gr,z)e(a,g2)  elgr,y)ela, g2)? )

119, elwgyy) - T e(gr,)%e(b,g2) g1, y)e(b, 92)?)

This means:(g1,z) = e(a, g2)~'. Inserting this in entry1, 2) gives usy = z”. While inserting it in entry
(2,1) shows that = a“. Inserting these three observations in erffry2) we conclude

Q
1 e v0) = Telgr, y)e(b, 92)° = T(e(gr, w)e(a, g2))*" = T.
q=1

O
If we know the appropriate discrete logarithms, then we can decrypt the ElGamal ciphgrigxand
extractz,, y,. In other words, we have a perfect proof of knowledge.

Instantiation 3: DLIN.  Let us return to the symmetric setting using the DLIN assumption. We set up the
common reference string with three vectais= (f,1, g),u2 = (1, h, g), us = (u, v, w) such that they form
a 2-dimensional subspace 6f and f, h, g all are generators af/. We require that1,1,¢9) ¢ U. Each

commitmentc,, d, therefore uniquely defines,, y, Soc, = (1,1,2) [To_, w, ", dy = (1,1, 5,) H}]=1 ujqj.

13



We are interested in the statemﬂnf:1 e(xq,yq) = T. Following Equation 1 in the symmetric setting, we
let the proof consist of, 7, w3 given by

3 Q
3 B )
T = | | ujz”:lthnh” . | |(1,l,xq)5‘”dgq’.
j=1 q=1
The verifier checks that

Q 1 1 1 3
HEG(andq) = 1 1 HE(;(UZ‘,?TZ').
q=1 T ] i=1

Lemma 4 The proof has perfect completeness, perfect soundness and composable witnhess indistinguishabil-
ity. The proof consists of 9 elements fré

Proof. Perfect completeness follows from Equation (1) and the fact that we can compute all operations effi-
ciently. By the DLIN assumption the common reference string is indistinguishable from a common reference
string with uy, uo, u3 being linearly independent. In the latter setting, we hélve- G2 and therefore all
(1,1,z4),(1,1,y4) € U. By Lemma 1 we therefore have perfect witness indistinguishability on this kind of
reference string.

It remains to prove perfect soundness. Sifitel, g) ¢ U, each commitment,, d, specifies unique
messagesl, 1, z,), (1,1,y,). Since(1, 1, g) is linearly independent af;, u» we have

-1

Q 1 1 11
[IEs(| 1 |. (11w 11 € Eg(u1, G*)Eg(u2, G*)
q=1 Tq T
implies]_[qQ:1 e(xg,yq) =1T. a

Given the relevant discrete logarithms fofh with respect tq; it is possible to decrypt the commitments
cq andd, to get out the plaintexts,, y,. We therefore have a perfect proof of knowledge.

6 General Arithmetic Gates

The common reference string containsyuy, ...,u; € My andv,v1,...,vy € Ms as well aslJ vectors
n,...,ng. The common reference string should be indistinguishable from a simulated reference string, and
on a simulated reference string we require U,v € V andn;, ..., ng generate the kernel ¢f.
We will focus on the following simple case first. We have commitments. ., c, € Mi,ds,...,d, €
M, and interested in the existence®f, r;, 0,4, s4; SO
I J Q
cq = u Hu:‘” , dy = vl vj-‘” and Z $q0q = 0.
i=1 j=1 q=1

It follows from Equation 1 that if this is the case, then for arbitrgryt;, € R we have

I

Q J
[1ECqdy) = T[] ECui.m) - ] Ews,vy),
q=1 Jj=1

i=1

where
J Q L I Q
L tij Tqi L —1 thMhij —tij ;
m.—HUjJ-quq and ) .—Hui h=t J-Hui J-Hu‘ﬁqs‘”.
7j=1 q=1 i=1 i=1 q=1

This will give us perfect completeness. Perfect witness-indistinguishability on a simulated reference
string, whereu € U, v € V follows from the following corollary to Lemma 1.

14



Corollary 5 If w € U andv € V then for any set o, r4;, 04, s4; satisfying the equation above, by picking
t;j,ty, at random fromRk we get the same distribution of, ;s

To argue perfect soundness, we will use that a valid proof implies
o I J
B(u,v)=a=1%% ¢ T] E(us, M) H (M, v;),
=1 j=1

for any possible way of writing, = u®s [T_, u;" andd, = v’ []7_, v}*.

The symmetric case. In the symmetric case, whefeis symmetricand: = v, I = J,u; = v1,...,u; =
vj, we obtain a computational saving by combining the proofs. The verifier cl'ﬁﬁgf E(cq,dg) =

Hf:l E(u;, mia);).

General arithmetic gate. In evaluating a general arithmetic gate, we have commitments.,cx €

My, dy,...,dr, € M and constantsy, 3¢, ke, 7 € R. A witness will be on the forng;,, ry;, 0y, s¢; € R S0
I J
Z akpr + Zﬁzez + Z Z Yootk = 7, o =u [Ju , de=0" ]
k=1¢=1 i=1 j=1

Let us observe that due to the homomorphic properties of the commitment schemes, this case can be
reduced to the simpler case that we just handled. Anybody can easily compute trivial commitmifats in
to theay,’s asv®. Similarly, anybody can compute commitments#an M, asu”. Given a commitment
to ¢, of the forme;, = u®* Hle u;*, itis for anyy, € R straightforward to compute a commitment to
kel aSCF = uTkePk Hle w/*"™ . Finally,»™7 is a commitment to-7 andu, v are commitments td in
respectivelyM; and Ms. Rewriting the general equation as

Z¢k Oék‘FZﬁe 9€+ZZ’%Z¢% )0 +(=7)-1 =0,

k=1 (=1

shows that we can make a NIWI proof for the general arithmetic gate using the NIWI proof given earlier.

Instantiation 1. Subgroup decision. The common reference string now contains two group elements
g, h, with g playing the role ofu andh playing the role ofu;. The elemeny is a generator, whilé& has
orderq. We will suggest a NIWI proof for the statement that. .., cg, di,...,dg are commitments to
O15--,00Q,61,...,00 € Zp SO 25:1 ¢¢94 = 0 mod p. Sinceh has ordeiq, these commitments define
¢q,04 € Zp uniquely.

Given a witnes®1,...,¢Q,01,...,0g € Zy andry, s, € Zy SO

cq = g%ih’e dg = gPinse | Z $¢0y = 0 mod n,
q=1

we simply carry out the NIWI proof from the previous section with = g%7,y, = g¢%. We have the
following corollary to Lemma 2.

Lemma 6 The NIWI proof has perfect completeness, perfect soundness and composable witness indistin-
guishability. The size of the proof is 1 group element ft@m
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Instantiation 2: XDH and SXDH. The common reference string will contain two linearly indepen-
dent vectorsu,u; € G? and two linearly independent vectorsu; € G2, whereas in the simulation we
chooseu € U andv € V. Given a witnessp,, 7y, 04,5 € Zp SO Z?Zl ¢q0g = Omodp , ¢4 =

uPiuy? ,  dy = v%]?, we make proofs

Q Q
7=} H dg’ and Yi=u H u®a%e,
g=1 g=1
for a randomly selectetd« Zg. The verifier accepts if

Q
11 Ealcq, dg) = Ea(ur, @) Es(h, v1).
q=1

Lemma 7 The proof has perfect completeness, perfect soundness and composable witness indistinguishabil-
ity assuming the SXDH problem is hard. It consists of 2 elements@pand 2 elements fror&'s.

Proof. Perfect completeness follows by inspection. By the SXDH assumption a common reference string
as described above is indistinguishable from a simulated reference string where] andv = v{ for
somer, s € Zyp. In this latter case, we havec U andv € V, so by Corollary 5 we have perfect witness
indistinguishability on this kind of common reference string.

It remains to argue perfect soundness, whem; andv, v, are linearly independent. Note, in this case
the commitments are perfectly bindingdg, 6,. We have

Q
Ey(u,v)=a=1%1% ¢ Ey(uy, G3) - Ey(G2,v1).
By the linear independence of the vectatra:,; andv, vy, E4(u,v), Eq(ui,v), Eq(u,v1), E4(ug,v1) is a

basis forG. This impliesEy(u, v)zle ¢aba — 1, 50222:1 $q0q = 0 mod p. O

Instantiation 3: DLIN. We set up the common reference string, so it has three elemgnts-
(f,1,9),u2 = (1,h,g), andu which is linearly independent af;,us;. The simulated reference string,
will containu € U. SinceEs is symmetric we havéls(u, uz) = Eg(u2, u1). The vectom = (0,1, —1,0)
is a basis for the kernel of.

Given commitments,, d, we are interested in the existencegQf ry;, 04, sqi € Zp SO

Q
Tql Tq2 Oy, Sql_Sq2
Z¢q0q =0 , ¢= u¢qu1q uy’” , dg = uiu uy”.
q=1
From a satisfying witnesg,rq1, 742, 04, 541, 542 We can create a proof
Q Q

r — T
Ty = ub H dg uPasal , T =y’ H dgPuasez
q=1 q=1

for randomly chosen « Zg. The verifier accepts if and only if

Q
H Eﬁ(cq, dq) = Ee(ul, 7T1)E6(UQ, 7T2).
q=1
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Lemma 8 The proof has perfect completeness, perfect soundness and composable witness indistinguishabil-
ity. The proof consists of 6 elements fréin

Proof. Completeness follows from Equation 1. By the DLIN assumption, we cannot distinguish the common
reference string from a simulated reference string wheee U. With the latter type of common reference
string we have perfect witness indistinguishability according to Corollary 5.

It remains to prove perfect soundness. We have

Es(u, u)Z =1%4% ¢ Bg(uy, G*)Eg(ug, G%).

Sinceu is linearly independent af; , us this meanstf:1 $¢84 = 0 mod p. O

7 Multi-exponentiation

We will without loss of generality consider the task of making a multi-exponentiation of elements.in
The case of multi-exponentiation M5 is of course similar.

The common reference string will containg,...,uy € M; andwv,vq,...,v5 € M, as well as
m,-..,ng. On a simulated reference string, we will hawvec V andny,...,ng generating the kernel
of u.

We will first look at a simple case, and treat the general multi-exponentiation case later. The input
consists of commitments;,...,co € M; andd,...,dg € M. We are interested in the existence of a
witnessx, € My, 74,04, 54; € R SO

J

I Q
_ Tqi 0 Sqj 0y _
cq—xq”ui , dq—vq”vj and ||$q =11,
=1 q=1

J=1

for a constant; € M;.
Given a satisfying witness,, r4;, 04, s4;, we get from Equation 1 that for arbitraty;, ¢, € R

I

J
HE an (tla ) L= H Uzﬂrz H w]ﬂ]j (2)
7=1

=1
where
J Q I, I Q
_ H H qu and 1/]]' — H uizhzl thMhij . Huz‘_tij . H CCS(“
Jj=1 q=1 i=1 i=1 g=1
Perfect completeness follows from this. To argue perfect witness-indistinguishability on a simulated common
reference string we have the following corollary to Lemma 1.

Lemma9 If v € V andn,...,ny generate the kernel of, then for any witness:,, 7y, 04, 545 SO
x1,...,xg € U we get the same distribution of proofs ;.

Perfect soundness will follow from the fact that a valid proof implies
Q ) I J
E(H$qqtflvv) € HE(UZ>M2) ’ HE(Mlan)
q=1 Jj=1

=1

for any way of writinge, = 2, [T1_, u;", d, = v’ H] v
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The symmetric case. We may haveM; = M, and E symmetric. In case there is overlap between
ui,...,ur andvy,...,v; we may save computation by combining the relevant proofs. We refer to the
instantiations for a concrete treatment of this issue.

General multi-exponentiation relationship in A;. In the general multi-exponentiation case, we are in-
terested in the existence of, € M, 0y, 7, 5¢; € R SO

1 J I M 5
' 5t Z1 @mebe +
Cm = Tm H u;‘m’b 3 de = ’Ueg H vjfg al’]d H agé . H x%éfl Amebye /67n — tl’
=1 j=1 =1

m=1
for constants,,, € My, ay,dp,to € Mo, iy, B € R. In other wordsgey, ..., ¢y are commitments to
variablesry, ...,z anddy, . .., d; are commitments to variablés, . . ., 01, so the equation is satisfied.

By the homomorphic properties of the commitment scheme,

L J
L
Uﬁm H d(gmz — UZ[F:I AmeOo+Bm H UZE:l AmeSej
J
/=1 7j=1

is a commitment tcsz:1 amebe + Bm. Furthermoregq, can be seen as a commitmenttovith randomness

s¢; = 0. We now have commitments i/, to 04,...,60r, Zle ol + B,y Zle amefe + By and
commitments inlM; to ay,...,ar,z1,...,2). We have reduced the general multi-exponentiation case, to
the special case we treated above.

Instantiation 1: Subgroup decision. The common reference string contains, whereh has orderq.
Given awitness, € G, 14,04, 54 € Zn SO

Q
cq=zqh" | dy= g%ah*  and H :qu =t,
q=1

we compute a proof of the form

The verifier accepts if and only if
Q

H e(cq, dq) = e(ta 9)6(¢, h)

q=1
We have the following corollary to Lemma 2.

Lemma 10 The proof has perfect completeness, perfect soundness and assuming the subgroup decision
problem is hard it has composable witness indistinguishability. The size is 1 group element.

Instantiation 2: XDH and SXDH.  The common reference string will contain, us € G? so(1,g1) ¢ U
andv,v; € G3 sov ¢ V. Given awitness,, € G1,741,742,0q, Sq € Zp SO

Q
0
cg = (Lz)uiuy™® | d, =ov%0}" and H xg" = t,
q=1
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we construct a NIWI proof as

Q

Q Q
ot Tql .t Tq2 o —t11,,—1l21 S
m .—U“quq , o .—1121quq , = uy Mu, H(l,xq) a,
q=1 q=1 q=1

for randomly chosewy 1, to1 < Zp. The verifier accepts if and only if

Q
H Ey(cq,dq) = E4((1,t1),v) Eg(ur, m1) Eg(ug, m2) E4(, v1).
q=1

Lemma 11 The proof has perfect completeness, perfect soundness, and assuming the SXDH problem is hard
it has composable witness indistinguishability. A proof consists of 2 elements&-frand4 elements from
Go.

Proof. Perfect completeness on both real and simulated common reference strings follows from Equation
2. Perfect witness-indistinguishability follows from Lemma 9. To argue perfect soundness, note that the
commitments:, andd, definex, andd, uniquely. We have

Q
E4(H(1axtI)9q ) (1,t1_1),11) € E4(u1, G%) ) E4(G%,’U1),
q=1

sinceuy, us are linearly dependent. The linear inpendencé10fy) andu,, and the linear independence
of v andwv; implies thatE,((1, g),v), E4(u1,v), E4((1,g),v1), E4(u1,v1) is a basis forG4. This implies

Q
Hq:l Tg = ty. O

Instantiation 3: DLIN. The common reference string contains vectors= v; = (f,1,9),us = vy =
(1,h,9) andus,v sous = ufjus for somer,s € Z, while v ¢ V. We have thay = (0,1,—1,0,0,0)
corresponding to the identitys(u1,v2) = Eg(u2,v1) generates the kernel f. Given a witnessy, €
G, Tql,Tq2; Tq3, Hq, Sq1;Sq2 € Zp SO

3

2 Q
Cq = (17 171‘(1) Hu:qi y dq = Ueq H U;qj and H Jqu =1,
=1 Jj=1 q=1

we construct a proof as

Q Q Q
., t12, t13 Tq1 s . ,,—ti2, ta3 T'q2 s . ,,—ti3, t23 Tq3
T = Uy Uy quq (1,1, zq)%"  mp := uj Pusg quq (1,1, 2q)%2, w3 := uy Pusg quq ,

g=1 q=1 g=1

for randomly chosety s, t13, t23 < Zp. The verifier checks that

Q
I Bs(cq: dg) = Es((1,1,1),v) Eg(ur, m1) Eg(uz, m2) Eg (us, 73).
q=1

Lemma 12 The proof has perfect completeness, perfect soundness and assuming the DLIN problem is hard
it has composable witness indistinguishability. The proof consists of 9 group elements.
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Proof. Perfect completeness follows from Equation (2). Perfect witness-indistinguishability on a simula-
tion reference string follows from Lemma 9. To argue perfect soundness observe that the commifments
andd, definexq and@, uniquely. Sinceus is linearly dependent on;, u, we haveE6(HqQ:1(1, 1,z,4)%

(1,1,6)71,0) € Es((f,1,9), G*)Es((1,h, g), G*). Writev = (1, 1, g)°uSus2, then we have

11 1 f 1
1 1 € Eg(| 1 ,Gg)EG( h ,GS).
eI g -t 9) g g
This implies]‘[qQ:1 mgq =t as required. O

8 The One-Sided Case

We have given NIWI proofs for the general case, where we have commitments idQodimd M. If all

the commitments in one of the modules are trivial, i.e., we just have constants in/githar)/s it may be
possible to give simpler NIWI proofs. In this section, we will offer simpler NIWI proofs for the one-sided
case.

We remark that the NIWI proofs based on the subgroup decision problem are already so efficient that
there is no saving to be made by considering the one-sided case. We therefore only consider the instantiations
based on the DLIN assumption and the SXDH assumption. Moreover, in the one-sided case we only need the
DDH assumption to hold in one of the groups. We can therefore restrict ourselves to the XDH assumption.

8.1 Pairing Product Equations

In case all the commitments if/; or M, are trivial we may simplify our NIWI proofs. Without loss of
generality, let us look at the case where all the commitmenidJrare trivial, i.e., we have public elements

bi,...,bq. Given satisfyinge,, r,; we have for arbitrary;, € R,
Q Q I
HE(qubq) T = HE(quU:qiqu) Tt
g=1 q=1 =1
Q Q I

= HE(xqabq)'T_l ) HHE(u:qi,bq)

q=1 g=1:=1
I Q
= 1-[] Bus [ 0" (3)
=1 q=1
I J

T EGs e wa

Z ;
Wherem — H}] 1 thhij HQ quz
Perfect completeness will foIIow from this equation. The following lemma will give us perfect witness

indistinguishability on a simulated common reference string.
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Lemma 13 Assume we hav@, ..., u; € My andwvy,...,vy € My andnq, ..., ng generates the kernel of
u. In the special case described above, all withesses mith. ., zg € U and constant$;,...,bg € V
yield the same distribution of proofs if we choose the,’s at random fromgR.

Proof. Sincec, € U,b, € V andnq,...,ng generates the kernel pf we get a uniform distribution of the
proofs; that satisfy the equation by choosing thés at random fromR. 0
Perfect soundness will follow from the implication of a valid proof that

1

Q
[[E@ebg) - 77 € ] E(us, M),
q=1 i=1

whenever we can write, = a4 []%; u;".

Instantiation 2: XDH and SXDH. The XDH assumption states that in one of the groups the DDH problem
is hard. Assume without loss of generality that in gratip the DDH problem is hard. This suffices to
construct a witness-indistinguishable proof for the special case where.,dg are commitments with

trivial randomness, i.e., on the forfm, b1), ..., (1, bg). The common reference string contains descriptions
of the group and.y, u, that form a 1-dimensional subspace(éf. Now there is a NIWI proof consisting of
2 elements irG, for the commitments, . .., ¢ containing(1, z1), ..., (1,zq) squQz1 e(xq,bg) =T.

The prover has witness, € Gi andry € Zp s0cq = (1,zg)u)"uy™ and [[Z; e(wq,b,) =
1. The proof consists ofr; := 1_[(?:1(1,1761)’”91 and mp = Hqul(l,bq)’"(ﬂ. The verifier checks that

1 1
H(?:l E4(CQ7dq) = < 1 T ) Hf:l E4(ula7rl)

Lemma 14 The NIWI proof for the one-sided case has perfect completeness, perfect soundness and com-
posable witness indistinguishability assuming the DDH problem is hafg} inThe proof consists of 2 group
elements irGs.

Proof. Perfect completeness follows from Equation 3. A simulation string containg, that are linearly
independent. By the DDH assumption@, it is indistinguishable from a common reference string, where
u; anduy are linearly dependent. On a simulation string,and u, form a basis forG? and therefore
(1,z4) € U. By Lemma 13 we get perfect witness indistinguishability.

To prove soundness, we use the fact thatu;, G3) = E4(uz, G3). The proof therefore shows

Q
[T B 0 () gh ) € Batn 63

q=1

Since(1, g1) is linearly independent af; this implieng?:1 e(xq,by) =T. O

Instantiation 3: DLIN. It turns out that in the one-sided case, we get simpler proofs by using the bilinear
mapFEy defined below instead dfs. The mapEy is not symmetric, however, we observe that in the one-sided
case symmetry will not be needed. We use the modifile= G%. and the bilinear mafy : G* x G — G5
given by
a e(a,z) e(a,y) e(a,z)
(| o |.@y2)— | ebz) eby ebe2)
c e(c,z) e(e,y) ele2)

If we have linearly independent elements uy, us € G2, then the mapuy : Zg — G has trivial kernel
and the nine different combinatiod (u;, u;) form a basis of7%..

21



We will consider the simplified case, where tligs are trivial commitments, i.ed, = (1,1,b,) for
public b,. We still havec, € G® andT € Gr and want to prove the existencexf, ry; so

Q 3

rqi
He(xq,bq) =T cqzquuiq )
a=1 i=1

whereu,us, ug are set up as in the previous example. It turns out that in the one-side case, it is more
convenient for us to use the mdy instead ofEg, so we will do that. As a consequence, the mgphas
trivial kernel, which will make our protocol simpler.

A real common reference string will havg = uju3 for somer, s, such that, is a perfectly binding
commitment toz,. On the other hand, a simulated common reference string will have,, u3 linearly
independent, so the commitment is perfectly hiding. The proof is

Q Q Q
= Hdg"l , o = H dg® , Ty i= H dg®.
q=1 q=1 q=1
The verifier checks,

Q 11
H Eg(cgdg) = 1 1
g=1 11 7T /) i=1

Please note, sine&, = (1,1, b,), the proof only consists of 3 group elements.

Lemma 15 The proof has perfect completeness, perfect soundness and composable witness indistinguisha-
bility assuming the DLIN problem is hard. The proof consists of 3 group elements.

Proof. Perfect completeness, no matter whether it is a real common reference string or a simulated reference
string, follows from Equation 3. By the DLIN assumption, common reference strings and simulated reference
strings are indistinguishable. On a simulated reference stringy, u3 are linearly independent, $6 = G°.
Therefore, by Lemma 13 we have perfect witness indistinguishability.

It remains to consider perfect soundness on a common reference string,ayhedeearly dependent
onu; = (f,1,9),u2 = (1, h, g). From the verification, we get, are commitments to unique, so

-1

Q 1 1 1 1
[IE(l 1t . rp)| 11 1 € Ey(u1, G*)Eg(uz, G®).
q=1 Tq 11T
This implies the existence af b, ¢, x,y, 2 € G SO
1 1 1
1 0 1 :Eg(ula(aa b, C))Eg(ﬂg,(l’,y,Z)).
11 T e(wg,bg) - T
Since(1, 1, g) is linearly independent af;, us we have]_[qQ:1 e(xq,by) =T. O

8.2 General Arithmetic Gates: Linear Relations

An interesting special case, is the situation where we have commitmgnts, cx and are interested in
equations over variables., r; € R of the form

I K
cp = udr Hu:’“ and Z OrBL =T,
i=1 k=1
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for constantgl,, 7 € R. Given variables,, ri; € R satisfying the equation, we have for arbitragyc R

K 1 J

H ..
[ ECr,v™) - B(u,o) ™ = [[ E(ui,m;)  where  m; := vlicn Bk . T ot i,
k=1 i=1 7=1

We get the following corollary to Lemma 13.

Lemmal6 If u € U andv € V, then no matter the witness., r;;, we get identical distributions of
TlyeeosTK-

For perfect soundness, we will use that for any way of writipg= u%* Hle u;* a valid proof implies

I
E(u, v) k= 95T € T B(ui, Mo).
=1

Instantiation 2: XDH and SXDH. The special case, where we have commitments. ., cx and con-
stantsfy, ..., Bk, and want to prov§:,€K:1 o0, = 7 is easily solvable. The common reference string will
containu, u; that sparG? and we select = (1, g2) € G3. Assuming the XDH assumption, with the DDH
problem being hard id-;, we cannot distinguish this kind of reference string from one wheeeU. The
NIWI proof is 7 := Hszl v%7k. The size is only 1 group elements frai sincev = (1, g2). The verifier
checks that

K
H E4(Ck‘) Uﬂk) = E4(U, U)TE4(U15 7T).
k=1

Lemma 17 The proof has perfect completeness, perfect soundness and composable witness indistinguisha-
bility under the XDH assumption. The proof consists of 1 group elementdgpom

Proof. Perfect completeness follows from Equation 1. The hardness of the DDH probl&mnreans that

we cannot distinguish common reference strings with; linearly independent from simulated reference
strings withu € U. Perfect witness indistinguishability on simulated reference strings now follows from the
fact thatr = (1, ) is uniquely determined by the verification, so all witnesses yield the same proof. For
perfect soundness, we obseW@(u,v)HkKﬂ%ﬁk*T € Ey(u1,G3) impliesl_[fz1 OBk = T sinceu, uy are
linearly independent. O

Instantiation 3: DLIN.  Consider a common reference string set up in the same way as before. In the linear

case, we have commitmentsand constantsy, ..., Ok, 7. The witness will be of the formpy, 711, 72 SO
K
Yookb=7 , op=uPRuiFug,
k=1

Definev = (1,1, g). We can compute the proaf, := v k=t Bkt andmy := vXi=1 872 This consists of
2 group elements. The verifier checks

K
H Eqg(cx, v) = Eg(u,v)" - Ey(u1, 1) Eg(ug, m2).
k=1

Lemma 18 The proof has perfect completeness, perfect soundness and composable witness indistinguisha-
bility under the DLIN assumption. The proof consists of 2 group elements.

23



Proof. Perfect completeness follows from Equation 3. By the DLIN assumption, we cannot distinguish
whetheru € U or not, so common reference string and simulated reference strings are indistinguishable.
There are unique proofs;, m5 satisfying the equation, so no matter which witness we have, we get the same
proofs. To prove perfect soundness wheg U, observe that the commitments defityg 11, 7x2 uniquely.
We have

Eg(u, U)d)kﬂkiT S Eg(ul, GS)E9<’LL2, GS)

Sinceu, u1, ug are linearly independent we ha¥g (u, U)Ziil ?efe=7 = 1, which implieszfz1 OrBL = T.
O

8.3 Multi-exponentiation of Constants

We have elements,, ...,a; € M; and commitmentd,...,d; € M, and are interested in the existence
of 0y, s¢; SO
J L
dp = v H vj“ and H az‘z =1y,
j=1 (=1

for a constant; € M;.
Givend,, s¢; so the equations are satisfied, we get from Equation 3 that for arbitfaty € R

L J

[ E(ae.do) - Eti,0)™" = [ B, v)),

=1 j=1

where

I ZH L
t Svs
L h=1 LhThij X 12
Y= | | u; | | a,”.

=1 (=1
We have the following corollary to Lemma 13.
Lemmal9 Ifve V,ai,...,ar € Uandn,...,ng generates the kernel @, then for any witnesg, s,;
we get the same distribution of proafs.

Instantiation 2: XDH and SXDH. Inthe special case, where we are just looking at a multi-exponentiation
of constants, we do not needl, us. The witness i9,, sy SO

L
dy = vgfvfe and H agl =t.
/=1

We construct a proof as
L
Y= H a,’.
(=1

The verifier accepts if and only if

L

H E4((1a (lg), df) = E4((17 t)v U)E4(¢7 Ul)‘

(=1

Lemma 20 The proof has perfect completeness, perfect soundness, and assuming the DDH problem is hard
in G, we have composable witness indistinguishability. The size of the proof is 2 elements from

24



Proof. Perfect completeness follows by inspection. Perfect witness-indistinguishability on a simulated refer-
ence string follows from Lemma 13. To argue perfect soundness, notice, thateing independent implies
thatd, defines a uniqué, € Z,. We haveE,((1, [, b - t1),v) € E4(G%,v1). This is only possible if

M-, aZ‘ =t. O

Instantiation 3: DLIN.  We have a common reference string withu, us sow is linearly independent of
u1, uo. the witness i#y, sp1, spo SO

dz = uelu?“ugz 5 H = t
(=1
The proofis
L L
o= H(l, 1,a,)% Ty 1= H(l, 1,a0)%2.
/=1 =1

The verifier checks that

L
T Bo((1,1,a0),de) = Eo((1,1,11),w) Eg (1, u1) Eo(ma, up).
/=1

Observe, only the last entriesn, w5 are non-trivial, so the proof consists of 2 group elements.

Lemma 21 The proof has perfect completeness, perfect soundness and assuming the DLIN problem is hard
it has composable witness indistinguishability. The proof consists of 2 group elements.

Proof. Perfect completeness can be verified directly. Perfect witness-indistinguishability follows from
Lemma 13 on simulation reference string wherds linearly dependent omq,us. To argue perfect
soundness, observe thatu; = (f,1,¢9),u2 = (1,h,g) being independent implies tha} definesd,
uniquely. We haveFy (T, (1,1,a0)%(1,1,8) "  u) € Eo((f,1,9), G*)Eo((1,h,g),G3). Write u =
(1,1,9)°(f,1,9)% (1, h, ) for § € Z}, to see that this implieF];_, )’ = t. O

9 Witness-indistinguishable Proofs

We will now present the witness-indistinguishable proof for equations over modules. The setup consists of
R-modulesiM;, M>, Mr and a bilinear mag : M; x Ms — Mp. We have a commitment scheme that we
can use to commit to elements My and M, given by elementsy,...,u; € My,v1,...,v5 € My. We
also have elements, v}, ..., u}, € My, v,v],...,v", € M, which gives us a commitment scheme for the
ring elements. For all relevant combinations of these elements, which may or may not have some overlap,
we also have generators, . . .,y for the kernels of the corresponding maps
Consider a set of equations over variables,...,xys € Mi,y1, ..., YN €
My, ¢1,...,0K,01,...,0, € R. We have the following witness-indistinguishable protocol that takes
as input the common reference string and a witness for simultaneous satisfiability of all equations.

1. Commit to all variables. Pick,,;, s,;, pri, 0¢; € R at random and set
I J’

I J

v Sniq . .

e =, H“: dy = H v ¢f = uf* H(UD”’“ L dy = o H(v;)m.
i=1 j=1

i=1 j=1
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2. For each pairing product equation make a proof as described in Section 5. Thiselestents inV/,
andJ elements ilV/; for each pairing product equation.

3. For each multi-exponentiation relationshiplify make a proof as described in Section 7. This costs
J' elements from\/; and! elements from\/s.

4. For each multi-exponentiation relationshiplify make a proof as described in Section 7. This cdsts
elements from\/; and’ elements from\/,.

5. For each general arithmetic gate, make a NIWI proof as described in Section 6. Each proof consists of
J' elements from\/; andI’ elements from\/s.

NIWI proofs for bilinear groups.  The overarching goal of this paper is to obtain non-interactive witness-
indistinguishable proofs for equations over groups with a bilinear map. We now have the following method
to construct such proofs.

1. Embed the bilinear groups into appropriately chosen modules with a bilinear map.
2. Express group elements and equations as elements and equations in the modules.

3. Use the witness-indistinguishable proof described above.

Instantiation 1: Subgroup decision. Given an orderp subgroup of the composite order group
(n,G,Gr,e,g,9q) — G(1¥), we will set up the witness-indistinguishable proof as follows.

CRS generation: Chooseh = gg for r < Z3. The CRS isr := (n, G, Gr, ¢, 9, h).
Simulated CRS generation: Chooseh = ¢" for r «+ Z¥. The simulated CRS i := (n, G, Gp, €, g, h).

Proof: Given a witness on the form,, € G, ¢, € Zn* we can pick randomizers,,, p, and commit
to them asc,, = z,,h"™ and¢), = g®hPx. For each type of equation, we now make a witness-
indistinguishable proof as described in the previous sections.

Verification: Check the proof for each equation.

Theorem 22 The proof has perfect completeness, perfect soundness with respect to thp subgroups,
and assuming the subgroup decision problem is hard it has composable witness indistinguishability. The size
of the proof can be found by adding the costs of variables and equations found in Figure 4.

Proof. Lemmas 2, 6, 10 prove this theorem. O

Subgroup Decision DLIN DLIN one-sided
Variablez,, (equal toy,,) 1 3 3
Variable¢y, (equal tofy)
Pairing product equation
Multi-exponentiation
General arithmetic gate

N
o ©O© O W

3
3
2
2

Figure 4: Cost of each variable and equation measured in group element&from

“Since this is the symmetric setting, we do not need to separate the variables,intp and ¢y, 6s.
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Instantiation 2: XDH and SXDH.  Given(p, G1,Ga, G, ¢, g1, 92) — G(1¥), we will set up the witness-
indistinguishable proof as follows.

CRS generation: We choosery, z2,y1,y2,7, 8 < Zy, andty, ty « Zp. We setu; = (g1, 97"), u2 = uj
andu = ul'(1,g1)%. We setv; := (g2,32),v2 := v} andv := v!*(1,g2)¥2. This way, we
haveu,, uy are linearly dependent and independent fi@ny; ), while u, u; are linearly independent.
Similarly, we havev;, vo being linearly dependent and both independent ffdng: ), while v, v, are
linearly independent. Set:= (p, G1, G2, G, €, g1, g2, u1, U2, U, V1, V2, V).

Simulated CRS generation: We choosexy, x2,y1,y2,7,8 Z; and ti,ty «— Zp. We setu; :=
(91,97"),u := u} andu; := ul'(1,g1)¥'. We setv; := (go,952),v := v5 andwy := v!2(1, go)2.
This way, we haveu;,us are linearly independent, while,«; are linearly dependent. Simi-
larly, we havewv;, vy being linearly independent, while,v; are linearly dependent. Set :=
(P, G1,Ga, G, €, 91, g2, u1, U2, U, V1, V2, V)

Proof: We have a witness,, € G1,y, € G2, ¢y, 0, € Zp. We pick randomizers,;, s,;, px, 0¢ < Zp and
commit to the witness as, := (1, zp, )uj™ ub™?, di, == (1, yn)vi™ 0572, ¢}, := u®kuf*, dj, := vP0 "
For each equation, we make a witness indistinguishable proof as described in the previous sections.

Verification: Check the proof for each equation.

Theorem 23 The proof has perfect completeness, perfect soundness, and assuming the SXDH problem is
hard it has composable witness indistinguishability. The size of the proof can be found by adding the costs in
Figure 5.

Proof. Lemmas 3, 7, 11 prove this theorem. O
SXDH XDH (one-sided)
Gy Ga G, Ga
Variablez,, 2 0 2 0
Variabley,, 0 2 N/A N/A
Variable ;. 2 0 2 0
Variabled, 0 2 N/A N/A
Pairing product equation 4 4 0 2
Multi-exponentiation iniy 2 4 N/A N/A
Multi-exponentiation iniz, 4 2 0 2
General arithmetic gate 2 2 0 1

Figure 5: Cost of each variable and equation measured in group element§frandG,.

Instantiation 3: DLIN. We have a group with a bilinear mdp, G, Gz, e, g) «— G(1¥). We set up the
proof as follows.

CRS generation: Pick o, 3,t « Zg andrs,s3,r,s « Zp. Setf = g% h = ¢°. We sety; :=
(f,1,9),u2 == (1,h,g),us := uPus®, u := ujui(1,1,g)". This way we haveu, us, us being lin-
early independent df, 1, g) andu. Seto := (p, G, Gr, e, g, u1, uz, us, u).

Simulated CRS generation: Pick «, 3,t « Zy, andrs, s3, 7,5 « Zp. Setf := g% h = g°. We set
ur = (f,1,9),u2 := (1,h,g),us := uus’(1, 1, 9)", u := ujus. This way we haveu;, us, us being
linearly independent, and € U. Seto := (p,G,Gr, e, g, u1, us, us, u).
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Proof: We have a witness,, € G,¢, € Zp satisfying a set of equations. We pick randomizers

TmlsTm2, Tm3, Pkls Pk2 < Zp* and commit to the witness asg, := (1,1,zy,,) Hleu’fmi and

]

dy := u® []7_, u?*. For each equation, we make a proof as described in the previous sections.

Verification: Verify the proof for each equation.

Theorem 24 The proof has perfect completeness, perfect soundness and assuming the DLIN problem is hard
it has composable witness indistinguishability. The increase in proof size that each variable and equation
costs is given in Figure 4.

Proof. Lemmas 4, 8, 12 prove this theorem. O

For comparison, we also list the cost of the general protocol in Figure 6 both for the general case, where
M, # M, and the symmetric case whelé, = M, andE is symmetric. The figure also contains the price
to pay in case the equation is one-sided, in which case savings may be obtained.

Asymmetric| Symmetric| One-sided

My Mo My =My, | Mi My
Variablez,, 1 0 1 1 0
Variabley,, 0 1 1 N/A  N/A
Variablegy, 1 0 1 1 0
Variabled, 0 1 1 N/A  N/A
Pairing product equation J 1 1 0 1
Multi-exponentiation inV/; | 1 J’ I N/A  N/A
Multi-exponentiation inMVy | I’ J I 0 r
General arithmetic gate J r r 0 r

Figure 6: Cost of each variable and equation measured in elementd/ficand M.

10 Non-interactive Zero-Knowledge Proofs

We have presented some very efficient NIWI proofs for sets of equations over bilinear groups. In this section,
we will show that in many cases our techniques can also be used to construct efficient NIZK proofs.

Suppose we have a set of equations over variablgs...,xyy € Gi,y1,...,yn €
Go,¢1,...,0K,01,...,0;, € R and we want to prove a set of equations are simultaneously satisfiable.
An obvious strategy would be to use the witness and make a NIWI proof that the equations are satisfiable.
There is also an obvious problem with this strategy, the simulator does not know a witness and therefore it
cannot simulate a proof.

It turns out that the strategy is better than it seems at first glance. In the NIWI proof we have described, we
make a proof for each single equation by itself and each individual proof is witness-indistinguishable. In the
simulation, the commitments are perfectly hiding and therefore we may imagine using trapdoor commitments
and opening the commitments to different exponents for each equation and witness-indistinguishable proof.

In particular, to commit to an exponemt we computec := u? Hle u;'. If we know a linear relation
&,...,6 sou = []'_, u%, we can open it to any given messagfeasc := u? [[_, u?+£"(¢_¢ ). We
define a NIWI proof to beindividual composable witness-indistinguishable, if it is composable witness-
indistinguishable, the simulation reference string sets up perfect hiding commitments to the group elements
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and perfect trapdoor commitments for the exponents and each equation gets it own witness-indistinguishable
proof.

We call a sef5 of equations over variables, ..., xy € G1,y1, ..., yn € Go, 1, ..., ¢0K,01,...,01 €
R tractableif itis possible to deterministicallcompute a satisfiability witness for each individual equation,
such that all witness use the same. ..,z 41, - -, YN, but may varypy, ..., ¢x, 01, ..., 0 freely from

equation to equation.

Theorem 25 For a set of tractable equations over bilinear groups G1, G2, Gr, e, g1, g2) with an individ-
ual composable witness-indistinguishable proof, there is a composable zero-knowledge simulator.

Proof. The simulatorS; creates a simulated reference string and outputs also the trapdoors for the commit-
ment schemes used to commit to the exponents.

The simulatorS; gets the tractable set of equations and computes a satisfiability witnessch
that x1,...,23,91,-..,yy are the same in each equation, whilg, ..., ¢x,01,...,0; may vary
from equation to equation. It commits ta, ...,z y1,---,ym, While making trapdoor commitments
c1,...,CK,d1,...,dy, to the exponents. For each equation, it opens the trapdoor commitments to get satis-
fying x1, ..., 20,91, .- YN, &1, ..., 0K, 01, ..., 01, and makes a withess-indistinguishable proof.

We will now prove that on a simulation reference string, we have perfect zero-knowledge. We are given
a witness for simultaneous satisfiability of all equations and have to show that on a simulation reference
string, it is perfectly indistinguishable whether we create a proof using the witness or we use the simulator
to create the proof. Consider the following hybrid experiment, where we run the simulator to generate the
commitments but then open all the commitments (using brute force) to the withess and make real witness-
indistinguishable proofs for each equation. Since each individual proof is perfectly withess-indistinguishable,
this is perfectly indistinguishable from the simulation. On the other hand, since each commitment is perfectly
hiding the hybrid experiment is also perfectly indistinguishable from running the real prover on a simulated
reference string. d

Corollary 26 Tractable equations in the subgroup decision, SXDH and DLIN cases described in this paper
have composable zero-knowledge proofs with perfect completeness and perfect soundness, computational
indistinguishability between real common reference strings and simulated reference strings, and perfect zero-
knowledge on simulated reference strings.

Making sets of equations tractable. There is a technique to make sets of equations tractable. We introduce
some extra variables, among theinY € R. We will also introduce some extra equations, among them
¢ = 0,60 = 0. Note, we can commit to them as= 1, d := 1, so there is no extra cost here.

Let us start with the general arithmetic gate. We can modify it to

K L K L
G- 14+ ardr + > Bl + D> vdrbe = 7,
k=1 =1

k=1 (=1

for constantsyy, B¢, vee, T € Zyn. Since¢ can be opened to anything, it is now easy to see that we can
satisfy any individual general arithmetic gate equation. Since the proof size is independent of the number of
variables, this modification costs nothing.

For a multi-exponentiation equation @, we can introduce an extra variablec G; and use

L M L
1 et —
(=1

m=1

SWe define tractability in terms of a deterministic witness-computing algorithm because we want it to be possible to check directly
whether a set of equations is tractable or not.
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for constantsiy, t1 € G1 anda,,e, B € Zyn. For this equation we can uge= 1 and just set to be the
product given in the equation, so the equation is now trivially satisfiable. Multi-exponentiation equations in
G work similarly.

The most complicated type of equation to make tractable is the pairing product equation. The problem is
that it may be hard to compute group elemeits), . . ., ag, b, sonf:1 e(al,,b,) = T. However, assume
T is on a form such that this is possible, then we can move this part to the other side of the equation. This
reduces the problem to the cdBe= 1.

We introduce variablesy, . . ., zg and rewrite the pairing product equation as
Q N M
H e(zq, by H ™) =1, zg=(aq H e L
q=1 n=1 m=1
which is solvable by picking; = --- = 29 = 1 andf = 1.

The case of pairing product equations point to a fundamental difference between witness-
indistinguishable proofs and zero-knowledge proofs using our techniques. NIWI proofs can handle any
targetT’, whereas zero-knowledge proofs can only handle special types of Tar@eicond, even i’ = 1 it
seems like in the most general case the cost is line@rfor pairing product equations, whereas in the NIWI
proofs the cost of such an equation is constant.

11 Conclusion and an Open Problem

Our main contribution in this paper is the construction of efficient non-interactive cryptographic proofs for
use in bilinear groups. Our proofs can be instantiated with many different types of bilinear groups and
the security of our proofs can be based on many different types of intractability assumptions, of which we
have given three instantiations: the subgroup decision assumption, the SXDH assumption and the DLIN
assumption.

Since we have been interested in bilinear groups we have in our instantiations based the modules on
bilinear groups. It is possible that other types of modules with a bilinear map exist, which are not constructed
from bilinear groups. The existence of such modules might lead to efficient NIWI and NIZK proofs based on
entirely different intractability assumptions. We leave the construction of such modules with a bilinear map
as an interesting open problem.
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