
Efficient Non-interactive Proof Systems for Bilinear Groups∗†

Jens Groth‡ Amit Sahai§

February 8, 2010

Abstract

Non-interactive zero-knowledge proofs and non-interactive witness-indistinguishable proofs have
played a significant role in the theory of cryptography. However, lack of efficiency has prevented them
from being used in practice. One of the roots of this inefficiency is that non-interactive zero-knowledge
proofs have been constructed for general NP-complete languages such as Circuit Satisfiability, causing
an expensive blowup in the size of the statement when reducing it to a circuit. The contribution of this
paper is a general methodology for constructing very simple and efficient non-interactive zero-knowledge
proofs and non-interactive witness-indistinguishable proofs that work directly for groups with a bilinear
map, without needing a reduction to Circuit Satisfiability.

Groups with bilinear maps have enjoyed tremendous success in the field of cryptography in recent
years and have been used to construct a plethora of protocols. This paper provides non-interactive witness-
indistinguishable proofs and non-interactive zero-knowledge proofs that can be used in connection with
these protocols. Our goal is to spread the use of non-interactive cryptographic proofs from mainly theo-
retical purposes to the large class of practical cryptographic protocols based on bilinear groups.

Keywords: Non-interactive witness-indistinguishability, non-interactive zero-knowledge, common refer-
ence string, bilinear groups.

∗An extended abstract was presented at Advances in Cryptology – EUROCRYPT 2008, LNCS 4965, pages 415-432.
†Work presented and part of work done while participating in Securing Cyberspace: Applications and Foundations of Cryptog-

raphy and Computer Security, Institute of Pure and Applied Mathematics, UCLA, 2006.
‡University College London, e-mail: j.groth@ucl.ac.uk. Part of work done while at UCLA supported by NSF

ITR/Cybertrust grant 0456717.
§University of California Los Angeles, e-mail: sahai@cs.ucla.edu. This research was supported in part by NSF ITR and

Cybertrust programs (including grants 0627781, 0456717, 0716389, and 0205594), a subgrant from SRI as part of the Army Cyber-
TA program, an equipment grant from Intel, an Okawa Research Award, and an Alfred P. Sloan Foundation Research Fellowship.

0

1 Introduction

Non-interactive zero-knowledge proofs and non-interactive witness-indistinguishable proofs have played a
significant role in the theory of cryptography. However, lack of efficiency has prevented them from being
used in practice. Our goal is to construct efficient and practical non-interactive zero-knowledge (NIZK)
proofs and non-interactive witness-indistinguishable (NIWI) proofs.

Blum, Feldman and Micali [BFM88] introduced NIZK proofs. Their paper and subsequent work, e.g.
[FLS99, Dam92, KP98, DDP02], demonstrates that NIZK proofs exist for all of NP. Unfortunately, these
NIZK proofs are all very inefficient. While leading to interesting theoretical results, such as the construction
of public-key encryption secure against chosen ciphertext attack by Dolev, Dwork and Naor [DDN00], they
have therefore not had any impact in practice.

Since we want to construct NIZK proofs that can be used in practice, it is worthwhile to identify the roots
of the inefficiency in the above mentioned NIZK proofs. One drawback is that they were designed with a
general NP-complete language in mind, e.g. Circuit Satisfiability. In practice, we want to prove statements
such as “the ciphertext c encrypts a signature on the messagem” or “the three commitments ca, cb, cc contain
messages a, b, c so c = ab”. An NP-reduction of even very simple statements like these gives us big circuits
containing thousands of gates and the corresponding NIZK proofs become very large.

While we want to avoid an expensive NP-reduction, it is still desirable to have a general way to express
statements that arise in practice instead of having to construct non-interactive proofs on an ad hoc basis. A
useful observation in this context is that many public-key cryptography protocols are based on finite abelian
groups. If we can capture statements that express relations between group elements, then we can express
statements that come up in practice such as “the commitments ca, cb, cc contain messages so c = ab” or
“the plaintext of c is a signature on m”, as long as those commitment, encryption, and signature schemes
work over the same finite group. We will therefore construct NIWI and NIZK proofs for group-dependent
languages.

The next issue to address is where to find suitable group-dependent languages. We will look at state-
ments related to groups with a bilinear map, which have become widely used in the design of crypto-
graphic protocols. Not only have bilinear groups been used to give new constructions of such crypto-
graphic staples as public-key encryption, digital signatures, and key agreement (see [Pat05] and the ref-
erences therein), but bilinear groups have enabled the first constructions achieving goals that had never
been attained before. The most notable of these is the Identity-Based Encryption scheme of Boneh and
Franklin [BF03] (see also [BB04a, BB04b, Wat05]), and there are many others, such as Attribute-Based En-
cryption [SW05, GPSW06], Searchable Public-Key Encryption [BCOP04, BSW06, BW06], and One-time
Double-Homomorphic Encryption [BGN05]. For an incomplete list of papers (currently over 200) on the
application of bilinear groups in cryptography, see [Bar06].

1.1 Our Contribution

For completeness, let us recap the definition of a bilinear group. Please note that for notational convenience
we will follow the tradition of mathematics and use additive notation1 for the binary operations in G1 and
G2. We have a probabilistic polynomial time algorithm G that takes a security parameter as input and outputs
(n, G1, G2, GT , e,P1,P2). In some cases, G1 = G2 and P1 = P2, in which case we write (n, G,GT , e,P).

∙ G1, G2, GT are descriptions of cyclic groups of order n.

∙ The elements P1,P2 generate G1 and G2 respectively.
1We remark that in the cryptographic literature it is more common to use multiplicative notation for these groups, since the

“discrete log problem” is believed to be hard in these groups, which is also important to us. In our setting, however, it will be much
more convenient to use multiplicative notation to refer to the action of the bilinear map.

1

∙ e : G1×G2 is a non-degenerate bilinear map so e(P1,P2) generates GT and for all a, b ∈ ℤn we have
e(aP1, bP2) = e(P1,P2)ab.

∙ We can efficiently compute group operations, compute the bilinear map and decide membership.

In this work, we develop a general set of highly efficient techniques for proving statements involving
bilinear groups. The generality of our work extends in two directions. First, we formulate our constructions
in terms of modules over commutative rings with an associated bilinear map. This framework captures all
known bilinear groups with cryptographic significance – for both supersingular and ordinary elliptic curves,
for groups of both prime and composite order. Second, we consider all mathematical operations that can
take place in the context of a bilinear group - addition in G1 and G2, scalar point-multiplication, addition or
multiplication of scalars, and use of the bilinear map. We also allow both group elements and exponents to
be “unknowns” in the statements to be proven.

Since we cover all operations over the bilinear group, we can prove any statement formulated in terms
of the operations associated with the bilinear group. With our level of generality, it would for example be
easy to write down a short statement, using the operations above, that encodes “c is an encryption of the
value committed to in d under the product of the two keys committed to in a and b” where the encryptions
and commitments being referred to are existing cryptographic constructions based on bilinear groups. Log-
ical operations like AND and OR are also easy to encode into our framework using standard techniques in
arithmetization.

The proof systems we build are non-interactive. This allows them to be used in contexts where interaction
is undesirable or impossible. We first build highly efficient witness-indistinguishable proof systems, which
are of independent interest. We then show how to transform these into zero-knowledge proof systems. We
also provide a detailed examination of the efficiency of our constructions in various settings (depending on
what type of bilinear group and cryptographic assumption is used).

The security of constructions arising from our framework can be based on any of a variety of computa-
tional assumptions about bilinear groups (3 of which we discuss in detail here). Thus, our techniques do not
rely on any one assumption in particular.

Informal statement of our results. We consider equations over variables fromG1, G2 and ℤn as described
in Figure 1. We construct efficient witness-indistinguishable proofs for the simultaneous satisfiability of a
set of such equations. The witness-indistinguishable proofs have perfect completeness and there are two
computationally indistinguishable types of common reference strings giving respectively perfect soundness
and perfect witness indistinguishability. We refer to Section 2 for precise definitions.

We also consider the question of non-interactive zero-knowledge. We show that we can give zero-
knowledge proofs for multi-scalar multiplication in G1 or G2 and for quadratic equations in ℤn. We can
also give zero-knowledge proofs for pairing product equations with tT = 1. When tT ∕= 1 we can still give
zero-knowledge proofs if we can find P1,Q1, . . . ,Pn,Qn such that tT =

∏n
i=1 e(Pi, Qi).

Instantiation 1: Subgroup decision. Throughout the paper, we will give a general description of our
techniques. We will also offer three instantiations that illustrate the use of our techniques. We note that there
are many other possible instantiations.

The first instantiation is based on the composite order groups introduced by Boneh, Goh and Nissim
[BGN05]. Here we generate a composite order bilinear group (n, G,GT , e,P) where n = pq. We can
write G = Gp × Gq, where Gp, Gq are the subgroups of prime order p and q respectively. Boneh, Goh
and Nissim introduced the subgroup decision assumption, which says that it is hard to distinguish a random
element from G from a random element from Gq. In this paper, we will demonstrate that assuming the
hardness of the subgroup decision problem there exists a witness-indistinguishable proof for satisfiability of
a set of equations from Figure 1 in the subgroup Gp and the order p subgroup of GT .

2

Variables: a X1, . . . ,Xm ∈ G1 , Y1, . . . ,Yn ∈ G2 , x1, . . . , xm′ , y1, . . . , yn′ ∈ ℤn.

Pairing product equation:

n∏
i=1

e(Ai,Yi) ⋅
m∏
i=1

e(Xi,ℬi) ⋅
m∏
i=1

n∏
j=1

e(Xi,Yj)ij = tT ,

for constants Ai ∈ G1,ℬi ∈ G2, tT ∈ GT , ij ∈ ℤn.

Multi-scalar multiplication equation in G1: b

n′∑
i=1

yiAi +

m∑
i=1

biXi +

m∑
i=1

n′∑
j=1

ijyjXi = T1,

for constants Ai, T1 ∈ G1 and bi, ij ∈ ℤn.

Multi-scalar multiplication equation in G2:

n∑
i=1

aiYi +
m′∑
i=1

xiℬi +
m′∑
i=1

n∑
j=1

ijxiYj , = T2

for constants ℬi, T2 ∈ G2 and ai, ij ∈ ℤn.

Quadratic equation in ℤn:

n′∑
i=1

aiyi +

m′∑
i=1

xibi +

m′∑
i=1

n′∑
j=1

ijxiyj , = t

for constants ai, bi, ij , t ∈ ℤn.

aWe list variables in ℤn in two separate groups because we will treat them differently in the NIWI proofs. If we wish to
deal with only one group of variables in ℤn we can add equations in ℤn of the form x1 = y1, x2 = y2, etc.

bWith multiplicative notation, these equations would be multi-exponentiation equations. We use additive notation for G1

andG2, since this will be notationally convenient in the paper, but again stress that the discrete logarithm problem will typically
be hard in these groups.

Figure 1: Equations over groups with bilinear map.

Instantiation 2: SXDH. Let (p, G1, G2, GT , e,P1,P2) be a prime order bilinear group. The external
Diffie-Hellman (XDH) assumption is that the decisional Diffie-Hellman (DDH) problem is hard in one of the
groups G1 or G2 [Sco02, BBS04, BGdMM05, GR04, Ver04]. The Symmetric XDH assumption is that the
DDH problem is hard in bothG1 andG2. We will construct a witness-indistinguishable proof for satisfiability
of a set of equations of the form given in Figure 1 under the SXDH assumption.

Instantiation 3: DLIN. The decisional linear assumption (DLIN) for a prime order bilin-
ear group (p, G,GT , e,P) introduced by Boneh, Boyen and Shacham [BBS04] states that given
(�P, �P, r�P, s�P, tP) for random �, �, r, s ∈ ℤp it is hard to tell whether t = r + s or t is random.
Assuming the hardness of the DLIN problem, we will construct a witness-indistinguishable proof for satisfi-
ability of a set of equations from Figure 1.

3

The instantiations illustrate the variety of ways bilinear groups can be constructed. We can choose prime
order groups or composite order groups, we can have G1 = G2 and G1 ∕= G2, and we can make various
cryptographic assumptions. All three security assumptions have been used in the cryptographic literature to
build interesting protocols.

For all three instantiations, the techniques presented here yield efficient witness-indistinguishable proofs.
In particular, the cost in proof size of each extra equation is constant and independent of the number of
variables in the equation. The size of the proofs, can be computed by adding the cost, measured in group
elements from G1 or G2, of each variable and each equation listed in Figure 2. We refer to Section 7 for
more detailed tables.

Subgroup decision SXDH DLIN
Variable in G1 or G2 1 2 3
Variable in ℤn or ℤp 1 2 3
Paring product equation 1 8 9
Multi-scalar multiplication in G1 or G2 1 6 9
Quadratic equation in ℤn or ℤp 1 4 6

Figure 2: Number of group elements each variable or equation adds to the size of a NIWI proof.

1.2 Related Work

As we mentioned before, early work on NIZK proofs demonstrated that all NP-languages have non-
interactive proofs, however, did not yield efficient proofs. One cause for these proofs being inefficient in
practice was the need for an expensive NP-reduction to e.g. Circuit Satisfiability. Another cause of ineffi-
ciency was the reliance on the so-called hidden bits model, which even for small circuits is inefficient.

Groth, Ostrovsky, and Sahai [GOS06b, GOS06a] investigated NIZK proofs for Circuit Satisfiability using
bilinear groups. This addressed the second cause of inefficiency since their techniques give efficient proofs
for Circuit Satisfiability, but to use their proofs one must still make an NP-reduction to Circuit Satisfiability
thus limiting the applications. We stress that while [GOS06b, GOS06a] used bilinear groups, their application
was to build proof systems for Circuit Satisfiability. Here, we devise entirely new techniques to deal with
general statements about equations in bilinear groups, without having to reduce to an NP-complete language.

Addressing the issue of avoiding an expensive NP-reduction we have works by Boyen and Waters [BW06,
BW07] that suggest efficient NIWI proofs for statements related to group signatures. These proofs are based
on bilinear groups of composite order and rely on the subgroup decision assumption.

Groth [Gro06] was the first to suggest a general group-dependent language and NIZK proofs for state-
ments in this language. He investigated satisfiability of pairing product equations and only allowed group
elements to be variables. He looked at the special case of prime order groups G,GT with a bilinear map
e : G × G → GT and, based on the decisional linear assumption [BBS04], constructed NIZK proofs for
such pairing product equations. However, even for very small statements, the very different and much more
complicated techniques of Groth yield proofs consisting of thousands of group elements (whereas ours would
be in the tens). Our techniques are much easier to understand, significantly more general, and vastly more
efficient.

We summarize our comparison with other works on NIZK proofs in Figure 3.
We note that there have been many earlier works (starting with [GMR89]) dealing with efficient interac-

tive zero-knowledge protocols for a number of algebraic relations. Here, we focus on non-interactive proofs.
We also note that even for interactive zero-knowledge proofs, no set of techniques was known for dealing
with general algebraic assertions arising in bilinear groups, as we do here.

4

Inefficient Efficient
Circuit Satisfiability Example: [KP98] [GOS06b, GOS06a]
Group-dependent language [Gro06] (restricted case) This work

Figure 3: Classification of NIZK proofs according to usefulness.

1.3 New Techniques

[GOS06b, GOS06a, Gro06] start by constructing non-interactive proofs for simple statements and then com-
bine many of them to get more powerful proofs. The main building block in [GOS06b], for instance, is a
proof that a given commitment contains either 0 or 1, which has little expressive power on its own. Our
approach is the opposite: we directly construct proofs for very expressive languages; as such, our techniques
are very different from previous work.

The way we achieve our generality is by viewing the groups G1, G2, GT as modules over the ring ℤn.
The ring ℤn itself can also be viewed as a ℤn-module. We therefore look at the more general question of sat-
isfiability of quadratic equations over ℤn-modules A1, A2, AT with a bilinear map, see Section 3 for details.
Since many bilinear groups with various cryptographic assumptions and various mathematical properties can
be viewed as modules we are not bound to any particular bilinear group or any particular assumption.

Given modules A1, A2, AT with a bilinear map, we construct new modules B1, B2, BT , also equipped
with a bilinear map, and we map the elements in A1, A2, AT into B1, B2, BT . The latter modules will
typically be larger thereby giving us room to hide the elements of A1, A2, AT . More precisely, we devise
commitment schemes that map variables from A1, A2 to the modules B1, B2. The commitment schemes are
homomorphic both with respect to the module operations and also with respect to the bilinear map.

Our techniques for constructing witness-indistinguishable proofs are fairly involved mathematically, but
we will try to present some high level intuition here. (We give more detailed intuition later in Section 6, where
we present our main proof system). The main idea is the following: because our commitment schemes are
homomorphic and we equip them with a bilinear map, we can take the equation that we are trying to prove,
and just replace the variables in the equation with commitments to those variables. Of course, because the
commitment schemes are hiding, the equations will no longer be valid. Intuitively, however, we can extract
out the additional terms introduced by the randomness of the commitments: if we give away these terms in the
proof, then this would be a convincing proof of the equation’s validity (again, because of the homomorphic
properties). But, giving away these terms might destroy witness indistinguishability. Suppose, however, that
there is only one “additional term” introduced by substituting the commitments. Then, because it would be
the unique value which makes the equation true, giving it away would preserve witness indistinguishability!
In general, we are not so lucky. But if there are many terms, that means that these terms are not unique, and
because of the nice algebraic environment that we work in, we can randomize these terms so that the equation
is still true, but so that we effectively reduce to the case of there being a single term being given away with a
unique value.

1.4 Applications

Independently of our work, Boyen and Waters [BW07] have constructed non-interactive proofs that they use
for group signatures (see also their earlier paper [BW06]). These proofs can be seen as examples of the NIWI
proofs in instantiation 1.

Subsequent to the announcement of our work, several papers have built upon it: Chandran, Groth and
Sahai [CGS07] have constructed ring-signatures of sub-linear size using the NIWI proofs in the first in-
stantiation, which is based on the subgroup decision problem. Groth and Lu [GL07] have used the NIWI
and NIZK proofs from instantiation 3 to construct a NIZK proof for the correctness of a shuffle. Groth

5

[Gro07] has used the NIWI and NIZK proofs from instantiation 3 to construct a fully anonymous group sig-
nature scheme. Belenkiy, Chase, Kohlweiss and Lysyanskaya [BCKL08] have used instantiations 2 and 3
to construct non-interactive anonymous credentials. Green and Hohenberger [GH08] use instantiation 3 in a
universally composable adaptive oblivious transfer protocol. Also, by attaching NIZK proofs to semantically
secure public-key encryption in any instantiation we get an efficient non-interactive verifiable cryptosystem.
Boneh [Bon06] has suggested using this for optimistic fair exchange [Mic03], where two parties use a trusted
but lazy third party to guarantee fairness.

1.5 Roadmap

The main result is the NIWI proof that can be found in Section 7. Sections 3, 4, 5 and 6 explain the structure
of the NIWI proof, which goes through modules, commitments, a description of the common reference string,
and an explanation of how the NIWI proof works. For a concrete illustration of the steps, we refer the reader
to Instantiation 1 in Section 8. Other instantiations are given in Sections 9 and 10. In many cases, our NIWI
proofs can also be used as NIZK proofs, which we discuss in Section 11.

2 Non-interactive Witness-Indistinguishable Proofs

NOTATION. We write y = A(x; r) when the algorithm A, on input x and randomness r, outputs y. We write
y ← A(x) for the process of picking randomness r uniformly at random and setting y = A(x; r). More
generally, we write y ← S for sampling y from the set S according to some probability distribution on S,
using the uniform distribution as the default when nothing else is specified.

We write a ← A; b ← B(a); . . . for running the experiment where a is chosen from A, then b is chosen
from B, which may depend on a, etc. This yields a probability distribution over the outputs and we write
Pr
[
a← A; b← B(a); . . . : C(a, b, . . .)

]
for the probability of the condition C(a, b, . . .) being satisfied after

running the experiment.
The security of our schemes is governed by a security parameter k, which can be used to scale up the

security. Given two functions f, g : ℕ → [0, 1] we write f(k) ≈ g(k) when ∣f(k) − g(k)∣ = O(k−c) for
every constant c. We say that f is negligible when f(k) ≈ 0 and that it is overwhelming when f(k) ≈ 1. We
say that two families of probability distributions {S1(k)}k∈ℕ, {S2(k)}k∈ℕ are indistinguishable when they
are the same for all sufficiently large k ∈ ℕ, and we say they are computationally indistinguishable if for all
non-uniform polynomial time adversaries A we have

Pr
[
y ← S1(k) : A(1k, y) = 1

]
≈ Pr

[
y ← S2(k) : A(1k, y) = 1

]
.

GROUP DEPENDENT LANGUAGES. Let R be an efficiently computable ternary relation. For triplets
(gk, x, w) ∈ R we call gk the setup, x the statement and w the witness. Given some gk we let L be the
language consisting of statements in R. For a relation that ignores gk this is of course the standard definition
of an NP-language. We will be more interested in the case where gk describes a bilinear group, though.

NON-INTERACTIVE PROOFS. A non-interactive proof system for a relation R with setup consists of four
probabilistic polynomial time algorithms: a setup algorithm G, a common reference string (CRS) generation
algorithm K, a prover P and a verifier V . The setup algorithm outputs a setup (gk, sk). In our paper, gk
will be a description of a bilinear group. The setup algorithm may output some related information sk, for
instance the factorization of the group order. A cleaner case, however, is when sk is just the empty string,
meaning the protocol is built on top of the group without knowledge of any trapdoors. The CRS generation
algorithm takes (gk, sk) as input and produces a common reference string �. The prover takes as input
(gk, �, x, w) and produces a proof �. The verifier takes as input (gk, �, x, �) and outputs 1 if the proof is

6

acceptable and 0 if rejecting the proof. We call (G,K, P, V) a non-interactive proof system for R with setup
G if it has the completeness and soundness properties described below.
PERFECT COMPLETENESS. A non-interactive proof is complete if an honest prover can convince an honest
verifier whenever the statement belongs to the language and the prover holds a witness testifying to this fact.
We say (G,K, P, V) is perfectly complete if for all adversaries A we have2

Pr
[
(gk, sk)← G(1k);� ← K(gk, sk); (x,w)← A(gk, �);� ← P (gk, �, x, w) :

V (gk, �, x, �) = 1 if (gk, x, w) ∈ R
]

= 1.

PERFECT SOUNDNESS. A non-interactive proof is sound if it is impossible to prove a false statement. We
say (G,K, P, V) is perfectly sound if for all adversaries A we have

Pr
[
(gk, sk)← G(1k);� ← K(gk, sk); (x, �)← A(gk, �) : V (gk, �, x, �) = 0 if x /∈ L

]
= 1.

PERFECT Lco-SOUNDNESS. In the standard definition of soundness given above, the adversary tries to create
a valid proof for x ∈ L̄. Groth, Ostrovsky and Sahai [GOS06b, Gro06] generalized standard soundness to
co-soundness, which says that it is impossible to create a valid proof for a statement x ∈ Lco, where Lco is a
language that may depend on gk and �. Standard soundness is a special case of co-soundness with Lco = L̄,
but co-soundness can be used to capture other interesting cases as well: Instantiation 1 in Section 8 offers an
example where co-soundness captures the fact that soundness holds in the order p subgroups of G and GT .

We say (G,K, P, V) is perfectly Lco-sound if for all adversaries A we have

Pr
[
(gk, sk)← G(1k);� ← K(gk, sk); (x, �)← A(gk, �) : V (gk, �, x, �) = 0 if x ∈ Lco

]
= 1.

COMPOSABLE WITNESS INDISTINGUISHABILITY. A statement may have many possible witnesses. A non-
interactive proof is witness indistinguishable if the proof does not reveal which of those witnesses the prover
has used. We will use a strong definition of witness indistinguishability called composable witness indistin-
guishability. We introduce a reference string simulator S that generates a simulated CRS and require that the
adversary cannot distinguish a real CRS from a simulated CRS. We also require that on a simulated CRS there
is no information whatsoever to distinguish the different witnesses that might have been used to construct the
proof.

We say (G,K, P, V) is composable witness indistinguishable, if there is a probabilistic polynomial time
simulator S, such that for all non-uniform polynomial time adversaries A we have

Pr
[
(gk, sk)← G(1k);� ← K(gk, sk) : A(gk, �) = 1

]
≈ Pr

[
(gk, sk)← G(1k);� ← S(gk, sk) : A(gk, �) = 1

]
,

and for all adversaries A we have

Pr
[
(gk, sk)← G(1k);� ← S(gk, sk); (x,w0, w1)← A(gk, �);� ← P (gk, �, x, w0) : A(�) = 1

]
= Pr

[
(gk, sk)← G(1k);� ← S(gk, sk); (x,w0, w1)← A(gk, �);� ← P (gk, �, x, w1) : A(�) = 1

]
,

where we require (gk, x, w0), (gk, x, w1) ∈ R.
COMPOSABLE ZERO-KNOWLEDGE. A zero-knowledge proof, is a proof that shows the statement is true, but
does not reveal anything else. Traditionally, this is defined by having a simulator (S1, S2) that can simulate

2Since the probability is exactly 1, the definition quantifies over all gk in the support of G and all (gk, x, w) ∈ R.

7

respectively the CRS and the proof. The first part of the simulator outputs a simulated CRS and a simulation
trapdoor � , and the second part of the simulator uses the simulation trapdoor to simulate proofs for statements
without knowing the corresponding witnesses. The standard definition of (multi-theorem) zero-knowledge
then says that real proofs on a real CRS should be computationally indistinguishable from simulated proofs
on a simulated CRS.

We will obtain a strong notion of zero-knowledge, called composable zero-knowledge [Gro06]. Com-
posable zero-knowledge implies standard zero-knowledge [Gro06] and has the advantage that it is simpler
to work with, since it separates the computational indistinguishability into two separate parts addressing re-
spectively the CRS and the proofs. In composable zero-knowledge, the real CRS and the simulated CRS are
computationally indistinguishable. Moreover, the adversary, even when it gets access to the secret simulation
key � , cannot distinguish real proofs from simulated proofs on a simulated CRS.

We say (G,K, P, V) is composable zero-knowledge if there exists a probabilistic polynomial time simu-
lator (S1, S2) so for all non-uniform polynomial time adversaries A we have

Pr
[
(gk, sk)← G(1k);� ← K(gk, sk) : A(gk, �) = 1

]
≈ Pr

[
(gk, sk)← G(1k); (�, �)← S1(gk, sk) : A(gk, �) = 1

]
,

and for all adversaries A we have

Pr
[
(gk, sk)← G(1k); (�, �)← S1(gk, sk); (x,w)← A(gk, �, �);� ← P (gk, �, x, w) : A(�) = 1

]
= Pr

[
(gk, sk)← G(1k); (�, �)← S1(gk, sk); (x,w)← A(gk, �, �);� ← S2(gk, �, �, x) : A(�) = 1

]
,

where A outputs (gk, x, w) ∈ R.

3 Modules with Bilinear Maps

Let (ℛ,+, ⋅, 0, 1) be a finite commutative ring. Recall that an ℛ-module A is an abelian group (A,+, 0)
where the ring acts on the group such that

∀r, s ∈ ℛ ∀x, y ∈ A : (r + s)x = rx+ sx ∧ r(x+ y) = rx+ ry ∧ r(sx) = (rs)x ∧ 1x = x.

A cyclic group G of order n can in a natural way be viewed as a ℤn-module. We will observe that all
the equations in Figure 1 can be viewed as equations over ℤn-modules with a bilinear map. To generalize
completely, let ℛ be a finite commutative ring and let A1, A2, AT be finite ℛ-modules with a bilinear map
f : A1 ×A2 → AT . We will consider quadratic equations over variables x1, . . . , xm ∈ A1, y1, . . . , yn ∈ A2

of the form
n∑
j=1

f(aj , yj) +
m∑
i=1

f(xi, bi) +
m∑
i=1

n∑
j=1

ijf(xi, yj) = t.

In order to simplify notation, let us for x1, . . . , xn ∈ A1, y1, . . . , yn ∈ A2 define

x⃗ ⋅ y⃗ =
n∑
i=1

f(xi, yi).

The equations can now be written as

a⃗ ⋅ y⃗ + x⃗ ⋅ b⃗+ x⃗ ⋅ Γy⃗ = t.

8

We note for future use that due to the bilinear properties of f , we have for any matrix Γ ∈ Matm×n(ℛ) and
for any x⃗ ∈ Am1 , y⃗ ∈ An2 that x⃗ ⋅ Γy⃗ = Γ⊤x⃗ ⋅ y⃗.

Let us now return to the equations in Figure 1 and see how they can be recast as quadratic equations over
ℤn-modules with a bilinear map.

Pairing product equations: Define ℛ = ℤn, A1 = G1, A2 = G2, AT = GT , f(x, y) = e(x, y) and we
can rewrite3 the pairing product equation as (A⃗ ⋅ Y⃗)(X⃗ ⋅ ℬ⃗)(X⃗ ⋅ ΓY⃗) = tT .

Multi-scalar multiplication in G1: Define ℛ = ℤn, A1 = G1, A2 = ℤn, AT = G1, f(X , y) = yX and
we can rewrite the multi-scalar multiplication equation as A⃗ ⋅ y⃗ + X⃗ ⋅ b⃗+ X⃗ ⋅ Γy⃗ = T1.

Multi-scalar multiplication in G2: Defineℛ = ℤn, A1 = ℤn, A2 = G2, AT = G2, f(x,Y) = xY and we
can rewrite the multi-scalar multiplication equation as a⃗ ⋅ Y⃗ + x⃗ ⋅ ℬ⃗ + x⃗ ⋅ ΓY⃗ = T2.

Quadratic equation in ℤn: Define ℛ = ℤn, A1 = ℤn, A2 = ℤn, AT = ℤn, f(x, y) = xy mod n and we
can rewrite the quadratic equation in ℤn as a⃗ ⋅ y⃗ + x⃗ ⋅ b⃗+ x⃗ ⋅ Γy⃗ = t.

We will therefore first focus on the more general problem of constructing non-interactive composable
witness-indistinguishable proofs for satisfiability of quadratic equations over ℛ-modules A1, A2, AT (using
additive notation for all modules) with a bilinear map f .

4 Commitment from Modules

In our NIWI and NIZK proofs we will commit to the variables x1, . . . , xm ∈ A1, y1, . . . , yn ∈ A2. We do
this by mapping them into otherℛ-modules B1, B2 and making the commitments in those modules.

Let us for now just consider how to commit to elements from one ℛ-module A. The public key for the
commitment scheme will describe another ℛ-module B and ℛ-linear maps � : A → B and p : B → A.
Operations in the module and computation of the map � will be efficiently computable but p is hard to
compute.4 The public key will also contain elements u1, . . . , um̂ ∈ B. To commit to x ∈ A we pick
r1, . . . , rm̂ ← ℛ at random and compute the commitment

c := �(x) +
m̂∑
i=1

riui.

Our commitment scheme will have two types of commitment keys.

Hiding key: A hiding key is of the form (B, �, p, u1, . . . , um̂) where �(A) ⊆ ⟨u1, . . . , um̂⟩. The commitment
c := �(x) +

∑m̂
i=1 riui therefore perfectly hides the element x when r1, . . . , rm̂ are chosen at random

fromℛ.

Binding key: A binding key is of the form (B, �, p, u1, . . . , um̂) where ∀i : p(ui) = 0 and �∘p is non-trivial.
The commitment c := �(x) +

∑m̂
i=1 riui therefore contains the non-trivial information p(c) = p(�(x))

about x. In particular, if � ∘ p is the identity map on A, then the commitment is perfectly binding to x.

Computational indistinguishability: The main assumption that we will be making throughout this paper is
that the distribution of hiding keys and the distribution of binding keys are computationally indistin-
guishable. Witness-indistinguishability of our NIWI proofs and later the zero-knowledge property of
our NIZK proofs will rely on this property.

3We use multiplicative notation here, because, usually GT is written multiplicatively in the literature. When we work with the
abstract modules, however, we will use additive notation.

4There are scenarios where a secret key will make p efficiently computable and � ∘ p is the identity map. In this case the
commitment scheme is a cryptosystem with p being the decryption operation.

9

The treatment of commitments using the language of modules generalizes several previous works dealing
with commitments over bilinear groups, including [BGN05, GOS06b, GOS06a, Gro06, Wat06].

Since we will often be committing to many elements at a time let us define some convenient notation.
Given elements x1, . . . , xm ∈ A we will write c⃗ := �(x⃗) + Ru⃗ with R ∈ Matm×m̂(ℛ) for making commit-
ments c1, . . . , cm computed as ci := �(xi) +

∑m̂
j=1 rijuj .

5 Setup

In our NIWI and NIZK proofs the setup and the common reference string are

gk = (ℛ, A1, A2, AT , f) � = (B1, B2, BT , F, �1, p1, �2, p2, �T , pT , u⃗, v⃗, H1, . . . ,H�).

Part of the common reference string specifies B1, �1, p1, u1, . . . , um̂ and B2, �2, p2, v1, . . . , vn̂ that are
commitment keys for A1 and A2. We note that many of these components may be given implicitly instead of
being described explicitly in the common reference string.

Another part of the common reference string specifies a thirdℛ-module BT together withℛ-linear maps
�T : AT → BT and pT : BT → AT and a bilinear map F : B1 × B2 → BT . We require that the maps are
commutative as described in Figure 4 below and with the exception of pT that they are efficiently computable.

A1 × A2 → AT
f

�1 ↓↑ p1 �2 ↓↑ p2 �T ↓↑ pT

B1 × B2 → BT
F

∀x ∈ A1 ∀y ∈ A2 : F (�1(x), �2(y)) = �T (f(x, y))

∀x ∈ B1 ∀y ∈ B2 : f(p1(x), p2(y)) = pT (F (x, y))

Figure 4: Modules and maps between them.

For notational convenience, we define for x⃗ ∈ Bn
1 , y⃗ ∈ Bn

2 that

x⃗ ∙ y⃗ =
n∑
i=1

F (xi, yi).

Due to the bilinear properties of F we have for all vectors and matrices with appropriate dimensions

x⃗ ∙ Γy⃗ = Γ⊤x⃗ ∙ y⃗.

The final part of the common reference string is a set of matrices H1, . . . ,H� ∈ Matm̂×n̂(ℛ) that all
satisfy u⃗ ∙ Hiv⃗ = 0. The exact number of matrices H1, . . . ,H� that is needed, depends on the concrete
setting. In many cases, we need no matrices at all and we have � = 0, but there are also cases where they are
needed as we shall see in Instantiation 3 in Section 10.

There will be two different settings of interest to us.

Soundness setting: In the soundness setting, we have binding commitment keys. This means p1(u⃗) = 0⃗ and
p2(v⃗) = 0⃗, and the maps �1 ∘ p1 and �2 ∘ p2 are non-trivial. We will also want �T ∘ pT to be non-trivial.

10

Witness-indistinguishability setting: In the witness-indistinguishability setting we have hiding commit-
ment keys, so �1(A1) ⊆ ⟨u1, . . . , um̂⟩ and �2(A2) ⊆ ⟨v1, . . . , vn̂⟩. We also require that H1, . . . ,H�

generate the R-module of all matrices H ∈ Matm̂×n̂(ℛ) so u⃗ ∙Hv⃗ = 0. As we will see in the next
section, these matrices play a role in the randomization of the NIWI proofs.

Computational indistinguishability: The (only) computational assumption this paper is based on is that
the two settings can be set up in a computationally indistinguishable way. The instantiations show
that there are many ways to get such computationally indistinguishable soundness and witness-
indistinguishability setups.

6 Proving that Committed Values Satisfy a Quadratic Equation

Recall that in our setting, a quadratic equation looks like the following:

a⃗ ⋅ y⃗ + x⃗ ⋅ b⃗+ x⃗ ⋅ Γy⃗ = t, (1)

with constants a⃗ ∈ An1 , b⃗ ∈ Am2 ,Γ ∈ Matm×n(ℛ), t ∈ AT . We will first consider the case of a single
quadratic equation of the above form. The first step in our NIWI proof will be to commit to all the variables
x⃗, y⃗. The commitments are of the form

c⃗ = �1(x⃗) +Ru⃗ , d⃗ = �2(y⃗) + Sv⃗, (2)

withR ∈ Matm×m̂(ℛ), S ∈ Matn×n̂(ℛ). The prover’s task is to convince the verifier that the commitments
contain x⃗ ∈ Am1 , y⃗ ∈ An2 that satisfy the quadratic equation. (Note that for all equations we will use these
same commitments.)

Intuition. Before giving the construction let us give some intuition. In the previous sections, we have
carefully set up our commitments so that the commitments themselves also “behave” like the values being
committed to: they also belong to modules (the B modules) equipped with a bilinear map (the map F , also
implicitly used in the ∙ operation). Given that we have done this, a natural idea is to take the quadratic
equation (1), and “plug in” the commitments (2) in place of the variables; let us evaluate:

�1(⃗a) ∙ d⃗+ c⃗ ∙ �2(⃗b) + c⃗ ∙ Γd⃗.

After some computations, where we expand the commitments (2), make use of the bilinearity of ∙, and
rearrange terms (the details can be found in the proof of Theorem 1) we get(

�1(⃗a) ∙ �2(y⃗) + �1(x⃗) ∙ �2(⃗b) + �1(x⃗) ∙ Γ�2(y⃗)
)

+�1(⃗a) ∙ Sv⃗ +Ru⃗ ∙ �2(⃗b) + �1(x⃗) ∙ ΓSv⃗ +Ru⃗ ∙ Γ�2(y⃗) +Ru⃗ ∙ ΓSv⃗.

By the commutative properties of the maps, the first group of three terms is equal to �T (t), if Equation 1 holds.
Looking at the remaining terms, note that u⃗ and v⃗ are part of the common reference string and therefore
known to the verifier. Using the fact that bilinearity implies that for any x⃗, y⃗ we have x⃗ ∙ Γy⃗ = Γ⊤x⃗ ∙ y⃗, we
can sort the remaining terms so that they match either u⃗ or v⃗ to get (again see the proof of Theorem 1 for
details)

�T (t) + u⃗ ∙
(
R⊤�2(⃗b) +R⊤Γ�2(y⃗) +R⊤ΓSv⃗

)
+
(
S⊤�1(⃗a) + S⊤Γ⊤�1(x⃗)

)
∙ v⃗. (3)

Now, for sake of intuition, let us make some simplifying assumptions: Let’s assume that we’re working in
a symmetric case where A1 = A2, and B1 = B2, and u⃗ = v⃗ and, so, the above equation can be simplified
further to get:

�T (t) + u⃗ ∙
(
R⊤�2(⃗b) +R⊤Γ�2(y⃗) +R⊤ΓSu⃗+ S⊤�1(⃗a) + S⊤Γ⊤�1(x⃗)

)
.

11

Now, suppose the prover gives to the verifier as his proof �⃗ =
(
R⊤�2(⃗b) + R⊤Γ�2(y⃗) + R⊤ΓSu⃗ +

S⊤�1(⃗a) + S⊤Γ⊤�1(x⃗)
)

. The verifier would then check that the following verification equation holds:

�1(⃗a) ∙ d⃗+ c⃗ ∙ �2(⃗b) + c⃗ ∙ Γd⃗ = �T (t) + u⃗ ∙ �⃗.

Suppose further �1 ∘ p1, �2 ∘ p2, �T ∘ pT are the identity maps on A1, A2, AT . It is easy to see that the
proof is convincing in the soundness setting, because in that setting we have that p1(u⃗) = 0⃗. Then the verifier
would know (but not be able to compute) that by applying the maps p1, p2, pT we get

a⃗ ∙ p2(d⃗) + p1(c⃗) ∙ b⃗+ p1(c⃗) ∙ Γp2(d⃗) = t+ p1(u⃗) ∙ p2(�⃗) = t.

This gives us soundness, since x⃗ := p1(c⃗) and y⃗ := p2(d⃗) satisfy the equations.
The remaining problem is to get witness-indistinguishability. Recall that in the witness-

indistinguishability setting, the commitments are perfectly hiding. Therefore, in the verification equation,
nothing except for �⃗ holds any information about x⃗ and y⃗ (except for the information that can be inferred
from the quadratic equation itself). So, let’s consider two cases:

1. Suppose that �⃗ is the unique value so that the verification equation is valid. In this case, we trivially
have witness indistinguishability, since the uniqueness means that any witness would lead to the same
value for �⃗.

2. The simple case above might seem too good to be true, but let’s see what it means if it isn’t true. If two
values �⃗ and �⃗′ both satisfy the verification equation, then just subtracting the equations shows that
u⃗∙ (�⃗− �⃗′) = 0. On the other hand, recall that in the witness indistinguishability setting, the u⃗ vectors
generate the entire space where �⃗ or �⃗′ live, and furthermore we know that the matrices H1, . . . ,H�

generate all H such that u⃗ ∙ Hu⃗ = 0. Therefore, let’s choose r1, . . . , r� at random, and consider
the distribution �⃗′′ = �⃗ +

∑�
i=1 riHiu⃗. We thus obtain the same distribution on �⃗′′ that satisfies the

verification equation regardless of whether we started from �⃗ or �⃗′ or any other proof.

Thus, for the symmetric case we obtain a witness indistinguishable proof system. For the general non-
symmetric case, instead of having just �⃗ for the u⃗ part of Equation 3, we would also have a proof �⃗ for the v⃗
part. In this case, we would also have to make sure that this split does not reveal any information about the
witness. What we will do is to randomize the proofs such that they get a uniform distribution on all �⃗, �⃗ that
satisfy the verification equation. If we pick T ← Matn̂×m̂(ℛ) at random we have that �⃗ + T u⃗ completely
randomizes �⃗. The part we add in �⃗ can be “subtracted” from �⃗ by observing that

�T (t) + u⃗ ∙ �⃗ + �⃗ ∙ v⃗ = �T (t) + u⃗ ∙
(
�⃗ − T⊤v⃗

)
+
(
�⃗ + T u⃗

)
∙ v⃗.

This leads to a uniform distribution of proofs for the general non-symmetric case as well.
Having explained the intuition behind the proof system, we proceed to a formal description and proof of

security properties.

Proof: Pick T ← Matn̂×m̂(ℛ), r1, . . . , r� ← ℛ at random. Compute

�⃗ := R⊤�2(⃗b) +R⊤Γ�2(y⃗) +R⊤ΓSv⃗ − T⊤v⃗ +

�∑
i=1

riHiv⃗

�⃗ := S⊤�1(⃗a) + S⊤Γ⊤�1(x⃗) + T u⃗

and return the proof (�⃗, �⃗).

12

Verification: Return 1 if and only if

�1(⃗a) ∙ d⃗+ c⃗ ∙ �2(⃗b) + c⃗ ∙ Γd⃗ = �T (t) + u⃗ ∙ �⃗ + �⃗ ∙ v⃗.

Perfect completeness of our NIWI proof will follow from the following theorem no matter whether we
are in the soundness setting or the witness-indistinguishability setting.

Theorem 1 Given x⃗ ∈ Am1 , y⃗ ∈ An2 , R ∈ Matm×m̂(ℛ), S ∈ Matn×n̂(ℛ) satisfying

c⃗ = �1(x⃗) +Ru⃗ , d⃗ = �2(y⃗) + Sv⃗ , a⃗ ⋅ y⃗ + x⃗ ⋅ b⃗+ x⃗ ⋅ Γy⃗ = t,

we have for all choices of T, r1, . . . , r� that the proofs �⃗, �⃗ constructed as above will be accepted.

Proof. The commutative property of the linear and bilinear maps gives us �1(⃗a) ∙ �2(y⃗) + �1(x⃗) ∙ �2(⃗b) +
�1(x⃗) ∙ Γ�2(y⃗) = �T (t). For any choice of T, r1, . . . , r� we have

�1(⃗a) ∙ d⃗+ c⃗ ∙ �2(⃗b) + c⃗ ∙ Γd⃗

= �1(⃗a) ∙
(
�2(y⃗) + Sv⃗

)
+
(
�1(x⃗) +Ru⃗

)
∙ �2(⃗b) +

(
�1(x⃗) +Ru⃗

)
∙ Γ
(
�2(y⃗) + Sv⃗)

)
= �1(⃗a) ∙ �2(y⃗) + �1(x⃗) ∙ �2(⃗b) + �1(x⃗) ∙ Γ�2(y⃗)

+Ru⃗ ∙ �2(⃗b) +Ru⃗ ∙ Γ�2(y⃗) +Ru⃗ ∙ ΓSv⃗ + �1(⃗a) ∙ Sv⃗ + �1(x⃗) ∙ ΓSv⃗

= �T (t) + u⃗ ∙
(
R⊤�2(⃗b) +R⊤Γ�2(y⃗) +R⊤ΓSv⃗

)
+
(
S⊤�1(⃗a) + S⊤Γ⊤�1(x⃗)

)
∙ v⃗

= �T (t) + u⃗ ∙
(
R⊤�2(⃗b) +R⊤Γ�2(y⃗) +R⊤ΓSv⃗

)
+

�∑
i=1

ri(u⃗ ∙Hiv⃗)− u⃗ ∙ T⊤v⃗

+T u⃗ ∙ v⃗ +
(
S⊤�1(⃗a) + S⊤Γ⊤�1(x⃗)

)
∙ v⃗

= �T (t) + u⃗ ∙ �⃗ + �⃗ ∙ v⃗

□

Theorem 2 In the soundness setting, where we have p1(u⃗) = 0⃗ and p2(v⃗) = 0⃗, a valid proof implies

p1(�1(⃗a)) ⋅ p2(d⃗) + p1(c⃗) ⋅ p2(�2(⃗b)) + p1(c⃗) ⋅ Γp2(d⃗) = pT (�T (t)).

Proof. An acceptable proof �⃗, �⃗ satisfies �(a)∙ d⃗+ c⃗∙ �2(⃗b)+ c⃗∙Γd⃗ = �T (t)+ u⃗∙ �⃗+ �⃗∙ v⃗. The commutative
property of the linear and bilinear maps gives us

p1(�1(⃗a)) ⋅p2(d⃗)+p1(c⃗) ⋅p2(�2(⃗b))+p1(c⃗) ⋅Γp2(d⃗) = pT (�T (t))+p1(u⃗) ⋅p2(�⃗)+p1(�⃗) ⋅p2(v⃗) = pT (�T (t)).

□
Observe as a particularly interesting case that when �1 ∘ p1, �2 ∘ p2, �T ∘ pT are the identity maps on

A1, A2 and AT respectively, then this means x⃗ := p1(c⃗) and y⃗ := p2(d⃗) give us a satisfying solution to the
equation a⃗ ⋅ y⃗ + x⃗ ⋅ y⃗ + x⃗ ⋅ Γy⃗ = t. In this case, the theorem says that the proof is perfectly sound in the
soundness setting. In the case where they are not the identity maps it is still possible to have co-soundness,
see Instantiation 1 8 for an example.

Theorem 3 In the witness-indistinguishable setting where �1(A1) ⊆ ⟨u1, . . . , um̂⟩, �2(A2) ⊆ ⟨v1, . . . , vn̂⟩
and H1, . . . ,H� generate all matrices H so u⃗ ∙ Hv⃗ = 0, all satisfying witnesses x⃗, y⃗, R, S yield proofs
�⃗ ∈ ⟨v1, . . . , vn̂⟩m̂ and �⃗ ∈ ⟨u1, . . . , um̂⟩n̂ that are uniformly distributed conditioned on the verification
equation �1(⃗a) ∙ d⃗+ c⃗ ∙ �2(⃗b) + c⃗ ∙ Γd⃗ = �T (t) + u⃗ ∙ �⃗ + �⃗ ∙ v⃗.

13

Proof. Since �1(A1) ⊆ ⟨u1, . . . , um̂⟩ and �2(A2) ⊆ ⟨v1, . . . , vn̂⟩ there exists A,B,X, Y so �1(⃗a) = Au⃗,
�1(x⃗) = Xu⃗ and �2(⃗b) = Bv⃗, �2(y⃗) = Y v⃗. We have c⃗ = (X + R)u⃗ and d⃗ = (Y + S)v⃗. The proof is (�⃗, �⃗)
given by

�⃗ = S⊤�1(⃗a) + S⊤Γ⊤�1(x⃗) + T u⃗ =
(
S⊤A+ S⊤Γ⊤X + T

)
u⃗

�⃗ = R⊤�2(⃗b) +R⊤Γ�2(y⃗) +R⊤ΓSv⃗))− T⊤v⃗ +

�∑
i=1

riHiv⃗

=
(
R⊤B +R⊤ΓY +R⊤ΓS − T⊤

)
v⃗ +

(�∑
i=1

riHi

)
v⃗.

We choose T at random, so we can think of �⃗ being a uniformly random variable given by �⃗ = Θv⃗ for a
randomly chosen matrix Θ. We can think of �⃗ as being written �⃗ = Πv⃗, where Π is a random variable that
depends on Θ.

By perfect completeness all satisfying witnesses yield proofs where �1(⃗a)∙d⃗+c⃗∙�2(⃗b)+c⃗∙Γd⃗−�T (t)−�⃗∙
v⃗ = u⃗∙ �⃗ = u⃗∙Πv⃗. Conditioned on the random variable Θ we therefore have that any two possible solutions
�⃗, �⃗′ satisfy u⃗∙(Π−Π′)v⃗ = 0. SinceH1, . . . ,H� generate all matricesH so u⃗∙Hv⃗ = 0 we can write this as

Π = Π′+
∑�

i=1 riHi. In constructing �⃗ we form it as
(
R⊤B+R⊤ΓY +R⊤ΓS−T⊤

)
v⃗+

(∑�
i=1 riHi

)
v⃗

for randomly chosen r1, . . . , r� ∈ ℛ. We therefore get a uniform distribution over all �⃗ that satisfy the
equation conditioned on �⃗. Since �⃗ is uniformly chosen, we conclude that for any witness we get a uniform
distribution over (�⃗, �⃗) conditioned on it being an acceptable proof. □

6.1 Linear Equations

As a special case, we will consider the proof system when a⃗ = 0 and Γ = 0. In this case the equation is
simply

x⃗ ⋅ b⃗ = t.

The scheme can be simplified in this case by choosing T = 0 in the proof, which gives �⃗ := 0⃗ and �⃗ :=
R⊤�2(⃗b) +

∑�
i=1 riHiv⃗. Theorem 1 still applies with T = 0. Theorem 2 says p1(c⃗) ⋅ p2(�2(⃗b)) = pT (�T (t)),

which will give us soundness. Finally, we have the following theorem.

Theorem 4 In the witness-indistinguishable setting where �1(A1) ⊆ ⟨u1, . . . , um̂⟩, �2(A2) ⊆ ⟨v1, . . . , vn̂⟩
and H1, . . . ,H� generate all matrices H so u⃗ ∙Hv⃗ = 0, all satisfying witnesses x⃗, y⃗, R, S yield the uniform
distribution of the proof �⃗ ∈ ⟨v1, . . . , vn̂⟩m̂ conditioned on the verification equation c⃗ ∙ �2(⃗b) = �T (t) + u⃗ ∙ �⃗
being satisfied.

Proof. As in the proof of Theorem 3 we can write �⃗ = Πv⃗. Any witness gives a proof that satisfies

c⃗ ∙ �1(⃗b)− �T (t) = u⃗ ∙ �⃗ = u⃗ ∙Πv⃗.

Since H1, . . . ,H� generate all matrices H so u⃗ ∙Hv⃗ = 0 we have that Π has a uniform distribution over all
matrices Π satisfying the verification equation. □

6.2 The Symmetric Case

An interesting special case is when B := B1 = B2, m̂ ≥ n̂ with u1 = v1, . . . , um̂ = vm̂ and for all x, y ∈ B
we have F (x, y) = F (y, x). We call this the symmetric case. In the symmetric case, we can simplify the

14

scheme by just padding �⃗ with zeroes in the end to extend the length to m̂, call this vector �⃗′, and reveal the
proof �⃗ = �⃗ + �⃗′. In the verification, we check that

�1(⃗a) ∙ d⃗+ c⃗ ∙ �2(⃗b) + c⃗ ∙ Γd⃗ = �T (t) + u⃗ ∙ �⃗.

Theorem 1 and Theorem 3 still hold in this setting. With respect to soundness we have the following theorem.

Theorem 5 In the soundness setting, where we have p1(u⃗) = 0⃗ a valid proof implies

p1(�1(a)) ⋅ p2(d⃗) + p1(c⃗) ⋅ p2(�(⃗b)) + p1(c⃗) ⋅ Γp2(d⃗) = pT (�T (t)).

Proof. An acceptable proof �⃗ satisfies �1(⃗a) ∙ d⃗ + c⃗ ∙ �2(⃗b) + c⃗ ∙ Γd⃗ = �T (t) + u⃗ ∙ �⃗. The commutative
property of the linear and bilinear maps gives us

p1(�1(⃗a)) ⋅ p2(d⃗) + p1(c⃗) ⋅ p2(�(⃗b)) + p1(c⃗) ⋅ Γp2(d⃗) = pT (�T (t)) + p1(u⃗) ⋅ p2(�⃗) = pT (�T (t)).

□
We can simplify the computation of the proof in the symmetric case. We have

�⃗ := R⊤�2(⃗b) +R⊤Γ�2(y⃗) +R⊤ΓSv⃗ − T⊤v⃗ +

�∑
i=1

riHiv⃗

�⃗ := S⊤�1(⃗a) + S⊤Γ⊤�1(x⃗) + T u⃗,

and extend � to �′ by padding it with m̂ − n̂ 0’s. Another way to accomplish this padding is by padding T
with m̂− n̂ 0-rows and S with m̂− n̂ 0-columns and each Hi with m̂− n̂ 0-columns. We then have

�⃗ := R⊤�2(⃗b) +R⊤Γ�2(y⃗) +R⊤ΓS′u⃗− (T ′)⊤u⃗+

�∑
i=1

riH
′
iu⃗+ (S′)⊤�1(⃗a) + (S′)⊤Γ⊤�1(x⃗) + T ′u⃗.

Since the map is symmetric we have u⃗ ∙ (T ′ − (T ′)⊤)u⃗ = 0, so we can simplify the proof as

�⃗ := R⊤�2(⃗b) +R⊤Γ�2(y⃗) + (S′)⊤�1(⃗a) + (S′)⊤Γ⊤�1(x⃗) +R⊤ΓS′u⃗+

�′∑
i=1

riH
′
iu⃗.

7 NIWI Proof for Satisfiability of a Set of Quadratic Equations

We will now give the full composable NIWI proof for satisfiability of a set of quadratic equations in a module
with a bilinear map. The proof will have Lco-soundness, where

Lco =
{
{(⃗ai, b⃗i,Γi, ti)}Ni=1

∣∣∣∀x⃗, y⃗∃i : p1(�1(⃗ai)) ⋅ y⃗ + x⃗ ⋅ p2(�2(⃗bi)) + x⃗ ⋅ Γiy⃗ ∕= pT (�T (ti))
}
.

Observe as an important special case that �1 ∘ p1, �2 ∘ p2, �T ∘ pT are the identity maps on A1, A2 and AT ,
then Lco = L̄-soundness making soundness and Lco-soundness the same notion.

The cryptographic assumption we make is that the common reference string is created by one of two
algorithm K or S and that their outputs are computationally indistinguishable. The first algorithm outputs a
common reference string that specifies a soundness setting, whereas the second algorithm outputs a common
reference string that specifies a witness-indistinguishability setting.

Setup: (gk, sk) := ((ℛ, A1, A2, AT , f), sk)← G(1k).

15

Soundness string: � := (B1, B2, BT , F, �1, p1, �2, p2, �T , pT , u⃗, v⃗, H1, . . . ,H�)← K(gk, sk).

Witness-indistinguishability string: � := (B1, B2, BT , F, �1, p1, �2, p2, �T , pT , u⃗, v⃗, H1, . . . ,H�) ←
S(gk, sk).

Proof: The input consists of gk, �, a list of quadratic equations {(⃗ai, b⃗i,Γi, ti)}Ni=1 and a satisfying witness
x⃗ ∈ Am1 , y⃗ ∈ An2 .

Pick at random R ← Matm×m̂(ℛ) and S ← Matn×n̂(ℛ) and commit to all the variables as c⃗ :=
x⃗+Ru⃗ and d⃗ := y⃗ + Sv⃗.

For each equation (⃗ai, b⃗i,Γi, ti) make a proof as described in Section 6. In other words, pick Ti ←
Matn̂×m̂(ℛ) and ri1, . . . , ri� ← ℛ and compute

�⃗i := R⊤�2(⃗bi) +R⊤Γi�2(y⃗) +R⊤ΓiSv⃗ − T⊤i v⃗ +

�∑
j=1

rijHj v⃗

�⃗i := S⊤�1(⃗ai) + S⊤Γ⊤i �1(x⃗) + Tiu⃗.

Output the proof (c⃗, d⃗, {(�⃗i, �⃗i)}Ni=1).

Verification: The input is gk, �, {(⃗ai, b⃗i,Γi, ti)}Ni=1 and the proof (c⃗, d⃗, {(�⃗i, �⃗i)}).

For each equation check

�1(⃗ai) ∙ d⃗+ c⃗ ∙ �2(⃗bi) + c⃗ ∙ Γid⃗ = �T (ti) + u⃗ ∙ �⃗i + �⃗i ∙ v⃗.

Output 1 if all the checks pass, else output 0.

Theorem 6 The protocol given above is a NIWI proof for satisfiability of a set of quadratic equations with
perfect completeness, perfect Lco-soundness and composable witness-indistinguishability.

Proof. Perfect completeness follows from Theorem 1.
Consider a proof (c⃗, d⃗, {(�⃗i, �⃗i)}) on a soundness string. Define x⃗ := p1(c⃗), y⃗ := p2(d⃗). It follows from

Theorem 2 that for each equation we have

p1(�1(⃗ai)) ⋅ y⃗+ x⃗ ⋅p2(�2(⃗bi))+ x⃗ ⋅Γiy⃗ = p1(�1(⃗ai)) ⋅p2(d⃗)+p1(c⃗) ⋅p2(�2(⃗bi))+p1(c⃗) ⋅Γip2(d⃗) = pT (�T (ti)).

This means we have perfect Lco-soundness.
Our computational assumption is that soundness strings and witness-indistinguishability strings are com-

putationally indistinguishable. Consider now a witness-indistinguishability string �. The commitments are
perfectly hiding, so they do not reveal the witness x⃗, y⃗ that the prover uses in the commitments c⃗, d⃗. Theorem
3 says that in each equation either of two possible witnesses yields the same distribution on the proof for that
equation. A straightforward hybrid argument then shows that we have perfect witness-indistinguishability.
□

Proof of knowledge. We observe that if K outputs an additional secret piece of information � that makes
it possible to efficiently compute p1 and p2, then it is straightforward to compute the witness x⃗ = p1(c⃗) and
y⃗ = p2(d⃗), so the proof is a perfect proof of knowledge.

16

Proof size. The size of the common reference string is m̂ elements in B1 and n̂ elements in B2 in addition
to the description of the modules, the maps and H1, . . . ,H�. The size of the proof is m + Nn̂ elements in
B1 and n+Nm̂ elements in B2.

Typically, m̂ and n̂ will be small, giving us a proof size that is O(m + n + N) elements in B1 and B2.
The proof size may thus be smaller than the description of the statement, which can be of size up to Nn
elements in A1, Nm elements in A2, Nmn elements inℛ and N elements in AT .

7.1 NIWI Proofs for Bilinear Groups

We will now outline the strategy for making NIWI proofs for satisfiability of a set of quadratic equations over
bilinear groups. As we described in Section 3, there are four different types of equations corresponding to
the following four combinations of ℤn-modules:

Pairing product equations: A1 = G1, A2 = G2, AT = GT , f(X ,Y) = e(X ,Y).

Multi-scalar multiplication in G1: A1 = G1, A2 = ℤn, AT = G1, f(X , y) = yX .

Multi-scalar multiplication in G2: A1 = ℤn, A2 = G2, AT = G2, f(x,Y) = xY .

Quadratic equations in ℤn: A1 = ℤn, A2 = ℤn, AT = ℤn, f(x, y) = xy mod n.

The common reference string will specify commitment schemes to respectively scalars and group elements.
We first commit to all the variables and then make the NIWI proofs that correspond to the types of equations
that we are looking at. It is important that we use the same commitment schemes and commitments for all
equations, i.e., for instance we only commit to a scalar x once and we use the same commitment in the proof
whether x is involved in is a multi-scalar multiplication in G2 or a quadratic equations in ℤn. The use of the
same commitment in all the equations is necessary to ensure a consistent choice of x throughout the proof.
As a consequence of this we use the same module B′1 to commit to x in both multi-scalar multiplication in
G2 and quadratic equations in ℤn. We therefore end up with at most four different modules B1, B

′
1, B2, B

′
2

to commit to respectively X , x,Y, y variables.

8 Instantiation 1: Subgroup Decision

STATEMENT. The setup gk = (n, G,GT , e,P) defines the ring ℤn and modules ℤn, G,GT and bilinear maps
corresponding to respectively multiplication in ℤn, scalar-multiplication in G, and the pairing e : G×G→
GT .

The statement will consist of a set of equations, which are either quadratic equations in ℤn, multi-scalar
multiplication equations in G, or pairing product equations. The equations are over exponent variables
x1, . . . , xm ∈ ℤn and group element variables Y1, . . . ,Yn ∈ G.

Pairing product equations: Using our framework this corresponds to ℛ = ℤn, A1 = G,A2 = G,AT =
GT , f(x, y) = e(x, y) and equations of the form (A⃗ ⋅ Y⃗)(X⃗ ⋅ ΓY⃗) = tT .

Multi-scalar multiplication in G: Using our framework this corresponds to ℛ = ℤn, A1 = ℤn, A2 =
G,AT = G2, f(x,Y) = xY and equations of the form a⃗ ⋅ Y⃗ + x⃗ ⋅ ℬ⃗ + x⃗ ⋅ ΓY⃗ = T .

Quadratic equation in ℤn: Using our framework this corresponds to ℛ = ℤn, A1 = ℤn, A2 = ℤn, AT =
ℤn, f(x, y) = xy mod n and equations of the form x⃗ ⋅ b⃗+ x⃗ ⋅ Γy⃗ = t.

17

COMMITMENT. We will use two related commitment schemes to commit to elements in respectively ℤn

and G. In both cases, we use the ℤn-module G for the commitments. The commitment key, consists of an
element U ∈ G. In a hiding key, U is a generator of G. In a binding key, U has order q and thus only generates
the order q subgroup of G. The subgroup decision assumption tells us that the two types of commitment key
U are indistinguishable.

Let us describe how to commit to a group element Y using randomness s ∈ ℤn by defining

�(Z) := Z p(Z) := �Z giving us C := �(Y) + sU ,

where � = 1 mod p and � = 0 mod q. If U generates G, then the commitment C := �(Y) + sU hides
Y perfectly. On the other hand, if U has order q, then p(U) = �U = O and p(C) = �C = �Y defines Y
uniquely in the order p subgroup Gp of G.

To commit to an exponent x ∈ ℤn using randomness r we define

�′(z) = zP p′(zP) := �z giving us C := xP + rU .

When U generates G the commitment is perfectly hiding of x. On the other hand, if U has order q, then
p′(U) = 0 and the commitment determines p′(C) = �x ∈ ℤn.

SETUP. The setup and the common reference string together specify (n, G,GT , e,P,U), which is sufficient
to describe the entire setup since the other parts of the common reference string will be given implicitly.

With the notation in the paper we have B = B1 = B2 = G and BT = GT . The bilinear map F is
F (X ,Y) := e(X ,Y). In the witness-indistinguishability setup we use a hiding key U that generates G and
consequently e(U ,U) generates GT . The only solution H ∈ Mat1×1(ℛ) to e(U , HU) = 1 is therefore the
trivial H = 0, so we do not need to include any matrices H1, . . . ,H� in the common reference string.

For pairing equations, we define

�T (z) := z pT (z) := z�.

The map �T ∘ pT projects elements to the order p subgroup of GT . The first commutative property
e(�(X), �(Y)) = �T (e(X ,Y)) from Figure 4 is trivial, and since � = 1 mod p, � = 0 mod q we have
�2 = � mod n giving us the second commutative property e(p(X), p(Y)) = e(�X , �Y) = e(X ,Y)� =
pT (e(X ,Y)).

For multi-scalar multiplication equations, we define

�̂T (Z) := F (�′(1), �2(Z)) = e(P,Z) p̂T (e(P,Z)) := �Z.

This gives us the required commutative properties e(�′(x), �(Y)) = e(xP,Y) = e(P, xY) = �̂T (xY) and
p′(xP)p(Y) = (�x)(�Y) = �xY = p̂T (e(xP,Y)).

For quadratic equations in ℤn we define

�′T (z) := F (�′1(1), �′2(z)) = e(P,P)z p′T (e(P,P)z) := �z.

We have the commutative properties e(�′(x), �′(y)) = e(xP, yP) = e(P,P)xy = �′T (xy) and
p′(xP)p′(yP) = (�x)(�y) = �xy = p′T (e(xP, yP)).

PROOF. We will now give a NIWI proof for satisfiability of a set of quadratic equations of the three types
described above. Our NIWI proof is Lco-sound, where Lco is the language of sets of quadratic equations over
ℤn that are unsatisfiable in the order p subgroups of ℤn, G and GT . A valid proof therefore guarantees the
simultaneous satisfiability of all the equations in the order p subgroups of ℤn, G and GT . The reason that we
do not get full soundness is that U has order q on a soundness string, which prevents interference with the
order p subgroups but does enable interference in the order q subgroups.

18

Setup: (gk, sk) := ((n, G,GT , e,P), (p,q))← G(1k), where n = pq.

Soundness string: On input (gk, sk) return � := U where U := rpP for random r ∈ ℤ∗n.

Witness-indistinguishability string: On input (gk, sk) return � := U where U := rP for random r ∈ ℤ∗n.

NIWI proof: On input (n, G,GT , e,P,U), a set of equations and a witness x⃗, Y⃗ do:

1. Commit to the exponents x1, . . . , xm ∈ ℤn and the group elements Y1, . . . ,Yn ∈ G by comput-
ing

Ci := xiP + riU Di := Yi + siU

for randomly chosen r⃗ ∈ ℤmn , s⃗ ∈ ℤnn.

2. For each pairing product equation (A⃗ ⋅ Y⃗)(Y⃗ ⋅ΓY⃗) = tT make a proof as described in section 6.2

� := s⃗⊤A⃗+ s⃗⊤(Γ + Γ⊤)Y⃗ + s⃗⊤Γs⃗U =
n∑
i=1

siAi +
n∑
i=1

n∑
j=1

(ij + ji)siYj +
n∑
i=1

n∑
j=1

ijsisjU .

3. For each multi-scalar multiplication equation a⃗ ⋅ Y⃗ + x⃗ ⋅ ℬ⃗ + x⃗ ⋅ ΓY⃗ = T the proof is

� : = r⃗⊤ℬ⃗ + r⃗⊤ΓY⃗ + r⃗⊤Γs⃗U + s⃗⊤a⃗P + s⃗⊤Γx⃗P

=

m∑
i=1

riℬi +

m∑
i=1

n∑
j=1

riijYj +

m∑
i=1

n∑
j=1

ijrisjU +

n∑
i=1

si(ai +

m∑
j=1

ijxj)P.

4. For each quadratic equation x⃗ ⋅ b⃗+ x⃗ ⋅ Γx⃗ = t in ℤn we have

� := r⃗⊤b⃗P+r⃗⊤(Γ+Γ⊤)x⃗P+r⃗⊤Γr⃗U = (
m∑
i=1

ribi+
m∑
i=1

m∑
j=1

(ij+ji)rixj)P+
m∑
i=1

m∑
j=1

ijrirjU .

Verification: On input (n, G,GT , e,P,U), a set of equations and a proof C⃗, D⃗, {�i}Ni=1 do:

1. For each pairing product equation (A⃗ ⋅ Y⃗)(Y⃗ ⋅ΓY⃗) = tT with proof � check that
∏n
i=1 e(Ai,Di) ⋅∏n

i=1

∏n
j=1 e(Di,Dj)ij = tT e(U , �).

2. For each multi-scalar multiplication a⃗ ⋅ Y⃗ + x⃗ ⋅ ℬ⃗ + x⃗ ⋅ ΓY⃗ = T with proof � check that∏n
i=1 e(aiP,Di) ⋅

∏m
i=1 e(Ci,ℬi) ⋅

∏m
i=1

∏n
j=1 e(Ci,Dj)ij = e(P, T)e(U , �).

3. For each quadratic equation x⃗ ⋅ b⃗ + x⃗ ⋅ Γx⃗ = t in ℤn with proof � check that
∏m
i=1 e(Ci, biP) ⋅∏m

i=1

∏m
j=1 e(Ci, Cj)ij = e(P,P)te(U , �).

Theorem 7 The NIWI proof given above has perfect completeness, perfect Lco-soundness and composable
witness-indistinguishability.

Proof. Perfect completeness follows from Theorem 1. Perfect Lco-soundness follows from Theorem 2 since
the various maps of the form � ∘ p map to the order p subgroups of ℤn, G and GT . The subgroup decision
problem gives us that we cannot distinguish whether U has order q or order n so the two types of com-
mon reference strings are computationally indistinguishable. On a witness-indistinguishability string, the
commitments are perfectly hiding and we get perfect witness-indistinguishability from Theorem 3. □

SIZE. The size of the NIWI proof is m + n + N group elements in G, where m is the number of variables
in x⃗, n is the number of variables in Y⃗ and N is the number of equations.

19

9 Instantiation 2: SXDH

STATEMENT. The setup gk = (p, G1, G2, GT , e,P1,P2) defines the ring ℤp and modules ℤp, G1, G2, GT
and bilinear maps corresponding to respectively multiplication in ℤp, scalar-multiplication in G1 and G2,
and the pairing e : G1 ×G2 → GT .

The statement will consist of a set of equations, which are either quadratic equations in ℤp, multi-scalar
multiplication equations inG1 orG2, or pairing product equations. The equations are over exponent variables
x1, . . . , xm′ , y1, . . . , yn′ ∈ ℤp and group element variables X1, . . . ,Xm ∈ G1 and Y1, . . . ,Yn ∈ G2.

Pairing product equations: Using our framework this corresponds toℛ = ℤp, A1 = G1, A2 = G2, AT =

GT , f(x, y) = e(x, y) and equations of the form (A⃗ ⋅ Y⃗)(X⃗ ⋅ ℬ⃗)(X⃗ ⋅ ΓY⃗) = tT .

Multi-scalar multiplication in G1: Using our framework this corresponds to ℛ = ℤp, A1 = G1, A2 =

ℤp, AT = G1, f(X , y) = yX and equations of the form A⃗ ⋅ y⃗ + X⃗ ⋅ b⃗+ X⃗ ⋅ Γy⃗ = T1.

Multi-scalar multiplication in G2: Using our framework this corresponds to ℛ = ℤp, A1 = ℤp, A2 =

G2, AT = G2, f(x,Y) = xY and equations of the form a⃗ ⋅ Y⃗ + x⃗ ⋅ ℬ⃗ + x⃗ ⋅ ΓY⃗ = T2.

Quadratic equation in ℤp: Using our framework this corresponds to ℛ = ℤp, A1 = ℤp, A2 = ℤp, AT =

ℤp, f(x, y) = xy mod p and equations of the form a⃗ ⋅ y⃗ + x⃗ ⋅ b⃗+ x⃗ ⋅ Γy⃗ = t.

COMMITMENT. Consider a cyclic groupG of prime order p. With entry-wise addition we get the ℤp-module
B := G2. The commitment key is of the form

u1 = (P,Q) := (P, �P) u2 = (U ,V),

where � ← ℤ∗p is chosen at random. We can choose u2 = (U ,V) in two different ways: u2 := tu1 or
u2 := tu1 − (O,P) for a random t ∈ ℤ∗p. The former choice of u2 gives a perfectly binding commitment
key, whereas the latter choice of u2 gives a perfectly hiding commitment key. The two types of commitment
keys are computationally indistinguishable under the DDH assumption.

Let us now describe how to commit to an element X ∈ G using randomness r1, r2 ∈ ℤp:

�(Z) := (O,Z) p(Z1,Z2) := Z2 − �Z1 c := �(X) + r1u1 + r2u2.

On a binding key where u2 = tu1 we have that � ∘ p is the identity map on G and p(u1) = p(u2) = O. The
commitment c = ((r1 + r2t)P, (r1 + r2t)Q + X) corresponds to an ElGamal encryption of X . If u1 and
u2 are linearly independent we have that u1, u2 is a basis for B = G2 and therefore �(G) ⊆ ⟨u1, u2⟩. In a
hiding key u1 and u2 are linearly independent and we therefore have a perfectly hiding commitment.

Commitment to an exponent x ∈ ℤp using randomness r ∈ ℤp works as follows:

u := u2 + (O,P) �′(z) := zu p′(z1P, z2P) := z2 − �z1 c := �′(x) + ru1.

On a hiding key we have u = tu1 so u ∈ ⟨u1⟩, which implies �′(ℤp) ⊆ ⟨u1⟩. A hiding key therefore gives
us a perfectly hiding commitment scheme. On a binding key �′ ∘ p′ is the identity map and p′(u1) = 0 so the
commitment scheme is perfectly binding, and in fact the commitment c = ((r + xt)P, (r + xt)Q + xP) is
an ElGamal encryption of xP .

SETUP. The common reference string is of the form (u1, u2, v1, v2), where (u1, u2) is a commitment key for
the group G1 implicitly defining maps �1, p1, �′1, p

′
1 as described above, and (v1, v2) is a commitment key for

G2 implicitly defining maps �2, p2, �′2, p
′
2 as described above.

20

We have B1 = G2
1, B2 = G2

2 and we define BT := G4
T with addition being entry-wise multiplication.

The map F is defined as follows:

F : G2
1 ×G2

2 → G4
T (

(
X1

X2

)
,

(
Y1
Y2

)
) 7→

(
e(X1,Y1) e(X1,Y2)
e(X2,Y1) e(X2,Y2)

)
.

On a witness-indistinguishability string, we have hiding commitment keys u1, u2 and v1, v2 so the two
pairs of vectors are linearly independent. The four elements F (u1, v1), F (u1, v2), F (u2, v1), F (u2, v2) are
linearly independent in the witness-indistinguishability scenario. This implies that u⃗ ∙Hv⃗ = 0 only has the
trivial solution where H is the 2× 2 matrix with 0-entries. Therefore, the common reference string does not
need to include any matrices H1, . . . ,H� for the pairing product equations. The same holds true for the other
types of equations, we do not need any matrices H1, . . . ,H� in the common reference string.

For pairing product equations we define the maps �T : GT → G4
T and pT : G4

T → GT as follows

�T : z 7→
(

1 1
1 z

)
, pT (

(
z11 z12
z21 z22

)
) 7→ z22z

−�1
12 (z21z

−�1
11)−�2 .

The map pT corresponds to first ElGamal decrypting down the columns using �1 where u1 = (P1, �1P1)
and then ElGamal decrypting the resulting row by using �2 where v1 = (P2, �2P2). We note that �T ∘ pT is
the identity map. The maps areℛ-linear and satisfy the two commutative properties in Figure 4.

For multi-scalar multiplications in G1, we will need maps �̃T : G1 → G4
T and p̃T : G4

T → G1. For
multi-scalar multiplications in G2 we will need maps �̂T : G2 → G4

T and p̂T : G4
T → G2. The two cases are

symmetric, so we will just focus on multi-scalar multiplication in G2 here. We define

�̂T (Z) := F (�′1(1), �2(Z)) = F (u, (O,Z)) p̂T (z) := e−1(pT (z)),

where e−1(e(P1,Z)) := Z . In the soundness setting �̂T ∘ p̂T is the identity map on G2. To see that the
maps satisfy the two commutative properties, observe F (�′1(x), �2(Y)) = F (�′1(1), �2(xY)) = �̂T (xY) by
the linearity and bilinearity of the maps, and p′1(x1P1, x2P1)p2(Y1,Y2) = (x2 − �1x1)(Y2 − �2Y1) =
x2Y2 − �1x1Y2 − �2(x2Y1 − �1x1Y1) = p̂T (F ((x1P1, x2P2), (Y1,Y2))).

For quadratic equations in ℤp we define the maps �′T : ℤp → G4
T and p′T : G4

T → ℤp as follows

�′T (z) := F (�′1(1), �′2(z)) = F (u, v)z p′T (z) := loge(P1,P2)(pT (z)).

In the soundness setting �′T ∘ p′T is the identity map on ℤp. To see that the maps satisfy the two commutative
properties, observe F (�′1(x), �′2(y)) = F (�′1(1), �2(xy)) = �′(xy) by the linearity and bilinearity of the maps,
and p′1(x1P1, x2P1)p′2(y1P2, y2P2) = (x2 − �1x1)(y2 − �2y1) = x2y2 − �1x1y2 − �2(x2y1 − �1x1y1) =
p′T (F ((x1P1, x2P2), (y1P2, y2P2))).
PROOF. Having described the details of the common reference string above, we can now give the full NIWI
proof.

Setup: gk := (p, G1, G2, GT , e,P1,P2)← G(1k).

Soundness string: On input gk return � := (u1, u2, v1, v2) where u2 = t1u1 and v2 = t2v2 for random
t1, t2 ← ℤp.

Witness-indistinguishability string: On input gk return � := (u1, u2, v1, v2) where u2 = t1u1 − (O,P1)
and v2 = t2v1 − (O,P2) for random t1, t2 ← ℤp.

NIWI proof: On input gk, �, a set of equations and a witness X⃗ , Y⃗, x⃗, y⃗ do:

21

1. Commit to the group elements X⃗ ∈ Gm1 and the exponents x⃗ ∈ ℤm′p as

c⃗ := �1(X⃗) +Ru⃗ c⃗′ := �′1(x) + r⃗u1 where R← Matm×2(ℤp), r⃗ ← ℤm
′

p .

Commit to the group elements Y⃗ ∈ Gn2 and the exponents y⃗ ∈ ℤn′p as

d⃗ := �2(Y⃗) + Sv⃗ d⃗′ := �′2(y) + s⃗v1 where S ← Matn×2(ℤp), s⃗← ℤn
′

p .

2. For each pairing product equation (A⃗ ⋅ Y⃗)(X⃗ ⋅ ℬ⃗)(Y⃗ ⋅ ΓY⃗) = tT make a proof as described in
section 6. Writing it out we have for T ← Mat2×2(ℤp) the following proof

�⃗ := R⊤�2(ℬ⃗) +R⊤Γ�2(Y⃗) + (R⊤ΓS − T⊤)v⃗

�⃗ := S⊤�1(A⃗) + S⊤Γ⊤�1(X⃗) + T u⃗

For each linear equation A⃗ ⋅ Y⃗ = tT we use �⃗ := S⊤�1(A⃗). There is a direct correspondence
between S⊤A⃗ = p1(�⃗) and �⃗ = �1(S

⊤A⃗). The proof �⃗ can therefore be communicated by
sending S⊤A⃗, which consists of two group elements.
For each linear equation X⃗ ⋅ ℬ⃗ = tT we use �⃗ := R⊤�2(ℬ⃗). As above, the proof can be commu-
nicated by sending the two group elements R⊤ℬ⃗.

3. For each multi-scalar multiplication equation A⃗ ⋅ y⃗ + X⃗ ⋅ b⃗+ X⃗ ⋅ Γy⃗ = T1 in G1 the proof is for
random T ← Mat1×2(ℤp)

�⃗ := R⊤�′2(⃗b) +R⊤Γ�′2(y⃗) + (R⊤Γs⃗− T⊤)v1

� := s⃗⊤�1(A⃗) + s⃗⊤Γ⊤�1(X⃗) + T u⃗

For each linear equation A⃗ ⋅ y⃗ = T1 the proof is � := s⃗⊤�1(A⃗). There is a direct correspondence
between s⃗⊤A⃗ = p1(�⃗) and �⃗ = �1(s⃗

⊤A⃗). The proof � can therefore be communicated by sending
s⃗⊤A⃗, which consists of one group element.
For each linear equation X⃗ ⋅ b⃗ = T1 the proof is �⃗ := R⊤�′2(⃗b). As above, the proof can be
communicated by sending the two field elements R⊤b⃗.

4. For each multi-scalar multiplication equation a⃗ ⋅ Y⃗ + x⃗ ⋅ ℬ⃗ + x⃗ ⋅ ΓY⃗ = T2 in G2 the proof is for
random T ← Mat2×1(ℤp)

� := r⃗⊤�2(ℬ⃗) + r⃗⊤Γ�2(Y⃗) + (r⃗⊤ΓS − T⊤)v⃗

�⃗ := S⊤�′1(⃗a) + S⊤Γ⊤�′1(x⃗) + Tu1

For each linear equation a⃗ ⋅ Y⃗ = T2 the proof is �⃗ := S⊤�′1(⃗a). There is a direct correspondence
between S⊤a⃗ = p′1(�⃗) and �⃗ = �′1(S

⊤a⃗). The proof �⃗ can therefore be communicated by sending
S⊤A⃗, which consists of two field elements.
For each linear equation x⃗ ⋅ ℬ⃗ = T2 the proof is � := r⃗⊤�2(ℬ⃗). As above, the proof can be
communicated by sending the single group element r⃗⊤ℬ⃗.

5. For each quadratic equation x⃗ ⋅ b⃗+ x⃗ ⋅ Γx⃗ = t in ℤp the proof is for random T ← ℤp

� := r⃗⊤�′2(⃗b) + r⃗⊤Γ�′2(y⃗) + (r⃗⊤Γs⃗− T)v1

� := s⃗⊤�′1(⃗a) + s⃗⊤Γ⊤�′1(x⃗) + Tu1

For each linear equation a⃗ ⋅ y⃗ = t we use � := s⃗⊤�′1(⃗a). There is a direct correspondence between
s⃗⊤a⃗ = p′1(�) and � = �′1(s⃗

⊤a⃗). The proof � can therefore be communicated by sending s⃗⊤a⃗,
which consists of one field element.
For each linear equation x⃗ ⋅ b⃗ = twe use � := r⃗⊤�′2(⃗b). As above, the proof can be communicated
by sending the single field element r⃗⊤b⃗.

22

Verification: On input (gk, �), a set of equations and a proof c⃗, d⃗, c⃗′, d⃗′, {�⃗i, �⃗i}Ni=1 do:

1. For each pairing product equation (A⃗ ⋅ Y⃗)(X⃗ ⋅ ℬ⃗)(Y⃗ ⋅ ΓY⃗) = tT with proof (�⃗, �⃗) check that

�1(A⃗) ∙ d⃗+ c⃗ ∙ �2(ℬ⃗) + c⃗ ∙ Γd⃗ = �T (tT) + u⃗ ∙ �⃗ + �⃗ ∙ v⃗.

2. For each multi-scalar equation A⃗ ⋅ y⃗ + X⃗ ⋅ b⃗+ X⃗ ⋅ Γy⃗ = T1 in G1 with proof (�⃗, �) check that

�1(A⃗) ∙ d⃗′ + c⃗ ∙ �′2(⃗b) + c⃗ ∙ Γd⃗′ = �̃T (T1) + u⃗ ∙ �⃗ + F (�, v1).

3. For each multi-scalar equation a⃗ ⋅ Y⃗ + x⃗ ⋅ ℬ⃗ + x⃗ ⋅ ΓY⃗ = T2 in G2 with proof (�, �⃗) check that

�′1(⃗a) ∙ d⃗+ c⃗′ ∙ �2(ℬ⃗) + c⃗′ ∙ Γd⃗ = �̂T (T2) + F (u1, �) + �⃗ ∙ v⃗.

4. For each quadratic equation a⃗ ⋅ y⃗ + x⃗ ⋅ b⃗+ x⃗ ⋅ Γy⃗ = t in ℤp with proof (�, �) check that

�′1(⃗a) ∙ d⃗′ + c⃗′ ∙ �′2(⃗b) + c⃗′ ∙ Γd⃗′ = �′T (t) + F (u1, �) + F (�, v1).

Theorem 8 The protocol is a NIWI proof with perfect completeness, perfect soundness and composable
witness-indistinguishability for satisfiability of a set of equations over a bilinear group where the SXDH
problem is hard.

Perfect completeness follows from Theorem 1. Perfect soundness follows from Theorem 2 since the � ∘
p maps are identity maps on ℤp, G1, G2 and GT . The SXDH assumption gives us that the two types of
common reference strings are computationally indistinguishable. On a witness-indistinguishability string,
the commitments are perfectly hiding and we get perfect witness-indistinguishability from Theorem 3. □

SIZE. The modules we work in are B1 = G2
1 and B2 = G2

2, so each element in a module consists of two
group elements from respectively G1 and G2. Table 5 lists the cost of all the different types of equations.

Assumption: SXDH G1 G2 ℤp

Variables x ∈ ℤp,X ∈ G1 2 0 0
Variables y ∈ ℤp,Y ∈ G2 0 2 0
Pairing product equations 4 4 0
- Linear equation: A⃗ ⋅ Y⃗ = tT 2 0 0
- Linear equation: X⃗ ⋅ ℬ⃗ = tT 0 2 0
Multi-scalar multiplication equations in G1 2 4 0
- Linear equation: A⃗ ⋅ y⃗ = T1 1 0 0
- Linear equation: X⃗ ⋅ b⃗ = T1 0 0 2
Multi-scalar multiplication equations in G2 4 2 0
- Linear equation: a⃗ ⋅ Y⃗ = T2 0 0 2
- Linear equation: x⃗ ⋅ ℬ⃗ = T2 0 1 0
Quadratic equations in ℤp 2 2 0
- Linear equation: a⃗ ⋅ y⃗ = t 0 0 1
- Linear equation: x⃗ ⋅ b⃗ = t 0 0 1

Figure 5: Cost of each variable and equation measured in elements from G1, G2 and ℤp.

23

10 Instantation 3: DLIN

STATEMENT. The setup gk = (p, G,GT , e,P) describes three ℤp-modules ℤp, G and GT . The statement
will consist of a set of equations, which are either quadratic equations in ℤp, multi-scalar multiplication
equations in G, or pairing product equations. The equations are over exponent variables x1, . . . , xm inℤp

and group element variables Y1, . . . ,Yn ∈ G.

Pairing product equations: Using our framework this corresponds to ℛ = ℤp, A1 = G,A2 = G,AT =

GT , f(x, y) = e(x, y) and equations of the form (A⃗ ⋅ Y⃗)(X⃗ ⋅ ΓY⃗) = tT .

Multi-scalar multiplication in G: Using our framework this corresponds to ℛ = ℤp, A1 = ℤn, A2 =

G,AT = G2, f(x,Y) = xY and equations of the form a⃗ ⋅ Y⃗ + x⃗ ⋅ ℬ⃗ + x⃗ ⋅ ΓY⃗ = T .

Quadratic equation in ℤn: Using our framework this corresponds to ℛ = ℤp, A1 = ℤn, A2 = ℤn, AT =

ℤn, f(x, y) = xy mod p and equations of the form x⃗ ⋅ b⃗+ x⃗ ⋅ Γy⃗ = t.

COMMITMENT. We will now describe how to commit to elements in ℤp or group elements in G. The
commitments will belong to the ℤp-module B = G3 formed by entry-wise addition. The commitment key
is of the form

u1 := (U ,O,P) = (�P,O,P) u2 := (V,O,P) = (�P,O,P) u3 = (W1,W2,W3),

where �, � ← ℤ∗p. The vector u3 can be chosen as either u3 := ru1 + su2 or u3 := ru1 + su2 − (O,O,P)
giving respectively a binding key and a hiding key. The DLIN assumption is that it is hard to tell whether
three elements rU , sV, tP have the property that t = r+ s, which implies that the two types of commitment
keys are computationally indistinguishable.

For committing to Y ∈ G using randomness (s1, s2, s3)← ℤ3
p we define

�(Z) := (O,O,Z) p(Z1,Z2,Z3) := Z3 −
1

�
Z1 −

1

�
Z2 giving us c := �(Y) +

3∑
i=1

siui.

On a hiding key u1, u2, u3 are linearly independent so they form a basis for B = G3 and therefore �(G) ⊆
⟨u1, u2, u3⟩ so the commitment scheme is perfectly hiding. On a binding key we have � ∘ p is the identity
map and p(u1) = p(u2) = p(u3) = O so the commitment is perfectly binding, and in fact c = ((s1 +
rs3)U , (s2 + ss3)V, (s1 + s2 + (r + s)s3)P + Y) is a linear encryption [BBS04] of Y with p being the
decryption algorithm. The commitment scheme described here coincides with the scheme of [Wat06]. We
note that the different, and less efficient, commitment scheme of [Gro06] can be similarly described in our
language of modules.

To commit to an exponent x ∈ ℤp using randomness r1, r2 ∈ ℤp we use

�′(z) := zu p′(z1P, z2P, z3P) := z3 −
1

�
z1 −

1

�
z2 giving us c := xu+ r1u1 + r2u2,

where u := u3 + (O,O,P). On a hiding key, we have that u = ru1 + su2 so �′(ℤp) ⊆ ⟨u1, u2⟩ and the
commitment scheme is perfectly hiding. On a binding key, �′ ∘ p′ is the identity map on ℤp and p′(u1) =
p′(u2) = 0 so the commitment c = ((r1 + rx)U , (r2 + sx)V, (r1 + r2 + x(r + s))P + xP) is perfectly
binding.

SETUP. The common reference string is of the form (u1, u2, u3), which implicitly defines maps �, p, �′, p′

and commitment schemes in B = G3 as described above.

24

We use the module BT := G9
T with addition corresponding to entry-wise multiplication. We use two

different bilinear maps F, F̃ . The map F̃ is defined as follows:

F̃ : G3 ×G3 → G9
T (

⎛⎝ X1

X2

X3

⎞⎠ ,

⎛⎝ Y1Y2
Y3

⎞⎠) 7→

⎛⎝ e(X1,Y1) e(X1,Y2) e(X1,Y3)
e(X2,Y1) e(X2,Y2) e(X2,Y3)
e(X3,Y1) e(X3,Y2) e(X3,Y3)

⎞⎠ .

The symmetric map F is defined by

F (x, y) :=
1

2
F̃ (x, y) +

1

2
F̃ (y, x).

For pairing product equations we define

�T (z) :=

⎛⎝ 1 1 1
1 1 1
1 1 z

⎞⎠

pT (

⎛⎝ z11 z12 z13
z21 z22 z23
z31 z32 z33

⎞⎠) := (z33z
−1/�
13 z

−1/�
23)(z31z

−1/�
11 z

−1/�
21)−1/�(z32z

−1/�
12 z

−1/�
22)−1/�.

The map pT corresponds to first decrypting down the columns using the decryption key �, � for the linear
encryption scheme [BBS04] and then decrypting along the resulting row. We note that �T ∘ pT is the identity
map. Both F̃ and F satisfy the two commutative properties in Figure 4.

Some computation shows that the nine elements F̃ (ui, uj) are linearly independent in the witness-
indistinguishability setting. This implies that u⃗ ∙̃ Hu⃗ only has the trivial solution where H is the 3 × 3
matrix with 0-entries. On the other hand, the map F has non-trivial solutions to u⃗ ∙Hu⃗ corresponding to the
identities F (ui, uj) = F (uj , ui). Some computation shows that the matrices

H1 =

⎛⎝ 0 1 0
−1 0 0
0 0 0

⎞⎠ H2 =

⎛⎝ 0 0 1
0 0 0
−1 0 0

⎞⎠ H3 =

⎛⎝ 0 0 0
0 0 1
0 −1 0

⎞⎠
form a basis for the matrices H so u⃗ ∙Hu⃗ = 0. Since these matrices are fixed, we do not need to define them
explicitly in the common reference string.

We will now look at the case of multi-scalar multiplication in G. We define

�̃T (Z) := F̃ (�′(1), �2(Z)) = F̃ (u, (O,O,Z)) �̂T (Z) := F (�′(1), �2(Z)) = F (u, (O,O,Z))

p̃T (z) = p̂T (z) := e−1(pT (z)) where e−1(e(P,Z)) := Z.

In the soundness setting �̃ ∘ p̃T and �̂T ∘ p̂T are the identity maps on G. F̃ satisfies the
two commutative properties, since by the linear and bilinear properties give F̃ (�′(x), �(Y)) =
F̃ (�′(1), �(xY)) = �̃T (xY) and p′(x1P, x2P, x3P)p(Y1,Y2,Y3) = (x3− 1

�x1−
1
�x2)(Y3−

1
�Y1−

1
�Y2) =

p̃T (F̃ ((x1P, x2P, x3P), (Y1,Y2,Y3)). F also satisfies the two commutative properties, since the bilinear-
ity gives us F (�′(x), �(Y)) = F (�′(1), �(xY)) = �̂T (xY) and p′(x)p(y) = 1

2p
′(x)p(y) + 1

2p
′(y)p(x) =

1
2 p̃T (F̃ (x, y)) + 1

2 p̃T (F̃ (y, x)) = p̂T (F (x, y)).
In the witness-indistinguishability setting (u1, u2) ∙̃Hu⃗ = 0 only has the trivial solution where H is the

2 × 3 matrix containing 0-entries, whereas H1 =

(
0 1 0
−1 0 0

)
generates the matrices H so (u1, u2) ∙

Hu⃗ = 0.

25

Finally, we have the case of quadratic equations in ℤp. We define

�̃′T (z) := F̃ (�′(1), �′(z)) �′T (z) := F (�′(1), �′(z)) p′T (z) := loge(P,P)(pT (z)).

On a soundness string �̃′T ∘ p′T and �′T ∘ p′T are the identity maps on ℤp.
F̃ satisfies the commutative properties from Figure 4, since by the linear and bilinear properties

F̃ (�′(x), �′(y)) = F̃ (�′(1), �′(xy)) = �̃T (xy) and p′(x1P, x2P, x3P)p′(y1P, y2P, y3P) = (x3 − 1
�x1 −

1
�x2)(y3 −

1
�y1 −

1
� y2) = pT (F̃ ((x1P, x2P, x3P), (y1P, y2P, y3P)). F also satisfies the two commuta-

tive properties, since the bilinearity gives us F (�′(x), �′(y)) = F (�′(1), �′(xy)) = �′T (xy) and p′(x)p′(y) =
1
2p
′(x)p′(y) + 1

2p
′(y)p′(x) = 1

2p
′
T (F̃ (x, y)) + 1

2p
′
T (F̃ (y, x)) = p′T (F (x, y)).

For F̃ we only have the trivial matrices H , whereas for F we have the non-trivial basis H1 =(
0 1
−1 0

)
.

PROOF. Having described the modules, maps and matrices that are implicitly given by the common reference
string above, we are now ready to give the full NIWI proof.

Setup: gk := (p, G,GT , e,P)← G(1k).

Soundness string: On input gk return � := (u1, u2, u3), where u1 = (�P,O,P), u2 = (O, �P,P), u3 =
ru1 + su2 for random �, � ← ℤ∗p and r, s← ℤp.

Witness-indistinguishability string: On input gk return � := (u1, u2, u3), where u1 = (�P,O,P), u2 =
(O, �P,P), u3 = ru1 + su2 − (O,O,P) for random �, � ← ℤ∗p and r, s← ℤp.

Proof: For notational convenience let v⃗ = (u1, u2). On input gk, �, a set of equations and a witness x⃗, Y⃗
do:

1. Commit to the exponents x⃗ ∈ ℤmp and the group elements Y⃗ ∈ Gn as

c⃗ := �′(x⃗) +Rv⃗ d⃗ := �(Y⃗) + Su⃗

for randomly chosen R← Matm×2(ℤp), S ← Matn×3(ℤp).

2. For each pairing product equation (A⃗ ⋅ Y⃗)(Y⃗ ⋅ ΓY⃗) = tT make a proof as described in section 6
using the symmetric map F and random r1, r2, r3 ← ℤp.

�⃗ := S⊤�(A⃗) + S⊤(Γ + Γ⊤)�(Y⃗) + S⊤ΓSu⃗+
3∑
i=1

riHiu⃗.

For each linear equation A⃗ ⋅ Y⃗ = tT we use the asymmetric map F̃ to get the proof

�⃗ := S⊤�(A⃗).

The reason we use the asymmetric F̃ for the linear equation is that there are no non-trivial matri-
ces H so u⃗ ∙̃Hu⃗ = 0, which simplifies the proof. Observe that �⃗ = �(S⊤A⃗) = S⊤�(A⃗) and vice
versa p(�⃗) = S⊤A⃗ is easily computable in this special setting, since �(A) = (O,O,A). We can
therefore just reveal the proof �⃗ := p(�⃗) = S⊤A⃗, which consists of only three group elements.

3. For each multi-scalar multiplication equation a⃗ ⋅ Y⃗ + x⃗ ⋅ ℬ⃗ + x⃗ ⋅ ΓY⃗ = T2 we use the symmetric
map F . There is one matrixH1 that generates allH so v⃗ ∙Hv⃗. The proof is for random r1 ← ℤp

�⃗ := R⊤�(ℬ⃗) +R⊤Γ�(Y⃗) + (S′)⊤�′(⃗a) + (S′)⊤Γ⊤�′(x⃗) +R⊤ΓS′u⃗+ r1H1u⃗.

26

For each linear equation a⃗ ⋅ Y⃗ = T we use the asymmetric map F̃ to get the proof

�⃗ := S⊤�′(⃗a).

It suffices to reveal the value �⃗ = S⊤a⃗. Since �⃗ determines �⃗ uniquely, this does not compro-
mise the perfect witness-indistinguishability we have on witness-indistinguishability strings. The
verifier can compute �⃗ = �′(�⃗). The proof now consists of only 3 elements in ℤp.

For each linear equation x⃗ ⋅ ℬ⃗ = T we use F̃ to get the proof

� := R⊤�(ℬ⃗).

We can use �⃗ = R⊤ℬ⃗ as the proof, since it allows the verifier to compute �⃗ = �(�⃗). The proof
therefore consists of only 2 group elements.

4. For each quadratic equation x⃗ ⋅ b⃗+ x⃗ ⋅ Γx⃗ = t in ℤp we use the symmetric map F . There is one
matrix H1 that generates all H so v⃗ ∙Hv⃗. The proof is for random r1 ← ℤp

�⃗ := R⊤�′(⃗b) +R⊤(Γ + Γ⊤)�′(x) +R⊤ΓRv⃗ + r1H1v⃗.

For each linear equation x⃗ ⋅ b⃗ = t we use the asymmetric map F̃ to get the proof �⃗ := R⊤�′(⃗b).
It suffices to reveal just �⃗ = R⊤b⃗, from which the verifier can compute �⃗ = �′(�⃗).

Verification: On input (gk, �), a set of equations and a proof c⃗, d⃗, {�⃗i}Ni=1 do:

1. For each pairing product equation (A⃗ ⋅ Y⃗)(Y⃗ ⋅ ΓY⃗) = tT with proof �⃗ check that

�(A⃗) ∙ d⃗+ d⃗ ∙ Γd⃗ = �T (tT) + u⃗ ∙ �⃗.

For each linear equation A⃗ ⋅ Y⃗ = tT with proof �⃗ check

�(A⃗) ∙̃ d⃗ = �T (tT) + �(�⃗) ∙̃ u⃗ .

2. For each multi-scalar multiplication a⃗ ⋅ Y⃗ + x⃗ ⋅ ℬ⃗ + x⃗ ⋅ ΓY⃗ = T with proof �⃗ check that

�′(⃗a) ∙ d⃗+ c⃗ ∙ �(ℬ⃗) + c⃗ ∙ Γd⃗ = �̂T (T) + u⃗ ∙ �⃗.

For each linear equation a⃗ ⋅ Y⃗ = T with proof �⃗ check

�′(⃗a) ∙̃ d⃗ = �̂T (T) + �′(�⃗) ∙̃ u⃗.

For each linear equation x⃗ ⋅ ℬ⃗ = T with proof �⃗ check

c⃗ ∙̃ �(ℬ⃗) = �̂T (T) + v⃗ ∙̃ �(�⃗).

3. For each quadratic equation x⃗ ⋅ b⃗+ x⃗ ⋅ Γx⃗ = t in ℤp with proof �⃗ check that

c⃗ ∙ �′(⃗b) + c⃗ ∙ Γc⃗ = �′T (t) + v⃗ ∙ �⃗.

For each linear equation x⃗ ⋅ b⃗ = t with proof �⃗ check

c⃗ ∙̃ �′(⃗b) = �′T (t) + v⃗ ∙̃ �′(�⃗).

27

Theorem 9 The protocol is a NIWI proof with perfect completeness, perfect soundness and composable
witness-indistinguishability for satisfiability of a set of equations over a bilinear group where the DLIN
problem is hard.

Perfect completeness follows from Theorem 1. Perfect soundness follows from Theorem 2 since the �∘pmaps
are identity maps on ℤp, G and GT . The DLIN assumption gives us that the two types of common reference
strings are computationally indistinguishable. On a witness-indistinguishability string, the commitments are
perfectly hiding and we get perfect witness-indistinguishability from Theorem 5. □

SIZE. The module we work in is B = G3, so each element in the module consists of three group elements
from G. In some of the linear equations, we can compute p(�⃗) efficiently and we have �(p(�⃗)) = �⃗ which
gives us a shorter proof. Table 6 list the cost of all the different types of equations.

Assumption: DLIN G ℤp

Variables x ∈ ℤp,Y ∈ G 3 0
Pairing product equations 9 0
- Linear equation: A⃗ ⋅ Y⃗ = tT 3 0
Multi-scalar multiplication equations 9 0
- Linear equation: a⃗ ⋅ Y⃗ = T 0 3
- Linear equation: x⃗ ⋅ ℬ⃗ = T 2 0
Quadratic equations in ℤp 6 0
- Linear equation: x⃗ ⋅ b⃗ = t 0 2

Figure 6: Cost of each variable and equation measured in elements from ℤp and G.

11 Zero-Knowledge

We will now show that in many cases it is possible to make zero-knowledge proofs for satisfiability of
quadratic equations. An obvious strategy is to use our NIWI proofs directly, however, one could imagine
such proofs might not be zero-knowledge because the zero-knowledge simulator might not be able to compute
any witness for satisfiability of the equations. It turns out that the strategy is better than it seems at first sight
though; we will often be able to modify the set of quadratic equations into an equivalent set of quadratic
equations where a witness can be found and which has the same distribution of proofs.

We will consider the case where A1 = ℛ, A2 = AT , f(r, y) = ry. We remark that it is quite common
to have A1 = ℛ; in bilinear groups both multi-scalar multiplication equations in G1, G2 and quadratic
equations in ℤn have this structure.

The first stage of the simulator S1 will output a witness-indistinguishability string and a simulation trap-
door � that makes it possible to trapdoor open the commitments in B1. More precisely, � = s⃗ ∈ ℛm̂ so
�1(1) = �1(0) + s⃗⊤u⃗. Define c := �1(1), which is a commitment to � = 1. The idea in the simulation is that
we can rewrite the statement as

a⃗i ⋅ y + f(−�, ti) + x⃗ ⋅ b⃗i + x⃗ ⋅ Γy⃗ = 0.

We have introduced a new variable � and by choosing all variables to be 0 gives a satisfying witness. In the
simulation, the simulator S2 will use the trapdoor information � to open c to 0 and it can now use the NIWI
proof from Section 7.

Setup: (gk, sk) := ((ℛ, A1, A2, AT , f), sk)← G(1k), where A1 = ℛ and A2 = AT .

28

Soundness string: � := (B1, B2, BT , F, �1, p1, �2, p2, �T , pT , u⃗, v⃗, H1, . . . ,H�)← K(gk, sk).

NIZK proof: This protocol is exactly the same as in the NIWI proof, we do not even need to rewrite the
equations. The input consists of gk, �, a list of quadratic equations {(⃗ai, b⃗i,Γi, ti)}Ni=1 and a satisfying
witness x⃗, y⃗.

Pick at random R ← Matm×m̂(ℛ) and S ← Matn×n̂(ℛ) and commit to all the variables as c⃗ :=
�1(x⃗) +Ru⃗ and d⃗ := �2(y⃗) + Sv⃗.

For each equation (⃗ai, b⃗i,Γi, ti) make a proof as described in Section 6. In other words, pick Ti ←
Matn̂×m̂(ℛ) and ri1, . . . , ri� ← ℛ and compute

�⃗i := R⊤�2(⃗bi) +R⊤Γ�2(y⃗) +R⊤ΓSv⃗ − T⊤i v⃗ +

�∑
j=1

rijHj v⃗

�⃗i := S⊤�1(⃗ai) + S⊤Γ⊤�1(x⃗) + Tiu⃗.

Output the proof (c⃗, d⃗, {(�⃗i, �⃗i)}Ni=1).

Verification: The input is gk, �, {(⃗ai, b⃗i,Γi, ti)}Ni=1 and the proof (c⃗, d⃗, {(�⃗i, �⃗i)}).

For each equation check

�1(⃗ai) ∙ d⃗+ c⃗ ∙ �2(⃗bi) + c⃗ ∙ Γid⃗ = �T (ti) + u⃗ ∙ �⃗i + �⃗i ∙ v⃗.

Output 1 if all the checks pass, else output 0.

Simulation string: (�, �) := ((B1, B2, BT , F, �1, p1, �2, p2, �T , pT , u⃗, v⃗, H1, . . . ,H�), s⃗) ← S1(gk, sk),
where �1(1) = �1(0) + s⃗⊤u⃗.

Simulated proof: The input consists of gk, � and a list of quadratic equations {(⃗ai, b⃗i,Γi, ti)}Ni=1 and the
simulation trapdoor � = s⃗.

Rewrite each equation as a⃗i ⋅ y⃗ + x⃗ ⋅ b⃗i + f(�,−ti) + x⃗ ⋅ Γiy⃗ = 0. Define x⃗ := 0⃗, y⃗ := 0⃗ and � = 0 to
get a witness that satisfies all the modified equations.

Pick at random R ← Matm×m̂(ℛ) and S ← Matn×n̂(ℛ) and commit to all the variables as c⃗ :=
0⃗ +Ru⃗ and d⃗ := 0⃗ + Sv⃗. We also use c := �1(1) = �1(0) + s⃗⊤u⃗ and append it to c⃗.

For each modified equation (⃗ai, b⃗i,−ti,Γi, 0) make a proof as described in Section 6. Return the
simulated proof {(c⃗, d⃗, �⃗i, �⃗i)}Ni=1.

Theorem 10 The protocol described above is a composable NIZK proof for satisfiability of pairing product
equations with perfect completeness, perfect Lco-soundness and composable zero-knowledge.

Proof. Perfect completeness on a soundness string follows from the perfect completeness of the NIWI proof.
The simulator knows an opening of c := �1(1) to c = �1(0) +

∑m̂
i=1 siui. It therefore knows a witness

0⃗, 0⃗, � = 0 for satisfiability of all the modified equations. It therefore outputs a proof {(c⃗, d⃗, �⃗i, �⃗i)}Ni=1 such
that for all i we have

�1(⃗ai) ∙ d⃗+ c⃗ ∙ �2(⃗bi) + F (�1(1),−�2(ti)) + c⃗ ∙ Γid⃗ = �T (0) + u⃗ ∙ �⃗i + �⃗i ∙ v⃗.

The commutative property of the maps gives us F (�1(1), �2(ti)) = �T (f(1, ti)) = �T (ti), so the NIZK proofs
satisfy the equations the verifier checks. Perfect completeness on a simulation string now follows from the
perfect completeness of the NIWI proof as well.

29

Perfect Lco-soundness follows from the perfect Lco-soundness of the NIWI proof.
We will now show that on a simulation string we have perfect zero-knowledge. The commitments

c⃗, d⃗ and c = �1(1) are perfectly hiding and therefore have the same distribution whether we use witness
x⃗, y⃗, � = 1 or 0⃗, 0⃗, � = 0. Theorem 3 now tells us that the proofs �⃗i, �⃗i made with either type of opening
of c⃗, d⃗, c are uniformly distributed over all possible choices of {(�⃗i, �⃗i)}Ni=1 that satisfy the equations
�1(⃗ai) ∙ d⃗+ c⃗ ∙ b⃗i + c⃗ ∙ Γd⃗ = �T (t). We therefore have perfect zero-knowledge on a simulation string. □

Since the NIZK proof is exactly the same as the NIWI proof, there is no additional cost associated with
getting composable zero-knowledge for full quadratic equations. If we look at linear equations, there are two
cases to consider. On a linear equation of the form x⃗⋅ b⃗ = t, the simulator can rewrite it as x⃗⋅ b⃗+f(−�, t) = 0,
which is a linear equation of the same form. The shorter NIWI proofs for this type of linear equations can
therefore also be perfectly simulated on a simulation string. NIWI proofs for linear equations of the form
a⃗ ⋅ y⃗ = t on the other hand cannot be simulated as easily, because if the simulator rewrites the equation as
a⃗ ⋅ y⃗ + (−�, t) = 0, then it is no longer a linear equation. To get composable zero-knowledge for the latter
type of linear equation, the prover can instead use the NIWI proof for the full quadratic equation.

11.1 NIZK Proofs for Bilinear Groups

Let us now consider bilinear groups and the four types of quadratic equations given in Figure 1. If we set
up the common reference string such that we can trapdoor open respectively �′1(1) and �′2(1) to 0 then multi-
scalar multiplication equations and quadratic equations in ℤn are of the form for which we can get a perfect
simulation.

In the case of pairing product equations we do not know how to get zero-knowledge, since even with the
trapdoors we may not be able to compute a witness. We do observe though that in the special case, where all
tT = 1 the choice of X⃗ = O⃗, Y⃗ = O⃗ is a satisfactory witness. Since we also use the witness X⃗ = O⃗, Y⃗ = O⃗
in the other types of equations, the simulator can use this witness in the simulation. In the special case where
all tT = 1 we can therefore make NIZK proofs for satisfiability of a set of quadratic equations.

In another special case where we have a pairing product equation with tT =
∏n
i=1 e(Pi,Qi) for some

known Pi,Qi there is another technique that can be useful to get zero-knowledge. In this case, we can add
the equations �Zi− �Qi = O to the set of multi-scalar multiplication equations in G2 and rewrite the pairing
product equation as (A⃗ ⋅ Y⃗)(X⃗ ⋅ ℬ⃗)(P⃗ ⋅ Z⃗)(X⃗ ⋅ ΓY⃗) = 1. This gives us pairing product equations of the
type where we can make zero-knowledge proofs. We can therefore also make zero-knowledge proofs for
a set of quadratic equations over a bilinear group if all the pairing product equations have tT of the form
tT =

∏n
i=1 e(Pi,Qi) for some known Pi,Qi.

The case of pairing product equations points to a couple of differences between witness-indistinguishable
proofs and zero-knowledge proofs using our techniques. NIWI proofs can handle any target tT , whereas zero-
knowledge proofs can only handle special types of target tT . Furthermore, if tT ∕= 1 the size of the NIWI
proof for this equation is constant, whereas the NIZK proof for the same equation may be larger.

We conclude our discussion of NIZK proofs with Figure 7 and Figure 8 that give the costs for proving the
satisfiability of a set of quadratic equations in the SXDH and DLIN instantiations. For the subgroup decision
instantiation, NIZK proofs for sets of quadratic equations where all tT = 1 are the same as those given in
Table 1.

12 Conclusion and an Open Problem

Our main contribution in this paper is the construction of efficient non-interactive cryptographic proofs for
use in bilinear groups. Our proofs can be instantiated with many different types of bilinear groups and
the security of our proofs can be based on many different types of intractability assumptions. We have given

30

Assumption: SXDH G1 G2 ℤp

Variables x ∈ ℤp,X ∈ G1 2 0 0
Variables y ∈ ℤp,Y ∈ G2 0 2 0
Pairing product equations with tT = 1 4 4 0
- Linear equation: A⃗ ⋅ Y⃗ = 1 2 0 0
- Linear equation: X⃗ ⋅ ℬ⃗ = 1 0 2 0
Multi-scalar multiplication equations in G1 2 4 0
- Linear equation: A⃗ ⋅ y⃗ = T1 1 0 0
- Linear equation: X⃗ ⋅ b⃗ = O 0 0 2
Multi-scalar multiplication equations in G2 4 2 0
- Linear equation: a⃗ ⋅ Y⃗ = O 0 0 2
- Linear equation: x⃗ ⋅ ℬ⃗ = T2 0 1 0
Quadratic equations in ℤp 2 2 0
- Linear equation: a⃗ ⋅ y⃗ = t 0 0 1
- Linear equation: x⃗ ⋅ b⃗ = t 0 0 1

Figure 7: Cost of each variable and equation in an NIZK proof in the SXDH instantiation.

Assumption: DLIN G ℤp

Variables x ∈ ℤp,Y ∈ G 3 0
Pairing product equations with tT = 1 9 0
- Linear equation: A⃗ ⋅ Y⃗ = 1 3 0
Multi-scalar multiplication equations 9 0
- Linear equation: a⃗ ⋅ Y⃗ = O 0 3
- Linear equation: x⃗ ⋅ ℬ⃗ = T 2 0
Quadratic equations in ℤp 6 0
- Linear equation: x⃗ ⋅ b⃗ = t 0 2

Figure 8: Cost of each variable and equation in an NIZK proof in the DLIN instantiation.

three concrete examples of instantiations based on respectively the subgroup decision assumption, the SXDH
assumption and the DLIN assumption.

We have been interested in bilinear groups and have in our instantiations based the modules on bilinear
groups. Our techniques generalize beyond bilinear groups though; we do for instance not require the modules
to be cyclic as is the case for bilinear groups. It is possible that other types of modules with a bilinear map
exist, which are not constructed from bilinear groups. The existence of such modules might lead to efficient
NIWI and NIZK proofs based on entirely different intractability assumptions. We leave the construction of
such modules with a bilinear map as an interesting open problem.

Acknowledgements

We gratefully acknowledge Brent Waters for a number of helpful ideas, comments, and conversations related
to this work. In particular, our module-based approach can be seen as formalizing part of the intuition
expressed by Waters that the Decisional Linear Assumption, Subgroup Decision Assumption in composite-
order groups, and SXDH can typically be exchanged for one another. (We were inspired by previously such

31

connections made by [GOS06a, Wat06].) It would be interesting to see if this intuition can be made formal
in other settings, such as Traitor Tracing [BSW06] or Searchable Encryption [BW06]. We thank Dan Boneh
for his encouragement and for suggesting using our techniques to get fair exchange. We also thank Ghadafi,
Smart, and Warinschi [GSW09] for their helpful feedback regarding earlier online versions of this paper,
observing and correcting some errors in Instantiations 2 and 3.

References

[Bar06] Paulo Barreto. The pairing-based crypto lounge, 2006. Available at
http://paginas.terra.com.br/informatica/paulobarreto/pblounge.html.

[BB04a] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption without
random oracles. In EUROCRYPT, volume 3027 of Lecture Notes in Computer Science, pages
223–238, 2004.

[BB04b] Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles. In
CRYPTO, volume 3152 of Lecture Notes in Computer Science, pages 443–459, 2004.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In CRYPTO, volume
3152 of Lecture Notes in Computer Science, pages 41–55, 2004.

[BCKL08] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. P-
signature and non-interactive anonymous credentials. In TCC, volume 4948 of Lec-
ture Notes in Computer Science, pages 356–374, 2008. Full paper available at
http://eprint.iacr.org/2007/384.

[BCOP04] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key
encryption with keyword search. In EUROCRYPT, volume 3027 of Lecture Notes in Computer
Science, pages 506–522, 2004.

[BF03] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. SIAM
Journal of Computing, 32(3):586–615, 2003.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its ap-
plications. In STOC, pages 103–112, 1988.

[BGdMM05] Lucas Ballard, Matthew Green, Breno de Medeiros, and Fabian Monrose. Correlation-resistant
storage via keyword-searchable encryption. Cryptology ePrint Archive, Report 2005/417,
2005. Available at http://eprint.iacr.org/2005/417.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts. In
TCC, volume 3378 of Lecture Notes in Computer Science, pages 325–341, 2005.

[Bon06] Dan Boneh. Personal communication, 2006.

[BSW06] Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor tracing with short
ciphertexts and private keys. In EUROCRYPT, volume 4004 of Lecture Notes in Computer
Science, pages 573–592, 2006.

[BW06] Xavier Boyen and Brent Waters. Compact group signatures without random oracles. In EU-
ROCRYPT, volume 4004 of Lecture Notes in Computer Science, pages 427–444, 2006.

32

[BW07] Xavier Boyen and Brent Waters. Full-domain subgroup hiding and constant-size group signa-
tures. In PKC, volume 4450 of Lecture Notes in Computer Science, pages 1–15, 2007.

[CGS07] Nishanth Chandran, Jens Groth, and Amit Sahai. Ring signatures of sub-linear size without
random oracles. In ICALP, volume 4596 of Lecture Notes in Computer Science, pages 423–
434, 2007.

[Dam92] Ivan Damgård. Non-interactive circuit based proofs and non-interactive perfect zero-
knowledge with preprocessing. In EUROCRYPT, volume 658 of Lecture Notes in Computer
Science, pages 341–355, 1992.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography. SIAM Journal
of Computing, 30(2):391–437, 2000.

[DDP02] Alfredo De Santis, Giovanni Di Crescenzo, and Giuseppe Persiano. Randomness-optimal
characterization of two NP proof systems. In RANDOM, volume 2483 of Lecture Notes in
Computer Science, pages 179–193, 2002.

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs
under general assumptions. SIAM Journal of Computing, 29(1):1–28, 1999.

[GH08] Matthew Green and Susan Hohenberger. Universally composable adaptive oblivious transfer.
In ASIACRYPT, volume 5350 of Lecture Notes in Computer Science, pages 179–197, 2008.

[GL07] Jens Groth and Steve Lu. A non-interactive shuffle with pairing based verifiability. In ASI-
ACRYPT, volume 4833 of Lecture Notes in Computer Science, pages 51–67, 2007.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interac-
tive proofs. SIAM Journal of Computing, 18(1):186–208, 1989.

[GOS06a] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new techniques for
NIZK. In CRYPTO, volume 4117 of Lecture Notes in Computer Science, pages 97–111, 2006.

[GOS06b] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero-knowledge for NP.
In EUROCRYPT, volume 4004 of Lecture Notes in Computer Science, pages 339–358, 2006.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In ACM CCS, pages 89–98, 2006.

[GR04] Steven D. Galbraith and Victor Rotger. Easy decision Diffie-Hellman groups. London Mathe-
matical Society Journal of Computation and Mathematics, 7:201–218, 2004.

[Gro06] Jens Groth. Simulation-sound NIZK proofs for a practical language and
constant size group signatures. In ASIACRYPT, volume 4248 of Lecture
Notes in Computer Science, pages 444–459, 2006. Full paper available at
http://www.brics.dk/∼jg/NIZKGroupSignFull.pdf.

[Gro07] Jens Groth. Fully anonymous group signatures without random oracles. In ASIACRYPT,
volume 4833 of Lecture Notes in Computer Science, pages 164–180, 2007. Full paper available
at http://www.brics.dk/∼jg/CertiSignFull.pdf.

[GSW09] Essam Ghadafi, Nigel P. Smart, and Bogdan Warinschi. Groth–sahai proofs revisited. Cryp-
tology ePrint Archive, Report 2009/599, 2009.

33

[KP98] Joe Kilian and Erez Petrank. An efficient noninteractive zero-knowledge proof system for NP
with general assumptions. Journal of Cryptology, 11(1):1–27, 1998.

[Mic03] Silvio Micali. Simple and fast optimistic protocols for fair electronic exchange. In PODC,
pages 12–19, 2003.

[Pat05] Kenneth G. Paterson. Cryptography from pairings. In I.F. Blake, G. Seroussi, and N.P. Smart,
editors, Advances in Elliptic Curve Cryptography, volume 317 of London Mathematical Soci-
ety Lecture Note Series, pages 215–251. Cambridge University Press, 2005.

[Sco02] Mike Scott. Authenticated ID-based key exchange and remote log-in with simple to-
ken and PIN number. Cryptology ePrint Archive, Report 2002/164, 2002. Available at
http://eprint.iacr.org/2002/164.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, volume
3494 of Lecture Notes in Computer Science, pages 457–473, 2005.

[Ver04] Eric R. Verheul. Evidence that XTR is more secure than supersingular elliptic curve cryp-
tosystems. Journal of Cryptology, 17(4):277–296, 2004.

[Wat05] Brent Waters. Efficient identity-based encryption without random oracles. In EUROCRYPT,
volume 3494 of Lecture Notes in Computer Science, pages 114–127, 2005.

[Wat06] Brent Waters. New techniques for slightly 2-homomorphic encryption, 2006. Manuscript.

34

A Quick Reference to Notation

Bilinear groups.
G1, G2, GT : cyclic groups with bilinear map e : G1 ×G2 → GT .
P1,P2: generators of respectively G1 and G2.
Group order: prime order p or composite order n.

Modules with bilinear map.
ℛ: finite commutative ring (ℛ,+, ⋅, 0, 1).
A1, A2, AT , B1, B2, BT : ℛ-modules.
f, F : bilinear maps f : A1 ×A2 → AT and F : B1 ×B2 → BT .

x⃗ ⋅ y⃗ :=
n∑
i=1

f(xi, yi) , x⃗ ∙ y⃗ :=
n∑
i=1

F (xi, yi).

Properties that follows from bilinearity:

x⃗ ⋅My⃗ = M⊤x⃗ ⋅ y⃗ , x⃗ ∙My⃗ = M⊤x⃗ ∙ y⃗.

Commutative diagram of maps in setup.

A1 × A2 → AT
f

�1 ↓↑ p1 �2 ↓↑ p2 �T ↓↑ pT

B1 × B2 → BT
F

Commutative properties:

F (�1(x), �2(y)) = �T (f(x, y)) , f(p1(x), p2(x)) = pT (F (x, y)).

Equations.
(Secret) variables: x⃗ ∈ Am1 , y⃗ ∈ An2 .
(Public) constants: a⃗ ∈ An1 , b⃗ ∈ Am2 ,Γ ∈ Matm×n(ℛ), t ∈ AT .
Equations: a⃗ ⋅ y⃗ + x⃗ ⋅ b⃗+ x⃗ ⋅ Γy⃗ = t.

Commitments.
Commitment keys: u⃗ ∈ Bm̂

1 , v⃗ ∈ Bn̂
2 .

Commitments:
c⃗ := �1(x⃗) +Ru⃗ ∈ Bm

1 , d⃗ := �2(y⃗) + Sv⃗ ∈ Bn
2 .

NIWI proofs.
Additional setup information: H1, . . . ,H� so u⃗ ∙Hiv⃗ = 0.
Randomness in proofs: T ← Matn̂×m̂(ℛ), r1, . . . , r� ← ℛ.
Proofs:

�⃗ := R⊤�2(⃗b) +R⊤Γ�2(y⃗) +R⊤ΓSv⃗ − T⊤v⃗ +

�∑
i=1

riHiv⃗

�⃗ := S⊤�1(⃗a) + S⊤Γ⊤�1(x⃗) + T u⃗

Verification: �1(⃗a) ∙ d⃗+ c⃗ ∙ �2(⃗b) + c⃗ ∙ Γd⃗ = �T (t) + u⃗ ∙ �⃗ + �⃗ ∙ v⃗.

35

