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Abstract. The aim of this paper is to present a new way of relating formal and computational models
of cryptography in case of active adversaries when formal security analysis is done with first order logic.
We introduce a fully probabilistic method to assign computational semantics to the syntax. We present
this via considering a simple example of such a formal model, the Basic Protocol Logic of [25] by K.
Hasebe and M. Okada, but the technique is suitable for extensions to more complex situations. The idea
is to make use of the usual mathematical treatment of stochastic processes, hence (as opposed to earlier
methods) be able to treat arbitrary probability distributions, non-negligible probability of collision, causal
dependence or independence, and so on.

1 Introduction

In the past few years, linking the formal and computational models of cryptography has become
of central interest. Several different methods have emerged for both active and passive adversaries.
In this paper we would like to consider the relationship of the two models when formal security
analysis is done with first order logic. In the formal approach of our interest, protocol correctness
is analyzed by defining a syntax with axioms and inference rules and then proving some property.
A logical proof then ensures that the property will be true in any formal model (semantics) of the
syntax. The link to the computational world then is done by assigning a computational semantics
(instead of formal) to the syntax, proving that the axioms and inference rules hold there, and hence
a property correct in the syntax must be true in the computational model. However, as it turns out,
it is not unambiguous how to define the computational semantics, and when a property should be
deemed “true” computationally.

Recently, Datta et al. in [18] gave a computational semantics to the syntax of their Protocol
Composition Logic of [20, 17] (cf. also [1] for a protocol composition logic project overview). In
their treatment, every action by the honest participants are recorded on each execution trace (which
have identical probabilities), and bit strings emerging later are checked whether they were recorded
earlier and to what action they corresponded (the adversary’s actions are not recorded). This way,
they first define whether a property is true on a particular trace, and then they say the property is
true in the model if it is true on an overwhelming number of traces. This method however relies on
negligible collision probabilities, because otherwise there would be a large probability of identifying
bit strings with the wrong actions. Moreover, as the comparisons are done on each trace separately
it is not possible to track correlations.

Our approach puts more emphasis on probabilities. Instead of defining what is true on each
trace, we say that a property is true in the model if a “cross-section” of all traces provides the
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right probabilities for computational realizations of the property. An underlying stochastic structure
ensures that we can detect if something depends on the past or does not. It is not coincidences on
traces that we look for, but correlations of probability distributions.

Because of limited space and to avoid distraction by an elaborate formal model from the main
ideas, we introduce our method on a rather simple syntax, namely, a somewhat modified version of
Basic Protocol Logic (or BPL, for short) of [25] by K. Hasebe and M. Okada and leave extensions to
more complex situations such as the Protocol Composition Logic to future work. We would like to
emphasize that our point is not to give a computational semantics to BPL but to provide a technique
that works well in much more general situations.

BPL is a logical inference system to prove correctness of a protocol. Originally, it included
signatures as well, but for simplicity, we leave that out from this analysis. BPL was defined to give a
simple formulation of a core part of the protocol logics of [20, 17, 15] for proving protocols correct.
For the formal analysis of security protocols, there are two typical approaches among others: one
emphasizing a syntactic method such as BAN-logic [11] and protocol logics of [20, 17, 15] (cf.
also [1] for a protocol composition logic project overview), and the other emphasizing a semantic
method such as the strand space method [21] and MSR [14]. The former approach aims at proving
a property which guarantees a protocol correct in terms of a certain logical inference system, while
the latter approach aims at detecting flaws in a protocol (i.e., concrete attacks on a protocol) in terms
of a trace-model. Basic Protocol Logic takes the former approach. It concentrates on several types
of agreement properties in the sense of [31, 28], and is a distillation of a basic part of the protocol
logics, which is enough to prove our aimed properties, within the first-order predicate logic. It does
not deal with the secrecy property of nonces or session keys.

We first give the axiomatic system in first-order predicate logic for proving the agreement prop-
erties. A message is represented by a first-order term that uses encryption and pairing symbols, an
atomic formula is a sequence of primitive actions (as send, receive and generate) of principals on
terms. We set some properties about nonces and cryptographic assumptions as non-logical axioms,
and give a specific form of formulas, called query form, which has enough expressive power to spec-
ify our intended authentication properties. The main aspects in which we modified the original BPL
is that the original axioms were not all computationally sound so we left out some that are in fact
not used in proofs anyway. Furthermore, instead of denoting encryptions as {m}A, we have decided
to indicate the random seed of the encryption as {m}rA (as in [26]) since computation interpretation
becomes much easier this way.

We then define the computational semantics. This involves giving a stochastic structure that
results when the protocol is executed. Principals output bit strings (as opposed to terms) with certain
probability distributions. The bit strings are then recorded in a trace as being generated, sent or
received by some principal. This provides a probability distribution of traces. We show how to
answer weather a bit string corresponding to a term was sent around with high probability or not. For
example a formal term {M}rA was sent around in the computational model if a cross-section of all
traces provides the correct probability distribution that corresponds to sending {M}rA. Or, a nonce
N was generated, if another cross-section provides the right probabilities, and that distribution must
be independent of everything that happened earlier. This way we define when a certain formula in
the syntax is true in the computational semantics. We then give an analysis whether the axioms of
the syntax are true in the semantics, and if they are, then we conclude that a formula that can be
proved in the syntax is also true in the semantics.

The main benefits of this formalism as opposed to that of Datta et al [18] are the following.
Since we focus on probability distributions, if a bit string that was injected into the system by the
adversary with unknown algorithm has the distribution of some {M}A and {M}A did not show up
earlier, then in our model it will still be true that {M}A was sent or received, whereas Datta et al.



cannot detect it as it did not occur earlier. We therefore feel that our treatment gives a better account
to what it intuitively means that something happened. Furthermore, as we deal with distributions,
bit strings will not be identified with the wrong terms even if they accidentally coincide. This makes
it possible to use this method for situations when the probability of collision is not negligible. For
example, the least significant bit is such. We will not do this in this paper, we just remark that
the method is suitable for that. Finally, our method also gives an account to whether a distribution
depends on events that happened earlier or not, and it is also suitable for an analysis that not only
deals with either negligible or overwhelming probabilities, but probabilities in between.

Related Work. Formal methods emerged from the seminal work of Dolev and Yao [19], whereas
computational cryptography grew out of the work of Goldwasser and Micali [22]. The first to link
the two methods were Abadi and Rogaway in [3] ”soundness” for passive adversaries in case of so-
called type-0 security. A number of other papers for passive adversaries followed, proving ”complet-
ness” [29, 5], generalizing for weaker, more realistic encryptions schemes [5], considering purely
probabilistic encryptions [24, 5], including limited models for active adversaries [27], addressing
the issue of forbidding key-cycles [4], considering algebraic operations and static equivalence [9,
2]. Other approaches including active adversaries are considered by Backes et al. and Canetti in
their reactive simulatability [8, 6] and universal composability [12, 13] frameworks, respectively.
Non trace properties were investigated in [16] and [7], however, not in the context of first order
logic.

Organization of this paper. In Section 2, we outline the syntax of Basic Protocol Logic. In Sec-
tion 3, we give a computational semantics to Basic Protocol Logic, and discuss soundness. Finally,
in Section 4, we conclude and present directions for future work.

Special Thanks. We would like thank Stéphane Glondu, Jesus Almansa, Arnab Roy and John
Mitchell for the valuable discussions on the topic as well as Matthew Franklin.

2 Basic Protocol Logic

In this section we summarize the syntax of Basic Protocol Logic. We first give the language and the
axioms, then explain how to describe our aimed correctness properties in BPL.

2.1 Language

Sorts and terms. Our language is order-sorted, with sorts coin , name, nonce and message such
that terms of sorts name and nonce are terms of sort message. Let Cname be a finite set of con-
stants of sort name (which represent principal names), and Cnonce a finite set of names of sort
nonce. For each A ∈ Cname let coinA be a sort such that any term of sort coinA is of sort
coin, and let CcoinA be a finite set of constant of sort coinA. Let Ccoin :=

⋃
A∈Cname CcoinA . We

require countably infinite free variables and countably infinite bound variables for each sort. We
will use A,B, . . . , A1, A2, . . . (Q,Q′, . . . , Q1, Q2, . . ., resp.) to denote constants (variables, resp.)
of sort name, N,N ′, . . . , N1, N2, . . . (n, n′, . . . , n1, n2, . . ., resp.) denote constants (variables,
resp.) of sort nonce, rA, . . . , rA1 , r

A
2 , . . . (sA, . . . , sA1 , s

A
2 , . . ., or s, s′, . . . , s1, s2, . . ., resp.) de-

note constants of sort coinA (variables of sort coinA, or variables of sort coin, resp.). The symbols
m,m′, . . . ,m1,m2, . . . are used to denote variables of sort message and M,M ′, . . . ,M1,M2, . . .
to denote constants of sort message (that is, either name or nonce). Let P, P ′, . . . , P1, P2, . . . denote
any term of sort name, and let ρ, ρ′, . . . , ρ1, ρ2, . . . denote anything of sort coin. Compound terms
of sort message are built from constants and free variables, and are defined by the grammar:

t ::= M |m | 〈t, t〉 | {t}ρP .



Where again, M ∈ Cname ∪ Cnonce, m is any free variable of sort message, P is any constant or
free variable of sort name, and ρ is any constant or free variable of sort coin. Hence, for example,
〈〈A1, {〈n,A2〉}r

A

Q 〉,m〉 is a term. We will use the shorter {n,A2}r
A

Q instead of {〈n,A2〉}r
A

Q . We
will use the meta-symbols t, t′, . . . , t1, t2, ... to denote terms, and ν, ν ′, . . . to denote any term of
sort nonce.

In this paper we do not consider symmetric cryptography nor protocols for sharing session keys;
the language can be easily extended so as to include such notions. Encryption with the public key
of principal A is denoted by {·}rA, and we assume for simplicity that no key is sent around.

Formulas. We introduce five binary predicate symbols: P generates ν,
P receives t, P sends t, t = t′ and t v t′, which represent “P generates a fresh value ν as a
nonce”, “P receives a message of the form t”, “P sends a message of the form t”, and equality and
subterm relation for “t is identical with t′” and “t is a subterm of t′”), respectively. The first three are
called action predicates, and the meta expression acts is used to denote one of the action predicates:
generates, receives and sends. We would also like to emphasize that = and v are not the same
as equality and subterm relation on the free algebra of terms as long the terms contain variables (the
axioms to be satisfied by = and v will be defined in the next section).

Atomic formulas are either of the form P1 acts1 t1;P2 acts2 t2; · · · ; Pk actsk tk, (where k ≥ 1
and Pi (ti, resp.) may be the same as Pj (tj , resp.) for any i 6= j), or t = t′, or t v t′. The
first one is called trace formula. A trace formula is used to represent a sequence of the princi-
pals’ actions: for example, the intuitive meaning of the atomic formula P sends m;Q receives m′

is “P sends a message m, and after that, Q receives a message m′”. We also use the following
symbols as meta expressions: αP , βP , . . . , αP1 , α

P
2 , . . . (or simply, α, β, . . . , α1, α2, . . .) is used to

denote a trace formula of the form P acts t, and αP1
1 ; · · · ;αPkk (or α, for short) is used to denote

P1 acts1 t1; · · · ;Pk actsk tk (where k indicates the length of α). When every Pi is identical with
P for 1 ≤ i ≤ k (i.e., a sequence of actions performed by a single principal P ), we use αP to
denote such a trace formula. For α (≡ α1; · · · ;αm) and β (≡ β1; · · · ;βn), we say β includes α
(denoted by α ⊆ β), if there is a one-to-one, increasing function j : {1, ...,m} → {1, ..., n} such
that αi ≡ βj(i). (Roughly speaking, α ⊆ β means that all the action predicates in α appear in β
with preserving the order of α.)

ϕ ::= α | t1 = t2 | t1 v t2 | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ∀mϕ′ | ∃mϕ′

where m is some bound variable, and ϕ′ is received from ϕ by substituting m for every occurrence
in ϕ of a free variable m′ of the same sort as m. We use the meta expression ϕ[m] to indicate the
list of all variablesm occurring in ϕ. Substitutions are represented in terms of this notation.

Finally, we introduce the notion of (strict) order-preserving merge of trace formulas α and
β: An order-preserving merge of α (≡ α1; · · · ;αl) and β (≡ β1; · · · ;βm) is a trace formula
δ (≡ δ1; · · · ; δn) if there are one-to-one increasing functions jα : {1, ..., l} → {1, ..., n}, jβ :
{1, ...,m} → {1, ..., n} such that αi ≡ δjα(i), βi ≡ δjβ(i), and the union of the ranges of jα and jβ

cover {1, ..., n}. δ is called a strict order-preserving merge if, furthermore, the ranges of jα and jβ

are disjoint.
For example, both α1;α2;α2;α3 and α2;α1;α3;α2 and α1;α2;α3 are order preserving merges

of α1;α2 and α2;α3, while the last one is not a strict order preserving merge.

Description of roles. A protocol is a set of roles, and each role for a principal (say, Q) is described
as a trace formula of the form αQ ≡ Q acts1 t1; · · · ;Q actsk tk, where the terms t1, ..., tk are built
from variables of sort nonce and of sort name.



As an example, here we consider the Needham-Schroeder public key protocol [30], whose in-
formal description is as follows.

1. A→ B: {n1, A}
rA1
B

2. B → A: {n1, n2}
rB1
B

3. A→ B: {n2}
rA2
B

Initiator’s and responder’s roles of the Needham-Schroeder public key protocol (denoted by InitNS
and RespNS , respectively) are described as the following formulas.

Example 1. (Roles of the Needham-Schroeder protocol)

InitANS [Q2, n1,m2, s
A
1 , s2, s

A
3 ] ≡

A generates n1;A sends {n1, A}
sA1
Q2

;A receives {n1,m2}s2A ;A sends {m2}
sA3
Q2

RespBNS [Q1,m1, n2, s1, s
B
2 , s3] ≡

B receives {m1, Q1}s1B ;B generates n2;B sends {m1, n2}
sB2
Q1

;B receives {n2}s3B
The brackets indicate the variables that occur in the formula.

2.2 The Axioms of Basic Protocol Logic

We extend the usual first-order predicate logic with equality by adding the following axioms (I), (II)
and (III). This axiomatic system is called Basic Protocol Logic.

The first axiom postulates what properties we want to require from the equality and subterm
relations. When we chose these axioms, we keep in mind that we want them to be computationally
sound. The set of axioms here is not the same as it was in the original formulation of BPL, as those
axioms were not all computationally sound. The original axioms required that when a finite set of
literals {t1 = t′1, . . . , tn = t′n, s1 v s′1, . . . sj v s′j , u1 6= u′1, . . . , uk 6= u′k, v1 6v v′1, . . . , vl 6v v′l}
is unsatisfiable by elements of Ā (for Ā see below), then ∀m¬(t1 = t′1∧ · · ·∧ s1 v s′1∧ · · ·∧u1 6=
u′1 ∧ · · · ∧ v1 6v v′1 ∧ · · · ) is an axiom. So, for example, the original axioms required that {m}sA and
{m}rbQ are equal only if s = rA and Q = B. However, if the adversary Q did not generate its public
key properly, but he did it with some smart trick, and if the randomization of s is not honest, then the
interpretations of these terms may turn out to be equal. The axioms we present here were sufficient
for the protocols we have checked, but other protocols may need additional axioms as much more
can be defined that are also computationally sound.

(I) Term axioms. Consider any set C̄ of countably infinitely many elements of sort name, countably
infinitely many elements of sort nonce and countably infinitely many elements of sort coin such
that it includes all elements of Cname, Cnonce and Ccoin. Let Ā be the free algebra constructed from C̄
via 〈·, ·〉 and {·}·· (with the appropriate sorts in the indexes of the encryption terms). The elements
of Ā are of sort message.

We postulate the following axioms for = and v. Let m be all variables occurring in the corre-
sponding terms. We require these for all A,B ∈ Cname:

– If t = t′ is true in Ā, then ∀mt = t′ is axiom. If t v t′ is true in Ā, then ∀mt v t′ is axiom.
– ∀m(t= t), ∀m(t1 = t2 → t2 = t1), ∀m(t1 = t2 ∧ t2 = t3 → t1 = t3), ∀m(t1 = t2 → t1v t2),
∀m(t1v t2 ∧ t2v t3 → t1v t3)

– ∀mQssB({t1}s
B

A ={t2}sQ → t1 = t2 ∧Q=A ∧ s=sB)



– ∀m(〈t1, t2〉=〈t3, t4〉 → t1 = t3 ∧ t2 = t4)
– ∀m({t}sBA 6= 〈t1, t2〉), ∀m({t}sBA 6= n), ∀m({t}sBA 6= s), ∀m({t}sBA 6= Q)
– ∀mn(〈t1, t2〉 6= n), ∀ms(〈t1, t2〉 6= s), ∀mQ(〈t1, t2〉 6= Q)
– ∀msB(t1v{t2}s

B

A → t1v t2∨ t1 ={t2}s
B

A ), ∀m(t v 〈t1, t2〉 → t v t1∨ t v t2∨ t1 =〈t1, t2〉)
– ∀mn(mvn→ m=n), ∀msA(mvsA → m=sA), ∀mQ(mvQ→ m=Q)

(II) Rules for trace formulas. We introduce the following axioms (1) and (2) for trace formulas,
where γi’s in (2) are the list of order-preserving merges of α and β.

(1) β → α (for α ⊆ β)
(2) γ1 ∨ · · · ∨ γn ↔ α ∧ β

These axioms express the intuition that if a trace “happens”, then a subtrace of it also happens,
and two traces happen if and only if one of their possible merges happen.

(III) Axioms for relationship between properties. We introduce the following set of formulas
as non-logical axioms. These axioms represent some properties about nonces and cryptographic
assumptions.

(1) Ordering:
∀Q1Q2nm(Q1 generates n ∧ Q2 sends/receivesm ∧ n v m
→ ¬(Q2 sends/receivesm;Q1 generates n))

Let |m1 v m2 v m3| mean that m1 v m2 v m3 and the only way m1 occurs in m3 is within m2.
That is:

|m1 v m2 v m3| := ∀m(m1 v m v m3 → m2 v m ∨ (m v m2

∧ 〈m,m2〉 6v m3 ∧ 〈m2,m〉 6v m3)).

(2) Nonce verification 1: For each A, B constants of sort name and rA constant of sort coinA, we
postulate
∀Qn1m2m5m6(A generates n1;A sends m2;Q receives m5

∧ |n1 v {m6}r
A

B v m2| ∧ n1 v m5 ∧ ¬|n1 v {m6}r
A

B v m5|
∧ ∀m7(A sends m7 ∧ n1 v m7 → |n1 v {m6}r

A

B v m7|)
→ ∃m3m4(A sends m2;B receives m3;B sends m4;Q receives m5

∧ {m6}r
A

B v m3 ∧ n1 v m4))

(3) Nonce verification 2: For eachA,B C of sort name (whereA and C may coincide), rA constant
of sort coinA and rB constant of sort coinB , we postulate
∀Qn1m2m5m6m8m10(A generates n1;A sends m2;C receives m5

∧ |n1 v {m6}r
A

B v m2| ∧ n1 v m5 ∧ ¬|n1 v {m6}r
A

B v m5|
∧ ∀m7(A sends m7 ∧ n1 v m7 → |n1 v {m6}r

A

B v m7|)
∧ B sends m4 ∧ |n1 v {m8}r

B

C v m4|
∧ ∀m9(B sends m9 ∧ n1 v m9 → |n1 v {m8}r

B

C v m9|)
∧(¬(C sends m10 ∧ n1 v m10) ∨A = C)
→ |n1 v {m8}r

B

C v m5|

There are other possible axiomatizations, but the authors of [25] found this particularly useful (more
exactly a somewhat less general version). The meaning of the Ordering axiom is clear. Nonce ver-
fication I and II are based on the idea of the authentication-tests [23]. Nonce verification I means



that if A sent out a nonce n1 encrypted with the public key of B that was not sent in any other
way, and Q received this nonce in some other form, then the encrypted nonce had to go through
Q. The reason that we require A and B to be names and not arbitrary variables is that we do not
want to require any principals in an arbitrary run to encrypt securely. A message may look like an
encryption, but if the key was not generated properly or if the randomization of the encryption was
not done well, then the information might leak.

2.3 Query form and correctness properties

Our aimed correctness properties are described in a special form of formulas, called query form. Let
αA[Q,m, s] be a role A acts1 t1;A acts2 t2; · · · ;A actsk tk where each actsi (1 ≤ i ≤ k) is one
of sends, receives and generates, ti is term built from messages in m = {m1, ...,mh} (some of
which may be nonces) from coins in s = {s1, ..., si} and from names A and Q = {Q1, ..., Ql}.
Let αA≤i[Q,m, s] denote an initial segment of αA[Q,m, s] ending with A acts i ti (for 1 ≤ i ≤ k),
i.e., αA≤i[Q,m, s] ≡ A acts1 t1; · · ·A actsi ti. Let αA≤0[Q,m, s] ≡ A = A.

The query form includes a formalization of principal’s honesty Honest(αA), which is defined
as follows, the intuitive meaning being that A follows the role αA and does nothing else, but it may
not complete it:

Definition 1. (Principal’s honesty)
Honest(αA)[Q,m, s]
def
≡ ∃Qms

∨
i∈{0}∪{j | actsj= sends }∪{k} α

A
≤i[Q,m, s] ∧Only(αA≤i[Q,m, s])

For any role αA (or αA ≡ A), Only(αA) denotes the following formula, whose intuitive meaning
is “A performs only αA (or nothing)”.

Only(αA) ≡ ∀n(A generates n1 → n ∈ Generates(αA))
∧∀m1(A sends m1 → m1 ∈ Sends(αA))
∧∀m2(A receives m2 → m2 ∈ Receives(αA))

Here, Sends(αA) denotes the set {tj | A sends tj ⊆ αA}, and (Receives(αA), Generates(αA)
are defined similarly. Set theoretical notation as m ∈ Sends(αA) (as well as m ∈ Receives(αA)
and m ∈ Generates(αA)) is an abbreviation of a disjunctive form: for example, if Sends(αA) =
{t′1, . . . , t′j}, thenm ∈ Sends(αA) denotes the formula (m = t′1)∨(m = t′2)∨· · ·∨(m = t′j). (As
a special case, if Sends(αA) is empty then m ∈ Sends(αA) denotes A 6= A, that is, impossible.)

Intuitively, each disjunctαA≤i∧Only(αA≤i) inHonest(αA) represents a historical record of P ’s
actions at each step of his run: the sequence of actions αA≤i represents A’s performance until this
step, andOnly(αA≤i) represents thatA performs onlyαA≤i.α

A
≤0 means that nothing was performed.

Thus, Honest(αA[Q,m, s]) represents “A performs only a run of an initial segment of αA which
ends with a sending action or the last action of αA, and uses the data items Q, m and s for each
run”.

As an example, we present the honesty of initiatorA of the Needham-Schroeder protocol below.

Example 2. (Initiator’s honesty of the NS protocol)
Honest(InitANS)[Q1, n1,m2, s

A
1 , s2, s

A
3 ] ≡

∃Q1n1m2s
A
1 s2s

A
3

0@0@∀n3¬(A generates n3)
∧∀m4¬(A sends m4)
∧∀m5¬(A receives m5)

1A



∨

0BBB@
A generates n1; A sends {n1, A}s

A
1
Q1

∧∀n3(A generates n3 → n3 = n1)

∧∀m4(A sends m4 → m4 = {n1, A}s
A
1
Q1

)

∧∀m5¬(A receives m5)

1CCCA

∨

0BBB@
A generates n1; A sends {n1, A}s

A
1
Q1

; A receives {n1, m2}s2A ; A sends {m2}s
A
3
Q1

∧∀n3(A generates n3 → n3 = n1)

∧∀m4(A sends m4 → m4 = {n1, A}s
A
1
Q1
∨m4 = {m2}s

A
2
Q1

)

∧∀m5(A receives m5 → m5 = {n1, m2}s2A )

1CCCA
1CCCA

Note that our formalization of honesty is stronger than the usual sense. That is, our definition of
honesty is restricted to a single set of data items used for the honest principal’s runs, whereas the
usual sense of honesty means that P may perform multiple runs whose data items may differ from
each other. However, by regarding a strict order-preserving merge of a certain number of the same
role as a single role, we can represent the honesty with respect to any fixed finite number of the sets
of data items which are used for all possible runs by the honest principal.

First-order formalization of correctness properties. We introduce a general form of formulas,
called query form, to represents our aimed correctness properties. In order to make the discussion
simpler, we consider only the case of two party authentication protocols, however our query form
can be easily extended so as to represent the correctness properties with respect to other types of
protocols which include more than two principals.

Definition 2. (Query form) Query form is a formula of the following form.

Honest(αA) ∧ βB ∧Only(βB)→ γ

Our aimed correctness properties are described as a special case of the query form. For exam-
ple, the non-injective agreement of the protocol Π = {αA[B/Q2,m, s], βB[A/Q1,m, s]} from
responder’s (B’s) view can be described as the following formula.

Honest(αA[Q2,m, s]) ∧ βB[A/Q1,N/m, r/s]
∧Only(βB[A/Q1,N/m, r/s])→ αA[B/Q2,N/m, r/s]

The matching conversations and the injective agreement can be obtained by replacing the right
hand side of the implication with the strict order-preserving merge of αA[B/Q2,N/m, r/s] and
βB[A/Q1,N/m, r/s], and withαA[B/Q2,N/m, r/s]∧Only(αA[B/Q2,N/m, r/s]), respec-
tively.

Actually, our formalization of the agreement properties is weaker than the usual sense, because
our honesty assumption is stronger than the usual sense. However, as we have explained in the
definition of honesty (Definition 2), our query form can be extended so that the honest principal
may use a finite number of sets of data items used for his/her runs.

Remarks. In closing this chapter, we give some remarks on BPL. In this paper we choose the set
of formulas (III) introduced in Section 2.2 as non-logical axioms, which has enough power to prove
our aimed agreement properties in the sense of [28] for various protocols with public keys, such as
the Needham-Schroeder-Lowe protocol (cf. Protocol 4.19 in [10]), ISO/IEC 11770-3 Key Transport
Mechanism 6 (cf. Protocol 4.16 in [10]), and so on. Our proposed non-logical axioms (1)-(3) of
(III) introduced in Section 2.2 do not essentially depend on our framework, thus by adding some
non-logical axioms about shared keys or signature we can also prove correctness of the core part
of Kerberos (cf. Protocol 3.25 in [10]) and the ISO 9798-3 protocol (used as an example in [17]).
However, because of this simplification, BPL does not provide flexible compositional treatment of
proofs, which is realized by Protocol Composition Logic.



3 Computational Semantics

3.1 Computational Asymmetric Encryption Schemes

The fundamental objects of the computational world are strings, strings = {0, 1}∗, and families of
probability distributions over strings. These families are indexed by a security parameter η ∈ N
(which can be roughly understood as key-lengths).

Definition 3 (Negligible Function). A function f : N→ R is said to be negligible, if for any c > 0,
there is an nc ∈ N such that |f(η)| ≤ η−c whenever η ≥ nc.

Pairing is an injective pairing function [·, ·] : strings×strings→ strings. We assume that changing
a bit string in any of the argument to another bit string of the same length does not influence the
length of the output of the pairing. An encryption scheme is a triple of algorithms (K, E ,D) with
key generation K, encryption E and decryption D. Let plaintexts, ciphertexts, publickey and secretkey
be nonempty subsets of strings. The set coins is some probability field that stands for coin-tossing,
i.e., randomness.

Definition 4 (Encryption Scheme). A computational asymmetric encryption scheme is a triple
Π = (K, E ,D) where:

– K : param× coins→ publickey× secretkey is a key-generation algorithm with param = N,
– E : publickey× plaintexts× coins→ ciphertexts is an encryption function, and
– D : secretkey× strings→ plaintexts is such that for all (e, d) ∈ publickey× secretkey and c ∈ coins

D(d, E(e,m, c)) = m for all m ∈ plaintexts.

All these algorithms are computable in polynomial time with respect to the security parameter.

In this paper, we assume that the encryption scheme satisfies adaptive chosen ciphertext security
(CCA-2) defined the following way:

Definition 5 (Adaptive Chosen Ciphertext Security). A computational public-key encryption scheme
Π = (K, E ,D) provides indistinguishability under the adaptive chosen-ciphertext attack if for all
PPT adversaries A and for all sufficiently large security parameter η:

|Pr[ (e, d)←− K(1η); b←− {0, 1} ;
m0,m1 ←− AD1(·)(1η, e);
c←− E(e,mb);
g ←− AD2(·)(1η, e, c) :
b = g ]− 1

2 | ≤ neg (η)

The oracle D1(x) returns D(d, x), and D2(x) returns D(d, x) if x 6= c and returns ⊥ otherwise.
The adversary is assumed to keep state between the two invocations. It is required that m0 and m1

be of the same length. The probability includes all instances of randomness: key generation, the
choices of the adversary, the choice of b, the encryption.

In other words, first a public key-private key pair is generated as well as a random bit b. Then, the
adversary is given the public key, and a decryption oracle, which it can invoke as many times as
wished, and at the end it comes up with a pair of bit strings m0, m1 of the same length, which it
hands to an encryption oracle. Out of these two messages, the oracle encrypts the one determined by
the initial choice of random bit b, and hands the ciphertext back to the adversary. The adversary can



further invoke the decryption oracle (which decrypts everything except for the ciphertext computed
by the encryption oracle. At the end, the adversary has to make a good guess for b. This guess is g,
and the adversary wins if the probability of making a good guess significantly differs from 1/2.

That is, an adversary should not be able to learn from a ciphertext whether it contains the plain-
text m0 or the plaintext m1, even if:

– the adversary knows the public key used to encrypt,
– the adversary can choose the messages m0 and m1 itself, so long as the messages have the same

length, and
– the adversary can request and receive the decryption of any other ciphertext.

It was shown, that the above definition is equivalent with another that seems stricter at first,
namely, when an n-tuple of encryption and decryption oracles are at given, each with separate
encryption and decryption keys, but using the same bit b to choose from the submitted plaintexts.
The adversary is allowed to invoke the oracles in any order but it cannot submit the a message that
was received from an encryption oracle to the corresponding decryption oracle.

3.2 Stochastic Model for the Computational Execution of BPL

In the following, we discuss the mathematical objects that we use to represent a computational
execution of a protocol. Our plan is to define a computational semantics, show that the syntactic
axioms hold if the encryption scheme is CCA-2 secure, and, as a result, if the query-form is provable
in the syntax, it must be true in any computational model.

Our approach is different from that of Datta et al. [18]. There, every action by the honest par-
ticipants are recorded on each execution trace, and bit strings emerging later are checked whether
they were recorded earlier and to what action they corresponded; the adversary’s actions are not
recorded. That method however assumes that accidental coincidences have negligible probabilities,
otherwise there will be a high probability of identifying bit-stings with the wrong actions. Therefore,
their method is not capable of handling variables that have a high probability of collision (such as
least significant bit, etc.). Moreover, since the adversaries actions are not recorded, if the adversary
injects say a ciphertext in the system, that cyphertext will not be detected as a ciphertext as long as
itself or some later action on it does not result in a bit-string that was earlier produced by an honest
participant. The reason they proceed this way is that they want to be able to tell on each execution
trace whether a syntactic formula is true or not. Then, if it is true on an overwhelming number of
traces, then they say it is true on the whole computational model.

Our approach avoids the necessity to tell on each trace whether something is satisfied or not
because we want to avoid pure coincidences. Since computational behavior is probabilistic, it is
often not natural to ask whether something is satisfied on a particular trace or not. The natural
question is whether the traces produce the right kind of probability distribution for a certain variable.

First, since probabilities and complexity are involved, we need a probability space for each
value of the security parameter. Since time plays an important role in the execution, what we need
is the probability space for a stochastic process. We limit ourselves to finite spaces now: We assume
that for each security parameter, there is a maximum number of execution steps nη. The following
notions that we introduce are standard in probability theory.

We will denote the finite probability space for an execution of a protocol with security parameter
η by Ωη, subsets of which are called events. Let Fη denote the set of all subsets of Ωη (including
the empty set). A subset containing only one element is called an elementary event. The set Ωη

is meant to include all randomness of an execution of the protocol (and perhaps some additional
information). A probability measure pη assigns a probability to each subset such that it is additive



with respect to disjoint unions of sets (so it is enough to assign a probability to each element of Ωη,
then the probability of any subset can be computed). When it is clear which probability space we
are talking about, we will just use the notation Pr.

In order to describe what randomness was carried out until step i ∈ {0, 1, ..., nη}, we assign a
subset Fηi ⊆ Fη to each i, such that Fηi is closed under union and intersection, and includes ∅ and
Ωη, and Fηi ⊆ F

η
i+1. The set {Fηi }n

η

i=1 is called filtration. Since everything is finite, Fηi is atomistic,
that is, each element of it can be received as a union of disjoint, minimal (with respect to inclusion)
nonempty elements. The minimal nonempty elements are called atoms. We introduce the notation

Pr = {(Ωη, {Fηi }
nη

i=0, p
η)}η∈param.

We included Fη0 to allow some initial randomness such as key generation. A discrete random vari-
able on Ωη is a function on Ωη taking some discrete value. Since Fηi contains the events deter-
mined until step i, a random variable gη depends only on the randomness until i exactly if g is
constant on the atoms of Fηi ; this is the same as saying that for any possible value c, the set
[gη = c] := {ω | gη(ω) = c} is an element of Fηi . In this case, we say that gη is measurable
with respect to Fηi . We will, however need a somewhat more complex dependence-notion. We will
need to consider random variables that are determined by the randomness until step i1 on certain
random paths, but until step i2 on other paths, and possibly something else on further paths. For
this, we have to first consider a function Jη : Ωη → {0, 1, ..., nη} that tells us which time step to
consider on each ω. This function should only depend on the past, so for each i ∈ {0, 1, ..., nη}, we
require that the set [Jη = i] ∈ Fηi . We will call this function a stopping time. The events that have
occurred until the stopping time Jη are contained in

FηJ := {S | S ⊆ Ω, and for all i = 0, 1, ..., nη, S ∩ [Jη = i] ∈ Fηi }.

Then, a random variable fη depends only on the events until the stopping time Jη iff for each c
in its range, [fη = c] ∈ FηJ . Furthermore, a random variable hη on Ωη is said to be independent
of what happened until Jη iff for any S ∈ FηJ and a c possible value of hη, Pr([hη = c] ∩ S) =
Pr([hη = c]) Pr(S). Finally, it is easy to see that for each random variable fη, there is a stopping
time Jηf such that fη is measurable with respect to FηJf , and Jηf is minimal in the sense that fη is
not measurable with respect to any other FηJ if there is an ω such that Jη(ω) < Jηf (ω).

Example 3. Suppose coins are tossed three times, one after the other. Then

Ω = {(a, b, c) | a, b, c = 0, 1}.

Let (1, ·, ·) := {(1, b, c) | b, c = 0, 1}. (0, ·, ·), etc. are defined analogously. At step i = 1, the
outcome of the first coin-tossing becomes known. So,

F1 = {∅, (0, ·, ·), (1, ·, ·), Ω}.

At step i = 2, the outcome of the second coin becomes known too, therefore F2, besides ∅ and Ω,
contains (0, 0, ·), (0, 1, ·), (1, 0, ·) and (1, 1, ·) as atoms, and all possible unions of these. F3 is all
subsets. A function g that is measurable with respect to F1, is constant on (0, ·, ·) and on (1, ·, ·),
that is, g only depends on the outcome of the first coin tossing, but not the rest. Similarly, an f
measurable on F2, is constant on (0, 0, ·), on (0, 1, ·), on (1, 0, ·) and on (1, 1, ·). A stopping time is
for example the J that equals the position of the first 1, or 3 if there is never 1:

J( (a1, a2, a3) ) =
{
i if ai = 1 and ak = 0 for k < i
3 if ak = 0 for all k = 1, 2, 3

The atoms of FJ are (1, ·, ·), (0, 1, ·), {(0, 0, 1)} and {(0, 0, 0)}.



For each value of the security parameter, an execution of the protocol involves some principals.
Each principal has a distinct name, which is a bit-string, not longer then the upper bound nη. Each
principal generates an encryption-key, decryption-key pair at the initialization. Hence, if Pr =
{(Ωη, {Fηi }n

η

i=0, p
η)}η∈param is the stochastic space of the execution of the protocol, let Pη be a set

of (polynomially bounded number of) elements of the form (Aη, (eηA, d
η
A)) where Aη ∈ {0, 1}nη ,

and (eηA, d
η
A) is a pair of probability distributions on Ωη measurable with respect to Fη0 such that

Pr[ω : (eηA(ω), dηA(ω)) 6∈ publickey × secretkey] is a negligible function of η. We assume that if
A = B, then (eηA, d

η
A) = (eηB, d

η
B). The set {Pη}η∈param describes all the principals, corrupted and

uncorrupted, that take part in the execution at a given security parameter, along with their public
and secret keys. Let P = {Pη}η∈param.

For nonces, we choose the following definition. Since CCA-2 security is length-revealing, we
have to assume that nonces are always of some fixed length mη for each security parameter η. Let
N be a set of elements of the form {Nη}η∈param where Nη : Ωη → {0, 1}mη such that Nη is
uniformly distributed over {0, 1}mη , and for any two {N1}η∈param, {Nη

2 }η∈param ∈ N , Nη
1 and

Nη
2 are independent (i.e. for any two s1, s2 ∈ {0, 1}m

η
, Pr[Nη

1 = s1 ∧ Nη
2 = s2] = Pr[Nη

1 =
s1] Pr[Nη

2 = s2]). This set describes the nonces that were generated with overwhelming probability
during the execution of the protocol. The nonces have to be independent of each other, and have
uniform distribution over the given length. The nonces also have to be independent of what happened
earlier when they are being generated, but we will require this later.

Let R be a set of elements of the form R = {Rη}η∈param where Rη : Ωη → coins. Let Rg
be the subset of R which are properly randomized, that is, for which the values in coins have the
distribution required for the encryption scheme. That is, they have good distribution (hence the g).

The execution trace is defined as Tr = {Trη}η∈param of the form

ω 7→ Trη(ω) = P η1 (ω) actsη1(ω) sη1(ω); ...;P ηnη(ω)(ω) actsηnη(ω)(ω) sηnη(ω)(ω)

where for each η security parameter, ω ∈ Ωη, nη(ω) is a natural number less then nη, P ηi (ω) ∈
DP , actsηi (ω) is one of generates, sends, receives and sηi (ω) ∈ {0, 1}∗. For each η, ω, and
i ∈ {1, ..., nη(ω)}, let

Trηi (ω) = P ηi (ω) actsηi (ω) sηi (ω)

We also require that Trηi be measurable with respect to Fηi for all i. Moreover, we require that any
of Tr is PPT computable from the earlier ones.

Messages: Let the set of messages be M elements of the form M = {Mη}η∈param, where
Mη : Ωη → {0, 1}nη . For any two messages, M1, M2, we will denote that M1 ≈ M2 iff pη[ω :
M1(ω) 6= M2(ω)] is a negligible function of η. This way, ≈ is an equivalence notion on the set of
messages. Let DM :=M/≈, let DN := N/≈ ⊂ DM , and let

DP := {A ∈M : (Aη, (eηA, d
η
A)) ∈ P for some (eηA, d

η
A)}/≈ ⊂ DM

We have to define what we mean by a computational pairing and encryption. For any X,X1, X2 ∈
DM , we write that X =C 〈X1, X2〉, if for some (hence for all) M1 = {Mη

1 }η∈param ∈ X1 and
M2 = {Mη

2 }η∈param ∈ X2, the ensemble of random variables {ω 7→ [Mη
1 (ω),Mη

2 (ω)]}η∈param
is an element of X . Further, if A ∈ P , and R ∈ R, then we will write that X =C {X1}RA
if for any (hence for all) M1 = {Mη

1 }η∈param ∈ X1, the ensemble of random variables {ω 7→
E(eηA(ω),Mη

1 (ω), R(ω))}η∈param is an element of X . This way, we can consider an element of the
free term algebra T (DM ) over DM as an element of DM . Let vT (DM ) denote the subterm relation
on T (DM ). This generates a subterm relationvC on DM by defining X1 vC X2 to be true iff there
is an element X ∈ T (DM ) such that X1 vT (DM ) X and X2 =C X .



3.3 Computational Semantics

We now explain how to give computational semantics to the syntax, and what it means that a formula
of the syntax is true in the semantics. For a given security parameter, an execution is played by a
number of participants.

Assumptions. In a particular execution, we assume that the principals corresponding to names
in the syntax (that is, they correspond to elements in Cname) are regular (non-corrupted). We assume
that these participants generate their keys and encrypt correctly (that is, the keys are properly dis-
tributed, and also rA is properly randomized) with a CCA-2 encryption scheme, and never use their
private keys in any computation except for decryption. For other participants (possibly corrupted),
we do not assume this. (Encrypting correctly is essential to able to prove the nonce verification
axioms.) We further assume that pairing of any two messages differs from any nonce and from
any principal name on sets of non-negligible probability. The network is completely controlled by
an adversary. The sent and received bit strings are recorded in a trace in the order they happen.
Freshly generated bit-strings produced by the regular participants are also recorded. The combined
algorithms of the participants and the adversary are assumed to be probabilistic polynomial time.

Such a situation, with the definitions of the previous section, produces a computational trace
structure associated to the execution of the form

M = (Π, [·, ·],Pr,P,N ,Rg,Tr, ΦC),

where ΦC is a one-to-one function on Cname ∪ Cnonce ∪ Ccoin such that

– ΦC(A) ∈ DP for any A ∈ Cname such that (eηΦC(A), d
η
ΦC(A)) is measurable with respect to F0

and has the correct key distribution, and for different constants are independent of each other
– ΦC(N) ∈ DN for any N ∈ Cnonce,
– ΦC(r) ∈ Rg for any r ∈ Ccoin.

An extension of ΦC to evaluation of free variables is a function Φ that is the same on constants as
ΦC , and for variables Q, n, m, sA, s of sort name, nonce, message, coinA and coin respectively,
Φ(Q) ∈ DP , Φ(n) ∈ DN , Φ(m) ∈ DM , Φ(sA) ∈ Rg and Φ(s) ∈ R hold. Then, for any t term,
Φ(t) ∈ DM is defined on terms as

– Φ(〈t1, t2〉) = 〈Φ(t1), Φ(t2)〉 ;
– Φ({t}rP ) = {Φ(t)}Φ(r)

Φ(P ); where, as we mentioned earlier, elements of T (DM ) are considered as
elements of DM .

We say that a random variable M is a realization of the term t through Φ, which we denote
M ≪Φ t, if M ∈ Φ(t), and if also t = {t′}ρ

A

P , then we further require that there is an M ′ ≪Φ t
′

such that Φ(ρA) is independent of FηJM′ (where for JηM ′ see the paragraph before Example 3).
We now define when a formula ϕ is satisfied by Φ:

– For any terms t1, t2, ϕ ≡ t1 = t2 is satisfied by Φ, iff Φ(t1) = Φ(t2), and ϕ ≡ t1 v t2 is
satisfied by Φ iff Φ(t1) vC Φ(t2).

– For any term u and acts = sends/receives, ϕ ≡ P acts u is satisfied by Φ iff there are
stopping times Jη such that apart from sets of negligible probability, TrηJη(ω)(ω) is of the form
Aη acts Mη(ω) where M := {Mη}η∈param ≪Φ u and A := {Aη}η∈param ≪Φ P . We will
denote this as TrJ ≪Φ P acts u.

– If acts = generates then (in the previous item) u is a nonce ν, and soM := {Mη}η∈param ≪Φ

u means M ∈ Φ(ν) in this case, and we further require that Mη be independent up to negligible
probability of FηJ−1 for all η. (That is there is anN ≈M such thatNη is independent of FηJ−1.)



– ϕ ≡ β1, ..., βn sequence of actions is satisfied by Φ if each of βk (k = 1, ..., n) is satisfied by
Φ, and if Jk is the stopping time belonging to βk, then we require that Jk < Jl whenever k < l
(that is, for each η ∈ param and ω ∈ Ωη, Jηk (ω) < Jηl (ω).

– For any formulas ϕ, ϕ1, ϕ2, ¬ϕ is satisfied by Φ iff ϕ is not satisfied by Φ; ϕ1 ∨ ϕ2 is satisfied
by Φ iff either ϕ1 is satisfied by Φ or ϕ2 is satisfied by Φ; ϕ1 ∧ ϕ2 is satisfied by Φ iff ϕ1 is
satisfied by Φ and ϕ2 is satisfied by Φ. ϕ1 → ϕ2 is satisfied by Φ iff ¬ϕ1 ∨ ϕ2 is satisfied by Φ.

– If ϕ is a formula, m a bound variable, and ϕ′ is received from ϕ by substituting m for every
occurrence in ϕ of some free variable m′ of the same sort as m, then ∀mϕ′ (or ∃mϕ′, resp.) is
satisfied by Φ iff ϕ is satisfied by each (or some, resp.) Φ′ extension of ΦC that only differs from
Φ on m′.

A formula ϕ is true in the structure M, iff ϕ is satisfied by every Φ extension of ΦC .
If in a structure, the Basic Protocol Logic axioms are true (in which case the structure is called

model), then by standard arguments of first order logic, it follows that everything provable in the
syntax are true in the model. In particular, if the query form is provable in the syntax, then it must
be true in any model. We now turn our attention to weather the axioms are satisfied by a structure.

Satisfaction of the Term axioms. Most of these axioms are trivially satisfied because of the prop-
erties of equality, subexpression relation, pairing and encryption, and our assumptions of the exe-
cution. The axioms containing encryptions (other then the first item) are true, because of CCA-2
security, the encryptions cannot produce distributions that are identical (except for negligible prob-
ability) with interpretations of other terms.

Satisfaction of the Ordering axiom. Suppose that there is an extension Φ such that the formula
Q2 sends/receivesm;Q1 generates n is satisfied as well as the formula n v m. Then, there are
stopping times Jη1 , Jη2 such that TrJ1 ≪Φ Q sends/receivesm, and TrJ2 ≪Φ Q generates n,
and J1 < J2. Then, TrJ1 ≪Φ Q sends/receivesm implies that there is M ≪Φ m such that Mη

is measurable with respect to FηJ1
and since n v m is satisfied, some N ∈ Φ(n) can be received

as a series of decryptions and breaking up pairs from M . Since there is no new randomness used
there, Nη only depends on the randomness until J1, so Nη is measurable with respect to FηJ1

. But,
TrJ2 ≪Φ Q generates n implies that Φ(n) has an element N ′η measurable with respect to FηJ2

and independent of FηJ2−1, and hence independent of FηJ1
and of Nη. So, N and N ′ only differ up

to negligible probability, but Nη and N ′η are independent for all η, which is impossible.

Satisfaction of the Nonce verification axioms. In order to show that the axioms are satisfied,
we use the assumption that regular participants encrypt with a CCA-2 secure encryption scheme.
Suppose there is a Φ such that the premise of the axioms are satisfied by Φ, but the conclusion is not.
Then, if the conclusion is not satisfied, that means that with non-negligible probability, {m6}r

A

B does
not go through B. The premise however says that n1 shows up in m5 later, which can be recovered
from there up to negligible probability via a series of de-coupling and decryption such that {m6}r

A

B

does not have to be decrypted. We have to show that a PPT algorithm can be constructed that breaks
CCA-2 security. The algorithm that breaks CCA-2 security is simply the protocol execution itself
with the following modifications:

– The decryption oracle (that the algorithm may access according to the definition of CCA-2
security) does the job for all decryptions with the private key dB .

– The algorithm generates two samples of n1 when the protocol execution samples n1.



– When the protocol execution is to produce {m6}r
A

B , compute two samples of the realization of
m6 using the two samples of n1 and using the same samples for the other parts of m6. If the
pair of outcomes have different length, stop. If they have the same length proceed:

– Submit to the encryption oracle of the CCA-2 game the pair of samples of m6, and use the
ciphers that it outputs whenever {m6}r

A

B occurs again.
– If the sample for {m6}r

A

B goes through B, terminate. If not, continue until the Q receives the
sample for m5.

– Recover the sample for n1 via de-coupling and decryption using the decryption oracle if neces-
sary. The bit string hence received is the one that was in the plaintext encrypted by the oracle,
so the bit value b of the game can be determined.

If the conclusion of the axiom is not satisfied, then this algorithm has non-negligible probability of
winning the CCA-2 game.

In order to show the validity of the second nonce-verification axiom, we have to use the modified
version of CCA-2 (equivalent to the original) when there are two encryption - decryption pairs of
oracles, each corresponding to independently generated encryption key - decryption key pairs. The
algorithm then is the following:

– The decryption oracles (that the algorithm may access according to the modified definition of
CCA-2 security) do the job for all decryptions with the private keys dB and dC .

– The algorithm generates two samples of n1 when the protocol execution samples n1.
– When the protocol execution is to produce {m6}r

A

B , compute two samples of the realization of
m6 using the two samples of n1 and using the same samples for the other parts of m6. If the
pair of outcomes have different length, stop. If they have the same length proceed:

– Submit to the first encryption oracle of the CCA-2 game the pairs of samples of m6.
– Skip the step when B decrypts {m6}r

A

B .
– When {m8}r

B

C is constructed, compute two samples of m8 just as in the case of m6. Stop if the
samples have different length, otherwise submit the results to the second encryption oracle.

– Continue until C receives the sample for m5.
– Recover the sample for n1 via de-coupling and decryption using the decryption oracle if neces-

sary. The bit string hence received is the one that was in the plaintext encrypted by the oracles,
so the bit value b of the game can be determined.

This is again PPT algorithm given that the protocol execution was PPT, so it breaks CCA-2 security.
Therefore, the Nonce-verification axioms hold.

Soundness Since the axioms are true in the structure M, by a standard argument of first order logic,
the following theorem is true:

Theorem 1. With our assumptions on the execution of the protocol, if the associated computational
trace structure is M = (Π, [·, ·],Pr,P,N ,Rg,Tr, ΦC), then, if a formula is provable in the syntax
with first-order predicate logic and axioms (I), (II), (III), then it is true in M.

4 Conclusions

We have given a computational semantics to Basic Protocol Logic that uses stochastic structures, and
showed a soundness theorem. In order to show that the axioms of BPL were true in the semantics,
we had to modify BPL as the original axioms were not all true. We showed our method on BPL



as it is simple enough for a first, concise presentation. Next, we would like to apply our methods
to the much more complex formal syntax of Protocol Composition Logic. As formal completeness
theorem for BPL has also been provided in [25], we would like to investigate completeness in the
computational case as well.
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