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Abstract. This paper is concerned about relating formal and computational models of cryp-
tography in case of active adversaries when formal security analysis is done with first order
logic. We first argue that the way Datta et al. defined computational semantics to their Protocol
Composition Logic, gives rise to problems because of focusing on occurrences of bit-strings
on individual traces instead of occurrences of probability distributions of bit-strings across
the distribution of traces. We therefore introduce a new, fully probabilistic method to assign
computational semantics to the syntax. We present this via considering a simple example of
such a formal model, the Basic Protocol Logic by K. Hasebe and M. Okada [19] , but the
technique is suitable for extensions to more complex situations such as PCL. The idea is to
make use of the usual mathematical treatment of stochastic processes, hence be able to treat
arbitrary probability distributions, non-negligible probability of collision, causal dependence
or independence, and so on. Along the way, we also point out some instances of the original
syntax that had to be modified, as – although sound for formal semantics – they were not
sound for computational semantics.

Keywords. cryptographic protocols, formal methods, first order logic, computational seman-
tics

1 Introduction

In the past few years, linking the formal and computational models of cryptography has become
of central interest. Several different methods have emerged for both active and passive adversaries.
In this paper we would like to consider the relationship of the two models when formal security
analysis is done with first order logic. In the formal approach of our interest, protocol correctness
is analyzed by defining a syntax with axioms and inference rules and then proving some property.
A logical proof then ensures that the property will be true in any formal model (semantics) of the
syntax. The link to the computational world then is done by assigning a computational semantics
(instead of formal) to the syntax, proving that the axioms and inference rules hold there, and hence
a property correct in the syntax must be true in the computational model. However, as it turns out,
it is not unambiguous how to define the computational semantics, and when a property should be
deemed “true” computationally.

Recently, Datta et al. in [13] gave a computational semantics to the syntax of their Protocol
Composition Logic of [15, 12] (cf. also [1] for a protocol composition logic project overview). In
their treatment, every action by the honest participants is recorded on each execution trace (which
? Partially supported by a Packard Fellowship.



have identical probabilities), and bit strings emerging later are checked whether they were recorded
earlier and to what action they corresponded (the only actions of the adversary that are recorded
are send and receive). This way, they first define whether a property is true on a particular trace,
and they say the property is true in the model if it is true on an overwhelming number of traces.
This method however relies on negligible collision probabilities, because otherwise there would be
a large probability of identifying bit strings with the wrong actions. Moreover, as the comparisons
are done on each trace separately it is not possible to track correlations.

Our approach puts more emphasis on probabilities. Instead of defining what is true on each
trace, we say that a property is true in the model if a “cross-section” of traces provides the right
probabilities for computational realizations of the property in question. An underlying stochas-
tic structure ensures that we can detect if something depends on the past or does not. It is not
coincidences on traces that we look for, but correlations of probability distributions.

We introduce our method on a rather simple syntax, namely, a somewhat modified version of
Basic Protocol Logic (or BPL, for short) by K. Hasebe and M. Okada [19] and leave extensions
to more complex situations such as the Protocol Composition Logic to future work. The reason
for this is partly the limited space, partly to avoid distraction by an elaborate formal model from
the main ideas, but also that a complete axiomatization of the syntax used by Datta et al. for their
computational PCL has not yet been published anywhere, only fragments are available. We would
like to emphasize though that our point is not to give a computational semantics to BPL but to
provide a technique that works well in much more general situations as well.

BPL is a logical inference system to prove correctness of a protocol. Originally, it included
signatures as well, but for simplicity, we leave that out from this analysis. BPL was defined to give
a simple formulation of a core part of the protocol logics of [15, 12, 11] for proving some aimed
properties within the framework of first order logic.

We first give the axiomatic system in first-order predicate logic for proving the agreement
properties. A message is represented by a first-order term that uses encryption and pairing symbols,
an atomic formula is a sequence of primitive actions (as send, receive and generate) of principals
on terms. We set some properties about nonces and cryptographic assumptions as non-logical
axioms, and give a specific form of formulas, called query form, which has enough expressive
power to specify our intended authentication properties.

Although BPL is sound with respect to purely formal semantics, in order to ensure soundness
for computational semantics, some modifications of the original syntax of BPL were necessary:

1. Instead of denoting encryptions as {m}A, which was used in the original version of the
purely symbolic model-based BPL inference system, we indicate the random seed of the encryp-
tion as {m}rA (as Datta et al. do) As it turned out, a consistent computational interpretation is much
harder, if not impossible without the random seed in the syntax.

2. The original subterm and equiterm axioms were not all computationally sound so we just
take a certain subset of those that are computationally sound. We are not taking all the sound term
axioms, as it is not known how to give a complete characterization of them. 4

4 The uses of subterm and equiterm relations, such as s v t and s = t, are essential for correctness
proofs of protocols in general, including BPL and PCL. Any symbolic term model, hence, should reflect
the symbolic term structures, and such a term model maybe called a ”standard” model with respect to
subterm and equiterm relations. BPL’s symbolic semantics takes such standard term model which also
satisfy certain properties for nonce-verifications, which are listed as non-logical axioms in our BPL syntax.
Our result 2 above shows that only the truth of a certain useful subset of the subterm theory axioms is
preserved under computational interpretation. As we will show, the nonce-verification axioms turn out to
be sound.



The original BPL also proved completeness for formal semantics with the original set of ax-
ioms, however, we do not consider completeness in this paper. It is an open question whether
anything about completeness can be said in the computational case.

We then define the computational semantics. This involves giving a stochastic structure that
results when the protocol is executed. Principals output bit strings (as opposed to terms) with cer-
tain probability distributions. The bit strings are then recorded in a trace as being generated, sent
or received by some principal. This provides a probability distribution of traces. We show how to
answer whether a bit string corresponding to a term was sent around with high probability or not.
For example a formal term {M}rA was sent around in the computational model if a cross-section
of all traces provides the correct probability distribution that corresponds to sending {M}rA. Or, a
nonceN was generated, if another cross- section provides the right probabilities, and that distribu-
tion must be independent of everything that happened earlier. This way we define when a certain
formula in the syntax is true in the computational semantics. We then analyze whether the axioms
of the syntax are true in the semantics, and if they are, then we conclude that a formula that can be
proved in the syntax is also true in the semantics.

The merits of our approach compared with the computational semantics of Datta et al.
We would like to point out the main aspects where problems arise in case of the treatment of Datta
et al. and where we think out method works better then theirs:

1. They rely on counting equiprobable traces. Unequal probabilities may be dealt with by
counting a trace more then once (although a priori it is not quite clear whether this will lead to
problems), but their method certainly only applies to executions when the number of possible
computational traces for a given security parameter is finite. Since probabilistic polynomial time
processes are not limited to finitely many traces (only the expected termination time is polynomial),
infinite number of traces should not be excluded. Our method works for infinite number of traces
and arbitrary probability distributions.

2. As Datta et al. derive the validity of a formula in the model from validity of the formula on
individual traces, they have to make sure that there are not too many accidental coincidences. As a
result, their method only works when collision probability is negligible, but, more importantly, this
results in a weaker set of syntactic axioms then what would otherwise be possible in our method.
For example, they postulate that ¬Send(X̂, t)[b]X¬Send(X̂, t) is an axiom whenever for all σ
evaluation of variables by bit-strings, σ(b) 6= σ(Send(X̂, t)). Here, X̂ is a principle, t is a term,
[b]X is an action b carried out by principal X̂ in threadX assuming also that nothing else is carried
out. In other words, it is an axiom that if X̂ did not send t before action b, then it did not send it
even after action b as long as no σ evaluates b and Send(X̂, t) the same way. However, if there is
even one coincidence in their evaluations, that prevents the axiom. We think this is an unneces-
sary restriction. As long as the probability distributions are different (up to negligibility) for any
computational interpretation of b and Send(X̂, t), we can include ¬Send(X̂, t)[b]X¬Send(X̂, t)
in our axioms (in this paper we do not consider modal formulas, but this is not really a limitation
as the actions of b can be included in the premise of the formula).

3. A further problem, that even makes the soundness proofs of Datta et al. questionable is the
following: They define a formula (e.g. Send(X̂, t)) to be true in the model if it holds on all traces
except for some with negligible probability. They ignore the fact that the position of Send(X̂, t)
on the traces may vary badly from trace to trace, for example, may depend on the future of the
trace. A simple example of such a situation is when on two traces, which coincide up to step t0,
say, Send(X̂, t) is chosen on one trace for t1 < t0, but on the other trace it is chosen somewhere
else. Since the two traces coincide at step t1, if this time is picked on one trace, it must be picked
on the other trace too. Maybe it is possible to prove that if there is a bad choice of the positions
then there is a good choice as well, but we see no indication of such concerns in the papers of Datta



et al. As we suggest to use the standard tool of filtration in stochastic processes, this problem is
taken care of in our semantics.

4. Finally, ignoring probability distributions and correlations give rise to pathologies like this
one, putting further doubts at the correctness of their soundness proofs: Suppose that the encryp-
tion scheme is such that for any n1, n2 bit-strings generated randomly as nonces, any public
key bit-string k2 and any random seed r2 for the encryption, there is another public key bit-
string k1 and a random seed r1 such that {n1}r1k1 = {n2}r2k2 . This does not contradict CCA-
2 security. Suppose principal A generates randomly nonce n1, and then principal B receives
{n2}r2k2 from the adversary. In such a case, it will be true according to the semantics of Datta
et al., that ∃N∃R∃K.New(A,N) ∧ Receive(B, {N}RK). This is however pathologic, and is a
consequence of ignoring the fact that k1, if created by the adversary, cannot correlate with n1,
which was not yet sent around. Furthermore, this seems to contradict their axiom saying that
FirstSend(X, t, t′) ∧ a(Y, t

′′
) → Send(X, t′) < a(Y, t

′′
) where X 6= Y and t subterm of t

′′

(meaning in our case that the first send action of A sending N had to occur before B could do
anything withN . This problem persists even if such a coincidence cannot be efficiently computed.

Related Work. Formal methods emerged from the seminal work of Dolev and Yao [14],
whereas computational cryptography grew out of the work of Goldwasser and Micali [16]. The
first to link the two methods were Abadi and Rogaway in [3] ”soundness” for passive adversaries
in case of so-called type-0 security. A number of other papers for passive adversaries followed,
proving ”completness” [21, 5], generalizing for weaker, more realistic encryptions schemes [5],
considering purely probabilistic encryptions [18, 5], including limited models for active adver-
saries [20], addressing the issue of forbidding key-cycles [4], considering algebraic operations and
static equivalence [7, 2]. Other approaches including active adversaries are considered by Backes
et al. and Canetti in their reactive simulatability [6] and universal composability [10] frameworks,
respectively. Non trace properties were investigated elsewhere too, however, not in the context of
first order logic.

Organization of this paper. In Section 2, we outline the syntax of Basic Protocol Logic. In
Section 3, we give a computational semantics to Basic Protocol Logic, and discuss soundness.
Finally, in Section 4, we conclude and present directions for future work.

Special Thanks. We would like thank Stéphane Glondu, Jesus Almansa, Arnab Roy and John
Mitchell for the valuable discussions on the topic as well as Matthew Franklin.

2 Basic Protocol Logic

In this section, we present the syntax of Basic Protocol Logic modified to be suitable for compu-
tational interpretation. For the original BPL, please consult [19].

2.1 Language

Sorts and terms. Our language is order-sorted, with sorts coin , name, nonce and message such
that terms of sorts name and nonce are terms of sort message. Let Cname be a finite set of con-
stants of sort name (which represent principal names), and Cnonce a finite set of constants of sort
nonce. For each A ∈ Cname let coinA be a sort such that any term of sort coinA is of sort coin,
and let CcoinA be a finite set of constants of sort coinA. Let Ccoin :=

⋃
A∈Cname CcoinA . We require

countably infinite free variables and countably infinite bound variables for each sort. We will use
A,B, . . . , A1, A2, . . . (Q,Q′, . . . , Q1, Q2, . . ., resp.) to denote constants (variables, resp.) of sort
name, N,N ′, . . . , N1, N2, . . . (n, n′, . . . , n1, n2, . . ., resp.) denote constants (variables, resp.)
of sort nonce, rA, . . . , rA1 , r

A
2 , . . . (sA, . . . , sA1 , s

A
2 , . . ., or s, s′, . . . , s1, s2, . . ., resp.) denote



constants of sort coinA (variables of sort coinA, or variables of sort coin, resp.). The symbols
m,m′, . . . ,m1,m2, . . . are used to denote variables of sort message andM,M ′, . . . ,M1,M2, . . .
to denote constants of sort message (that is, either name or nonce). Let P, P ′, . . . , P1, P2, . . . de-
note any term of sort name, and let ρ, ρ′, . . . , ρ1, ρ2, . . . denote anything of sort coin. Compound
terms of sort message are built from constants and free variables, and are defined by the grammar:

t ::= M |m | 〈t, t〉 | {t}ρP .

Where again, M ∈ Cname ∪ Cnonce, m is any free variable of sort message, P is any constant or
free variable of sort name, and ρ is any constant or free variable of sort coin. Hence, for example,
〈〈A1, {〈n,A2〉}r

A

Q 〉,m〉 is a term. We will use the shorter {n,A2}r
A

Q instead of {〈n,A2〉}r
A

Q . We
will use the meta-symbols t, t′, . . . , t1, t2, ... to denote terms, and ν, ν′, . . . to denote any term of
sort nonce.

Formulas. We introduce five binary predicate symbols: P generates ν,
P receives t, P sends t, t = t′ and t v t′, which represent “P generates a fresh value ν as a
nonce”, “P receives a message of the form t”, “P sends a message of the form t”, and equal-
ity and subterm relation for “t is identical with t′” and “t is a subterm of t′”), respectively. The
first three are called action predicates, and the meta expression acts is used to denote one of
the action predicates: generates, receives and sends. Atomic formulas are either of the form
P1 acts1 t1;P2 acts2 t2; · · · ; Pk actsk tk, or t = t′, or t v t′. The first one is called trace for-
mula. A trace formula is used to represent a sequence of the principals’ actions such as “P sends a
message m, and after that, Q receives a message m′”. We also use α1; · · · ;αk (or α, for short) to
denote P1 acts1 t1; · · · ;Pk actsk tk (where k indicates the length of α). When every Pi is iden-
tical with P for 1 ≤ i ≤ k, then αP denotes such a trace formula. For α (≡ α1; · · · ;αm) and
β (≡ β1; · · · ;βn), we say β includes α (denoted by α ⊆ β), if there is a one-to-one, increasing
function j : {1, ...,m} → {1, ..., n} such that αi ≡ βj(i). Formulas are defined by

ϕ ::= α | t1 = t2 | t1 v t2 | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ∀mϕ′ | ∃mϕ′

wherem is some bound variable, and ϕ′ is obtained from ϕ by substitutingm for every occurrence
in ϕ of a free variable m′ of the same sort as m. We use the meta expression ϕ[m] to indicate the
list of all variablesm occurring in ϕ. Substitutions are represented in terms of this notation.

Finally, we introduce the notion of (strict) order-preserving merge of trace formulas α and
β: An order-preserving merge of α (≡ α1; · · · ;αl) and β (≡ β1; · · · ;βm) is a trace formula
δ (≡ δ1; · · · ; δn) if there are one-to-one increasing functions jα : {1, ..., l} → {1, ..., n}, jβ :
{1, ...,m} → {1, ..., n} such that αi ≡ δjα(i), βi ≡ δjβ(i), and the union of the ranges of jα and
jβ cover {1, ..., n}. δ is called a strict order-preserving merge if, furthermore, the ranges of jα

and jβ are disjoint.
Roles. A protocol is a set of roles, and each role for a principal (say, Q) is described as a trace

formula of the form αQ ≡ Q acts1 t1; · · · ;Q actsk tk.

2.2 The Axioms of Basic Protocol Logic

We extend the usual first-order predicate logic with equality by adding the following axioms (I),
(II) and (III).5 The axioms we present here were sufficient for the protocols we have checked, but

5 The set of axioms here is not the same as it was in the original formulation of BPL, as those axioms were
not all computationally sound. For example, the original axioms included that {m1}sB and {m2}r

A

Q are
equal only if s = rA, Q = B, and m1 = m2. However, if the principal Q did not generate its public key
properly, and if the randomization of s is not honest, then the interpretations of these terms may turn out
to be equal (the whole distribution).



other protocols may need additional axioms as much more can be defined that are also computa-
tionally sound.

(I) Term axioms. Consider any set C̄ of countably infinitely many elements of each of sort name,
sort nonce and sort coin such that it includes all elements of Cname, Cnonce and Ccoin. Let Ā be
the free algebra constructed from C̄ via 〈·, ·〉 and {·}·· (with the appropriate sorts in the indexes of
the encryption terms). The elements of Ā are of sort message. We postulate the following axioms
for = and v. Letm be all variables occurring in the corresponding terms. We require these for all
A,B ∈ Cname:

(a) If t = t′ is true in Ā, then ∀mt = t′ is axiom. If t v t′ is true in Ā, then ∀mt v t′ is axiom.
(b) ∀m(t = t), ∀m(t1 = t2 → t2 = t1), ∀m(t1 = t2 ∧ t2 = t3 → t1 = t3), ∀m(t1 = t2 → t1 v t2),
∀m(t1v t2 ∧ t2v t3 → t1v t3)

(c) ∀mQss′({t1}sQ ={t2}s
′

Q → t1 = t2)

(d) If t1 and t2 are built by constants, and C, D ∈ Cname then {t1}s
C

A ={t2}s
D

B → A = B ∧ C = D.
(e) ∀m(〈t1, t2〉=〈t3, t4〉 → t1 = t3 ∧ t2 = t4)
(f) ∀mQs({t}sQ 6= 〈t1, t2〉), ∀mQsn({t}sQ 6= n), ∀mQQ′s({t}sQ 6= Q′)
(g) ∀mn(〈t1, t2〉 6= n), ∀mQ(〈t1, t2〉 6= Q)
(h) ∀m(t v 〈t1, t2〉 → t v t1 ∨ t v t2 ∨ t = 〈t1, t2〉), ∀mQs(t1 v {t2}sQ → t1 = {t2}sQ ∨
∃mQ′s′({t2}sQ = {m}s

′

Q′ ∧ t1 v m))
(i) ∀mn(mvn→ m=n), ∀mQ(mvQ→ m=Q)

(II) Rules for trace formulas. We postulate that β → α for α ⊆ β and γ1 ∨ · · · ∨ γn ↔ α ∧ β,
where γi’s are the list of order-preserving merges of α and β. These axioms express the intuition
that if a trace “happens”, then a subtrace of it also happens, and two traces happen if and only if
one of their possible merges happen.

(III) Axioms for relationship between properties. We introduce the following set of formulas
as non-logical axioms. These axioms represent some properties about nonces and cryptographic
assumptions.

(1) Ordering:
∀Q1Q2nm(n v m→ ¬(Q2 sends/receives/generates m; Q1 generates n)).

Let |m1 v m2 v m3| mean that m1 v m2 v m3 and the only way m1 occurs in m3 is within
m2. That is:
|m1 v m2 v m3| := ∀m(m1 v m v m3 → m2 v m ∨ (m v m2 ∧ ∀m4(m2 v m4 → 〈m, m4〉 6v
m3 ∧ 〈m4, m〉 6v m3))).

(2) Nonce verification 1: For each A, B constants of sort name and rA constant of sort coin A,
we postulate
∀Qn1m2m5m6(A generates n1; A sends m2; Q receives m5

∧ |n1 v {m6}rAB v m2| ∧ n1 v m5 ∧ ¬|n1 v {m6}rAB v m5|
∧ ∀m7(A sends m7 ∧ n1 v m7 → |n1 v {m6}rAB v m7|)
→ ∃m3m4(A sends m2; B receives m3; B sends m4; Q receives m5 ∧ {m6}r

A

B v m3 ∧ n1 v m4))

(3) Nonce verification 2: For each A, B C of sort name (where A and C may coincide), rA

constant of sort coinA and rB constant of sort coinB , we postulate
∀n1m2m5m6m8m10(A generates n1; A sends m2; C receives m5

∧ |n1 v {m6}rAB v m2| ∧ n1 v m5 ∧ ¬|n1 v {m6}rAB v m5|
∧ ∀m7(A sends m7 ∧ n1 v m7 → |n1 v {m6}rAB v m7|) ∧ B sends m4 ∧ |n1 v {m8}rBC v m4|
∧ ∀m9(B sends m9∧n1 v m9 → |n1 v {m8}rBC v m9|) ∧(¬(C sends m10∧n1 v m10)∨A = C)

→ |n1 v {m8}rBC v m5|



There are other possible axiomatizations, but the authors of [19] found this particularly useful
(more exactly a somewhat less general version). The meaning of the Ordering axiom is clear.
Nonce verfication 1 and 2 are based on the idea of the authentication-tests [17]. Nonce verification
I means that if A sent out a nonce n1 encrypted with the public key of B that was not sent in
any other way, and Q received this nonce in some other form, then the encrypted nonce had to go
through B. The reason that we require A and B to be names and not arbitrary variables is that we
do not want to require any principals in an arbitrary run to encrypt securely.

2.3 Query form and correctness properties

We introduce a general form of formulas, called query form, to represents our aimed correctness
properties. In order to make the discussion simpler, we consider only the case of two party authen-
tication protocols, however our query form can be easily extended so as to represent the correctness
properties with respect to other types of protocols which include more than two principals.

Definition 1. (Query form) Query form is a formula of the following form.

Honest(αA) ∧ βB ∧Only(βB)→ γ

We present the precise definition of Only(αB) and of Honest(αA) in the Appendix. Only(αB)
means thatB performs only the actions ofαB , and nothing else, whereasHonest(αA) represents
“A performs only a run of an initial segment of αA which ends with a sending action or the last
action of αA”. For example, from responder’s (namely, B’s) view, the non-injective agreement
of the protocol Π = {αA[B/Q2,m, s], βB [A/Q1,m, s]} can be described as the following
formula: Honest(αA[Q2,m, s]) ∧ βB [A/Q1,N/m, r/s] ∧ Only(βB [A/Q1,N/m, r/s])→
αA[B/Q2,N/m, r/s]

Remarks. In this paper we choose the set of formulas (III) of Section 2.2 as non-logical ax-
ioms, which have enough power to prove our aimed agreement properties for various protocols
with public keys, such as the Needham-Schroeder-Lowe protocol, ISO/IEC 11770-3 Key Trans-
port Mechanism 6 (cf. Protocol 4.16 in [9]), and so on. With additional syntax and non-logical
axioms about shared keys or signature we can also prove correctness of the core part of Kerberos
(cf. Protocol 3.25 in [9]) and the ISO 9798-3 protocol (used as an example in [12]). BPL however,
does not provide flexible compositional treatment of proofs as Protocol Composition Logic does.

3 Computational Semantics

3.1 Computational Asymmetric Encryption Schemes

The fundamental objects of the computational world are strings, strings = {0, 1}∗, and families of
probability distributions over strings. These families are indexed by a security parameter η ∈ N
(which can be roughly understood as key-lengths).We need the notion of a negligible function:
A function f : N → R is said to be negligible, if for any c > 0, there is an nc ∈ N such that
|f(η)| ≤ η−c whenever η ≥ nc.

Pairing is an injective pairing function [·, ·] : strings × strings → strings with a tag on each
output string that shows it is a pair. We assume that changing a bit string in any of the argument
to another bit string of the same length does not influence the length of the output of the pairing.
An encryption scheme is a triple of algorithms (K, E ,D) with key generation K, encryption E and
decryption D. Let plaintexts, ciphertexts, publickey and secretkey be nonempty subsets of strings.
The set coins is some probability field that stands for coin-tossing, i.e., randomness.



Definition 2 (Encryption Scheme). A computational asymmetric encryption scheme is a triple
Π = (K, E ,D) where: K : param× coins→ publickey× secretkey is a key-generation algorithm
with param = N, E : publickey × plaintexts × coins → ciphertexts is an encryption function, and
D : secretkey × strings → plaintexts is such that for all (e, d) output of K(η, ·) and c ∈ coins
D(d, E(e,m, c)) = m for all m ∈ plaintexts. All these algorithms are computable in polynomial
time with respect to the security parameter.

We assume that the length of the output of the encryption depends only on the length of the
plaintext. We also assume that a tag is attached to each output bit-string that shows it is a cypher-
text. We further assume that the encryption scheme satisfies adaptive chosen ciphertext security
(CCA-2) defined the following way:

Definition 3 (Adaptive Chosen Ciphertext Security). A computational public-key encryption
scheme Π = (K, E ,D) provides indistinguishability under the adaptive chosen-ciphertext attack
if for all PPT adversaries A and for all sufficiently large security parameter η: |Pr[(e, d) ←−
K(1η); b ←− {0, 1} ;m0,m1 ←− AD1(·)(1η, e); c ←− E(e,mb); g ←− AD2(·)(1η, e, c) : b =
g]− 1

2 | is a negligible function of η. The oracleD1(x) returnsD(d, x), andD2(x) returnsD(d, x)
if x 6= c and returns ⊥ otherwise. The adversary is assumed to keep state between the two invoca-
tions. It is required that m0 and m1 be of the same length. The probability includes all instances
of randomness: key generation, the choices of the adversary, the choice of b, the encryption.

It has been shown in [8], that the above definition is equivalent with another that seems stricter at
first, namely, when an n-tuple of encryption and decryption oracles are given, each with separate
encryption and decryption keys, but using the same bit b to choose from the submitted plaintexts.
The adversary is allowed to invoke the oracles in any order but it cannot submit a message that
was received from an encryption oracle to the corresponding decryption oracle.

3.2 Stochastic Model for the Computational Execution of BPL

In the following, we discuss the mathematical objects that we use to represent a computational
execution of a protocol. Our plan is to define a computational semantics, show that the syntactic
axioms hold if the encryption scheme is CCA-2 secure, and, as a result, if the query-form (or
anything else) is provable in the syntax, it must be true in any computational model.

The main improvements from computational semantics proposed by Datta et al. were explained
in the introduction. Our approach avoids the necessity to tell on each trace whether something is
satisfied or not because we want to avoid pure coincidences. Since computational behavior is
probabilistic, it is often not natural to ask whether something is satisfied on a particular trace or
not. The natural question is whether the traces produce the right kind of probability distribution
for a certain variable.

First, since probabilities and complexity are involved, we need a probability space for each
value of the security parameter. Since time plays an important role in the execution, what we need
is the probability space for a stochastic process. For the presentation here, we limit ourselves to
finite probability spaces as explaining the notion of measurability and stochastic processes is much
simpler this way, but for anyone familiar with these notions in infinite spaces it is near to trivial to
generalize the method to allowing infinite steps (but polynomial expected run- time). So, here we
assume that for each security parameter, there is a maximum number of execution steps nη . The
following notions that we introduce are standard in probability theory.

We will denote the finite probability space for an execution of a protocol with security pa-
rameter η by Ωη , subsets of which are called events. Let Fη denote the set of all subsets of Ωη

(including the empty set). A subset containing only one element is called an elementary event.



The set Ωη is meant to include all randomness of an execution of the protocol (and perhaps some
additional information). A probability measure pη assigns a probability to each subset such that
it is additive with respect to disjoint unions of sets (so it is enough to assign a probability to
each element of Ωη , then the probability of any subset can be computed). When it is clear which
probability space we are talking about, we will just use the notation Pr.

In order to describe what randomness was carried out until step i ∈ {0, 1, ..., nη}, we assign
a subset Fηi ⊆ Fη to each i, such that Fηi is closed under union and intersection, and includes
∅ and Ωη , and Fηi ⊆ F

η
i+1. The set {Fηi }n

η

i=1 is called filtration. Since everything is finite, Fηi is
atomistic, that is, each element of it can be obtained as a union of disjoint, minimal (with respect
to inclusion) nonempty elements. The minimal nonempty elements are called atoms. We introduce
the notation

Pr = {(Ωη, {Fηi }
nη

i=0, p
η)}η∈param.

We included Fη0 to allow some initial randomness such as key generation. A discrete random
variable on Ωη is a function on Ωη taking some discrete value. Since Fηi contains the events
determined until step i, a random variable gη depends only on the randomness until i exactly if
g is constant on the atoms of Fηi ; this is the same as saying that for any possible value c, the
set [gη = c] := {ω | gη(ω) = c} is an element of Fηi . In this case, we say that gη is measurable
with respect toFηi . We will, however need a somewhat more complex dependence-notion. We will
need to consider random variables that are determined by the randomness until step i1 on certain
random paths, but until step i2 on other paths, and possibly something else on further paths. For
this, we have to first consider a function Jη : Ωη → {0, 1, ..., nη} that tells us which time step to
consider on each ω. This function should only depend on the past, so for each i ∈ {0, 1, ..., nη},
we require that the set [Jη = i] ∈ Fηi . We will call this function a stopping time. The events that
have occurred until the stopping time Jη are contained in

FηJ := {S | S ⊆ Ωη , and for all i = 0, 1, ..., nη, S ∩ [Jη = i] ∈ Fηi }.

Then, a random variable fη depends only on the events until the stopping time Jη iff for each c
in its range, [fη = c] ∈ FηJ . Furthermore, a random variable hη on Ωη is said to be independent
of what happened until Jη iff for any S ∈ FηJ and a c possible value of hη , Pr([hη = c] ∩ S) =
Pr([hη = c]) Pr(S). Finally, it is easy to see that for each random variable fη , there is a stopping
time Jηf such that fη is measurable with respect to FηJf , and Jηf is minimal in the sense that fη is
not measurable with respect to any other FηJ if there is an ω such that Jη(ω) < Jηf (ω).

Example 1. Suppose coins are tossed three times, one after the other. ThenΩ = {(a, b, c) | a, b, c =
0, 1}. Let (1, ·, ·) := {(1, b, c) | b, c = 0, 1}. (0, ·, ·), etc. are defined analogously. At step i = 1,
the outcome of the first coin-tossing becomes known. So, F1 = {∅, (0, ·, ·), (1, ·, ·), Ω}. At step
i = 2, the outcome of the second coin becomes known too, thereforeF2, besides ∅ andΩ, contains
(0, 0, ·), (0, 1, ·), (1, 0, ·) and (1, 1, ·) as atoms, and all possible unions of these. F3 is all subsets.
A function g that is measurable with respect to F1, is constant on (0, ·, ·) and on (1, ·, ·), that is, g
only depends on the outcome of the first coin tossing, but not the rest. Similarly, an f measurable
on F2, is constant on (0, 0, ·), on (0, 1, ·), on (1, 0, ·) and on (1, 1, ·). A stopping time is for exam-
ple the J that equals the position of the first 1, or 3 if there is never 1: J( (a1, a2, a3) ) = i if ai =
1 and ak = 0 for k < i, and J( (a1, a2, a3) ) = 3 if ak = 0 for all k = 1, 2, 3. The atoms of FJ
are (1, ·, ·), (0, 1, ·), {(0, 0, 1)} and {(0, 0, 0)}.

For each value of the security parameter, an execution of the protocol involves some princi-
pals. Each principal has a distinct name, a bit-string not longer than the upper bound nη . Each
principal generates an encryption-key, decryption-key pair at the initialization. Hence, if Pr =



{(Ωη, {Fηi }n
η

i=0, p
η)}η∈param is the stochastic space of the execution of the protocol, letPη be a set

of (polynomially bounded number of) elements of the form (Aη, (eηA, d
η
A)) where Aη ∈ {0, 1}nη ,

and (eηA, d
η
A) is a pair of probability distributions on Ωη measurable with respect to Fη0 such that

Pr[ω : (eηA(ω), dηA(ω)) 6∈ Range(K(η, ·))] is a negligible function of η. We assume that ifA = B,
then (eηA, d

η
A) = (eηB , d

η
B). The set {Pη}η∈param describes all the principals, corrupted and uncor-

rupted, that take part in the execution at a given security parameter, along with their public and
secret keys. Let P = {Pη}η∈param.

For nonces, we choose the following definition. Since CCA-2 security is length-revealing,
we have to assume that nonces are always of some fixed length mη for each security parameter
η. Let N be a set of elements of the form {Nη}η∈param where Nη : Ωη → {0, 1}mη ∪ {⊥}
(taking the value ⊥ means Nη has no bit-string value on that particular execution), such that
over {0, 1}mη , Nη is uniformly distributed, and for any two {Nη

1 }η∈param, {Nη
2 }η∈param ∈ N ,

Nη
1 and Nη

2 are independent (i.e. for any two s1, s2 ∈ {0, 1}m
η

, Pr[Nη
1 = s1 ∧ Nη

2 = s2] =
Pr[Nη

1 = s1] Pr[Nη
2 = s2]). This set describes the nonces that were generated with overwhelming

probability during the execution of the protocol. The nonces have to be independent of each other,
and have uniform distribution over the given length. The nonces also have to be independent of
what happened earlier when they are being generated, but we will require this later.

LetR be a set of elements of the form R = {Rη}η∈param where Rη : Ωη → coins ∪ {⊥}. Let
Rg be the subset of R which are properly randomized, that is, for which the values in coins have
the distribution required for the encryption scheme (on the condition that the value is not ⊥). That
is, they have good distribution (hence the g).

Messages: Let the set of messages be M elements of the form M = {Mη}η∈param, where
Mη : Ωη → {0, 1}nη ∪ {⊥}. For any two messages, M1, M2, we will denote that M1 ≈ M2 iff
pη[ω : M1(ω) 6= M2(ω)] is a negligible function of η. This way, ≈ is an equivalence notion on
the set of messages. Let DM :=M/≈, let DN := N/≈ ⊂ DM , and let

DP := {A ∈M : (Aη, (eηA, d
η
A)) ∈ P for some (eηA, d

η
A)}/≈ ⊂ DM

We have to define what we mean by a computational pairing and encryption. For anyX,X1, X2 ∈
DM , we write that X =C 〈X1, X2〉, if for some (hence for all) M1 = {Mη

1 }η∈param ∈ X1 and
M2 = {Mη

2 }η∈param ∈ X2, the ensemble of random variables {ω 7→ [Mη
1 (ω),Mη

2 (ω)]}η∈param
is an element of X . Further, if A ∈ P , and R ∈ R, then we will write that X =C {X1}RA if
for any (hence for all) M1 = {Mη

1 }η∈param ∈ X1, the ensemble of random variables {ω 7→
E(eηA(ω),Mη

1 (ω), R(ω))}η∈param is an element of X . If the value of any of the input distributions
is ⊥ then we take the output to be ⊥ as well. This way, we can consider an element of the free
term algebra T (DM ) over DM as an element of DM . Let vT (DM ) denote the subterm relation on
T (DM ). This generates a subterm relation vC on DM by defining X1 vC X2 to be true iff there
is an element X ∈ T (DM ) such that X1 vT (DM ) X and X2 =C X .

For any set of subsets Dη ∈ Fη , D = {Dη}η∈η with non-negligible pη(Dη), we say that for
X1, X2 ∈ DM ,X1 = X2 onD if there areM1 = {Mη

1 }η∈param ∈ X1 andM2 = {Mη
2 }η∈param ∈

X2 with Mη
1 (ω) = Mη

2 (ω) for all ω ∈ Dη . We say that X1 vC X2 on D iff there is an element
X ∈ T (DM ) such that X1 vT (DM ) X and X2 =C X on D.

Execution trace: The execution trace is defined as Tr = {Trη}η∈param where Trη : ω 7→
Trη(ω) with either

Trη(ω) = P η1 (ω) actsη1(ω) sη1(ω); ...;P ηnη(ω)(ω) actsηnη(ω)(ω) sηnη(ω)(ω)

where for each η security parameter, ω ∈ Ωη , nη(ω) is a natural number less than nη , P ηi (ω) ∈
DP , actsηi (ω) is one of generates, sends, receives and sηi (ω) ∈ {0, 1}∗; or Trη(ω) = ⊥



with nη(ω) = 0 meaning that no generate, send or receive action happened. For each η, ω, and
i ∈ {1, ..., nη}, let

Trηi (ω) =
{
P ηi (ω) actsηi (ω) sηi (ω) if i ∈ {1, ..., nη(ω)}
⊥ otherwise

We also require that Trηi be measurable with respect to Fηi for all i. Moreover, we require that any
of Tr is PPT computable from the earlier ones.

3.3 Computational Semantics

We now explain how to give computational semantics to the syntax, and what it means that a
formula of the syntax is true in the semantics. For a given security parameter, an execution is
played by a number of participants.

Assumptions. In a particular execution, we assume that the principals corresponding to names
in the syntax (that is, they correspond to elements in Cname) are regular (non-corrupted). We assume
that these participants generate their keys and encrypt correctly (that is, the keys are properly
distributed, and also rA is properly randomized) with a CCA-2 encryption scheme, and never
use their private keys in any computation except for decryption. For other participants (possibly
corrupted), we do not assume this. (Encrypting correctly is essential to able to prove the nonce
verification axioms.) We further assume that pairing of any two messages differs from any nonce
and from any principal name on sets of non-negligible probability. The network is completely
controlled by an adversary. The sent and received bit strings are recorded in a trace in the order
they happen. Freshly generated bit-strings produced by the regular participants are also recorded.
The combined algorithms of the participants and the adversary are assumed to be probabilistic
polynomial time.

Such a situation, with the definitions of the previous section, produces a computational trace
structure associated to the execution of the form

M = (Π, [·, ·],Pr,P,N ,Rg,Tr, ΦC ,D),

where ΦC is a one-to-one function on Cname ∪ Cnonce ∪ Ccoin such that (i) ΦC(A) ∈ DP for any
A ∈ Cname such that (eηΦC(A), d

η
ΦC(A)) is measurable with respect to F0 and has the correct key

distribution, and for different constants are independent of each other; (ii) ΦC(N) ∈ DN for any
N ∈ Cnonce; (iii) ΦC(r) ∈ Rg for any r ∈ Ccoin; and D = {Dη}η∈η , Dη ∈ Fη a sequence of
subsets where we focus our attention with pη(Dη) non-negligible. An extension ofΦC to evaluation
of free variables is a function Φ that is the same on constants as ΦC , and for variables Q, n, m,
sA, s of sort name, nonce, message, coinA and coin respectively, Φ(Q) ∈ DP , Φ(n) ∈ DN ,
Φ(m) ∈ DM , Φ(sA) ∈ Rg and Φ(s) ∈ R hold. Then, for any t term, Φ(t) ∈ DM is defined on
terms as (i) Φ(〈t1, t2〉) = 〈Φ(t1), Φ(t2)〉 ; (ii) Φ({t}rP ) = {Φ(t)}Φ(r)

Φ(P ); where, as we mentioned
earlier, elements of T (DM ) are considered as elements of DM .

We say that an ensemble of random variables M = {Mη}η∈param such that Mη is defined on
Dη is a realization of the term t through Φ on D, which we denote M ≪Φ,D t, if there is an

M1 ∈ Φ(t) with Mη
1 (ω) = Mη(ω) 6= ⊥ for all ω ∈ Dη; and if also t = {t′}ρ

A

P , then we further
require that there is anM ′ ∈ Φ(t′) such thatM ′ ≪Φ,D t

′ and Φ(ρA)η on {0, 1}mη is independent
of FηJM′ on the condition that Φ(ρA)η 6= ⊥ (where for JηM ′ see the paragraph before Example 1).

In the following, we give the interpretation of BPL. Note, that the interpretation of conjunction,
disjunction, negation and conclusion are defined in the most standard manner. We first define when
a formula ϕ is satisfied by Φ (remember, D = {Dη}η∈η with Dη ∈ Fη from M):



– For any terms t1, t2, ϕ ≡ t1 = t2 is satisfied by Φ, iff Φ(t1) = Φ(t2), and ϕ ≡ t1 v t2 is
satisfied by Φ on D iff Φ(t1) vC Φ(t2) on D.

– For any term u and acts = sends/receives, ϕ ≡ P acts u is satisfied by Φ iff there
are stopping times Jη such that apart from sets of negligible probability, TrηJη(ω)(ω) is of
the form Aη acts Mη(ω) for ω ∈ Dη where M := {Mη}η∈param ≪Φ,D u and A :=
{Aη}η∈param ≪Φ,D P . We will denote this as TrJ ≪Φ,D P acts u.

– If acts = generates then the u above is a nonce ν, and so M := {Mη}η∈param ≪Φ,D u
means there is an N ∈ Φ(ν) such that Mη|Dη = Nη|Dη in this case, and we further require
that Nη be independent up to negligible probability of FηJ−1 for all η on the condition that
[N 6= ⊥]. (More precisely, there is an N ′ ≈ N such that N ′η is independent of FηJ−1 on
[N ′ 6= ⊥].)

– ϕ ≡ β1, ..., βn sequence of actions is satisfied by Φ if each of βk (k = 1, ..., n) is satisfied by
Φ, and if Jk is the stopping time belonging to βk, then we require that Jk < Jl onD whenever
k < l (that is, for each η ∈ param and ω ∈ Dη , Jηk (ω) < Jηl (ω).

– For any formulas ϕ, ϕ1, ϕ2, ¬ϕ is satisfied by Φ iff ϕ is not satisfied by Φ; ϕ1∨ϕ2 is satisfied
by Φ iff ϕ1 is satisfied by Φ or ϕ2 is satisfied by Φ; ϕ1 ∧ ϕ2 is satisfied by Φ iff ϕ1 is satisfied
by Φ and ϕ2 is also satisfied by Φ. ϕ1 → ϕ2 is satisfied by Φ iff ¬ϕ1 ∨ ϕ2 is satisfied by Φ.

– If ϕ is a formula, m′ a bound variable, and ϕ′ is obtained from ϕ by substituting m′ for every
occurrence in ϕ of some free variable m of the same sort as m′, then ∀m′ϕ′ (or ∃m′ϕ′, resp.)
is satisfied by Φ iff ϕ is satisfied by each (or some, resp.) Φ′ extension of ΦC when Φ′ only
differs from Φ on m.

A formula ϕ is true in the structure M, iff ϕ is satisfied by every Φ extension of ΦC .
If in a structure, the Basic Protocol Logic axioms are true (in which case the structure is called

model), then by standard arguments of first order logic, it follows that everything provable in the
syntax is true in the model. In particular, if the query form is provable in the syntax, then it must
be true in any model. We now turn our attention to whether the axioms are satisfied by a structure.

Truth of the Term axioms.

(a) These axioms are true since if terms are equal in the free algebra Ā, then their interpretations
are also equal, no matter how Φ is extended to variables. Further, if t v t′ holds in the free
algebra, then the way we receive t′ from t by pairing and encryptions carries over to the
computational world, no matter how Φ is evaluated on variables.

(b) These axioms hold as computational equality is also symmetric, reflexive and transitive. Fur-
ther, subterm relation is also transitive for the interpretations, and equality implies computation
subterm relation by definition of computational subterm.

(c) If the interpretations of {t1}sQ and {t2}s
′

Q are computationally equal up to negligible proba-
bility, then the interpretations of t1 and t2 must also be equal up to negligible probability as
Φ(t1) = D(dΦ(Q), Φ({t1}sQ)) and Φ(t2) = D(dΦ(Q), Φ({t2}s

′

Q)) and the right-hand sides are
equal up to negligible probability.

(d) First observe, that it cannot happen that both {t1}s
C

A v t2 and {t2}s
D

B v t1 are true in Ā. So
assume that {t1}s

C

A 6v t2 in Ā. Since A and C are honest participants, the interpretation of
the encryption {t1}s

C

A is CCA-2 secure. Therefore, Φ({t1}s
C

A ) = Φ({t2}s
D

B ) is only possible
if A = B and C = D (and Φ(t1) = Φ(t2)), otherwise CCA-2 security would be broken as
Φ({t2}s

D

B ) would reproduce the encryption Φ({t1}s
C

A ) without using it because {t1}s
C

A 6v t2
in Ā, and and t2 is built of constants.

(e) Soundness of this axiom follows as we supposed that computational pairing is one-to-one.
(f) These follow as we assumed that the outputs of computational encryption and pairing are

tagged.



(g) Follows from tagging.
(h) Soundness of the first formula follows as if t v 〈t1, t2〉 is satisfied, then either the interpreta-

tions of the two sides are equal (up to negligible probability) and hence t = 〈t1, t2〉 is satisfied,
or the interpretation of 〈t1, t2〉 can be received from the interpretation of t via encryptions and
pairing, of which the last has to be pairing because the tags have to match; then by soundness
of (e), it follows that the paired items must in fact be interpretations of t1 and t2, which im-
plies that either of the interpretations of t1 or of t2 was received from the interpretation of t
via pairing and encryptions, which means that either t v t1 or t v t2 is satisfied, and that
proofs the soundness of this formula. As for the second formula, if t1 v {t2}sQ is satisfied,
then either the interpretations of the two sides are equal, or the interpretation of {t2}sQ can be
received from the interpretation of t1 via encryptions and pairing, of which the last has to be
encryption because the tags have to match, and so soundness follows.

(i) Also follows from tagging.

Truth of the Ordering axiom. Suppose that there is an extension Φ and a domain D such that
the formula Q2 sendsm;Q1 generates n is satisfied onD with non-negligible probability as well
as the formula n v m. Then, there are stopping times Jη1 , Jη2 such that TrJ1 ≪Φ,D Q sendsm,
and TrJ2 ≪Φ,D Q generates n, and J1 < J2. Then, TrJ1 ≪Φ,D Q sendsm implies that there
is M ≪Φ,D m such that Mη is measurable with respect to FηJ1

and since n v m is satisfied,
some N ∈ Φ(n) can be obtained as a series of decryptions and breaking up pairs from M . Since
there is no new randomness used there, Nη only depends on the randomness until J1, so Nη

is measurable with respect to FηJ1
. But, TrJ2 ≪Φ,D Q generates n implies that Φ(n) has an

element N ′η measurable with respect to FηJ2
and independent of FηJ2−1 on [N ′η 6= ⊥], and hence

independent ofFηJ1
and ofNη on [N ′η 6= ⊥]. So,N andN ′ only differ up to negligible probability,

but Nη and N ′η are independent for all η, which is possible only if Pr[N ′η 6= ⊥] is negligible.
That means D has negligible probability, a contradiction.

Truth of the Nonce verification axioms. In order to show that the axioms are satisfied, we
use the assumption that regular participants encrypt with a CCA-2 secure encryption scheme.
Suppose there is a Φ and non-negligible D such that the premise of the axioms are satisfied by
Φ on D, but the conclusion is not. Then, if the conclusion is not satisfied, that means that with
non-negligible probability, {m6}r

A

B does not go through B. The premise however says that n1

shows up in m5 later, which can be recovered from there up to negligible probability via a series
of de- coupling and decryption such that {m6}r

A

B does not have to be decrypted. We have to show
that a PPT algorithm can be constructed that breaks CCA-2 security. The algorithm that breaks
CCA-2 security is simply the protocol execution itself with the following modifications: (1) The
decryption oracle (that the algorithm may access according to the definition of CCA-2 security)
does the job for all decryptions with the private key dB . (2) The algorithm generates two samples
of n1 when the protocol execution samples n1. (3) When the protocol execution is to produce
{m6}r

A

B , compute two samples of the realization of m6 using the two samples of n1 and using the
same samples for the other parts of m6. (4) Submit to the encryption oracle of the CCA-2 game
the pair of samples of m6, and use the ciphers that it outputs whenever {m6}r

A

B occurs again.
(5) If the sample for {m6}r

A

B goes through B, terminate. If not, continue until the Q receives the
sample form5. (6) Recover the sample for n1 via de-coupling and decryption using the decryption
oracle if necessary. The bit string hence obtained is the one that was in the plaintext encrypted by
the oracle, so the bit value b of the game can be determined. If the conclusion of the axiom is not
satisfied, then this algorithm has non-negligible probability of winning the CCA-2 game as D is
non-negligible.

In order to show the validity of the second nonce-verification axiom, we have to use the modi-
fied version of CCA-2 (equivalent to the original) when there are two encryption - decryption pairs



of oracles, each corresponding to independently generated encryption key - decryption key pairs.
The algorithm then is the following: (1) The decryption oracles (that the algorithm may access
according to the modified definition of CCA-2 security) do the job for all decryptions with the pri-
vate keys dB and dC . (2) The algorithm generates two samples of n1 when the protocol execution
samples n1. (3) When the protocol execution is to produce {m6}r

A

B , compute two samples of the
realization of m6 using the two samples of n1 and using the same samples for the other parts of
m6. (4) Submit to the first encryption oracle of the CCA-2 game the pairs of samples of m6. (5)
Skip the step when B decrypts {m6}r

A

B . (6) When {m8}r
B

C is constructed, compute two samples
of m8 just as in the case of m6. Stop if the samples have different length, otherwise submit the re-
sults to the second encryption oracle. (7) Continue until C receives the sample form5. (8) Recover
the sample for n1 via de-coupling and decryption using the decryption oracle if necessary. The bit
string hence obtained is the one that was in the plaintext encrypted by the oracles, so the bit value
b of the game can be determined. This is again PPT algorithm given that the protocol execution
was PPT, so it breaks CCA-2 security. Therefore, the Nonce- verification axioms hold.

Soundness Since the axioms are true in the structure M, by a standard argument of first order
logic, the following theorem is true:

Theorem 1. With our assumptions on the execution of the protocol, if the associated computa-
tional trace structure is M = (Π, [·, ·],Pr,P,N ,Rg,Tr, ΦC ,D), then, if a formula (the query
form in particular) is provable in the syntax with first-order predicate logic and axioms (I), (II),
(III), then it is true in M.

Proof. We have showed that the term axioms and non-logical axioms of BPL are true in the model.
It is routine to check that all the logical axioms and logical inference rules of first order logic are
also true in the model, because we followed the usual first-order logical operations of composed
formulas in the interpretation. Hence the theorem holds.

We would like to reflect again on the four points in the introduction: 1. Removing the bound
nη from the length of executions is a trivial step (change the finite sequence of the filtration to
an infinite one, and the definition of measurability to the standard one for infinite spaces) in our
framework, only the presentation of the definition of measurability is more involved in this case,
that is why we chose to stick to the bound. 2. We did not introduce modal formulas here in the
syntax, and it is our work in progress to extend our approach to PCL. As we keep track of the actual
probability distributions and correlations, it should be no problem to define the semantics of modal
formulas so that these axioms hold as long as the interpretations (distributions, not bit-strings) of
b and Send(X̂, t) are different up to negligible probability. 3. As we use filtrations, according
to which random variables have to be measurable, dependence on the future is taken care of by
measurability. 4. We required that the distribution of keys are measurable with respect to Fη0 , and
generated nonces are independent of the past, so the anomaly mentioned in the introduction here
cannot happen asN andK must have independent interpretations. The reader may be worried that
we don’t require that the generated R has to be dependent of N as R is generated by the adversary
or a corrupted participant. It is true that we could introduce another filtration that indicates the
knowledge of the adversary up to a certain time, which may be needed in a more complex syntax
(for example if we allow corrupted participants to generate their keys sometime in the middle),
however, in BPL this is not necessary as this does not result in undesired coincidences and the
proofs work even without this tool.



4 Conclusions

We have given a computational semantics to Basic Protocol Logic that uses stochastic structures,
and showed a soundness theorem. In order to show that the axioms of BPL were true in the se-
mantics, we had to modify BPL as the original axioms were not all computationally sound. We
showed our method on BPL as it is simple enough for a first, concise presentation. We argued
why this semantics looks more promising than the one by Datta et al. Next, we would like to
apply our methods to the much more complex formal syntax of Protocol Composition Logic. A
formal completeness theorem for BPL has also been provided in [19], we would like to investigate
completeness in the computational case as well.
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A Definition ofOnly andHonest

Our aimed correctness properties are described in a special form of formulas, called query form.
Let αA[Q,m, s] be a role A acts1 t1;A acts2 t2; · · · ;A actsk tk where each actsi (1 ≤ i ≤ k)
is one of sends, receives and generates, ti is a term built from messages in m = {m1, ...,mh}
(some of which may be nonces) from coins in s = {s1, ..., si} and from names A and Q =
{Q1, ..., Ql}. Let αA≤i[Q,m, s] denote an initial segment of αA[Q,m, s] ending with A actsi ti
(for 1 ≤ i ≤ k), i.e., αA≤i[Q,m, s] ≡ A acts1 t1; · · ·A actsi ti. Let αA≤0[Q,m, s] ≡ A = A.

The query form includes a formalization of principal’s honestyHonest(αA), which is defined
as follows, the intuitive meaning being that A follows the role αA and does nothing else, but it
may not complete it:
Honest(αA)[Q,m, s]

def≡ ∃Qms
W

i∈{0}∪{j | actsj= sends }∪{k} α
A
≤i[Q,m, s]∧Only(αA

≤i[Q,m, s])

Only(αA) denotes the following formula, whose intuitive meaning is “A performs only αA”.

Only(αA) ≡ ∀n(A generates n1 → n ∈ Generates(αA)) ∧ ∀m1(A sends m1 → m1 ∈ Sends(αA))
∧∀m2(A receives m2 → m2 ∈ Receives(αA))

Here, Sends(αA) denotes the set {tj |A sends tj ⊆ αA}, and (Receives(αA),Generates(αA)
are defined similarly. Set theoretical notation as m ∈ Sends(αA) (as well as m ∈ Receives(αA)
andm ∈ Generates(αA)) is an abbreviation of a disjunctive form: for example, if Sends(αA) =
{t′1, . . . , t′j}, thenm ∈ Sends(αA) denotes the formula (m = t′1)∨(m = t′2)∨· · ·∨(m = t′j). (As
a special case, if Sends(αA) is empty thenm ∈ Sends(αA) denotes A 6= A, that is, impossible.)

Intuitively, each disjunct αA≤i ∧ Only(αA≤i) in Honest(αA) represents a historical record
of P ’s actions at each step of his run: the sequence of actions αA≤i represents A’s performance
until this step, and Only(αA≤i) represents that A performs only αA≤i. Only(αA≤0) means that
nothing was performed. Thus, Honest(αA[Q,m, s]) represents “A performs only a run of an
initial segment of αA which ends with a sending action or the last action of αA, and uses the data
itemsQ,m and s for each run”.


