
ConSum v0:
An Experimental Cipher

David A. Madore

April 29, 2007

CVS:
$Id: consum.tex,v 1.22 2007-04-28 23:16:41 david Exp $

Abstract

We present an experimental block cipher, ConSum, based on a hitherto
unstudied design element: the Conway transformation. ConSum features an
extremely simple design and the ability to operate with arbitrary key lengths,
block sizes and round numbers. We study it empirically and statistically so
as to illustrate how it might be secure.

Contents
1 Introduction 2

1.1 What is ConSum? . 2
1.2 Why another block cipher? . 3
1.3 Naming conventions . 3

2 Conventions and notations 4

3 The Conway transformation 5
3.1 Definition and algebraic properties 5
3.2 The Conway transformation as a permutation 8
3.3 Computation considerations . 9

1

4 The ConSum cipher 10
4.1 Description . 10
4.2 Computational considerations 11

5 Addition and XOR 12
5.1 The carry structure . 12
5.2 The addition entropy . 12
5.3 Relevance to ConSum . 14

6 Statistics and cryptanalysis of 8-bit ConSum 15
6.1 Bernoulli distribution of ciphertexts 15
6.2 Bit change correlations . 16

6.2.1 Plaintext to ciphertext 16
6.2.2 Key to ciphertext . 18

6.3 Correlation of �-differentials . 19
6.3.1 Plaintext to ciphertext 19
6.3.2 Key to ciphertext . 20

6.4 Correlation of ⊕-differentials . 20
6.5 Why analyze only 8-bit ConSum? 21

7 Tables and test vectors 22
7.1 Eight-bit Conway transformation 22
7.2 Step-by-step encryption . 22
7.3 Repeated encryption . 23
7.4 Variation on parameters . 24

1 Introduction

1.1 What is ConSum?
ConSum is an experimental symmetric block cipher whose two distinguishing
characteristics are simplicity of design and flexibility. Simplicity of design in
that it is devoid of elements as mysterious S-boxes, arbitrarily chosen primitive
polynomials, random constants or any such things: the entire ConSum design
is easily described and remembered. By flexibility we mean that ConSum can
operate on any block size and any key length that is at least equal to the block
size, provided both are powers of 2.

2

As its name indicates, the cipher we are presenting is built from two basic
elements: the Conway transformation and addition. We chose the name “Conway
transformation” because it is an instance of Conway multiplication of binary
numbers, introduced in [1] and [2] (where it is called “Nim multiplication”); as far
as we are concerned, the Conway transformation is a simply constructed bijective
linear transformation x 7→ K(x) on (F2)

2n (binary sequences of length 2n) with
satisfactory “mixing” properties. The other design element of ConSum is simply
addition of binary integers, (x, y) 7→ x � y. Note that both of these elements
are “linear” in a certain sense: the Conway transformation is linear relative to the
XOR operation (x, y) 7→ x ⊕ y on bit strings (which makes (F2)

2n into an F2-
vector space), that is, K(x⊕ y) = K(x)⊕K(y), and it is only from the departure
of x � y from x ⊕ y, viz., the carry bits, that the security of ConSum should
emerge. We will give, below, an argument based on entropy computations as well
as certain statistical observations, to argue why the complexity of the carry bits
could suffice to account for cryptographic security.

1.2 Why another block cipher?
Simplicity in design is a double-edged sword: while it makes our cipher appealing
and easy to analyze in ways that indicate security, the very same characteristic also
makes is conceivable that attacks might be found which exploit this simplicity.

For this reason, ConSum is intended more as an experiment in cryptography
than as a directly usable cipher: this is why emphasis is put on the word
“experimental” in the title. The provoking question we wish to ask the
cryptographic community by submitting this cipher to peer review is whether an
extremely simple design using only “linear” building elements can nevertheless
defy cryptanalysis. We feel that there is much to learn from this experiment: if
ConSum holds, it shows certain new elegant ways of constructing block ciphers;
if it does not, we will have gained some insight in the way the addition (�)
and XOR (⊕) operations interact on binary strings, a discovery which could be
relevant in mathematics as well as cryptography. Either way, there is something
to be gained by studying the construction.

1.3 Naming conventions
The version of the cipher described in this paper is “version 0”. If subsequent
discoveries warrant it, we might make some changes in the design structure, in
which case the version number will be incremented to reflect these changes.

3

Since the flexible nature of ConSum does not impose a specific block size,
key length, or number of rounds, we dictate that the notation “ConSum(v0, b128,
k256, r12)” means “ConSum version 0 with block size 128 bits, key length
256 bits, and 12 rounds”. Omitting the key length means it is equal to block
size. Omitting other parameters means they have their default values: 128 bits for
block size, and 10 rounds.

2 Conventions and notations
We consider bit strings whose lengths are usually powers of 2 (which we will
feel free to write in hexadecimal whenver convenient). We make the convention
that if x0 and x1 are two bit strings (of lengths N0 and N1) then x1|x0 is their
concatenation (of length N = N0 +N1) in which x0 is the low (= least significant)
part and x1 is the high (= most significant) part (note that we are not implying
anything about how these bit strings are arranged in memory: in particular, we
are not saying anything about endianness, here). This will be particularly useful
when x0 and x1 are of the same length 2n, in which case x1|x0 is of length 2n+1.

We write x ⊕ y for the eXclusive OR of two bit strings x and y (of equal
length). Formally, this can be defined inductively as follows:

0⊕ 0 = 0, 0⊕ 1 = 1, 1⊕ 0 = 1, 1⊕ 1 = 0

(x1|x0)⊕ (y1|y0) = (x1 ⊕ y1|x0 ⊕ y0)

Similarly, we write x � y for the sum of two bit strings identified as integers;
for example, de4a � cccc = ab16: carries from adding bit 0 are added to bit
1, and so on. The carry c(x, y) from the last (highest) bit is thrown away (i.e. we
operate modulo 2N). Here is a formal (and annoyingly long) definition of addition

4

by induction:

0 � 0 = 0, 0 � 1 = 1, 1 � 0 = 1, 1 � 1 = 0

c(0, 0) = 0, c(0, 1) = 0, c(1, 0) = 0, c(1, 1) = 1

(x1|x0) � (y1|y0) = (x1 � y1)|(x0 � y0)
c((x1|x0), (y1|y0)) = c(x1, y1)

}
if c(x0, y0) = 0

(x1|x0) � (y1|y0) = (x1 �̂ y1)|(x0 � y0)
c((x1|x0), (y1|y0)) = ĉ(x1, y1)

}
if c(x0, y0) = 1

0 �̂ 0 = 1, 0 �̂ 1 = 0, 1 �̂ 0 = 0, 1 �̂ 1 = 1

ĉ(0, 0) = 0, ĉ(0, 1) = 1, ĉ(1, 0) = 1, ĉ(1, 1) = 1

(x1|x0) �̂ (y1|y0) = (x1 � y1)|(x0 �̂ y0)
ĉ((x1|x0), (y1|y0)) = c(x1, y1)

}
if ĉ(x0, y0) = 0

(x1|x0) �̂ (y1|y0) = (x1 �̂ y1)|(x0 �̂ y0)
ĉ((x1|x0), (y1|y0)) = ĉ(x1, y1)

}
if ĉ(x0, y0) = 1

(1)

(To make sense of this, keep in mind that x �̂ y means x � y � 1 where the �1

comes from a carry.)
We similarly write x�y for the difference of x and y (performed with borrows,

with the borrow from the highest bit forgotten).

3 The Conway transformation

3.1 Definition and algebraic properties
We define the Conway transformation Kx of a bit string x of length N = 2n

(necessarily a power of two) by induction on n as follows:

K0 = 0, K1 = 1

K(x1|x0) = K(x0 ⊕ x1) |K2x1
(2)

We emphasize that in the first line of this definition, 0 and 1 are single bits, and
in the second line x0 and x1 are of equal length, this length being a power of 2.
Naturally, K2x stands for the Conway transformation iterated twice on x.

5

We summarize the definition of K as follows:

The following table gives the Conway transformation on all 4-bit strings
(written as hexadecimal digits):

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

Kx 0 8 c 4 b 3 7 f d 5 1 9 6 e a 2

As an example of the Conway transformation, here is the iteration of it on 8-,
16-, 32- and 64-bit strings, starting with 1:

01 0001 00000001 0000000000000001

80 8000 80000000 8000000000000000

de de4a de4ae3a9 de4ae3a94a88a921

4a e3a9 4a88a921 e3a92850a9218171

a9 a921 a9218171 a92181714b010a1a

48 0e69 22fd8f18 06e6e47169fc8502

69 8f18 69fc8502 8f189ae87791f90e

2f a38c 4de7ee6b 9c27eb8bd1c005e0

e6 e6e4 e6e41fea e6e41feab43c1101

Evidently, the Conway transformation is bijective; and its inverse is given by:

K−10 = 0, K−11 = 1

K−1(z1|z0) = (K−2z0)|(K−2z0 ⊕K−1z1)
(3)

6

Here is the iteration of K−1 on bit strings as previously starting with 1:

01 0001 00000001 0000000000000001

ee 8585 d963d963 ada91d55ada91d55

85 d963 ada91d55 e047faadccf408df

ba b0fc 2cb3f272 124577333f9b3e84

d9 ada9 e047faad 8d5d71c89d1fcf59

4c dec1 2dde49b7 4bbcd0f3b31f88e0

fc f272 3f9b3e84 1b7d40da69970634

f8 e898 2fd98015 68ce96ea3d0605dd

ad e047 8d5d71c8 d42ff6393766c90a

More generally, and although we will not use it as such in the ConSum cipher,
we can define the Conway product of two bit strings of equal length 2n, x and y,
written x ~ y, as follows:

0 ~ 0 = 0, 0 ~ 1 = 0, 1 ~ 0 = 0, 1 ~ 1 = 1

(x1|x0) ~ (y1|y0) = ((x1 ~ y0) ⊕ (x0 ~ y1) ⊕ (x1 ~ y1))
| ((x0 ~ y0) ⊕ K(x1 ~ y1))

The following facts hold:

Facts 1. The set {0, 1}2n
of strings of length 2n, with the two binary composition

maps ⊕ (eXclusive OR) and ~ (Conway product), and unit elements 0 (zero bit
string) and 1 (bit string whose least significant bit is 1 and all others 0), is a field
isomorphic to F22n (the Galois field with 22n

elements — which is unique). The
Conway transformation is then simply Kx = x ~ K1.

In particular, we emphasize that the Conway transformation K is linear over
the field F2, that is, K(x ⊕ y) = Kx ⊕Ky; in fact, K is linear over F22n in the
sense that K(z ~ x) = z ~ Kx.

We close this section with the following diagrams, which represent the matrix
of K and of K−1 on 512 bits over the field F2 with two elements (0 being

7

represented as white and 1 as black).

3.2 The Conway transformation as a permutation
To avoid confusion, let us presently write Kn for the Conway transformation on
bit strings of length N = 2n. From the facts stated previously, we know that
Kn(x) = x~Kn(1) where ({0, 1}2n

,⊕, ~) ∼= F22n , and (since Kn(1) is obviously
not equal to 1, at least so long as n > 0) this implies that Kn is a permutation with
no fixed points other than 0, all of whose orbits (other than {0}) have the same
cardinality, namely the multiplicative order of the element κn = Kn(1) of the
field. We now try to say a little more about this order.

To make notations more readable, we temporarily replace the symbols ⊕ and
~ by the more usual + and · (or an absence of symbol) and we agree to identify
F22n with the set of bit strings of length N = 2n with these operations; we also
identify F22n−1 (bit strings of length N/2 = 2n−1) with those bit strings of length
N whose upper half bits are all 0.

It is easy to check that the multiplicative orders of κ2 and κ3 are equal to 5 and
85.

Now notice that κn = (κn−1|0), and if we put κ̄n = (κn−1|κn−1) then we have
κn + κ̄n = (0|κn−1) and κnκ̄n = (0|κ3

n−1) (where κ3
n−1 = K2

n−1(κn−1)). This
implies that κn and κ̄n are the roots of the quadratic equation X2 +κn−1X +κ3

n−1

over the subfield F22n−1 . Since we know that the Galois group of F22n over F22n−1

consists of the identity and the “Frobenius” map x 7→ x22n−1

, we have shown
κ̄n = (κn)22n−1

, and (κn)22n−1
+1 = κnκ̄n = κ3

n−1.
Now let us use this to compute the order of κ4: clearly it must divide

224 − 1 = 65 535 = 3 × 5 × 17 × 257. Since κ4 does not lie in the subfield
F223 of F224 , its order cannot divide 255 = 3 × 5 × 17, so it must be a multiple

8

of 257. But we have also just shown that κ257
4 = κ3

3, which is of order 85 (like κ3

itself). Consequently, κ4 is of order 85× 257 = 1
3
(216 − 1).

Similarly, the order of κ5 is a divisor of 225 − 1 = 3× 5× 17× 257× 65 537
which is not a divisor of 65 535, so it must be a multiple of 65 537, and since
κ65 537

5 = κ3
4, we see that the order of κ5 is exactly 1

3
(232 − 1).

Concerning the order of κ6 we encounter a difficulty: this time 232 + 1 is not
prime, it is 641× 6 700 417. So while we again have κ232+1

6 = κ3
5 and κ232−1

6 6= 1,
we cannot immediately conclude concerning the order of κ6: it divides 1

3
(264−1),

but it could also be 641× 1
3
(232−1) or 6 700 417× 1

3
(232−1). However, it can be

checked that κ641
6 = f79e0da1309d2d57 and κ6 700 417

6 = 9b3606c3047014f6:
since neither is in F225 , it follows that κ6 is of order 1

3
(264 − 1) exactly.

So far we have seen that κn (and hence, Kn) is of order 1
3
(22n − 1) for

2 ≤ n ≤ 6. It is always true that the order divides 1
3
(22n − 1), but we do not know

whether it is always equal. It is clear, however, always because κ22n−1
+1

n = κ3
n−1,

that the order of κn is always a multiple of that of κn−1, and must be greater: a
lower bound is given by the order of κn−1 multiplied by the smallest prime factor
of 22n−1

+ 1.
We have not checked the order of κ7, respectively κ8, but by the argument

above it must be a multiple of 274 177
3

(264 − 1) (which is over 280), respectively
over 2136. It is not directly relevant to ConSum to know exactly what the order
is: our point is merely to explain why the Conway transformation does not have
certain undesirable properties such as fixed points or very small orbits.

3.3 Computation considerations
In hardware: Recursively applying the definition of the Conway transformation
gives a circuit that computes the Conway transformation Kn of a N = 2n-bit
string using ≤ N

log 3
log 2 ≤ N1.6 XOR gates (with two inputs each) and ≤ N depth.

In software: One would typically implement the Conway transformation by
a number of functions for successive bit sizes: starting with a table lookup for
the Conway transformation of 8-bit strings (or perhaps 4-bit strings on certain
embedded system) and implementing the 2n-bit Conway transformation through
3 calls to the 2n−1-bit function. Experiments on a Pentium R©D processor (running
at 3.40GHz) in 64-bit mode suggests that it can take the following number of clock
cycles to perform Conway transformations of various sizes:

9

Bit size Length
16 bits 101

2
cycles

32 bits 26 cycles
64 bits 751

4
cycles

128 bits 2261
2

cycles

Our experiments also suggest that it is not advantageous to perform the
16-bit Conway transformation by table lookup; however, it is advantageous to
precompute the 8-bit Conway transformation iterated twice.

4 The ConSum cipher

4.1 Description
The ConSum cipher depends on three parameters: an integer nb giving the block
size Nb = 2nb , an integer nk giving the key length Nk = 2nk , and an integer
r which is the number of rounds. The only condition we impose is nk ≥ nb,
although, of course, r should be reasonably large if we want any kind of security.
The “standard” values shall be: nb = nk = 7 (so we use 128-bit keys and blocks)
and r = 10.

Suppose we are given a 2nb-bit string x (the plaintext) and r + 1 strings
t(0), . . . , t(r) (the subkeys) of that same length. Then we define

y(0) = x � t(0)

y(1) = Ky(0) � t(1)

y(2) = Ky(1) � t(2)

· · ·
y = y(r) = Ky(r−1) � t(r)

And the ciphertext is y = y(r). (Note that the number of rounds r is equal to the
number of Conway transformations used: the number of additions is r + 1.)

It remains to explain the key schedule, i.e. how we define the subkeys
t(0), . . . , t(r) from the key z. This is also easy: it follows precisely the same
formula, with z instead of x, t(i) instead of y(i) and 1 instead of t(i), that is:

t(0) = z � 1
t(1) = Kt(0) � 1
t(2) = Kt(1) � 1

· · ·
t(r) = Kt(r−1) � 1

10

In other words, the subkeys are generated by taking the intermediate values of the
encryption of the key with subkeys all equal to 1.

The following diagram recapitulates the overall encryption process:

Since we have allowed the key length Nk to be greater than the block size Nb,
we simply reduce the subkeys (forget their Nb−Nk most significant bits, keeping
only the low end) to the desired size.

4.2 Computational considerations
Using a single core of a Pentium R© D processor (running at 3.40GHz) in 64-
bit mode using a straightforward implementation of ConSum(v0, b128, k256,
r10) written in (portable) C, we found it to encrypt at circa 22 MB/s (millions
of bytes per second). This is equivalent to the speed of OpenSSL’s optimized

11

implementation of Triple-DES on the same machine: so ConSum is quite slow,
but not slow to the point of being unusable. Since it is meant as an experimental
cipher and not immediately for production use, and since the bit size, key length
and number of rounds are free (and adequate numbers have yet to be investigated),
there is no sense in prematurely trying to fine-tune it for optimization.

5 Addition and XOR

5.1 The carry structure
Assume that x and y are bit strings of length N (here we do not need that N be a
power of two). Define C(x, y) as the “carry structure” of x and y: that is, C(x, y)
is an N -bit string whose k-th bit is 1 when adding the k-th bits of x and y produced
a carry (to be added to the (k + 1)-th bit), and 0 otherwise. Formally:

C(0, 0) = 0, C(0, 1) = 0, C(1, 0) = 0, C(1, 1) = 1

C((x1|x0), (y1|y0)) = (C(x1, y1)|C(x0, y0)) if c(x0, y0) = 0

C((x1|x0), (y1|y0)) = (Ĉ(x1, y1)|C(x0, y0)) if c(x0, y0) = 1

Ĉ(0, 0) = 0, Ĉ(0, 1) = 1, Ĉ(1, 0) = 1, Ĉ(1, 1) = 1

Ĉ((x1|x0), (y1|y0)) = (C(x1, y1)|Ĉ(x0, y0)) if ĉ(x0, y0) = 0

Ĉ((x1|x0), (y1|y0)) = (Ĉ(x1, y1)|Ĉ(x0, y0)) if ĉ(x0, y0) = 1

(4)

where c and ĉ have already been defined in (1): they are simply the top bits of C
and Ĉ respectively.

More usefully, the k-th bit of C(x, y) is the logical AND of the k-th bit of x
and y when the (k − 1)-th bit of C(x, y) is 0, the logical OR when the (k − 1)-th
bit of C(x, y) is 1, with the convention that the (−1)-th bit of C(x, y) is always 0;
and Ĉ(x, y) is nearly the same except for this last convention which is reversed.

So we can write

x � y = x⊕ y ⊕ (C(x, y)� 1) (5)

where �1 denotes a left bit shift by one bit (with the top bit thrown away):
x� 1 = x � x = x|0 (note that C(x, x) = x).

5.2 The addition entropy
Now fix x and let y vary. Precisely, let y be random, with equal probability for
each of the 2N possible bit strings. And consider the possible values of C(x, y)

12

and their different probabilities. We consider the sum of the−p log p for each such
probability p (where the log is taken in base 2), and we call it the addition entropy,
written S(x), of x (expressed in logons). This is the “amount of randomness”
in C(x, y) if y is random (whereas x is the given string): S(x) is the amount
of information needed to specify C(x, y) when y is chosen at random (and x is
given).

Here is an example. Take x = 1. Then C(x, y) is 0 if y ends in 0 (probability
p = 1

2
). It is 1 if y ends in 01 (probability p = 1

4
). It is 3 = 11 if y ends

in 011 (probability p = 1
8
) and so on. So the addition entropy of x = 1 is

S(1) = 1× 1
2
+ 2× 1

4
+ 3× 1

8
+ · · ·+ N × 1

2N + N × 1
2N = 2− 1

2N−1 . Naturally,
the addition entropy S(0) of 0 is 0.

We can similarly define Ŝ(x) to be the entropy of Ĉ(x, y) for random y; in
fact, it is easy to see that, for any x, we have Ŝ(x) = S(x � 1) (although it is, of
course, not true that Ĉ(x, y) = C(x � 1, y) in general!).

Addition entropies are easily computed inductively. Indeed, consider an N -
bit string x whose addition entropy S(x) is known, and we wish to compute
that of (N + 1)-bit strings starting with x. First consider that of x|0 (the
string obtained by adding a 0 at the end of x — remember that this is the least
significant bit): evidently bit 0 will never have any carry on it, so that for any bit b,
C(x|0, y|b) = C(x, y)|0; thus, S(x|0) = S(x). In the same way, Ŝ(x|1) = Ŝ(x)
because Ĉ(x|1, y|b) = Ĉ(x, y)|1. On the other hand, let us consider S(x|1). Now
we have C(x|1, y|0) = C(x, y)|0 and C(x|1, y|1) = Ĉ(x, y)|1, each case having
probability 1

2
; and the resulting string sets are disjoint; this proves that S(x|1) =

1 + 1
2
(S(x) + Ŝ(x)). And similarly Ŝ(x|0) = 1 + 1

2
(S(x) + Ŝ(x)) = S(x|1).

Finally we have shown:

Proposition 2. The addition entropy S and the addition entropy with carry Ŝ are
subject to the following induction relations:

S(0) = 0 S(1) = 1

Ŝ(0) = 1 Ŝ(1) = 0

S(x|0) = S(x) S(x|1) = 1 + 1
2
(S(x) + Ŝ(x))

Ŝ(x|0) = 1 + 1
2
(S(x) + Ŝ(x)) Ŝ(x|1) = Ŝ(x)

Now consider the mean addition entropy SN of all N -bit strings (that is,
the average of the S(x), where x ranges over all N -bit strings; or again, the
expectancy of the addition entropy where x is a random N -bit string). Since
Ŝ(x) = S(x � 1) as we have noted (even where x is the string −1 consisting

13

of only 1’s), and since x � 1 goes through every N -bit string exacly once as x
does, it follows that ŜN = SN (with the obvious notation). On the other hand,
the induction relations we have seen show, when averaging, that S1 = 1

2
, and

SN+1 = 1
2

+ SN . Thus,

Corollary 3. The mean addition entropy SN of all N -bit strings and the mean
addition entropy with carry ŜN are given by:

SN = ŜN =
N

2

This says that for a given (known) but random x, one needs on the average N
2

logons of information to specify the value of C(x, y) for a random y. One would
like to say that because of (5) it also takes N

2
logons to specify the value of x � y

(together with the topmost carry) when the value of x ⊕ y is known, but that is
nonsense: when x ⊕ y is known, so is y and therefore x � y; however, it is true
(possibly with a subtlety for the topmost bit) that it takes N

2
logons to specify the

value of (x�y)⊕z when the value of x⊕y⊕z is known, for y and z both random
and unknown.

Note that when x and y are both random and unknown, it takes not N
2

logons
but slightly (62%) more, namely

(
2− 3

4
log 3

)
N , to give the value of C(x, y) (the

proof in a nutshell: giving the lowest bit of C(x, y) takes 2− 3
4
log 3 logons because

it is the logical AND of the lowest bits of x and y; after that, each bit of C(x, y)
also takes 2 − 3

4
log 3 logons because it is either the logical AND or the logical

OR, the which of which is known by the previous bit). Consequently, it takes(
2− 3

4
log 3

)
N logons to specify the value of x � y (together with the topmost

carry) when the value of x⊕ y is known. However, this is of lesser interest to us.
Note also that in all this, forgetting the topmost carry bit (as we prescribed)

decreases the specified entropies by at most one logon (since a bit cannot contain
more than that much information).

5.3 Relevance to ConSum
We now explain heuristically why the previous section’s considerations on
addition entropies are relevant to ConSum’s security. Evidently, if we replace
ordinary addition (with carry) by eXclusive OR (addition without carry) in
ConSum’s design, we get no security at all (since K distributes over XOR), and it
is in the departure of x � y from x⊕ y that all the security lies.

14

Consider the operation (left-conjugation by Ks of addition) defined by x �(s)

u = K−s(Ksx � u). In other words, make Ks act the left operand, add, and then
undo the Ks. What ConSum’s round function amounts to, then, is to take start
with a plaintext x and calculate (· · · ((x � t(0)) �(1) t(1)) · · ·) �(r) t(r), where t(s)

is a subkey. Now because of (5), we have x �(s) u = x⊕K−su⊕K−sC̃(Ksx, u)
(where we have set C̃(x′, u′) = C(x′, u′)�1 for simplicity’s sake). So ConSum’s
round function XORs x with (a) the XOR of t(0),..., K−rt(r), which do not depend
on x, and (b) the XOR of C(x, t(0)), K−1C(Kx, t(1)),..., K−rC(Krx, t(r)), which
have respective entropies (for random x) of at least S(t(0)) − 1, S(t(1)) − 1,...,
S(t(r))−1 (the−1 comes from the fact that we throw away the top bit). We are in
danger of attacks, therefore, at least when the sum of these entropies is less than
N . But since we have proven that for a random u, S(u) is on the average N

2
, we

are far above this figure even for small numbers of rounds.

6 Statistics and cryptanalysis of 8-bit ConSum

6.1 Bernoulli distribution of ciphertexts
In an ideal cipher, E(z, x), where z is the key and x the plaintext, is a randomly
and independently chosen permutation of x for each z; but if we fix the plaintext
x and let the key z vary, each E(z, x) should be independent: for a given
plaintext x, the number of occurrences of each possible value of E(z, x) when
z ranges through a certain set of keys should follow a Bernoulli distribution (with
average 1 if there are as many ciphertexts as keys). We emphasize this: whereas
x 7→ E(z, x) (fix the key and let the plaintext vary) is a permutation, so each
ciphertext occurs once and only once, z 7→ E(z, x) should not be biased in its
distribution—this is an important condition in resisting attacks that try to recover
the key.

We have performed the following statistical test on ConSum(b8,r4) and
ConSum(b8,r5) (that is, the version of ConSum with 8-bit keys and blocks and
only 4 or 5 rounds): for each given plaintext x we have computed the number of
ciphertexts which are reached 0 through 7 times (more than 7 never occurs) by
E(x, z) when z varies through all (256) keys, then we have summed this over all
(256) values of x. The result is as follows:

15

Count Ideal ConSum r4 ConSum r5
0 24 062 24 067 24 008
1 24 157 24 174 24 212
2 12 078 11 999 12 124
3 4 010 4 083 3 974
4 995 990 990
5 197 186 183
6 32 34 36
7 5 3 9

For example, the 186 in the “ConSum” column for count 5 means that there are
186 (plaintext, ciphertext) pairs such that the ciphertext occurred as the encoding
of plaintext with 5 different keys. The “Ideal” column was obtained by rounding
65 536 × 256!

k!(256−k)!
× (255

256
)256−k × (1

256
)k to the closest integer (where k is the

count).
The values in this table indicate that ConSum is not biased, even for a small

number of rounds, toward or against producing the same ciphertext for the same
plaintext when the key varies.

6.2 Bit change correlations
6.2.1 Plaintext to ciphertext

We have performed the following test on ConSum(b8,r4) and ConSum(b8,r5):
for each one of 8 × 8 combinations of a plaintext bit position u and a
ciphertext bit position v, we have examined how many out of the 256 × 128
(key, plaintext1, plaintext2) triplets, where the two plaintexts differ exactly at bit
position u, give rise to ciphertexts pairs (ciphertext1, ciphertext2) in which bit
position v differs. Now for each given bit v, the proportion of pairs of bytes
(y1, y2) where y1 6= y2 which differ in bit v is p = 128

255
(this is a little over 1

2

because y1 6= y2 implies they must differ by at least one bit). So for an ideal
cipher we expect in our experiment an average of p, with a variance of p(1 − p),
for each (u, v) pair. Here are the observed results, expressed in expected standard
deviations (

√
256× 128× p(1− p) = 90.509) relative to the expected mean

(256 × 128 × p = 16448.25); we emphasize that these results are bit change
correlations, not absolute bit correlations (so the value 2.21 in line u = 1 and
column v = 2 means that two plaintexts which differ only in bit 1 have a rather
high tendency, 2.21 deviations above the expected value, of producing ciphertexts
in which bit 2 differs):

16

r4 v = 0 v = 1 v = 2 v = 3 v = 4 v = 5 v = 6 v = 7
u = 0 1.28 0.06 −3.32 2.74 −1.48 2.05 −1.77 −0.69
u = 1 2.05 7.91 2.21 1.90 −1.28 −1.51 −0.51 −0.14
u = 2 2.89 −1.00 −0.53 0.26 0.39 −3.98 −1.37 0.13
u = 3 0.39 1.99 −2.81 0.90 −0.27 0.97 0.86 0.04
u = 4 2.43 −2.41 −1.84 −1.57 0.97 0.17 −0.91 1.43
u = 5 −1.02 2.16 −0.29 −1.93 3.42 −0.67 0.64 −1.51
u = 6 −0.78 2.34 2.18 0.70 −0.11 −1.31 1.77 2.34
u = 7 −1.62 0.37 −0.44 −0.60 0.48 −0.02 2.21 −1.06

r5 v = 0 v = 1 v = 2 v = 3 v = 4 v = 5 v = 6 v = 7
u = 0 −0.51 1.61 −0.38 1.61 0.42 −0.64 1.46 −0.38
u = 1 0.33 −0.18 0.28 −1.24 0.28 −0.56 1.10 1.70
u = 2 −2.48 2.14 0.66 −1.68 −3.25 −0.73 −0.98 −1.75
u = 3 −0.07 −0.29 0.81 1.23 −1.62 1.79 0.64 −0.31
u = 4 −0.31 0.62 0.64 −0.22 1.26 0.42 0.95 −1.11
u = 5 1.10 1.04 0.53 1.92 −0.14 −0.93 0.26 2.23
u = 6 1.23 0.75 0.84 0.06 −0.22 0.20 −1.06 −0.22
u = 7 −0.00 0.48 0.51 0.13 0.64 0.39 −0.18 0.99

The first table, for ConSum(b8,r4), having sum of squares = 228.7, presents
significant deviation from an ideal table (for 64 gaussian variables with average 0
and standard deviation 1 we expect a sum of squares of 64 ± 11.3). The second
table, for ConSum(b8,r5), however, presents no noticeable anomaly, having a sum
of squares = 75.5. This is true for all further numbers of rounds:

Rounds
∑

(ξ2) Norm.
r3 1 479.0 125.07
r4 228.7 14.56
r5 75.5 1.02
r6 50.7 −1.18
r7 67.9 0.35
r8 39.7 −2.14
r9 69.5 0.48

r10 69.8 0.51

(The “Norm.” column is simply the value of the colum
∑

(ξ2) minus its
expected mean 64 and divided by its expected standard deviation 11.3.)

17

The values in this table indicate that ConSum is not noticeably biased, from
five rounds on, toward correlating bit changes in the ciphertext to single bit
changes in the plaintext.

6.2.2 Key to ciphertext

The test described here is analogous to the previous one, except that instead of
varying a bit in the plaintext we vary it in the key.

In other words: for each one of 8 × 8 combinations of a key bit position uk

and a ciphertext bit position v, we have examined how many out of the 256× 128
(key1, key2, plaintext) triplets, where the two keys differ exactly at bit position uk,
give rise to ciphertexts pairs (ciphertext1, ciphertext2) in which bit position v
differs. This time the ideal proportion is p = 1

2
because there is no reason to

exclude the two ciphertexts being equal. Here are the observed results, expressed
in expected standard deviations (

√
256× 128× p(1− p) = 90.510) relative to

the expected mean (256× 128× p = 16384):

r4 v = 0 v = 1 v = 2 v = 3 v = 4 v = 5 v = 6 v = 7
uk = 0 −0.51 −0.46 −2.21 −2.89 1.30 0.29 −0.51 −1.46
uk = 1 −1.02 −1.17 0.57 0.29 1.28 −1.02 −1.37 −0.15
uk = 2 2.47 1.10 −0.75 0.64 −0.15 −0.04 −0.60 1.06
uk = 3 0.62 −1.86 −0.09 0.66 −0.95 0.18 −0.04 2.67
uk = 4 0.40 −0.80 0.97 0.38 −0.49 −1.83 0.42 −0.93
uk = 5 1.81 0.97 1.59 −0.09 0.33 0.20 −0.53 1.61
uk = 6 −2.06 0.71 2.01 0.22 −0.51 −1.90 0.33 −2.72
uk = 7 0.57 0.49 0.44 1.17 −0.18 −0.38 −0.84 0.11

r5 v = 0 v = 1 v = 2 v = 3 v = 4 v = 5 v = 6 v = 7
uk = 0 0.20 1.94 −1.59 0.46 1.55 1.02 −2.30 −0.09
uk = 1 −1.68 0.66 0.02 −0.02 −1.48 1.04 0.69 0.15
uk = 2 1.39 −1.83 0.49 −1.13 −0.42 0.71 −0.77 −0.24
uk = 3 −1.06 −0.13 −1.70 −0.40 −1.41 0.69 0.84 −1.75
uk = 4 −1.17 0.93 −0.40 −0.51 1.06 −1.37 −0.20 0.57
uk = 5 1.30 −0.66 −2.25 −0.51 −1.66 0.71 −0.55 0.69
uk = 6 −1.33 1.99 0.27 −0.75 −0.02 −1.55 −0.93 1.35
uk = 7 0.24 0.09 −1.77 −1.44 −0.04 −0.33 −0.53 −0.49

18

Rounds
∑

(ξ2) Norm.
r3 629.3 49.96
r4 87.0 2.03
r5 75.7 1.03
r6 47.8 −1.44
r7 68.0 0.36
r8 53.7 −0.91
r9 63.9 −0.01

r10 45.9 −1.60

The values in this table indicate that ConSum is not noticeably biased, from
four rounds on, toward correlating bit changes in the ciphertext to single bit
changes in the key.

6.3 Correlation of �-differentials
6.3.1 Plaintext to ciphertext

We now consider a table analogous to the one described in section 6.2.1, except
that it is a 255 × 255 table which, for each possible non-zero differential u
(between 1 and 255) in the plaintext and each possible non-zero differential v
(between 1 and 255) in the ciphertext, records how many out of the 256 ×
256 (key, plaintext1, plaintext2) triplets where plaintext2 = plaintext1 � u have
ciphertext2 = ciphertext1 � v.

In other words, the table counts how often a certain �-differential u in the
plaintext gives rise to a certain �-differential v in the ciphertext. For an ideal
cipher, we expect a mean count of 256×256×p = 257.00 (with p = 1

255
) for each

entry in the table, with standard deviation
√

256× 256× p(1− p) = 16.000, so
we renormalize the table by these values. Naturally, given its size, we will not
give the entire table, but as previously we tabulate its sum of squares, and the
same normalized to account for an expected 65 025 ± 360.6, for various round
values:

19

Rounds
∑

(ξ2) Norm.
r3 550 027 1345
r4 100 153 97.41
r5 68 875 10.68
r6 67 116 5.80
r7 65 980 2.65
r8 65 495 1.30
r9 65 060 0.10

r10 64 384 −1.78

The results may appear bad as we have detected deviations from a statistically
ideal cipher up to six rounds of ConSum. However, this test is extremely stringent
since it examins all plaintext differentials versus all ciphertext differentials
(something not at all realizable for larger block sizes): so it is not surprising to
detect very subtle levels of correlation.

6.3.2 Key to ciphertext

This time the table is 255 × 256, because for each of the 255 non-zero key
differentials uk any one of the 256 ciphertext differentials v is possible and should
be equally likely: the table counts how often a certain �-differential uk in the key
gives rise to a certain �-differential v in the ciphertext.

Rounds
∑

(ξ2) Norm.
r3 76 861 32.05
r4 65 990 1.97
r5 66 825 4.28
r6 65 360 0.22
r7 65 996 1.98
r8 64 879 −1.11
r9 65 312 0.09

r10 65 137 −0.40

Here we find no meaningful correlation from six rounds on (again, this is a
very stringent test, as it examines all possible key differentials).

6.4 Correlation of ⊕-differentials
We now proceed with⊕-differentials exactly as we did with �-differentials. Only
this time we must remember that E(z, x ⊕ u) = E(z, x) ⊕ v is tantamount to

20

E(z, x′ ⊕ u) = E(z, x′) ⊕ v where x′ = x ⊕ u (for any function E): hence
if we count (for each given pair (u, v)) every pair (z, x) such that E(z, x ⊕ u) =
E(z, x)⊕v we expect 257.00±22.627 (not 257.00±16.000 as for �-differentials).

Plaintext to ciphertext:

Rounds
∑

(ξ2) Norm.
r3 186 980 338
r4 79 678 40.63
r5 68 716 10.23
r6 65 170 0.40
r7 65 869 2.34
r8 65 227 0.56
r9 65 726 1.95

r10 64 796 −0.64

Key to ciphertext:

Rounds
∑

(ξ2) Norm.
r3 75 866 29.30
r4 64 891 −1.08
r5 65 606 0.90
r6 64 994 −0.79
r7 65 591 0.87
r8 65 263 −0.05
r9 66 081 2.22

r10 65 008 −0.75

6.5 Why analyze only 8-bit ConSum?
We anticipate the following objection: while we have given reasons to think that
8-bit ConSum behaves essentially like an ideal (i.e., true random) cipher at least
from seven rounds on, this does not portend much for 64-bit, 128-bit or 256-bit
ConSum, the sizes one is generally interested in. In response to this, we argue
that, in ConSum, there is no particular reason to increase the number of rounds
as the key length, or block size, goes up. Indeed, this is a precautionary measure
un ciphers for which the round function does not perform a full “mixing” of the
bits, so time must be allowed for every bit to interact with every other one. But
in the case of ConSum, the mixing is provided by the Conway transformation and
by the carry bits: and certainly the Conway transformation “mixes” on the whole

21

width of the bit strings (this is intuitive in the diagrams showing its matrix, and
the fact that it has no small periods also goes in this direction); as for carry bits,
we have argued in section 5 that the amount of entropy they bear is proportional to
the string length. So there is no particular reason to increase the number of rounds
when we have more bits of input (basically, the Conway operation just becomes
more complicated).

On the other hand, 8-bit ConSum provides us with a toy-model for the larger
ConSum sizes, on which we can perform statistical tests of some significance
(4 bits is too small, 16 bits is already too large).

7 Tables and test vectors

7.1 Eight-bit Conway transformation
The following table lists the value of Kx (the Conway transformation of x) for all
8-bit values x; here, the line determines the more significant hexadecimal digit of
x, and the column the less significant digit.

x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x1a x1b x1c x1d x1e x1f
0x0 00 80 c0 40 b0 30 70 f0 d0 50 10 90 60 e0 a0 20

1x0 8d 0d 4d cd 3d bd fd 7d 5d dd 9d 1d ed 6d 2d ad

2x0 c6 46 06 86 76 f6 b6 36 16 96 d6 56 a6 26 66 e6

3x0 4b cb 8b 0b fb 7b 3b bb 9b 1b 5b db 2b ab eb 6b

4x0 b9 39 79 f9 09 89 c9 49 69 e9 a9 29 d9 59 19 99

5x0 34 b4 f4 74 84 04 44 c4 e4 64 24 a4 54 d4 94 14

6x0 7f ff bf 3f cf 4f 0f 8f af 2f 6f ef 1f 9f df 5f

7x0 f2 72 32 b2 42 c2 82 02 22 a2 e2 62 92 12 52 d2

8x0 de 5e 1e 9e 6e ee ae 2e 0e 8e ce 4e be 3e 7e fe

9x0 53 d3 93 13 e3 63 23 a3 83 03 43 c3 33 b3 f3 73

ax0 18 98 d8 58 a8 28 68 e8 c8 48 08 88 78 f8 b8 38

bx0 95 15 55 d5 25 a5 e5 65 45 c5 85 05 f5 75 35 b5

cx0 67 e7 a7 27 d7 57 17 97 b7 37 77 f7 07 87 c7 47

dx0 ea 6a 2a aa 5a da 9a 1a 3a ba fa 7a 8a 0a 4a ca

ex0 a1 21 61 e1 11 91 d1 51 71 f1 b1 31 c1 41 01 81

fx0 2c ac ec 6c 9c 1c 5c dc fc 7c 3c bc 4c cc 8c 0c

7.2 Step-by-step encryption
We perform the encryption of plaintext 0000...0000 (128 bits) with key
0000...0000 in ConSum(v0, b128, k256, r10).

Key schedule:
t(0) =0000000000000000 0000000000000000 0000000000000000 0000000000000001

t(1) =8000000000000000 0000000000000000 0000000000000000 0000000000000001

t(2) =5e4ae3a94a88a921 e3a92850a9218171 4a88a921e2208b6b a92181714b010a1b

t(3) =bde3cbf9e3a92850 c376d7b8fc4df767 e3a92850a9218171 20dfffe8556c7617

t(4) =14c24a88a8a8224a 4a88a921e2208b6b 9f8c3840a5211092 8a8065f6702581f4

22

t(5) =679c50b6fe2b4f6b 038bd29a4c2a85ac f670bd42668cf89d afc7650022fd8f19

t(6) =6a68e79f65cd77d3 863e9d9e461d73f4 d0a9e13bd61aed60 05a6f4aee59e1cf1

t(7) =33da041e149339c0 3a912275b41863b6 048c255511b09e07 77941d605d6e83a7

t(8) =3949da428b1f529b 7614ac31c747e15f ef39d4887a6e57a9 d27e22db0c2f58db

t(9) =21797023c351872d 85c639150ca2602a 98c8a0e75c8172d0 e9ec6b6796c93d6f

t(10) =5a2bb3684ab96ebf 12c0944f82dcf0e5 c1a17b575e9e7491 b2e70aa12d9738db

Encryption:
y(0) = 0000000000000000 0000000000000001

y(1) = 8000000000000000 0000000000000001

y(2) = a8d38ccb2ca9348d 8ccaa9c1f4228b8c

y(3) = efc998c83a0383f8 dc99505629e6427a

y(4) = 7daf7aac099df886 d1ec1c967687cd52

y(5) = b1bad4d984789a50 e4d667f5e49be585

y(6) = cf3c323d27b3e9f0 03733b882cc77667

y(7) = 6db1a70fffa763cb 23ac09438b54c3b8

y(8) = 80f660ff6fc880da f48eb29892864c6c

y(9) = 8b21980fac55fae4 f7b7173c1527ac40

y(10) = 20e2998f0041115a 3b6bfb505e881ef3

The last line (20e2998f0041115a 3b6bfb505e881ef3) is the ciphertext.

7.3 Repeated encryption
We start with a0 = a1 = a2 = 00...00 as 128-bit strings and repeatedly define
an+1 as the encryption of an with key an−2|an−1 (that is an−2 as high-order bits
and an−1 as low-order bits) using ConSum(v0, b128, k256, r10):
a3 = 20e2998f0041115a 3b6bfb505e881ef3

a4 = 407f607817a169b9 114de8c86eae011d

a5 = 328a1865d48c4500 1c83a1464557a5d0

a6 = ddf08de099b9f063 21d6321a2f2568d9

a7 = 26533d04205d5b68 fb130bc2fa055e2f

a8 = 626e73beafd865ab e5c28b8100fd9f3c

a9 = 39b78910c3a3704b d88f424023d1875e

a10 = 1018adf304fe111c ec7cc35878e98eb2

a100 = 21108083fcaeeaf9 76b39f6d3e01ad18

a1000 = 9ebcfb6ead11f411 9bef167eb2e44c67

a10000 = a00920187851a27d 1bc5268df24a5960

a100000 = 4ebf22fec1d25af3 f9e99376a5f670bc

a1000000 = 0feaa1d911ba7250 255f1a827e7c938d

23

7.4 Variation on parameters
We constantly use a key and plaintext of 00...00 (various lengths):
ConSum(v0, b128, k256, r10): 20e2998f0041115a 3b6bfb505e881ef3
ConSum(v0, b128, k256, r9): 8b21980fac55fae4 f7b7173c1527ac40
ConSum(v0, b128, k256, r11): b77cac9ee4e251a1 0d2695d0b093a24d
ConSum(v0, b128, k256, r12): b27f1601a8370bed 44b4a89e35826818
ConSum(v0, b256, k256, r10): b47258422ff4d2ad a2e286117feecfed 07d77b55f150266a ed944303c92194d0

ConSum(v0, b256, k512, r10): 72fb12624775873c 9426a190d2bd7053 e9cd0a14ecbbc4d9 95a2467f42def11c

ConSum(v0, b64, k128, r10): 57fff41ae07852f4
ConSum(v0, b64, k64, r10): e8a28731578224ca
ConSum(v0, b64, k256, r10): 1333b3dbf1b2d9b2
ConSum(v0, b32, k32, r10): be92e11f
ConSum(v0, b16, k16, r10): 8a22
ConSum(v0, b8, k8, r10): 99
ConSum(v0, b4, k4, r10): e

References
[1] E. Berlekamp, J. H. Conway & R. Guy, Winning Ways, Academic Press.

[2] J. H. Conway, On Numbers and Games, Academic Press.

24

	Introduction
	What is ConSum?
	Why another block cipher?
	Naming conventions

	Conventions and notations
	The Conway transformation
	Definition and algebraic properties
	The Conway transformation as a permutation
	Computation considerations

	The ConSum cipher
	Description
	Computational considerations

	Addition and XOR
	The carry structure
	The addition entropy
	Relevance to ConSum

	Statistics and cryptanalysis of 8-bit ConSum
	Bernoulli distribution of ciphertexts
	Bit change correlations
	Plaintext to ciphertext
	Key to ciphertext

	Correlation of -differentials
	Plaintext to ciphertext
	Key to ciphertext

	Correlation of -differentials
	Why analyze only 8-bit ConSum?

	Tables and test vectors
	Eight-bit Conway transformation
	Step-by-step encryption
	Repeated encryption
	Variation on parameters

