
A Simple Security Analysis of Hash-CBC and a New Efficient

One-Key Online Cipher

Mridul Nandi
School of Computer Science

University of Waterloo, Canada

May 7, 2007

Abstract

In Crypto 2001, Bellare et al. [1] introduced online cipher (or online permutation) and
proposed two Hash-CBC mode constructions, namely HCBC and HPCBC along with security
proofs. We observe that, the security proofs in [1] are wrong and it may not be fixed easily. In
this paper, we provide a simple security analysis of these online ciphers. Moreover, we propose
two variants of HPCBC, namely MHCBC-1 and MHCBC-2. The first variant, MHCBC-1, is
a slight modification of HPCBC so that it is more efficient in performance as well as in memory
compare to HPCBC. The other one, MHCBC-2 requires only one-key (note that, HCBC and
HPCBC require at least two and three keys respectively) and does not require any ε-∆Universal
Hash Family (which is costly in general).

Keywords : random permutation, pseudo random permutation, Online function, Online per-
mutation, ε- ∆Universal Hash Family, Hash-CBC.

1 Introduction

In cryptography, a cipher over a domain G means a keyed function family {vK}K∈K, where K is
a key space and for each K in the key space we have a permutation vK : G → G. The primitive
for a cipher is pseudo random permutation [14] (or PRP). The pseudo random permutation is
a keyed function family which should be indistinguishable from the ideal cipher, the family of all
permutation on G, Perm(G). One popular candidate (probably) for pseudo random permutation is
AES [7] which is an example of block cipher. For AES, the domain is for example G = {0, 1}128. In
most applications, we need a cipher with larger domain such as G[1,`] = ∪0≤i≤` Gi for a sufficiently
large integer `. Thus, we need to extend the domain of the cipher which is popularly known as
modes of operation. Recently, there are many modes of operations. Most of these are variants of
Cipher-Block-Chaining modes (or CBC) [2, 3, 5, 11, 13].

In this paper we consider ciphers defined on G[1,`] which are computable in the online manner.
These ciphers are called Online Cipher or Online Permutation. That is, if the online cipher text
is (y1, · · · , y`) = f(m1, · · · ,m`) for an online cipher f , then yi can be computed from m1, · · · ,mi

only. It is easy to observed that online cipher can not be PRP. The appropriate security notion is
Pseudo Random Online Permutation (or PROP) as introduced in [1]. In [1] authors have shown
that the popular candidates such as CBC (with fixed IV, public or secret) [3], ABC [9] are not

1



Pseudo Random Online Permutation. In the same paper [1] two secure online ciphers HCBC or
Hash-CBC for Chosen Plain text Attack (or CPA-secure) and HPCBC or Hash-PCBC for Chosen
Cipher text Attack (or CCA-secure) have been introduced. These online ciphers are based on a
pseudo random permutation such as AES and Almost XOR Universal Hash family or AXU hash
family [18]. AXU hash family is a special case of ∆Universal Hash Family [10, 17, 19].

Online cipher are real time, length-preserving encryption without having buffering. In fact,
HCBC, HPCBC needs current and last message block and last cipher block to compute the current
cipher block. Thus, Online cipher could be used where we need the encryption in an online manner
with a very small amount of memory.

Our Work.

We first make a framework for analyzing indistinguishability similar to the work provided in [4, 16].
This framework would also help for some other similar scenario like pseudo random function [4, 12,
16], pseudo random permutation for general ciphers (pseudo random permutation defined over an
arbitrary large domain) etcetera. We note that the security proofs for HCBC and HPCBC given
in [1] are wrong and it may not be fixed easily. We have provided a simple security proof based on
our framework. Finally, we introduce two secure variants of HPCBC. One of them is a single-key
online cipher without using any universal hash families. These are more efficient in performance as
well as in key size compare to HCBC and HPCBC.

Organization of the paper.

In Section 2, we first give a detail description of online function, online permutation and it’s security
notion. We also characterize a wide class of distinguishers. The main tool of the paper is given
in the Theorem 3.2 in the Section 3. Next, we describe HCBC and HPCBC in Section 4 with a
simple security proof. We also observe some flaws in the proofs given in [1]. Finally we design our
new online cipher with security analysis in Section 5.

2 Online Permutation and Security Notion

In this section we describe online function, online cipher (or online permutation) and its security
notion. We also characterize a wide class of distinguishers which includes adaptively chosen cipher
text and chosen plain text attack algorithms.

2.1 Online Function and Online Permutation

To define an online permutation we first define an underlying function, which we term as online
function. Let (G,+) be a group with |G| = N and denote G[a,b] = ∪a≤i≤bG

i for nonnegative
integers a ≤ b. We denote G0 = {λ}, the set consisting of the empty string λ. Now the definition
of an online function X on G[1,`] is given below for a sufficiently large integer `.

Definition 2.1. (Online Function)
A function X : G[1,`] → G is said to be an online function if for every (m1, · · · ,mi−1) ∈ Gi−1,
1 ≤ i ≤ `, the map x 7→ y = X(m1, · · · ,mi−1, x) is a permutation on G (as a function of x). We
write X(m1, · · · ,mi−1, x, 1) = y and X(m1, · · · ,mi−1, y,−1) = x.

2



Now we denote some related sets.

1. Perm(G) : the set of all permutations on G.

2. F ∆= Func(G[0,`−1], Perm(G)), the set of all functions from G[0,`−1] to Perm(G).

3. F1 : the set of all online functions on G[1,`].

An online function X0 ∈ F1 is uniquely characterized by πX0 ∈ F such that πX0(q)(x) ∆=
X(q, x), x ∈ G, q ∈ G[0,`−1]. We denote q by chop(q, x) and x by last(q, x). Thus, X0(p, 1) =
πX0(chop(p))(last(p)) and X0(p,−1) = πX0(chop(p))−1(last(p)).

• A random function from A to B is a probability distribution on Func(A,B), the set of all
functions from A to B.

• A random function is said to be an uniform random function if it is an uniform distribution
on Func(A,B). v is said to be a uniform random permutation on G if it is an uniform
distribution on Perm(G).

• Similarly, a random online function X is a probability distribution on F (equivalently on F1).
Thus, we denote X as a random variable taking values on F1.

• It is said to be uniform random online function (UROF) if the distribution is uniform on F
and we denote it by U .

Note that, X,U are not any fixed online functions, instead they can be any fixed online function
X0 ∈ F1 with some probability. For example, for any X0 ∈ F1, Pr[U = X0] = 1

(N !)(1+N+···+N`−1)

since |F1| = (N !)(1+N+···+N`−1). We use X, U,XH, · · · to denote random online functions and
X0, X1, · · · to denote some fixed online functions from F1. Since U is an uniform distribution on
F , πU (p) is an uniform random permutation on G for all p ∈ G[0,`−1]. Moreover, for a distinct set
of elements p1, · · · , ps, πU (p1), πU (p2), · · · , πU (ps) are independently distributed uniform random
permutations.

Lemma 2.1. If p1, · · · , ps are distinct elements from G[0,`−1] then πU (p1), πU (p2), · · · , πU (ps) are
independently distributed uniform random permutations. Thus, U(p) is independent with (U(p1),· · · ,
U(ps)) if chop(p) 6= pi, 1 ≤ i ≤ σ.

Proof. Since U has uniform distribution on F1, the corresponding random function πU also has
uniform distribution on F = Func(G[0,`−1],Perm(G)). Thus, for distinct p1, · · · , ps, the random
functions πU (p1), · · · , πU (ps) have independent and uniform distribution on Perm(G).

Lemma 2.2. (UROF is close to URF) Let σ ≥ 0, yi ∈ G and p 6= pi ∈ G[1,`] for 1 ≤ i ≤ σ such
that Pr[U(p1) = y1, · · · , U(pσ) = yσ] > 0. Then the conditional probability

Pr[U(p) = y | U(p1) = y1, · · · , U(pσ) = yσ] ≤ 1
N − σ

.

For σ = 0, the lemma says that Pr[U(p) = y] ≤ 1/N (in fact equal).

3



Proof. Let p = (q, x) and pi = (qi, xi) where q = chop(p), qi = chop(pi), x = last(p) and
xi = last(pi), 1 ≤ i ≤ σ. Without loss of generality we assume that q = q1 = · · · = qj and qi 6= q
for some j ≥ 0 and for all σ ≥ i > j. Thus,

Pr[U(p) = y | U(p1) = y1, · · · , U(pσ) = yσ]

= Pr[U(p) = y | U(p1) = y1, · · · , U(pj) = yj ] ≤ 1
N − j

≤ 1
N − σ

.

The first equality holds since U(pj+1), · · · , U(pσ) are independent with U(p). Now the conditional
probability for U(p) = y given that U(p1) = y1, · · · , U(pj) = yj is either zero (if for some i ≤ j,
y = yi) or 1

N−j1
for some j1 ≤ j. More precisely, j1 is the number of distinct pi’s among p1, · · · , pj .

In case of σ = 0, U(p) is uniformly distributed on G.

For an uniform random function u from G[1,`] to G, Pr[u(p) = y | u(p1) = y1, · · · , u(pσ) = yσ] =
1
N whereas the above Lemma says that UROF has conditional probability at most 1

N−σ . These two
conditional probabilities are very close. In other words, the difference between these two probabili-
ties are negligible provided σ is small compare to N . Next we compute the interpolation probability
for UROF. Note that, for an uniform random function u, we have Pr[u(p1) = y1, · · · , u(pσ) = yσ] =
1

Nσ .

Lemma 2.3. (Interpolation probability for UROF) For any distinct pi ∈ G[1,`] and any yi ∈ G,
1 ≤ i ≤ σ we have,

Pr[U(p1) = y1, · · · , U(pσ) = yσ] ≤ 1
N(N − 1) · · · (N − σ + 1)

. (1)

Proof. If for some i, Pr[U(p1) = y1, · · · , U(Pi) = yi] = 0 then Pr[U(p1) = y1, · · · , U(pσ) = yσ] = 0
and we are done. So we assume that for all i, Pr[U(p1) = y1, · · · , U(Pi) = yi] > 0. Now, Pr[U(p1) =
y1, · · · , U(pσ) = yσ] = Pr[U(p1) = y1]×Pr[U(p2) = y2 | U(p1) = y1]×· · ·×Pr[U(pσ) = yσ | U(p1) =
y1, · · · , U(pσ−1) = yσ−1]. By applying Lemma 2.2 for each factor we obtain the bound.

Definition 2.2. Online Permutation (Cipher) : Given an online function X0, we define an
online permutation or an online cipher fX0 as follows : fX0 : G[1,`] → G[1,`], such that

fX0(m1, · · · ,mi) = (X0(m1), X0(m1,m2), · · · , X0(m1, · · · , mi))

where m1, · · · ,mi ∈ G, 1 ≤ i ≤ `.

Note that, if X1 6= X2 then fX1 6= fX2 . If X is a random online function then fX is called a
random online permutation. We denote the set of all online permutations by F2. Thus a random
online permutation fX has a distribution on F2 such that Pr[fX = fX0 ] = Pr[X = X0]. We call
fU by an uniform random online permutation where U is an uniform random online function. For
a1, · · · , an ∈ G, 1 ≤ i ≤ j ≤ n, we denote (a1, · · · , an)[i, j] = (ai, · · · , aj). We write (a1, · · · , an)[i]
instead of (a1, · · · , an)[i, i]. Now we have some properties of online cipher.

Proposition 2.4. Every online cipher fX0 is a length preserving permutation (i.e., the restricted
function fX0 |Gi is a permutation on Gi) which can be computed in an online manner (that is, for
j ≤ i, fX0(m1, · · · ,mi)[j] depends only on (m1, · · · ,mj) and not on mj+1, · · · ,mi). We call the
last property by online computation property).

4



Proof. Length preserving and online computation property follow directly from the definition
of fX0 . Suppose, fX0(m

1
1, · · · , m1

i ) = fX0(m
2
1, · · · ,m2

j ), then we have i = j (since it is length
preserving) and

X0(m1
1) = X0(m2

1) ⇒ m1
1 = m2

1 = m1 ( say )

X0(m1,m
1
2) = X0(m1,m

2
2) ⇒ m1

2 = m2
2 = m2 ( say )

...

X0(m1, · · · ,mi−1,m
1
i ) = X0(m1, · · · , mi−1,m

2
i ) ⇒ m1

i = m2
i = mi ( say )

Thus, (m1
1, · · · ,m1

i ) = (m2
1, · · · ,m2

i ) and hence fX0 is a permutation on G[1,`].

2.2 Characterization of a Class of Distinguisher

Now we study a wide class of distinguishers and characterize them. Intuitively, we consider all
oracle algorithms D, (1) which may be probabilistic, (2) which has access of two oracles f (online
cipher on G[1,`]) and f−1 (inverse of f), (3) which can make at most k queries and (4) the queries
and final outputs are adaptive, i.e., it depends on the previous query-responses. Now we have some
notations to define a distinguisher more precisely.

• V
∆= G[1,`] ×G[1,`] × {−1, 0, 1}.

• Let R be a random variable taking values on R.

• For each r ∈ R we have a tuple (Qr
1, · · · , Qr

k,Dr
out). For 1 ≤ i ≤ k

Qr
i : V i−1 → G[1,`] × {−1, 0, 1} and Dr

out : V [1,k] → {0, 1}.

Qr
i denotes the ith query when r is chosen as a random string for D. There are three possible

behaviors of the distinguisher. ‘1’ denotes f -query, ‘-1’ denotes f−1-query and ‘0’ denotes that no
more query. Dr

out returns final output based on all query-responses. Now we have the detailed
algorithm for the distinguisher D.

|Algorithm D = (R, (Qr
1, · · · ,Qr

k,Dr
out)r∈R)|

1. It chooses a string r from the distribution R on R.

2. For i = 1 to k

• (p, δi) = Qr
i ((M1, C1, δ1), · · · , (Mi−1, Ci−1, δi−1)).

• If δi = 1 then Mi = p and it makes f -query with input Mi and obtains response Ci.

• If δi = −1 then Ci = p and it makes f−1-query with input Ci and obtains response Mi.

• If δi = 0 then it set k1 = i− 1 and returns Dr
out((M1, C1, δ1), · · · , (Mi−1, Ci−1, δi−1)).

3. It returns Dr
out((M1, C1, δ1), · · · , (Mk, Ck, δk)) and set k1 = k.

5



We call the tuple ((M1, C1, δ1), · · · , (Mk1 , Ck1 , δk1)) as the transcript of the distinguisher. The
output of Dr

out completely depends on the transcript and the probability distribution of the tran-
script is induced by the probability distribution of the oracle f .

If M ∈ Gi, we write |M | = i. Let k1 ≤ k denotes the total number of queries made by the
above distinguisher D and σ =

∑k1
i=1 |Mi|, the total number of message blocks. We are interested

in all distinguisher with runtime at most t (later we see that the security bound is independent of
t), making at most k queries having at most σ many blocks.

2.3 Security Notion for Online Cipher

Let D be a distinguisher (as defined in the previous Subsection 2.2) which wants to distinguish
(fX , f−1

X ) from (fU , f−1
U ). Define advantage of D by

AdvX,U (D) =
∣∣Pr[DfX ,f−1

X = 1]− Pr[DfU ,f−1
U = 1]

∣∣.

Note that the probability is taken under the probability distribution due to R the random choice
of the distinguisher and the distribution induced from the underlying random online function X or
XU. We define,

AdvX,U (t, k, σ) ∆= maxD AdvX,U (D)

where maximum is taken over all choices of distinguishers which runs in time t making at most

k queries having at most σ many blocks. Now note that, Pr[DfX ,f−1
X = 1] =

∑
r∈R Pr[DfX ,f−1

X
r =

1] × Pr[R = r] where Dr is the deterministic algorithm which behaves exactly same as D after
choosing the random string r in the first step of the algorithm D (given in previous Subsection 2.2).
Thus,

AdvX,U (D) =
∣∣ ∑

r∈R
(Pr[DfX ,f−1

X
r = 1]− Pr[DfU ,f−1

U
r = 1])× Pr[R = r]

∣∣

≤ maxr∈R
∣∣Pr[DfX ,f−1

X
r = 1]− Pr[DfU ,f−1

U
r = 1]

∣∣ = AdvX,U (Dr∗),

where the maximum takes place at r = r∗. Thus we have,

AdvX,U (t, k, σ) = maxD AdvX,U (D)

where maximum is taken over all choices of deterministic distinguishers which runs in time t
making at most k queries having at most σ many blocks. So, now onwards we can assume that
the distinguisher D is deterministic which can be characterized by a tuple (Q1, · · · , Qk,Dout) as
defined in the previous subsection. Also note that

AdvX,U (t, k, σ) ∆= maxD
(
Pr[DfU ,f−1

U = 1]− Pr[DfX ,f−1
X = 1]

)

This is true since we can always consider D = (Q1, · · · , Qk,Dout) where D = (Q1, · · · , Qk,Dout)
and Dout returns the complement of what Dout returns. Thus, if the maximum is attained for the
distinguisher D with Pr[DfU ,f−1

U = 1] < Pr[DfX ,f−1
X = 1] then AdvX,U (t, k, σ)

=
∣∣Pr[DfU ,f−1

U = 1]− Pr[DfX ,f−1
X = 1]

∣∣ =
(
Pr[DfU ,f−1

U = 1]− Pr[DfX ,f−1
X = 1]

)
.

So we will consider only those distinguisher for which Pr[DfU ,f−1
U = 1] ≥ Pr[DfX ,f−1

X = 1].

6



3 Main Tool of the Paper

3.1 An Equivalent Distinguisher D̂
Lemma 3.1. For any given random online function X, fX(m1, · · · ,mi) = (X(m1, 1),· · · , X(m1,
· · · ,mi, 1)) and f−1

X (y1, · · · , yi) = (X(y1,−1), X(m1, y2,−1), · · · , X(m1, · · · ,mi−1, yi,−1)) where
m1 = X(y1,−1), m2 = X(m1, y2,−1),· · · , mi−1 = X(m1, · · · ,mi−2, yi−2,−1).

Proof. The first equality follows directly from the definition of fX (see definition of online per-
mutation) and the definition of X (see Definition 2.1). Let f−1

X (y1, · · · , yi) = (m1, · · · ,mi), that
is fX(m1, · · · ,mi) = (y1, · · · , yi). Thus, X(m1) = y1 and hence m1 = X(y1,−1). Similarly,
X(m1,m2) = y2 and hence m2 = X(m1, y2,−1) and so on.

By above lemma, a query fX(M) can be replaced by several queries X(m1, 1), · · · ,X(m1, · · · ,mi

,1) where M = (m1, · · · ,mi). Similarly, a query f−1
X (C) is replaced by queries X(y1, 1) = m1,

X(m1, y2,−1) = m2, · · · , X(m1, · · · ,mi−1, yi,−1) = mi where C = (y1, · · · , yi).

Now we describe an oracle algorithm which interacts with random online function instead of
random online cipher. Now we define an oracle algorithm D̂X which behaves exactly same as
DfX ,f−1

X . Note that we can split the fX query into several X(·, 1) queries and similarly split f−1
X

queries into several X(·,−1) queries. It skips all identical queries. Also, if X(m1, · · · ,mi−1, mi, 1) =
ci has been queried before then it skips the query X(m1, · · · ,mi−1, ci,−1) since the response is mi

always. Similarly, for the converse statement. This modified distinguishing algorithm is denote as
D̂. The final output of D̂ is exactly same as D and it can be computed as all the query-responses
of D is determined by D̂.

Let V = G[1,`] × {1,−1} ×G, Q̂i : V
i−1 → G[1,`] × {1,−1}, 1 ≤ i ≤ σ and D̂out : V

σ → {0, 1}.
Note that, X : G[1,`] × {1,−1} → G. We define D̂ by the tuple (Q̂1, · · · , Q̂σ, D̂out) and works as
given below. For simplicity, we assume that D̂ makes exactly σ many queries.

1. For i = 1 to σ

• It computes (pi, δi) = Q̂i(p1, δi, z1, · · · , pi−1, δi−1, zi−1) and makes query X(pi, δi) and
obtains response say zi, where p1, · · · , pi ∈ G[1,`], z1, · · · , zi ∈ G and δi = ±1.

2. It returns D̂out(p1, δi, z1, · · · , pσ, δσ, zσ).

We consider those distinguisher which make no identical and trivial queries. If δi = 1 then
we write xi = last(pi), yi = zi and if δi = −1 then we write yi = last(pi), xi = zi. Denote
p′i = (chop(pi), xi). Thus, p′i’s are distinct. From the above query-responses we can say that,
X(p′i) = yi. We consider all distinguisher D̂ where the set P = {p′1, · · · , p′σ} is prefix closed. A
set P is said to be prefix closed if either chop(p) = λ or chop(p) ∈ P. Thus, there exists a set of
messages M1, · · · ,Mk such that P = {p : p is a prefix for some Mi}. We denote P = P[M1, · · · ,Mk].
Note that the distinguisher D̂ (derived from D) also makes a set of queries with a prefix closed set
P (since it makes X queries for all prefixes of Mi or Ci). From now onwards we always assume that
P is prefix closed, where P is obtained as above by the distinguisher D̂. It is easy to see that

AdvX,U (t, k, σ) = max bDPr[D̂U = 1]− Pr[D̂X = 1].

In the next subsection, we study how one can bound the advantage by studying the distinguisher D̂.
Like in previous Section we consider only those distinguisher for which Pr[D̂U = 1] ≥ Pr[D̂X = 1].

7



3.2 Main Result

A tuple v = (p1, σ1, z1, · · · , pσ, δσ, zσ) is called D̂-compatible view or (only view) if Qi(p1, σ1,z1,· · · ,
pi−1, δi−1, zi−1) = (pi, δi), for 1 ≤ i ≤ σ. Denote the set of all views by V and denote the set of all
views v such that D̂out(v) = 1 by V1. Given an online function X0, we denote the view obtained by
the distinguisher when interact with X0 as vX0 . Similarly, vX denotes the random variable whose
probability distribution is induced from the random online function X.

Theorem 3.2. Suppose for all v ∈ V \Bad, Pr[vX = v] ≥ (1− ε1)×Pr[vU = v] where Bad is some
set of views and Pr[vU ∈ Bad] ≤ ε2, then we have, AdvX,U (D̂) ≤ ε1 + ε2.

Proof.
AdvX,U (D̂) = Pr[vU ∈ Bad ∩ V1]− Pr[vX ∈ Bad ∩ V1]

+
∑

v∈V1\Bad

(
Pr[vU = v]− Pr[vX = v]

)

≤ ε2 + ε1 × Pr[vU ∈ V1 \ Bad] ≤ ε1 + ε2.

In this paper we will be interested in four types of bad sets Bad denoted as B1, B2, B3 and B4.
Let v = (p1, δ1, z1, · · · , pσ, δσ, zσ) ∈ V and p′i, xi = last(p′i) and yi are defined as in Section 3.1.
Define,

- B1 = {v : yi = yj for some i 6= j or yi = 0 for some i}
- B2 = {v : (yi, xi) = (yj , xj) for some i 6= j or (yi, xi) = (0, 0) for some i}.
- B3 = {v : yi + xi = yj + xj for some i 6= j or yi + xi = 0 for some i}.
- B4 = {v : yi + xi = yj + xj for some i 6= j or yi + xi = 0 or yi + xi = 1 for some i}.

Now we show that the above bad sets can arise with very small probabilities when an adversary
interacts with an UROF U .

Lemma 3.3. For a chosen plain text distinguisher (that is, δi = 1 for all i), Pr[vU ∈ B1] ≤ σ(σ+1)
N

where σ < N/2.

Proof. Note that, given (p1, σ1, y1, · · · , pi−1, σi−1, yi−1) (the view up to (i − 1)th query), the
probability that X(pi) = yj or 0 for some j < i is at most i/(N − i + 1) (see Lemma 2.2). Thus,
Pr[vU ∈ B1] ≤

∑σ
i=1

i
N−i+1 ≤ σ(σ+1)

N if σ < N/2.

Lemma 3.4. Pr[vU ∈ B2] ≤ σ(σ+1)
N where σ < N/2.

Proof. Given (p1, σ1, y1, · · · , pi−1, σi−1, yi−1) (the view up to (i − 1)th query) and δi = 1, the
probability that X(pi, δi) = yj or 0 for some j < i is at most i/(N−i+1) (see Lemma 2.2). Similarly,
for given (p1, σ1, y1, · · · , pi−1, σi−1, yi−1) and δi = −1, the probability that X(chop(pi), yi,−1) = xj

or 0 for some j < i is at most i/(N− i+1) (by similar reason). Thus, Pr[vU ∈ B2] ≤
∑σ

i=1
i

N−i+1 ≤
σ(σ+1)

N if σ < N/2.

Lemma 3.5. Pr[vU ∈ B3] ≤ σ(σ+1)
N where σ < N/2.

8



Proof. Given (p1, σ1, y1, · · · , pi−1, σi−1, yi−1) (the view up to (i − 1)th query) and δi = 1, the
probability that X(pi, δi) = xj + yj − xi or −xi for some j < i is at most i/(N − i + 1) (see
Lemma 2.2). Similarly, for given (p1, σ1, y1, · · · , pi−1, σi−1, yi−1) and δi = −1, the probability that
X(chop(pi), yi,−1) = xj +yj−yi or −yi for some j < i is at most i/(N− i+1) (by similar reason).
Thus, Pr[vU ∈ B3] ≤

∑σ
i=1

i
N−i+1 ≤ σ(σ+1)

N if σ < N/2.

Lemma 3.6. Pr[vU ∈ B4] ≤ (σ+1)(σ+2)
N where σ < N/2.

Proof. A similar proof can be applied as in the proof of the above Lemma 3.5. Here we consider
the probability that X(pi, δi) = xj + yj − xi or −xi or 1 − xi for some j < i. This conditional
probability is at most i+1

N−i+1 . So, Pr[vU ∈ B4] ≤
∑σ

i=1
i+1

N−i+1 ≤ (σ+1)(σ+2)
N if σ < N/2.

To apply the Theorem 3.2, we also have to prove that Pr[vX = v] ≥ (1 − ε1) × Pr[vU = v] for
all v ∈ V \ Bad. Note that, Pr[vX = v] = Pr[X(p′1) = y1, · · · , X(p′σ) = yσ]. In the next Section 4
we will prove the following.

1. Pr[XH(p′1) = y1, · · · , XH(p′σ) = yσ] ≥ (1 − ε1) × Pr[U(p′1) = y1, · · · , U(p′σ) = yσ] where
yi’s are nonzero distinct elements, XH is the HCBC random online function and ε1 is
some negligible constant which will be determined later. Lemma 2.3 says that Pr[U(p′1) =
y1, · · · , U(p′σ) = yσ] ≤ 1

N(N−1)···(N−σ+1) . Thus it would be enough to show that Pr[XH(p′1) =

y1, · · · , XH(p′σ) = yσ] ≥ (1−ε1)
N(N−1)···(N−σ+1) .

2. Pr[XP (p′1) = y1, · · · , XP (p′σ) = yσ] ≥ (1−ε1)
N(N−1)···(N−σ+1) ≥ (1−ε1)×Pr[U(p′1) = y1, · · · , U(p′σ) =

yσ] where (last(p′i) + yi)’s are nonzero distinct, XP is the HPCBC random online function
and ε1 is some negligible constant which will be determined later.

4 Hash-CBC (or HCBC) and Hash-PCBC (or HPCBC) [1]

4.1 ε-∆Universal Hash Family [10, 19] and Uniform Random Permutation

Definition 4.1. (ε-∆Universal Random Function)
Let H be a random function from G′ to G such that Pr[H(x1)−H(x2) = y] ≤ ε for all x1 6= x2 ∈ G′

and for all y ∈ G. We say this random function by ε-∆Universal Random Function or ε-∆Universal
Hash Family from G′ to G.

Lemma 4.1. Let ap ∈ G′ and bp ∈ G (a group with addition +), for all p ∈ P such that (ap, bp)’s are
distinct. Then, Pr[(H(ap)+bp)’s are distinct for all p ∈ P] ≥ (1−(

σ
2

)
ε) where H is an ε-∆Universal

Hash Family from G′ to G and σ = |P|.
Proof. For all p1 6= p2 ∈ P, Pr[H(ap1)+ bp1 = H(ap2)+ bp2 ] ≤ ε. This is true since if ap1 = ap2 the
probability is zero and if ap1 6= ap2 the probability is at most ε from the definition of ε-∆Universal
Hash Family H. Thus, Pr[H(ap1) + bp1 = H(ap2) + bp2 for some p1 6= p2 ∈ P] ≤ (

σ
2

)
ε. Hence

Pr[(H(ap) + bp)’s are distinct for all p ∈ P] ≥ (1− (
σ
2

)
ε).

A random function v is said to be an uniform random permutation if it is uniformly distributed
on Perm(G). It is easy to check that for any distinct x1, · · · , xi and distinct y1, · · · , yi, Pr[v(x1) =
y1, · · · , v(xi) = yi] = 1

N(N−1)···(N−i+1) .

9



4.2 Hash-CBC or HCBC and a Simple Security Analysis

Given an ε-∆Universal Random Function H from G′ to G and an independently distributed uniform
random permutation v on G we define a random on-line function XHCBC (or simply we write XH),
known as HCBC (or Hash-CBC). For (m1, · · · ,mi) ∈ Gi, define yj ’s recursively as follows

yj = v(H(yj−1) + mj), 1 ≤ j ≤ i and y0 = 0.

Now define XH(m1 · · ·mi) = yi. Thus, the corresponding online cipher is fH(m1, · · · ,mi) =
(y1, · · · , yi). An illustration of HCBC is given in Figure 1. It is easy to check that XH is a
random on-line function.

H v

m1

0 = y0

H v

m2

y1

H v

m i

yi-1y2 yi

Figure 1: Hash-CBC online function

Theorem 4.2. Suppose yp’s are non zero distinct elements from G for all p ∈ P = P[M1, · · · ,Mk].
Let σ = |P|, then

Pr[ XH(p) = yp,∀p ∈ P ] ≥ 1−(σ
2)ε

N(N−1)···(N−σ+1) .

Proof. Let ap = ychop(p) and bp = last(p) where yλ = 0. Now check that for any p1 6= p2 ∈ P,
(ap1 , bp1) 6= (ap2 , bp2). Suppose not, ap1 = ap2 and bp1 = bp2 then ychop(p1) = ychop(p2) and
last(p1) = last(p2). Since yp’s are nonzero distinct chop(p1) = chop(p2) and hence p1 = p2.
Let D be the event that for all p ∈ P, (H(ychop(p)) + last(p))’s are distinct. Now by Lemma 4.1,
Pr[D] ≥ 1−σ(σ−1)ε

2 . We also denote the set of all functions H0 from G to G such that (H0(ychop(p))+
last(p))’s are distinct. Now,

Pr[XH(p) = yp,∀p ∈ P]
≥ Pr[XH(p) = yp, ∀p ∈ P ∧ D]
= Pr[v(H(ychop(p)) + last(p)) = yp ∧D]
=

∑
H0∈D Pr[v(H0(ychop(p))+last(p)) = yp∀p ∈ P]Pr[H = H0] (since H and v are independent)

= Pr[D]
N(N−1)···(N−σ+1) (since for any H0 ∈ D, (H0(ychop(p)) + last(p))’s are distinct and yp’s are

distinct and hence Pr[v(H0(ychop(p)) + last(p)) = yp∀p ∈ P] = 1
N(N−1)···(N−σ+1))

≥ (1−(σ
2)ε)

N(N−1)···(N−σ+1) .

Corollary 4.3. AdvXH ,U (D) ≤ (
σ
2

)
ε + σ(σ+1)

N for any chosen plain text distinguisher D whose
runtime is at most t and makes at most k queries having at most σ many blocks.

Proof. The result follows from Theorem 3.2, 4.2 and Lemma 3.3.

10



H v

m1

0=y0

H v

m2

y1

m1

H v

m i

yi-1

mi-1

y2

m2

yi

0=y0

Figure 2: HPCBC online function

4.3 HPCBC and a Simple Security Analysis

Let H : G2 → G be an ε-∆Universal Hash Family and v be an independently distributed uniform
random permutation G. We define a random online function XHPCBC (or simply we write XP ),
known as HPCBC (or Hash-PCBC). For (m1, · · · ,mi) ∈ Gi, define yj ’s recursively as follows

yj = v(H(mj−1, yj−1) + mj) + H(mj−1, yj−1),

1 ≤ j ≤ i and m0 = y0 = 0. Now define XP (m1 · · ·mi) = yi. Thus, the corresponding online
cipher is fHPCBC(m1, · · · , mi) = (y1, · · · , yi). An illustration of HPCBC is given in Figure 2. It
is easy to check that XP is a random online function. Let P be a prefix closed set with |P| = σ and
xp = last(p), xλ = 0.

Theorem 4.4. For each p ∈ P, let yp ∈ G such that (xp, yp)’s are distinct and not equal to (0, 0).

Pr[XP (p) = yp, p ∈ P] ≥ 1− σ(σ − 1)ε
N(N − 1) · · · (N − σ + 1)

.

Proof. The proof of the theorem is same as that of Theorem 4.2 except in the definition of the
event D. The event D denotes that both inputs and outputs of v are distinct. More precisely,
D = D1 ∩ D2 where D1 = {H0 : (H0(xchop(p), ychop(p)) + xp)’s are distinct} and D2 = {H0 :
(H0(xchop(p), ychop(p)) + yp)’s are distinct}.

Define, ap = (xchop(p), ychop(p)) and bp = xp. Now note that the pairs (ap, bp)’s are dis-
tinct. If not, then for some p1, p2, last(p1) = xp1 = xp2 = last(p2) and (xchop(p1), ychop(p1)) =
(xchop(p2), ychop(p2)) and hence chop(p1) = chop(p2). Thus, p1 = p2. Now, by Lemma 4.1,
Pr[D1] ≤ ε

(
σ
2

)
.

Similarly, Pr[D2] ≤ ε
(
σ
2

)
and hence Pr[D1 ∩D2] ≥ 1− εσ(σ− 1). Given D is true, note that all

inputs and outputs are distinct and hence Pr[XP (p) = yp,∀p ∈ P] ≥ (1−εσ(σ−1)
N(N−1)···(N−σ+1) .

Corollary 4.5. AdvXH ,U (t, k, σ) ≤ σ(σ − 1)ε + σ(σ + 1)/N .

Proof. The result follows from Theorem 3.2, 4.4 and Lemma 3.4.

4.4 A flaw in original proof of security bound [1]

Let D be the event such that all inputs to v are distinct while computing HCBC for different
queries. C2 denotes that all responses are non zero and C1 denotes the event that all responses

11



are nonzero distinct. In [1], they have used the following claim to prove the security of HCBC and
HPCBC.

Claim 6.5 [1] For any yp’s, Pr[X(p) = yp|D ∧ C2] = Pr[XU (p) = yp ∀ p|C1].

Intuitively, it says that given that all outputs are nonzero distinct the distribution of outputs is
uniform on the set of all nonzero distinct elements when adversary interacts with uniform random
online function. This is absolutely true.

According to their clam [1], given that “all inputs to v are distinct (hence all outputs are
distinct with probability one) and the outputs are nonzero”, the probability distribution of output
is uniformly distributed on the set of all nonzero distinct elements. We show that this is not true in
general and in fact it depends on the distribution due to the hash family H. Note that, the fact that
H is an ε-∆Universal Random Hash Family is used on the computation of probabilities of events
D and C2 and not on the above statement. Suppose P = {x1, (x1, x2)}, and Y1 = XH(x1) and
Y2 = XH(x1, x2). If H is some random function such that H(0) + x1 = H(1) + x1 with probability
one then Y1 can not be one given D (i.e., H(0) + x1 and H(Y1) + x2 are distinct). Thus for any
pairs of non zero distinct values (y1, y2) such that y1 = 1, Pr[Y1 = y1, Y2 = y2|D ∧ C2] = 0. Thus,
the claim is false.

One can say that the random function H is not ε-∆Universal Random Function for any ε < 1.
But it is clear that the Pr[Y1 = y1, Y2 = y2|D∧C2] depends on the probability that Pr[H(0)+x1 =
H(y1) + x2] which may not be equal for all choices of y1 and y2. Thus the claim need not be true.
But it is intuitively clear that these two distributions are very close. In this paper, we have proved
a sort of closeness of two distributions and use this closeness to bound the advantage. We provide
exact computation of the probabilities in the claim and see what happened to the quantities.

1. C1 : Y1, Y2 6= 0 ∧ Y1 6= Y2. Thus, Pr[XU (x1) = y1, X
U (x1, x2) = y2|C1] = 1/N(N − 1)

whenever y1, y2 are nonzero distinct, otherwise the probability is zero.

2. D : Z1 = H(0)⊕ x1 6= H(Y1)⊕ x2 = Z2.

3. C2 : Y1 := v(H(0)⊕ x1) = v(Z1) 6= 0, v(H(Y1)⊕ x2) = v(Z2) 6= 0.

Let y1, y2 be nonzero distinct elements from G. Now, Pr[v(H(0) ⊕ x1) = y1, v(H(Y1) ⊕ x2) =
y2|D ∧ C2]

=
Pr[v(H(0)⊕ x1) = y1, v(H(Y1)⊕ x2) = y2, D ∧ C2]

Pr[D ∧ C2]
.

Now, Pr[v(H(0)⊕ x1) = y1, v(H(y1)⊕ x2) = y2,H(0)⊕ x1 6= H(Y1)⊕ x2]

=
∑

h0,h1:h0⊕x1 6=h1⊕x2

Pr[v(h0 ⊕ x1) = y1, v(h1 ⊕ x2) = y2]Pr[H(0) = h0, H(y1) = h1]

= Pr[H(0)⊕ x1 6= H(y1)⊕ x2]/N(N − 1) = ε(0, y1, x2 ⊕ x1)/N(N − 1)

where ε(0, y, a) denotes the probability Pr[H(0)⊕H(y) 6= a]. Now, Pr[D∧C2] = Pr[Y1 := v(H(0)⊕
x1) 6= 0, v(H(Y1)⊕ x2) 6= 0, H(Y1)⊕ x2 6= H(0)⊕ x1]

=
∑

y,h0,h1 : y 6=0,h1 6=h0⊕a

Pr[v(h0 ⊕ x1) = y,H(0) = h0,H(y) = h1, v(h1 ⊕ x2) 6= 0]

12



=
(N − 2)

N(N − 1)

∑

y 6=0,h0,h1 :h1 6=h0⊕a

Pr[H(0) = h0,H(y) = h1]

=
N − 2

N(N − 1)

∑

y : y 6=0

ε(0, y, a).

Thus, Pr[v(H(0)⊕ x1) = y1, v(H(y1)⊕ x2) = y2|D ∧ C2]

=
ε(0, y1, a)

(N − 2)
∑

y : y 6=0 ε(0, y, a)

6= 1
N(N − 1)

(in general).

A similar flaw can be observed in the Claim 8.6 of [1] where the chosen cipher text security is
considered.

5 Efficient and Secure Variants of HPCBC Online Cipher

5.1 First Modification of HPCBC or MHPCBC-1

In this section we propose an online cipher which is a variant of PHCBC. Suppose H1 : G → G is
an ε-∆Universal Hash Family. Define, H : G2 → G such that H(x, y) = H1(x + y). Clearly, it is
not an universal hash family. Still, the online function HPCBC based on H is secure. Call this by
MHPCBC-1, Modified Hash-PCBC-1 (denoted by XM1) (see Figure 3).

v

m1

y0 = 0

m0 = 0

v

m2

y1

m1

v

m i

y2

m2

yi

H H H

Figure 3: HPCBC online function

Theorem 5.1. For all p ∈ P, yp ∈ G such that (xp + yp)’s are nonzero distinct we have,

Pr[XM1(p) = yp, ∀p ∈ P] ≥ 1− εσ(σ − 1)
N(N − 1) · · · (N − σ + 1)

.

Proof. We denote last(p) by xp. Let D = D1∩D2 where D1 = {H0 : (H0(xchop(p)+ychop(p))+xp)’s
are distinct} and D2 = {H0 : (H0(xchop(p) + ychop(p)) + yp)’s are distinct}. Define, ap = xchop(p) +
ychop(p) and bp = xp. Now note that the pairs (ap, bp)’s are distinct. If not, then for some
p1, p2, last(p1) = xp1 = xp2 = last(p2) and xchop(p1) + ychop(p1) = xchop(p2) + ychop(p2) and
hence chop(p1) = chop(p2). Thus, p1 = p2. Now, by Lemma 4.1, Pr[D1] ≤ ε

(
σ
2

)
. Similarly,

Pr[D2] ≤ ε
(
σ
2

)
and hence Pr[D] ≥ 1 − εσ(σ − 1). Like in the proof of the Theorem 4.2 and

Theorem 4.4, we have Pr[XM1(p) = yp, ∀p ∈ P] ≥ 1−εσ(σ−1)
N(N−1)···(N−σ+1) .

13



Corollary 5.2. AdvXM1 ,U (t, k, σ) ≤ εσ(σ − 1) + σ(σ + 1)/N .

Proof. The result follows from Theorem 3.2, 5.1 and Lemma 3.5.

5.2 Second Variant MHPCBC-2, without Universal Hash Family

Note that, to design an 1
N -∆Universal hash family from G to G we need key space of size at least

N [19]. The key space has size at least N2 for 1/N -∆Universal hash family from G2 to G. So,
besides keys for pseudo random permutation v, we need logN (or 2logN) key size for HCBC, first
variant of HPCBC i.e., MHPCBC-1 (or HPCBC respectively). Now we propose a construction
where we can avoid the universal hash families at the same time the extra keys. In this definition,
we use H : G2 → G such that H(x, y) = v(x + y). An illustration is given in Figure 4.

v

m1

v v

m2

y1

m1

v v

m i

v

y2

m2

yi

K1 K1 K1

0

v1

Figure 4: MHPCBC-2 online function, K1 = v(1).

Given (m1, · · · ,m`) we first compute an inner secret key K1 = v(1) and then we compute
recursively yi as follows :

yi = v
(
v(yi−1 + mi−1) + mi

)
+ K1 + v(yi−1 + mi−1), y0 = m0 = 0.

We write XM2(m1, · · · , m`) = y` (the output of online function MHPCBC-2). The random online
cipher is defined in a natural way. Let P be the set of inputs to XM2 for all queries of D̂ and
XM2 = yp’s are the outputs. Note that the original queries can be either X(·, 1) or X(·,−1).

• Now the set of all inputs of v in all computations of XM2(p), p ∈ P are 0, 1, ychop(p) +
xchop(p), zp + xp where xp = last(p) and zchop(p) = v(ychop(p) + xchop(p)) and xλ = yλ = 0.

• Similarly all outputs of v are K1 = v(1), zchop(p), zchop(p) + yp +K1. Let xp, yp ∈ G such that
(xp + yp)’s are distinct elements of G and not equal to 0 and 1.

We say a tuple of elements (zp)p∈P1 is good if all inputs are distinct and all outputs are distinct
where P1 = {chop(p) : p ∈ P}∪ {K1} where zK1 denotes the values of K1 and σ1 = |P1|. The total
number of tuples are Nσ1 . We give an upper bound of the number of tuples which are not good.

• zp = xp or zp = xp + 1 or zp = xp + zp1 + xp1 or zp = xp + xchop(p1) + ychop(p1) implies that
the inputs are not distinct. There are at most Nσ1−1(2σ + 2σ(σ − 1)).

• Similarly, for outputs we have Nσ1−12σ(2σ + 1) tuples. Thus, the number of good tuples is
at least Nσ1+1(1− 4σ2+2σ

N ).

14



For each such good tuple, the probability that v(xp + yp) = zp, v(1) = zK1 and v(zchop(p)+xp
) =

zchop(p) + yp + zK1 where p ∈ P1 is 1
N(N−1)···(N−σ−σ1+1) . Thus the probability

Pr[XM2(p) = yp∀p ∈ P] ≥ (1− 4σ2+2σ
N )

N(N − 1) · · · (N − σ)
≥ (1− ε1)Pr[U(p) = yp∀p ∈ P]

where ε1 = 4σ2+2σ
N . This is true for all choices of yp and p such that (xp + yp)’s are distinct and

not equal to 0 and 1. Now note that Pr[vU ∈ B4] ≤ (σ + 1)(σ + 2)/N where B4 denotes the set
of all views such that (xp + yp)’s are not distinct or equal to either 0 or 1. The upper bound
of the probability is proved in Lemma 3.6. Thus, we have the following bound of advantage for
MHPCBC-2 by applying Theorem 3.2.

Theorem 5.3. AdvXM2 ,U (t, k, σ) ≤ 4σ2+2σ+(σ+1)(σ+2)
N ≤ 6σ2

N .

6 Conclusion

This paper provides a framework to prove the indistinguishability between two classes of functions
called random functions. We consider the object known as online cipher and showed a simple
security proof for for HCBC and HPCBC which were proposed by Bellare et al. [1]. Unfortunately,
their proof contains some serious mistakes. We explain those mistakes in this paper. At the end
we come up with two new proposal of secure online cipher which are much more efficient and needs
less keys than HPCBC. We hope the approach taken in this paper will be helpful for making other
similar security analysis.

Acknowledgement

I would like to acknowledge Professor Palash Sarkar who has inspired me to write this paper.

References

[1] M. Bellare, A. Boldyreva, L. Knudsen and C. Namprempre. On-Line Ciphers and the Hash-CBC
constructions. Advances in Cryptology - CRYPTO 2001. Lecture Notes in Computer Science,
Volume 2139, pp 292-309.

[2] M. Bellare, K. Pietrzak and P. Rogaway. Improved Security Analysis for CBC MACs. Advances
in Cryptology - CRYPTO 2005. Lecture Notes in Computer Science, Volume 3621, pp 527-545.

[3] M. Bellare, J. Killan and P. Rogaway. The security of the cipher block chanining Message
Authentication Code. Advances in Cryptology - CRYPTO 1994. Lecture Notes in Computer
Science, Volume 839, pp 341-358.

[4] Daniel J. Bernstein. A short proof of the unpredictability of cipher block chaining (2005). URL:
http://cr.yp.to/papers.html#easycbc.

[5] J. Black and P. Rogaway. CBC MACs for arbitrary length messages. Advances in Cryptology
- CRYPTO 2000. Lecture Notes in Computer Science, Volume 1880, pp 197-215.

15



[6] J. Black and P. Rogaway. A Block-Cipher Mode of Operations for Parallelizable Message
Authentication. Advances in Cryptology - Eurocrypt 2002. Lecture Notes in Computer Science,
Volume 2332, pp 384-397.

[7] J. Daemen and V. Rijmen. Resistance Against Implementation Attacks. A Comparative Study
of the AES Proposals. In Proceedings of the Second AES Candidate Conference (AES2), Rome,
Italy, March 1999. Available at http://csrc.nist.gov/encryption/aes/aes home.htm.

[8] Alison L. Gibbs and Francis Edward Su. On Choosing and Bounding Probability Metrics, Jan
2002.

[9] L. Knudsen. Block chaining modes of operation. Symmetric Key Block Cipher Modes of
Operation Workshop, http://csrc.nist.gov/encryption/modes/workshop1/, Oct. 2000.

[10] H. Krawczyk. LFSR-based hashing and authenticating. Advances in Cryptology, CRYPTO
1994, Lecture Notes in Computer Science, Volume 839, pp 129-139, Springer-Verlag 1994.

[11] T. Iwata and K. Kurosawa. OMAC : One-Key CBC MAC. Fast Software Encryption, 10th
International Workshop, FSE 2003. Lecture Notes in Computer Science, Volume 2887, pp 129-
153.

[12] C. S. Jutla. PRF Domain Extension using DAG. Theory of Cryptography: Third Theory
of Cryptography Conference, TCC 2006. Lecture Notes in Computer Science, Volume 3876 pp
561-580.

[13] K. Kurosawa and T. Iwata. TMAC : Two-Key CBC MAC. Topics in Cryptology - CT-RSA
2003: The Cryptographers’ Track at the RSA Conference 2003. Lecture Notes in Computer
Science, Volume 2612, pp 33-49.

[14] M. Luby and C. Rackoff. How to construct pseudo-random permutations from pseudo-random
functions. Advances in Cryptology, CRYPTO’ 85, Lecture Notes in Computer Science, Volume
218, pp 447, Springer-Verlag 1985.

[15] C. Meyer and Matyas. A new direction in Computer Data Security. John Wiley & Sons, 1982.

[16] M. Nandi. A Simple and Unified Method of Proving Indistinguishability. Indocrypt 2006,
Lecture Notes in Computer Science, Volume 4329, pp 317-334.

[17] W. Nevelsteen and B. Preneel. Software performance of universal hash functions. Advances
in Cryptology, EUROCRYPT ’99, Lecture Notes in Computer Science, Volume 1592, pp 24-41,
Springer-Verlag 1999.

[18] P. Rogaway. Bucket Hashing and Its Application to Fast Message Authentication. Advances
in Cryptology, CRYPTO 1995, Lecture Notes in Computer Science, Volume 963, pp 29-42,
Spronger-Verlag, 1995.

[19] D. R. Stinson. On the connections between universal hashing, combinatorial designs and
error-correcting codes. Congressus Numerantium 114, 1996, pp 7-27.

16


