Attribute Based Signature Scheme

Dalia Khader

Abstract

Alice needs a document signed by an employee in Bob's company. That employee should be part of the IT staff and is at least a junior manager in the cryptography team or a senior manager in the biometrics team. In such a scenario we need an Attribute Based Signature Scheme (ABS). In this paper we define the first ABS scheme where verifying includes authenticating a person that belongs to a certain group and owns particular attributes. We define two security notions adopted from group signature which are: traceability and anonymity. We prove our scheme to be secure under those two notions.

1 Introduction

Alice wants a document to be signed by any employee in Bob's company. Alice requires that employee to have certain attributes such as being part of the IT staff and is at least a junior manager in the cryptography team or a senior manager in the biometrics team. We derive our idea from the Group Signature Scheme.
Group signature schemes are relatively new additions to cryptographic research, first proposed by Chaum and van Heist [6] for implementation in e-cash systems. These schemes have been called for by numerous practical applications to facilitate the scenario of a member signing on behalf of the entire group. The two underlying notions of such schemes are anonymity and traceability. We say a scheme is anonymous if we can not figure out which member of the group signed the message. However, we say a scheme is traceable if we could ensure that we could trace all signatures to a signer or a member of a forging coalition. The mechanism of compromising between these two otherwise mutually exclusive features is what makes group signatures a focal point of research. Bellare et al [1] defined the standard mode for the scheme to be both anonymous and traceable.
Efficiency was another important aspect for implementing group signature. In the schemes presented in [7] [4] the length of the keys and/or the signature were depending on the number of people in the group which made it unsuitable for large groups until Camenisch et al. proposed their scheme in [5].
In our scheme we extend group signatures in order to allow any member of the group who satisfies certain properties to sign on behalf of the others. We adopt the idea of an attribute tree from Goyal et al's work in [8]. Consider an attribute tree in which each interior node of the tree is a threshold gate and the leaves are linked with attributes. A threshold gate represents the number m of n children branching from the current node need to be satisfied in order to say that the parent node is satisfied. Once we reach the leaf we say it is satisfied if and only if it is owned by the signer. (For example, we represent a tree with AND and OR gates by using respectively 2 of 2 and 1 of 2 threshold gates.) The scheme has each public key labeled with an attribute tree and embeds in
each signature an attribute set that the signer owns.
So going back to the main scenario Alice decides on an attribute tree and sends it to both a key generator and Bob's company. Key generator sends Alice a verifying key and a member in Bob's company sends her a signature. Alice could verify now Bob's signature and whether he satisfies her attribute tree or not.
In this paper we first discuss some preliminaries that will be used in the scheme and the proof of its security. In section 3 we define the scheme. We then go through some security proofs in section 5. Finally we conclude our results and bring up some open issues.

2 Preliminaries

2.1 The Strong Diffie-Hellman Assumption

Let G_{1}, G_{2} be cyclic groups of prime order p, where possibly $G_{1}=G_{2}$. Assuming the generators $g_{1} \in G_{1}$, and $g_{2} \in G_{2}$ consider the following [2]:

Theorem 2.1 (q -Strong Diffie-Hellman Problem) The q-SDH problem in $\left(G_{1}, G_{2}\right)$ is defined as follows: given $a(q+2)$ tuple $g_{1}, g_{2}, g_{2}^{\gamma}, g_{2}^{\gamma^{2}}, \ldots, g_{2}^{\gamma^{q}}$ as an input, output a pair $\left(g^{1 /(\gamma+x)}, x\right)$ where $x \in Z_{p}^{*}$. An algorithm A has an advantage ε in solving $q-S D H$ in $\left(G_{1}, G_{2}\right)$ if:
$\operatorname{Pr}\left[A\left(g_{1}, g_{2}, g_{2}^{\gamma}, g_{2}^{\gamma^{2}}, \ldots, g_{2}^{\gamma^{q}}\right)=\left(g^{1 /(\gamma+x)}, x\right)\right] \geq \varepsilon$,
where the probability is over a random choice of a generator g_{2} (with $g_{1} \leftarrow \psi\left(g_{2}\right)$), of $\gamma \in Z_{p}^{*}$ and of random bits of A

Lemma 2.2 Boneh-Boyen SDH Equivalence Given a q-SDH instance $\left(\grave{g}_{1}, \grave{g}_{2}, \grave{g}_{2}^{\gamma}, \grave{g}_{2}^{\gamma^{2}}, \ldots, \grave{g}_{2}^{\gamma^{q}}\right.$), applying the Boneh and Boyen's Lemma to obtain $g_{1} \in G_{1}, g_{2} \in G_{2}, w=g_{2}^{\gamma}$ and ($q-1$) SDH pairs $\left(A_{i}, x_{i}\right)$ such that $e\left(A_{i}, w g_{2}^{x_{i}}\right)=e\left(g_{1}, g_{2}\right)$ for each i. Any SDH pair besides these ($q-1$) ones can be transformed into a solution to the original $q-S D H$ instance.

2.2 Linear Encryption

In this section we will define an encryption scheme which depends on the difficulty of the Decision Linear Diffie-Hellman Assumption which is explained below [3]:

Theorem 2.3 Decision Linear Problem in G_{1} Let G_{1} be a group of prime order p and u, v, h are generators in that group. Given $u, v, h, u^{a}, v^{b}, h^{c} \in G_{1}$ as an input, it is hard to decide whether or not $a+b=c$.

In the Linear Encryption scheme a user's public key is $u, v, h \in G_{1}$. The private key is the exponents $\xi_{1}, \xi_{2} \in Z_{p}$ such that $u^{x}=v^{y}=h$. To encrypt a messsage M choose random elements $\alpha, \beta \in Z_{p}$ and output the triple $\left\langle C_{1}, C_{2}, C_{3}\right\rangle=\left\langle u^{\alpha}, v^{\beta}, M . h^{\alpha+\beta}\right\rangle$. To decrypt compute $C_{3} /\left(C_{1}^{\xi_{1}} C_{2}^{\xi_{2}}\right)$. LE has been proven to be semantically secure.

2.3 Lagrange Interpolation

Lagrange, in Numerical Analysis, is a way of interpolating a polynomial. In this paper it will be used in order to get the public key for the ABS scheme[see section 4]

Theorem 2.4 Given $n+1$ points- $\left(x_{i}, f\left(x_{i}\right)\right)$ on a polynomial f of degree n we could identify the polynomial uniquely by calculating:
$f(x)=\sum_{i=1}^{n}\left(f\left(x_{i}\right)\left(\Pi_{1 \leq k \neq i \leq n}\left(x-x_{k}\right) /\left(x_{j}-x_{k}\right)\right)\right)$

2.4 Forking Lemma

David Pointcheval and Jacques Stern developed the forking lemma technique in constructing their proof of security in their digital signature scheme [10]. It has been used in other security investigations of various cryptographic algorithms. Assume any signature scheme produces the triple $\left\langle\sigma_{1}, h, \sigma_{2}\right\rangle$ where σ_{1} takes its values randomly from a set, h is the result of hashing the message M together with σ_{1}, and σ_{2} depends on $\left(\sigma_{1}, h, M\right)$. The Forking Lemma is as follows [10]:

Theorem 2.5 (The Forking Lemma) Let A be a Probabilistic Polynomial Time Turing machine, given only the public data as input. If A can find, with non-negligible probability, a valid signature $\left(M, \sigma_{1}, h, \sigma_{2}\right)$ then, with non-negligible probability, a replay of this machine, with the same random tape and a different oracle, outputs two valid signatures $\left(M, \sigma_{1}, h, \sigma_{2}\right)$ and $\left(M, \sigma_{1}, \grave{h}, \grave{\sigma}_{2}\right)$ such that $h \neq \grave{h}$.

2.5 Heavy Row Lemma

In this section we define Boolean Matrix and then a Heavy Row in that matrix. Those definitions will be used for the Heavy Row Lemma [9].

Definition 2.6 Boolean Matrix of Random Tapes Consider a hypothetical matrix M whose rows consists of all possible random choices of an adversary and the columns consist of all possible random choices of a challenger. Let each entry be either \perp when adversary fails or \top if adversary manages to win the game.

Definition 2.7 Heavy Row A row in M is called heavy if the fraction of T along the row is less than $\varepsilon / 2$ where ε is the advantage of adversary succeeding in attack.

Lemma 2.8 Heavy Row Lemma Let M be a boolean matrix, given any entry that equal \top, then the probability that it lies in a heavy row is at least 1/2.

3 ABS Scheme

In this section we will first define our scheme and its security notions. Later on in the section we construct an implementable scheme(see section 4).

3.1 General Definition of the ABS scheme

In an ABS scheme there are five algorithms: Setup, KeyGen, Sign, Verify and Open. The following is a general description of each of the algorithms.

- Setup: Setup is a randomized algorithm. It takes no input. It generates a set of parameters $S_{\text {para }}$ that will be used in the Key Generation algorithm and a tracing key gmsk that will be used in the Open algorithm.
- $\operatorname{KeyGen}\left(S_{\text {para }}, n\right)$: KeyGen is an algorithm that takes the parameters of the setup and a number n that defines the number of users. It then generates public keys for attribute trees $g p k$, and private keys for users $g s k$. Private keys are created using a private key bases $g s k_{\text {base }}$ and a set of attributes that the user i owns.
- $\operatorname{Sign}(g p k, g s k[i], M)$: Given a public key of an attribute tree, a private key of a user i and a message. Output a signature σ
- Verify $(g p k, M, \sigma, \zeta)$: Given a message, a public key of a certain attribute tree, a signature and a set ζ that describes the set of attribute that satisfy the tree; Output either an acceptance or a rejection for the signature.
- Open $(g p k, g m s k, M, \sigma)$: Given a signature on a particular message, a public key and the tracing key. Trace to the signer i even if it is a member in forging coalition.

3.2 General Security Notions of the ABS scheme

An ABS scheme should be proved to be correct, anonymous and traceable. In this section we give a general definition for each property. We start with the definition of correctness.

Definition 3.1 (ABS Scheme is Correct:) We say an ABS Scheme is correct if and only if honestlygenerated signatures verify and trace correctly.

For defining anonymity we introduce this game between an adversary Adam and a Challenger. The game demonstrates how with the access to a signature oracle an adversary should not be able to distinguish between signers unless they have unique attributes that identify them. The game consists of six phases: Init, Setup, Phase1, Challenge, Phase2, and finally Guess. A detailed desciption about the phases is described below:

- Init:Adam chooses the attribute tree he would like to be challenged upon.
- Setup: Challenger runs the setup algorithm and keygen. Challenger produces a public key for the attribute tree and n private key bases $g p k_{\text {bases }}$ that will be used in the signature oracle later in the game.
- Phase 1:Challenger runs the signature oracle. Adam issues a certain number of queries to that oracle. Adam sends in every query a message M, index of user i and a set of attributes ζ that satisfy the tree. Challenger responds back with a signature σ.
- Challenge: Adam decides when to request his challenge. He sends the Challenger two indices $\left(i_{0}, i_{1}\right)$, a message M and ζ. The triple $\left\langle i_{0}, M, \zeta\right\rangle$ and $\left\langle i_{1}, M, \zeta\right\rangle$ should not have been queried before in Phase 1 and should not be queried after this point in Phase 2. Challenger replies back with a signature σ_{b} where $b \in\{0,1\}$.
- Phase 2: Phase two is exactly the same as phase one.
- Guess: Adam tries to guess $\grave{b} \in\{0,1\}$. If $b=\grave{b}$, Adam wins otherwise he fails.

We refer to an adversary like Adam as the selective anonymity attack (SAA) adversary and we define the advantage of attacking the scheme as $A d v_{S A A}=\operatorname{Pr}[b=\grave{b}]-1 / 2$.

Definition 3.2 (Selective Anonymity:) We say a sheme is secure under a SAA attack if for any polynomial time SAA-Adversary advantage in winning the game is negligible. That is AdvsAA $\langle\varepsilon$ where ε is negligible.

For defining traceablity, we need to prove all signatures even the ones created by the collusion of multiple users trace to the member of the forging coalition. In order to do so we define the following game between an adversary Adam and the Challenger:

- Init:Adam chooses the attribute tree he would like to be challenged upon.
- Setup: Challenger runs the setup algorithm and part of the keygen. Challenger produces a public key for the attribute tree and n private key bases that will be used in the signature oracle and private key oracle later in the game.
- Querying a Signature/Private key Oracle:Challenger runs two oracles, a signature oracle and a private key oracle. Adam issues a number of queries to both oracles. He sends in every query to the signature oracle a message M, index of user i and a set of attributes ζ that satisfy the tree. Challenger responds back with a signature σ. When querying the private key oracle Adam sends an index and a set of attributes ζ. Challenger responds back with a valid private key.
- Output:If Adam is successful it outputs a forged signature σ that Challenger fails to trace using the open algorithm. Otherwise Adam fails.

We call an attack similiar to Adam's a Forging Signature Attack (FSA). We represent the advantage of the adversary in winning the attack as $A d v_{F S A}$.

Definition 3.3 (ABS Scheme is Traceable:) We say a scheme is secure under a FSA attack if for any polynomial time the advantage of an adversary winning the game is negligible. That is Adv ${ }_{F S A}\langle\varepsilon$ where ε is negligible.

4 Construction of an ABS Scheme

In this section we construct an ABS scheme based on Boneh et al's work in [3].

- Setup:Consider a bilinear pair $\left(G_{1}, G_{2}\right)$ with a computable isomorphism ψ. Suppose that SDH assumption holds on $\left(G_{1}, G_{2}\right)$ and the linear assumption holds on G_{1}. Define the bilinear map $\hat{e}: G_{1} X G_{2} \rightarrow G_{T}$. All three groups G_{1}, G_{2}, G_{T} are multiplicative and of a prime order p. Select a hash function $H:\{0,1\}^{*} \rightarrow Z_{p}$. Select a generator $g_{2} \in G_{2}$ at random and then set $g_{1} \leftarrow \psi\left(g_{2}\right)$. Select $h \leftarrow G_{1}$ and ξ_{1}, ξ_{2} randomly from Z_{p}. gmsk $=\left\langle\xi_{1}, \xi_{2}\right\rangle$ will be used later in the open algorithm. Set $u, v \in G_{1}$ such that $u^{\xi_{1}}=v^{\xi_{2}}=h$. Select a random γ from Z_{p} and set $w=g_{2}^{\gamma}$.
Define a universe of attributes $U=\{1,2, \ldots, m\}$ and for each attribute $j \in U$ choose a number t_{j} at random from Z_{p}. Let $S_{\text {para }}=\left\langle G_{1}, G_{2}, G_{T}, \hat{e}, H, g_{1}, g_{2}, h, u, v, g m s k, \gamma, w\right\rangle$.
- $\operatorname{KeyGen}\left(S_{\text {para }}, n\right)$:This algorithm generates a public key for a specific access structure and a private key for each user. Using γ generate for each user $i, 1 \leq i \leq n$ an SDH pair (A_{i}, x_{i}). Get x_{i} randomly from Z_{p}^{*} and $A_{i} \leftarrow g_{1}^{1 /\left(\gamma+x_{i}\right)} \in G_{1}$. For every attribute j that user i owns calculate $T_{i, j} \leftarrow g_{1}^{t_{j} /\left(\gamma+x_{i}\right)}$. The private key for a user i will be the tuple $g s k[i]=\left\langle A_{i}, x_{i}, T_{i, 1} \ldots, T_{i, \mu}\right\rangle$, where μ is the number of attributes a user owns. We consider the bases of the private key $g s k[i]_{\text {base }}$ to be equal to the pair $\left\langle A_{i}, x_{i}\right\rangle$. To generate a public key for a certain attribute tree we will need to choose a polynomial $q_{\text {node }}$ of degree $d_{\text {node }}=k_{\text {node }}-1$ for each node in the tree. That is done in top-down manner. Starting from the root $q_{\text {root }}(0)=\gamma$ and other points in the polynomial will be random. The other nodes we set $q_{\text {node }}(0)=q_{\text {parent }}($ index $($ node $))$ and choose the rest of the points of the polynomial randomly. Once all polynomials have been decided the public key for a certain structure will be $g p k=\left\langle g_{1}, g_{2}, h, u, v, w, D_{\text {leaf }}^{1}, \ldots, D_{\text {leaf }}{ }_{\mu}\right\rangle$ where $D_{\text {leaf }}^{i}$ $=g_{2}^{q_{\text {leaf }}^{i}}(0) / t_{\text {lea } f_{i}}, \mu$ is the number of leafs and $1 \leq i \leq \mu$.
- $\operatorname{Sign}(g p k, g s k[i], M)$: For signing user i needs to choose $\alpha, \beta \in Z_{p}$ and compute the linear encryption of A_{i} and $T_{i, j}$ where $1 \leq j \leq \mu$. The ciphertext of the encryption will equal $C_{1} \leftarrow u^{\alpha}, C_{2} \leftarrow v^{\beta}, C_{3}=A_{i} h^{\alpha+\beta}, C T_{j}=T_{i, j} h^{\alpha+\beta}$. Let $\delta_{1} \leftarrow x_{i} \alpha, \delta_{2} \leftarrow x_{i} \beta$. Choose randomly $r_{\alpha}, r_{\beta}, r_{x}, r_{\delta_{1}}$ and $r_{\delta_{2}}$.
Calculate $R_{1}=u^{r_{\alpha}}, R_{2}=v^{r_{\beta}}, R_{3}=\hat{e}\left(C_{3}, g_{2}\right)^{r_{x}} \hat{e}(h, w)^{-r_{\alpha}-r_{\beta}} . \hat{e}\left(h, g_{2}\right)^{-r_{\delta_{1}}-r_{\delta_{2}}}, R_{4}=C_{1}^{r_{x}} u^{-r_{\delta_{1}}}$, and $R_{5}=C_{2}^{r_{x}} v^{-r_{\delta_{2}}}$. Compute $c \leftarrow H\left(M, C_{1}, C_{2}, C_{3}, R_{1}, R_{2}, R_{3}, R_{4}, R_{5}\right) \in Z_{p}$.
Construct the values $s_{\alpha} \leftarrow\left(r_{\alpha}+c \alpha\right), s_{\beta} \leftarrow\left(r_{\beta}+c \beta\right), s_{x} \leftarrow\left(r_{x}+c x\right), s_{\delta_{1}} \leftarrow\left(r_{\delta_{1}}+c \delta_{1}\right)$, and $s_{\delta_{2}} \leftarrow\left(r_{\delta_{2}}+c \delta_{2}\right)$.
Signature will be $\sigma \leftarrow\left(C_{1}, C_{2}, C_{3}, c, C T_{1}, \ldots, C T_{\mu}, s_{\alpha}, s_{\beta}, s_{x}, s_{\delta_{1}}, s_{\delta_{2}}\right)$
- Verify $(g p k, M, \sigma, \zeta)$: To verify the signature we first define a recursive algorithm VerNode.If the node we are currently on is a leaf in the tree the algorithm returns the following:
$\operatorname{VerNode}($ leaf $)=\left\{\begin{array}{l}\hat{e}\left(C T_{\text {leaf }_{j}}, D_{\text {leaf }_{j}}\right)=\hat{e}\left(g_{1}^{t_{\text {leaf }}^{j}}\right. \\ \text { otherwisereturn } \perp\end{array}\right.$
For a node ρ which is not a leaf the algorithm proceeds as follows: For all children z of the node ρ it calls VerNode and stores output as F_{z}. Let S_{ρ} be an arbitrary k_{ρ} sized set of
children nodes z such that $F_{z} \neq \perp$ and if no such set exist return \perp. Otherwise compute
$F_{\rho}=\Pi_{z \in S_{\rho}} F_{z}^{\Delta_{S_{\rho}, \text { index }(z)}}$; where $\Delta_{S_{\rho}, \text { index }(z)}=\Pi_{j \in\left\{\text { index }(z): z \in S_{\rho}-\text { index }(z)\right\}}(-j /($ index $(z)-j))$.
$F_{\rho}=\Pi_{z \in S_{\rho}} \hat{e}\left(A_{i} h^{\alpha+\beta}, g_{2}\right)^{q_{z}(0) \cdot \Delta_{S_{\rho, i n d e x}(z)}}$
$F_{\rho}=\Pi_{z \in S_{\rho}} \hat{e}\left(A_{i} h^{\alpha+\beta}, g_{2}\right)^{q_{\text {parent }(z)}(\operatorname{index}(z)) \cdot \Delta_{S_{\rho}, \text { index }(z)}}$
$F_{\rho}=\hat{e}\left(A_{i} h^{\alpha+\beta}, g_{2}\right)^{q_{\rho}(0)}$
To verify the signature calculate $F_{\text {root }}$. If the tree is satisfied then $F_{\text {root }}=$ $\hat{e}\left(C_{3}, w\right)$.Calculate $\bar{R}_{1}=u^{s_{\alpha}} C_{1}^{-c}, \bar{R}_{2}=v^{s_{\beta}} C_{2}^{-c}, \bar{R}_{4}=C_{1}^{s_{x}} u^{-s_{\delta_{1}}}, \bar{R}_{5}=$ $C_{2}^{s_{x}} v^{-s_{\delta_{2}}}, \bar{R}_{3}=\hat{e}\left(C_{3}, g_{2}\right)^{s_{x}} \cdot \hat{e}(h, w)^{-s_{\alpha}-s_{\beta}} \cdot \hat{e}\left(h, g_{2}\right)^{-s_{\delta_{1}} \cdot-s_{\delta_{2}}} .\left(F_{\text {root }} / \hat{e}\left(g_{1}, g_{2}\right)\right)^{c}$.If $\quad c \quad=$ $H\left(M, C_{1}, C_{2}, C_{3}, \hat{R_{1}}, \hat{R_{2}}, \hat{R_{3}}, \hat{R_{4}}, \hat{R_{5}}\right)$ then accept signature otherwise reject it.
- Open $(g p k, g m s k, M, \sigma):$ This algorithm traces a signature to a signer. To do so the group manager will be using:The public key $g p k=\left\langle g_{1}, g_{2}, h, u, v, w, D_{l e a f_{1}}, \ldots, D_{l e a f_{\mu}}\right\rangle$
The group masters tracing key gmsk $=\left\langle\xi_{1}, \xi_{2}\right\rangle$.
A signature $\sigma=\left(C_{1}, C_{2}, C_{3}, c, C T_{1}, \ldots, C T_{\mu}, s_{\alpha}, s_{\beta}, s_{x}, s_{\delta_{1}}, s_{\delta_{2}}\right)$, on the message M.
Step one in the tracing will be verifying the signature. Afterwards, the group manager could recover A_{i} by calculating $A_{i}=C_{3} /\left(C_{1}^{\xi_{1}} C_{2}^{\xi_{2}}\right)$. Now the manager could look up the user with index A_{i}. After looking up the user, manager could further up verify the attributes by calculating $T_{i, j}=C T_{j} /\left(C_{1}^{\xi_{1}} C_{2}^{\xi_{2}}\right)$ and trying to calculate $\hat{e}\left(A_{i}, w\right)$ using the attribute tree and the recursive function shown below:
If the node we are currently on is a leaf in the tree the algorithm returns the following:

For a node ρ which is not a leaf the algorithm proceeds as follows: For all children z of the node ρ it calls OpenNode and stores output as F_{z}. Let S_{ρ} be an arbitrary k_{ρ} sized set of children nodes z such that $F_{z} \neq \perp$ and if no such set exist return \perp. Otherwise compute $F_{\rho}=\Pi_{z \in S_{\rho}} F_{z}^{\Delta_{S_{\rho}, \text { index }(z)}} ;$ where $\Delta_{S_{\rho}, \text { index }(z)}=\Pi_{j \in\left\{\text { index }(z): z \in S_{\rho}-\text { index }(z)\right\}}(-j /($ index $(z)-j))$.

5 Security of the scheme

In this section we will try proving the scheme to be correct, anonymous, and traceable.We say the scheme is correct if honest signatures verify. The scheme is anonymous if signatures of same attributes do not reveal signers identity. The scheme is traceable if we could ensure that we could trace any signature even those created by a collusion of multiple users to a member of the forging coalition.

5.1 ABS Scheme Correctness

Theorem 5.1 The ABS scheme is correct
Proof In order to do so we need to prove that $\overline{R_{1}}=R_{1}, \overline{R_{2}}=R_{2}, \overline{R_{3}}=R_{3}, \overline{R_{4}}=R_{4}, \overline{R_{5}}=R_{5}$ because that leads $c=H\left(M, C_{1}, C_{2}, C_{3}, \overline{R_{1}}, \overline{R_{2}}, \overline{R_{3}}, \overline{R_{4}}, \overline{R_{5}}\right)$ which means the signature is accepted.

$$
\begin{aligned}
& \bar{R}_{1}=u^{s_{\alpha}} C_{1}^{-c}=u^{r_{\alpha}+c \alpha} \cdot\left(u^{\alpha}\right)^{-c}=u^{r_{\alpha}}=R_{1} \\
& \bar{R}_{2}=v^{s_{\beta}} C_{2}^{-c}=u^{r_{\beta}+c c \cdot} \cdot\left(v^{\beta}\right)^{-c}=v^{r_{\beta}}=R_{2} \\
& \bar{R}_{4}=C_{1}^{s_{x}} \cdot u^{-s_{\delta_{1}}}=u^{\alpha\left(r_{x}+c x\right)} \cdot u^{\left(-r \delta_{1}-c \delta_{1}\right)}=C_{1}^{r_{x}} \cdot u^{-r \delta_{1}}=R_{4} \\
& \bar{R}_{5}=C_{2}^{s_{x}} \cdot v^{-s_{\delta_{2}}}=v^{\beta\left(r_{x}+c x\right)} \cdot v^{\left(-r \delta_{2}-c \delta_{2}\right)}=C_{2}^{r_{x}} \cdot v^{-r \delta_{2}}=R_{5}
\end{aligned}
$$

Finally, $\bar{R}_{3}=R_{3}$ holds for the following reasons:

$$
\begin{aligned}
& \hat{e}\left(C_{3}, g_{2}\right)^{s_{x}} \cdot \hat{e}(h, w)^{-s_{\alpha}-s_{\beta}} \cdot \hat{e}\left(h, g_{2}\right)^{-s_{\delta_{1}}-s_{\delta_{2}}} \\
& =\hat{e}\left(C_{3}, g_{2}\right)^{r}+c x \cdot \hat{e}(h, w)^{-r_{\alpha}-r_{1}-c \alpha-c \beta} \cdot \hat{e}\left(h, g_{2}\right)^{-r_{\delta_{1}}-r_{\delta_{2}}-c x \alpha-c x \beta} \\
& =\hat{e}\left(C_{3}, g_{2}^{x}\right)^{c} \cdot \hat{e}\left(h^{-\alpha-\beta}, w g_{2}^{x}\right)^{c}\left(\hat{e}\left(C_{3}, g_{2}\right)^{r_{x}} \cdot \hat{e}(h, w)^{-r_{\alpha}-r_{\beta}} \cdot \hat{e}\left(h, g_{2}\right)^{-r_{\delta_{1}}-r_{\delta_{2}}}\right) \\
& =\hat{e}\left(C_{3} h^{-\alpha-\beta}, w g_{2}^{x}\right)^{c} \cdot \hat{e}\left(C_{3}, w\right)^{-c}\left(R R_{3}\right) \\
& =\left(\hat{e}\left(A, w g_{2}^{x}\right) / \hat{e}\left(C_{3}, w\right)\right)^{c} R_{3} \\
& =\left(\hat{e}\left(g_{1}, g_{2}\right) / F_{\text {root }}\right)^{c} R_{3}
\end{aligned}
$$

5.2 ABS scheme Traceablity

Theorem 5.2 If SDH is hard on group $\left(G_{1}, G_{2}\right)$ then the selective model of the Attribute Based Signature Scheme is fully-traceable.

Proof In order to prove that we need three steps. Defining a security model for proving fulltraceability, introducing two types of signature forger, and then we show that the existence of such forgers implies that SDH is easy.Suppose we are given an adversary Adam that breaks the full traceability of the signature scheme. The security model will be defined as an interacting framework between the Challenger and Adam as follows:

- Init: The Challenger runs Adam. Adam chooses the attribute tree it would be challenged upon.
- Setup: The Challenger runs the setup algorithm as in section [3] with a bilinear pair $\left(G_{1}, G_{2}\right)$. It selects the generators g_{1}, g_{2}, a hash function $H, \xi_{1}, \xi_{2}, u, v, h$, and γ such that they all satisfy properties mentioned in section [3]. It also chooses a t_{j} for all attributes j in the tree Adam gave. The Challenger has to come up with the pairs $\left\langle A_{i}, x_{i}\right\rangle$ for an $i=1, \ldots, n$. Some of those pairs have $x_{i}=\star$ which implies that x_{i} corresponding to A_{i} is not known; Other pairs is a valid SDH pair. In Setup the Challenger creates a public key for the same attribute tree. So Adam is given $g p k=\left\langle g_{1}, g_{2}, h, u, v, w, D_{\text {leaf }}^{1}, \ldots, D_{\text {leaf }}{ }_{\mu}\right\rangle$ and $\left(\xi_{1}, \xi_{2}\right)$.
- Hash Queries: When the Challenger asks Adam for the hash of $\left(M, C_{1}, C_{2}, C_{3}, R_{1}, R_{2}, R_{3}, R_{4}, R_{5}\right)$, Adam responds with a random element in G_{1} and saves the answer just incase the same query is requested again.
- Signature Queries: Adam asks for a signature on a message M by a key index i and a set of attributes ζ; where ζ satisfies the attribute tree chosen in Setup. If $x_{i} \neq \star$ Challenger calculates $T_{i, j}=A_{i}^{t_{j}}$ for all attributes in ζ and signs the message normally to obtain σ and give it to Adam. If $x_{i}=\star$ then Challenger picks randomly $\alpha, \beta \in Z_{p}$ sets $C_{1}=u^{\alpha}, C_{2}=$ $v^{\beta}, C_{3}=A_{i} g_{1}^{\alpha+\beta}$, and $C T_{j}=A_{i}^{t_{j}} g_{1}^{\alpha+\beta}$ for every attribute in ζ. Now Challenger could get σ as shown in the signature algorithm and gives it to Adam
- Private Key Queries: Adam asks for the private key in a certain index i for an attribute set ζ. If $x_{i} \neq \star$ Challenger returns back $\left\langle A_{i}, x_{i}, T_{i, 1}, \ldots, T_{i, \mu}\right\rangle$ where $T_{i, j}=A_{i}^{t_{j}}$ otherwise Challenger declares failure.
- Output: If Adam is successful, it outputs a forged signature on a message M. Such that the Challenger calculates A^{*} using $\xi_{1}, \xi_{2}, C_{1}, C_{2}$ and C_{3}. It calculates $T_{i, j}^{*}$ for all attributes j using $C T_{j}, \xi_{1}, \xi_{2}, C_{1}$, and C_{2} each time. Now challenger runs OpenNode as shown in [section $3]$ and if he outputs a result that does not equal $\hat{e}\left(A_{i}, w\right)$ then declare failure and terminate. Otherwise, if $A^{*} \neq A_{i}$ for all i output σ. If $A^{*}=A_{i^{*}}$ for some i^{*} and if $s_{i^{*}}=\star$ output σ. Last possibility is having $A^{*}=A_{i^{*}}$ but $s_{i} \neq \star$ Challenger declares failure.

From this model of security there are two types of forgery. Type-I outputs a signature that could be traced to some identity which is not part of $\left\{A_{1}, \ldots, A_{n}\right\}$. Type-II has $A^{*}=A_{i^{*}}$ where $1 \leq i^{*} \leq n$ but Adam did not do a private key query on i^{*}. We should prove that both forgeries are hard.

Type-I: If we consider Lemma 2.2 for a $(n+1) \mathrm{SDH}$, we could obtain g_{1}, g_{2} and w. We could also use the n pairs $\left(A_{i}, x_{i}\right)$ to calculate the private keys $\left\langle A_{i}, x_{i}, A_{i}^{t_{1}}, \ldots, A_{i}^{t_{\mu_{\mu}}}\right\rangle$. We use these values in interacting with Adam. Adam's success leads to forgery of Type-I and the probability is ε.

Type-II: Using the same Lemma 2.2 but for a $n \mathrm{SDH}$ this time, we could obtain g_{1}, g_{2} and w. Then we could also use the $n-1$ pairs $\left(A_{i}, x_{i}\right)$ to calculate the private keys $\left\langle A_{i}, x_{i}, A_{i}^{t_{1}}, \ldots, A_{i}^{t_{\mu}}\right\rangle$. In a random index i^{*}, we could choose the missing pair randomly where $A_{i^{*}} \in G_{1}$ and set $x_{i^{*}}=\star$. The random private key $\left\langle A_{i^{*}}, x_{i^{*}}, A_{i^{*}}^{t_{1}}, \ldots, A_{i^{*}}^{t_{\mu}}\right\rangle$. Adam in the security model will fail if he queries the private key oracle in index i^{*}. Other private key queries will succeed. In the signature oracle and because the hashing oracle is used it will be hard to distinguish between signatures with a SDH pair and ones without. As for the output algorithm the probability of tracing to a forged signature that leads to index i^{*} is equal to ε / n.
Next is showing how the Forking Lemma [Section 2.5] could be applied here to prove that we could generate new SDH pairs if a forgery of any type exists. Let Adam be a forger of any type in which the security model succeeds with probability $\grave{\varepsilon}$. A signature will be represented as $\left\langle M, \sigma_{0}, c, \sigma_{1}, \sigma_{2}\right\rangle$. M is the signed message. $\sigma_{0}=\left\langle C_{1}, C_{2}, C_{3}, R_{1}, R_{2}, R_{3}, R_{4}, R_{5}\right\rangle . c$ is the value derived from hashing $\sigma_{0} . \sigma_{1}=\left\langle s_{\alpha}, s_{\beta}, s_{x}, s_{\delta_{1}}, s_{\delta_{2}}\right\rangle$ which are values used to calculate the missing inputs for the hash function. Finally $\sigma_{2}=\left\langle C T_{1}, \ldots, C T_{\mu}\right\rangle$ the values that depend on the set of attributes in each signature oracle.
One simulated run of the adversary is described by a random string ω used by the adversary Adam and a vector ℓ of the responses made by the hash oracle. Let S be a set of the pairs $\langle\omega, h\rangle$ where Adam successfully forges the signature ($M, \sigma_{0}, c, \sigma_{1}, \sigma_{2}$). Let $\operatorname{Ind}(\omega, \ell)$ be the index of ℓ on which Adam queried $\left(M, \sigma_{0}\right)$. Let $\nu=\operatorname{Pr}[S]=\grave{\varepsilon}-1 / p$ which represents the probability of the security model ending with a success subtracting the possibility that Adam guessed the hash of $\left(M, \sigma_{0}\right)$ without the help of the hash oracle. For each $\chi, 1 \leq \chi \leq q_{H}$, let S_{χ} be a set of pairs $\langle\omega, h\rangle$ where $\operatorname{Ind}(\omega, \ell)=\chi$. Let Φ be the set of indices χ where $\operatorname{Pr}\left[S_{\chi} \mid S\right] \geq 1 / 2 q_{H}$ causing $\operatorname{Pr}[\operatorname{Ind}(\omega, \ell) \in \Phi \mid S] \geq 1 / 2$.
Let $\left.\ell\right|_{a} ^{b}$ be the restriction of ℓ to its elements at indices $a, a+1, \ldots, b$. For each $\chi \in \Phi$ consider the heavy row lemma (section 2.5) with a matrix with rows indexed with $\left(\omega,\left.\ell\right|_{1} ^{\chi-1}\right)$ and columns $\left(\left.\ell\right|_{\chi} ^{q_{H}}\right)$. If (x, y) is a cell, then $\operatorname{Pr}\left[(x, y) \in S_{\chi}\right] \geq \nu / 2 q_{H}$. Let the heavy rows Ω_{χ} be the ones such
that $\forall(x, y) \in \Omega_{\chi}: \operatorname{Pr}_{\grave{y}}\left[(x, \grave{y}) \in S_{\chi}\right] \geq \nu /\left(4 q_{H}\right)$. By the heavy row lemma $\operatorname{Pr}\left[\Omega_{\chi} \mid S_{\chi}\right] \geq 1 / 2$ which leads to $\operatorname{Pr}\left[\exists \chi \in \Phi: \Omega_{\chi} \cap S_{\chi} \mid S\right] \geq 1 / 4$.
Therefore Adam's probability in forging a signature is about $\nu / 4$. That signature derives from the heavy row $(x, y) \in \Omega_{\chi}$ for some $\chi \in \Phi$, hence execution (ω, ℓ) such that the $\operatorname{Pr}_{\grave{\ell}}\left[(\omega, \grave{\ell}) \in S_{j}|\grave{\ell}|_{1}^{j-1}=\right.$ $\left.\left.\ell\right|_{1} ^{j-1}\right] \geq \nu /\left(4 q_{H}\right)$. In other words if we have another simulated run of the adversary with $\grave{\ell}$ that differs from ℓ starting the j th query Adam will forge another signature $\left\langle M, \sigma_{0}, \grave{c}, \grave{\sigma}_{1}, \sigma_{2}\right\rangle$ with the probability $\nu /\left(4 q_{H}\right)$, where $\grave{\sigma}_{1}=\left\langle\grave{R}_{1}, \grave{R}_{2}, \grave{R}_{3}, \grave{R}_{4}, \grave{R}_{5}\right\rangle$.
Now we show how we could extract from $\left\langle\sigma_{0}, c, \sigma_{1}, \sigma_{2}\right\rangle$ and $\left\langle\sigma_{0}, \grave{c}, \grave{\sigma}_{1}, \sigma_{2}\right\rangle$ a new SDH tuple. Let $\Delta c=c-\grave{c}, \Delta s_{\alpha}=s_{\alpha}-\grave{s}_{\alpha}$, and similarly for $\Delta s_{\beta}, \Delta s_{x}, \Delta s_{\delta_{1}}$, and $\Delta s_{\delta_{2}}$.
Divide two instances of the equations used previously [in section 3] where one instance is with \grave{c} and the other is with c to get the following:

- Dividing R_{1} / \grave{R}_{1} we get $u^{\tilde{\alpha}}=C_{1} ;$ where $\tilde{\alpha}=\Delta s_{\alpha} / \Delta c$
- Dividing $R_{2} / \grave{R_{2}}$ we get
$v^{\tilde{\beta}}=C_{2}$; where $\tilde{\beta}=\Delta s_{\beta} / \Delta c$
- Dividing $C_{1}^{s_{x}} / C_{1}^{\grave{s}_{x}}=u^{s_{\delta_{1}}} / u^{\grave{s}_{\delta_{1}}}$ will lead to

$$
\Delta s_{\delta_{1}}=\tilde{\alpha} \Delta s_{x}
$$

- Similarly dividing $C_{2}^{S_{x}} / C_{2}^{\grave{s}_{x}}=v^{s_{\delta_{2}}} / u^{\grave{s}_{\delta_{2}}}$ will lead to
$\Delta s_{\delta_{2}}=\tilde{\beta} \Delta s_{x}$
- Calculating the following equality:

$$
\begin{aligned}
& \left(\hat{e}\left(g_{1}, g_{2}\right) / F_{r o o t}\right)^{\Delta c}=\left(\hat{e}\left(g_{1}, g_{2}\right) / \hat{e}\left(C_{3}, w\right)\right)^{\Delta c} \\
& =\hat{e}\left(C_{3}, g_{2}\right)^{\Delta s_{x}} \cdot \hat{e}(h, w)^{-\Delta s_{\alpha}-\Delta s_{\beta}} \cdot \hat{e}\left(h, g_{2}\right)^{-\Delta s_{\delta_{1}}-\Delta s_{\delta_{2}}} \\
& =\hat{e}\left(C_{3}, g_{2}\right)^{\Delta s_{x}} \cdot \hat{e}(h, w)^{-\Delta s_{\alpha}-\Delta s_{\beta}} \cdot \hat{e}\left(h, g_{2}\right)^{-\tilde{\alpha} \Delta s_{x}-\tilde{\beta} \Delta s_{x}}
\end{aligned}
$$

From the equations above if we let $\tilde{x}=\Delta s_{x} / \Delta c$ and $\tilde{A}=C_{3} h^{-(\tilde{\alpha}+\tilde{\beta})}$ we get the following equation: $\hat{e}\left(g_{1}, g_{2}\right) / \hat{e}\left(C_{3}, w\right)=\hat{e}\left(C_{3}, g_{2}\right)^{\tilde{x}} \cdot \hat{e}(h, w)^{-\tilde{\alpha}-\tilde{\beta}} \hat{e}\left(h, g_{2}\right)^{-\tilde{x}(\tilde{\alpha}+\tilde{\beta})}$
$\hat{e}\left(g_{1}, g_{2}\right)=\hat{e}\left(\tilde{A}, w g_{2}^{\tilde{x}}\right)$
Hence we obtain a new SDH pair (\tilde{A}, \tilde{x}) breaking Boneh and Boyens Lemma [Section 2.2]. Now putting things together we get the following claims:

Claim 5.3 We could solve an instance of $(n+1)$ SDH with a probability $(\varepsilon-1 / p)^{2} / 16 q_{H}$ using a Type one forger Adam

Claim 5.4 We could solve an instance of n SDH with a probability $(\varepsilon / n-1 / p)^{2} / 16 q_{H}$ using a Type two forger Adam

5.3 ABS Scheme Anonymity

Theorem 5.5 If the linear encryption is semantically secure then the ABS scheme is fully anonymous under the same attribute tree.

Assuming Adam is an adversary that breaks the anonymity of the ABS scheme. We will prove that there is an adversary Eve that breaks the semantic security of the linear encryption using Adam's talent.
Eve is given the public key $L E_{P K}=\langle u, v, h\rangle$ from the Challenger. Using the $L E_{P K}$ key Eve could calculate an ABS public key for a certain attribute tree $g p k=\left\langle u, v, h, w, D_{\text {leaf }_{1}}, \ldots, D_{\text {leaf }}^{\mu}, ~\right\rangle$ for the ABS scheme. Eve also calculates n private key bases $g s k[i]_{\text {base }}=\left\langle A_{i}, x_{i}\right\rangle$ where $1 \leq i \leq n$. Eve runs two oracles a signature oracle and a hash oracle. The hash oracle has a list that saves a unique random value for each 9 -element tuple. That random value is the response of the oracle. The hash oracle should guarantee that no 9 -element tuple have the same random value and that each time it responds with the same random value for the same 9 -element tuple. In the signature oracle Adam sends an index i, a random message M and a set of attributes ζ to $E v e$ where ζ satisfies the tree. Eve responds back with a signature $\sigma=\left\langle C_{1}, C_{2}, C_{3}, c, C T_{1}, \ldots C T_{\mu}, s_{\alpha}, s_{\beta}, s_{x}, s_{\delta_{1}}, s_{\delta_{2}}\right\rangle$ on that message from user $i . c$ is the response of the hash oracle for the tuple $\left\langle M, C_{1}, C_{2}, C_{3}, R_{1}, R_{2}, R_{3}, R_{4}, R_{5}\right\rangle$. Now Adam could request from Eve his anonymity challenge by choosing two indices (i_{0} and i_{1}), set of attributes ζ and a message M asking for a signature of one of them. Eve sends Challenger both $\left\langle A_{i_{0}}, A_{i_{0}}^{t_{1}}, \ldots, A_{i_{0}}^{t_{\mu}}\right\rangle$ and $\left\langle A_{i_{1}}, A_{i_{1}}^{t_{1}}, \ldots, A_{i_{1}}^{t_{\mu}}\right\rangle$ as a challenge for semantic security pretending that they are messages. Challenger responds back with the ciphertext $\bar{C}=\left\langle C_{1}, C_{2}, C_{3}, C T_{1}, \ldots, C T_{\mu}\right\rangle$ of $A_{i_{b}}$ where $b \in\{0,1\}$. Eve generates a signature from \bar{C} and sends it to Adam. Adam returns a \grave{b} to Eve. Finally Eve outputs \grave{b} as her answer to the Challenger. Eve has an high advantage on guessing the right $\grave{b}=b$ if and only if Adam could break into the anonymity of the ABS scheme.

6 Conclusion

In this paper we define the first attribute based signature scheme. An ABS scheme enables signing with attributes rather than just a private key. It also verifies a person and his characteristics. We define a security model for anonymity, and traceability for such schemes. We then construct a scheme based on group signatures [3] and the idea of attribute trees [8]. We still have some open problems for future work.

- The revocation problem: This problem could be for removing certain attributes from a certain user. For example, an employee in Bob's company could be transferred to a different department. The revocation problem also includes removing a user from the system and that is handy when an employee at Bob's company quits his job.
- The attribute set anonymity: This problem involves ensuring more privacy for the signer. His attributes should be kept a secret. For example when Alice sets her attribute tree and asks for a corresponding signature, she does not need to know what sub-tree the employee in Bob's company satisfies. In other words, all she needs to know is whether in general the employee owns enough attributes for her to accept the signature. No need to know the attributes themselves. It is a stronger anonymity level that we would have liked to achieve.
- The Attribute set size effects efficiency: Finally, our scheme has a disadvantage when it comes to having a huge number of attributes since the keys and signature are dependent on the size of the attribute set a user owns or requests.

In general our paper contributes in providing a new application that requires a new cryptographic scheme. We succeeded in constructing an implement-able algorithm which maintains the security notions of a group signature: traceability and anonymity.

References

[1] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures: Formal definitions simplified requirements and a construction based on general assumptions. In Proceedings of Eurocrypt 2003, volume 2656 of Lecture Notes in Computer Science, pages 614-629. Springer-Verlag, 2003.
[2] D. Boneh and X. Boyen. Short signatures without random oracles. In Proceedings of Eurocrypt 2004, volume 3027 of Lecture Notes in Computer Science, pages 382-400. Springer-Verlag, 2004.
[3] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Proceedings of Crypto 2004, volume 3152 of Lecture Notes in Computer Science, pages 41 - 55. Springer-Verlag, 2004.
[4] J. Camenisch. Efficient and generalized group signatures. In Proceedings of Eurocrypt 1997, volume 1233 of Lecture Notes in Computer Science, pages 465-479. Springer-Verlag, 1997.
[5] J. Camenisch and M. Stadler. Efficient group signature schemes for large groups. In In Advances in Cryptology CRYPTO97, volume 1296 of Lecture Notes in Computer Science, pages 410-424. Springer-Verlag, 1997.
[6] D. Chaum and V. Heyst. Group signatures. In Proceedings of Eurocrypt 1991, volume 547 of Lecture Notes in Computer Science, pages 257-265. Springer-Verlag, 1991.
[7] L. Chen and T.P. Pedersen. New group signature schemes. In Proceedings of Eurocrypt 1994, volume 950 of Lecture Notes in Computer Science, pages 171-181. Springer-Verlag, 1995.
[8] V. Goyal, O. Pandeyy, A. Sahaiz, and B. Waters. Attribute-based encryption for fine-grained access control of encrypted data. In Proceedings of the 13th ACM conference on Computer and communications security, pages $89-98,2006$.
[9] Kazuo Ohta and Tatsuaki Okamoto. On concrete security treatment of signatures derived from identification. In Advances in Cryptology - CRYPTO'98, volume 1462 of Lecture Notes in Computer Science, pages 354-??, 1998.
[10] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures. In Journal of Cryptography, volume 13 of Number 3, pages 361-396. Springer-Verlag, 2000.

