
Attribute Based Signature Scheme

Dalia Khader

Abstract

Alice needs a document signed by an employee in Bob’s company. That employee should be
part of the IT staff and is at least a junior manager in the cryptography team or a senior manager
in the biometrics team. In such a scenario we need an Attribute Based Signature Scheme (ABS).
In this paper we define the first ABS scheme where verifying includes authenticating a person
that belongs to a certain group and owns particular attributes. We define two security notions
adopted from group signature which are: traceability and anonymity. We prove our scheme to
be secure under those two notions.

1 Introduction

Alice wants a document to be signed by any employee in Bob’s company. Alice requires that em-
ployee to have certain attributes such as being part of the IT staff and is at least a junior manager
in the cryptography team or a senior manager in the biometrics team. We derive our idea from the
Group Signature Scheme.
Group signature schemes are relatively new additions to cryptographic research, first proposed by
Chaum and van Heist [6] for implementation in e-cash systems. These schemes have been called
for by numerous practical applications to facilitate the scenario of a member signing on behalf of
the entire group. The two underlying notions of such schemes are anonymity and traceability. We
say a scheme is anonymous if we can not figure out which member of the group signed the message.
However, we say a scheme is traceable if we could ensure that we could trace all signatures to a
signer or a member of a forging coalition. The mechanism of compromising between these two
otherwise mutually exclusive features is what makes group signatures a focal point of research.
Bellare et al [1] defined the standard mode for the scheme to be both anonymous and traceable.
Efficiency was another important aspect for implementing group signature. In the schemes pre-
sented in [7] [4] the length of the keys and/or the signature were depending on the number of
people in the group which made it unsuitable for large groups until Camenisch et al. proposed
their scheme in [5].
In our scheme we extend group signatures in order to allow any member of the group who satisfies
certain properties to sign on behalf of the others. We adopt the idea of an attribute tree from
Goyal et al’s work in [8]. Consider an attribute tree in which each interior node of the tree is a
threshold gate and the leaves are linked with attributes. A threshold gate represents the number m
of n children branching from the current node need to be satisfied in order to say that the parent
node is satisfied. Once we reach the leaf we say it is satisfied if and only if it is owned by the signer.
(For example, we represent a tree with AND and OR gates by using respectively 2 of 2 and 1 of
2 threshold gates.) The scheme has each public key labeled with an attribute tree and embeds in

each signature an attribute set that the signer owns.
So going back to the main scenario Alice decides on an attribute tree and sends it to both a key
generator and Bob’s company. Key generator sends Alice a verifying key and a member in Bob’s
company sends her a signature. Alice could verify now Bob’s signature and whether he satisfies her
attribute tree or not.
In this paper we first discuss some preliminaries that will be used in the scheme and the proof of
its security. In section 3 we define the scheme. We then go through some security proofs in section
5. Finally we conclude our results and bring up some open issues.

2 Preliminaries

2.1 The Strong Diffie-Hellman Assumption

Let G1, G2 be cyclic groups of prime order p, where possibly G1 = G2. Assuming the generators
g1 ∈ G1, and g2 ∈ G2 consider the following [2]:

Theorem 2.1 (q-Strong Diffie-Hellman Problem) The q-SDH problem in (G1, G2) is defined as
follows: given a (q + 2) tuple g1, g2, g

γ
2 , g

γ2

2 , ..., gγq

2 as an input, output a pair (g1/(γ+x), x) where
x ∈ Z∗p . An algorithm A has an advantage ε in solving q-SDH in (G1, G2) if:

Pr[A(g1, g2, g
γ
2 , g

γ2

2 , ..., gγq

2) = (g1/(γ+x), x)] ≥ ε,
where the probability is over a random choice of a generator g2 (with g1 ← ψ(g2)), of γ ∈ Z∗p and
of random bits of A

Lemma 2.2 Boneh-Boyen SDH Equivalence Given a q-SDH instance (g̀1, g̀2, g̀
γ
2 , g̀

γ2

2 , ..., g̀γq

2), ap-
plying the Boneh and Boyen’s Lemma to obtain g1 ∈ G1, g2 ∈ G2, w = gγ

2 and (q − 1) SDH pairs
(Ai, xi) such that e(Ai, wg

xi
2) = e(g1, g2) for each i. Any SDH pair besides these (q − 1) ones can

be transformed into a solution to the original q-SDH instance.

2.2 Linear Encryption

In this section we will define an encryption scheme which depends on the difficulty of the Decision
Linear Diffie-Hellman Assumption which is explained below [3]:

Theorem 2.3 Decision Linear Problem in G1 Let G1 be a group of prime order p and u, v, h are
generators in that group. Given u, v, h, ua, vb, hc ∈ G1 as an input,it is hard to decide whether or
not a+ b = c.

In the Linear Encryption scheme a user’s public key is u, v, h ∈ G1. The private key is the exponents
ξ1, ξ2 ∈ Zp such that ux = vy = h. To encrypt a messsage M choose random elements α, β ∈ Zp

and output the triple 〈C1, C2, C3〉 = 〈uα, vβ ,M.hα+β〉. To decrypt compute C3/(C
ξ1
1 C

ξ2
2). LE has

been proven to be semantically secure.

2.3 Lagrange Interpolation

Lagrange, in Numerical Analysis, is a way of interpolating a polynomial. In this paper it will be
used in order to get the public key for the ABS scheme[see section 4]

Theorem 2.4 Given n + 1 points-(xi, f(xi)) on a polynomial f of degree n we could identify the
polynomial uniquely by calculating:
f(x) =

∑n
i=1(f(xi)(Π1≤k 6=i≤n(x− xk)/(xj − xk)))

2.4 Forking Lemma

David Pointcheval and Jacques Stern developed the forking lemma technique in constructing their
proof of security in their digital signature scheme [10]. It has been used in other security inves-
tigations of various cryptographic algorithms. Assume any signature scheme produces the triple
〈σ1, h, σ2〉 where σ1 takes its values randomly from a set,h is the result of hashing the message M
together with σ1, and σ2 depends on (σ1, h,M). The Forking Lemma is as follows [10]:

Theorem 2.5 (The Forking Lemma) Let A be a Probabilistic Polynomial Time Turing machine,
given only the public data as input. If A can find, with non-negligible probability, a valid signature
(M,σ1, h, σ2) then, with non-negligible probability, a replay of this machine, with the same random
tape and a different oracle, outputs two valid signatures (M,σ1, h, σ2) and (M,σ1, h̀, σ̀2) such that
h 6= h̀.

2.5 Heavy Row Lemma

In this section we define Boolean Matrix and then a Heavy Row in that matrix. Those definitions
will be used for the Heavy Row Lemma [9].

Definition 2.6 Boolean Matrix of Random Tapes Consider a hypothetical matrix M whose rows
consists of all possible random choices of an adversary and the columns consist of all possible
random choices of a challenger. Let each entry be either ⊥ when adversary fails or > if adversary
manages to win the game.

Definition 2.7 Heavy Row A row in M is called heavy if the fraction of > along the row is less
than ε/2 where ε is the advantage of adversary succeeding in attack.

Lemma 2.8 Heavy Row Lemma Let M be a boolean matrix, given any entry that equal >, then
the probability that it lies in a heavy row is at least 1/2.

3 ABS Scheme

In this section we will first define our scheme and its security notions. Later on in the section we
construct an implementable scheme(see section 4).

3.1 General Definition of the ABS scheme

In an ABS scheme there are five algorithms: Setup, KeyGen, Sign, Verify and Open. The following
is a general description of each of the algorithms.

• Setup: Setup is a randomized algorithm. It takes no input. It generates a set of parameters
Spara that will be used in the Key Generation algorithm and a tracing key gmsk that will be
used in the Open algorithm.

• KeyGen(Spara, n): KeyGen is an algorithm that takes the parameters of the setup and a
number n that defines the number of users. It then generates public keys for attribute trees
gpk, and private keys for users gsk. Private keys are created using a private key bases gskbase

and a set of attributes that the user i owns.

• Sign(gpk, gsk[i],M): Given a public key of an attribute tree, a private key of a user i and a
message. Output a signature σ

• Verify(gpk,M, σ, ζ): Given a message, a public key of a certain attribute tree, a signature and
a set ζ that describes the set of attribute that satisfy the tree; Output either an acceptance
or a rejection for the signature.

• Open(gpk, gmsk,M, σ): Given a signature on a particular message, a public key and the
tracing key. Trace to the signer i even if it is a member in forging coalition.

3.2 General Security Notions of the ABS scheme

An ABS scheme should be proved to be correct, anonymous and traceable. In this section we give
a general definition for each property. We start with the definition of correctness.

Definition 3.1 (ABS Scheme is Correct:)We say an ABS Scheme is correct if and only if honestly-
generated signatures verify and trace correctly.

For defining anonymity we introduce this game between an adversary Adam and a Challenger.
The game demonstrates how with the access to a signature oracle an adversary should not be
able to distinguish between signers unless they have unique attributes that identify them. The
game consists of six phases: Init, Setup, Phase1, Challenge, Phase2, and finally Guess. A detailed
desciption about the phases is described below:

• Init:Adam chooses the attribute tree he would like to be challenged upon.

• Setup: Challenger runs the setup algorithm and keygen. Challenger produces a public key
for the attribute tree and n private key bases gpkbases that will be used in the signature oracle
later in the game.

• Phase 1:Challenger runs the signature oracle. Adam issues a certain number of queries to
that oracle. Adam sends in every query a message M , index of user i and a set of attributes
ζ that satisfy the tree. Challenger responds back with a signature σ.

• Challenge: Adam decides when to request his challenge. He sends the Challenger two
indices (i0, i1), a message M and ζ. The triple 〈i0,M, ζ〉 and 〈i1,M, ζ〉 should not have been
queried before in Phase 1 and should not be queried after this point in Phase 2. Challenger
replies back with a signature σb where b ∈ {0, 1}.

• Phase 2: Phase two is exactly the same as phase one.

• Guess:Adam tries to guess b̀ ∈ {0, 1}. If b = b̀, Adam wins otherwise he fails.

We refer to an adversary like Adam as the selective anonymity attack (SAA) adversary and we
define the advantage of attacking the scheme as AdvSAA = Pr[b = b̀]− 1/2.

Definition 3.2 (Selective Anonymity:) We say a sheme is secure under a SAA attack if for any
polynomial time SAA-Adversary advantage in winning the game is negligible. That is AdvSAA〈ε
where ε is negligible.

For defining traceablity, we need to prove all signatures even the ones created by the collusion of
multiple users trace to the member of the forging coalition. In order to do so we define the following
game between an adversary Adam and the Challenger:

• Init:Adam chooses the attribute tree he would like to be challenged upon.

• Setup: Challenger runs the setup algorithm and part of the keygen. Challenger produces
a public key for the attribute tree and n private key bases that will be used in the signature
oracle and private key oracle later in the game.

• Querying a Signature/Private key Oracle:Challenger runs two oracles, a signature
oracle and a private key oracle. Adam issues a number of queries to both oracles. He sends
in every query to the signature oracle a message M , index of user i and a set of attributes
ζ that satisfy the tree. Challenger responds back with a signature σ. When querying the
private key oracle Adam sends an index and a set of attributes ζ. Challenger responds back
with a valid private key.

• Output:If Adam is successful it outputs a forged signature σ that Challenger fails to trace
using the open algorithm. Otherwise Adam fails.

We call an attack similiar to Adam’s a Forging Signature Attack (FSA). We represent the advantage
of the adversary in winning the attack as AdvFSA.

Definition 3.3 (ABS Scheme is Traceable:) We say a scheme is secure under a FSA attack if
for any polynomial time the advantage of an adversary winning the game is negligible. That is
AdvFSA〈ε where ε is negligible.

4 Construction of an ABS Scheme

In this section we construct an ABS scheme based on Boneh et al’s work in [3].

• Setup:Consider a bilinear pair (G1, G2) with a computable isomorphism ψ. Suppose that SDH
assumption holds on (G1, G2) and the linear assumption holds on G1. Define the bilinear map
ê : G1XG2 → GT . All three groups G1, G2, GT are multiplicative and of a prime order p.
Select a hash function H : {0, 1}∗ → Zp. Select a generator g2 ∈ G2 at random and then set
g1 ← ψ(g2). Select h ← G1 and ξ1, ξ2 randomly from Zp. gmsk = 〈ξ1, ξ2〉 will be used later
in the open algorithm. Set u, v ∈ G1 such that uξ1 = vξ2 = h. Select a random γ from Zp

and set w = gγ
2 .

Define a universe of attributes U = {1, 2, ...,m} and for each attribute j ∈ U choose a number
tj at random from Zp. Let Spara = 〈G1, G2, GT , ê, H, g1, g2, h, u, v, gmsk, γ, w〉.

• KeyGen(Spara, n):This algorithm generates a public key for a specific access structure and a
private key for each user. Using γ generate for each user i, 1 ≤ i ≤ n an SDH pair (Ai, xi). Get
xi randomly from Z∗p and Ai ← g

1/(γ+xi)
1 ∈ G1. For every attribute j that user i owns calculate

Ti,j ← g
tj/(γ+xi)
1 . The private key for a user i will be the tuple gsk[i] = 〈Ai, xi, Ti,1..., Ti,µ〉,

where µ is the number of attributes a user owns. We consider the bases of the private key
gsk[i]base to be equal to the pair 〈Ai, xi〉 . To generate a public key for a certain attribute
tree we will need to choose a polynomial qnode of degree dnode = knode−1 for each node in the
tree. That is done in top-down manner. Starting from the root qroot(0) = γ and other points
in the polynomial will be random. The other nodes we set qnode(0) = qparent(index(node))
and choose the rest of the points of the polynomial randomly. Once all polynomials have been
decided the public key for a certain structure will be gpk = 〈g1, g2, h, u, v, w,Dleaf1 , ..., Dleafµ〉
where Dleafi

= g
qleafi

(0)/tleafi
2 , µ is the number of leafs and 1 ≤ i ≤ µ.

• Sign(gpk, gsk[i],M): For signing user i needs to choose α, β ∈ Zp and compute the linear
encryption of Ai and Ti,j where 1 ≤ j ≤ µ. The ciphertext of the encryption will equal
C1 ← uα, C2 ← vβ , C3 = Aih

α+β , CTj = Ti,jh
α+β. Let δ1 ← xiα, δ2 ← xiβ. Choose

randomly rα, rβ, rx, rδ1 and rδ2 .
Calculate R1 = urα , R2 = vrβ , R3 = ê(C3, g2)rx ê(h,w)−rα−rβ .ê(h, g2)−rδ1

−rδ2 , R4 = Crx
1 u−rδ1 ,

and R5 = Crx
2 v−rδ2 . Compute c← H(M,C1, C2, C3, R1, R2, R3, R4, R5) ∈ Zp.

Construct the values sα ← (rα + cα), sβ ← (rβ + cβ), sx ← (rx + cx), sδ1 ← (rδ1 + cδ1), and
sδ2 ← (rδ2 + cδ2).
Signature will be σ ← (C1, C2, C3, c, CT1, ..., CTµ, sα, sβ , sx, sδ1 , sδ2)

• Verify(gpk,M, σ, ζ): To verify the signature we first define a recursive algorithm V erNode.If
the node we are currently on is a leaf in the tree the algorithm returns the following:

V erNode(leaf) =

{
ê(CTleafj

, Dleafj
) = ê(g

tleafj
/(γ+xi)

1 hα+β, g
qleafj

(0)/tleafj

2) = ê(Aih
α+β , g2)

qleafj
(0)

otherwisereturn⊥

For a node ρ which is not a leaf the algorithm proceeds as follows: For all children z of the
node ρ it calls V erNode and stores output as Fz. Let Sρ be an arbitrary kρ sized set of

children nodes z such that Fz 6= ⊥ and if no such set exist return ⊥. Otherwise compute
Fρ = Πz∈SρF

∆Sρ,index(z)
z ; where ∆Sρ,index(z) = Πj∈{index(z):z∈Sρ−index(z)}(−j/(index(z)− j)).

Fρ = Πz∈Sρ ê(Aih
α+β , g2)

qz(0).∆Sρ,index(z)

Fρ = Πz∈Sρ ê(Aih
α+β , g2)

qparent(z)(index(z)).∆Sρ,index(z)

Fρ = ê(Aih
α+β, g2)qρ(0)

To verify the signature calculate Froot. If the tree is satisfied then Froot =
ê(C3, w).Calculate R̄1 = usαC−c

1 , R̄2 = vsβC−c
2 , R̄4 = Csx

1 u−sδ1 , R̄5 =
Csx

2 v−sδ2 , R̄3 = ê(C3, g2)sx .ê(h,w)−sα−sβ .ê(h, g2)−sδ1
.−sδ2 .(Froot/ê(g1, g2))c.If c =

H(M,C1, C2, C3, R̂1, R̂2, R̂3, R̂4, R̂5) then accept signature otherwise reject it.

• Open(gpk, gmsk,M, σ):This algorithm traces a signature to a signer. To do so the group
manager will be using:The public key gpk = 〈g1, g2, h, u, v, w,Dleaf1 , ..., Dleafµ〉
The group masters tracing key gmsk = 〈ξ1, ξ2〉.
A signature σ = (C1, C2, C3, c, CT1, ..., CTµ, sα, sβ , sx, sδ1 , sδ2), on the message M .
Step one in the tracing will be verifying the signature. Afterwards, the group manager could
recover Ai by calculating Ai = C3/(C

ξ1
1 C

ξ2
2). Now the manager could look up the user with

index Ai. After looking up the user, manager could further up verify the attributes by
calculating Ti,j = CTj/(C

ξ1
1 C

ξ2
2) and trying to calculateê(Ai, w) using the attribute tree and

the recursive function shown below:
If the node we are currently on is a leaf in the tree the algorithm returns the following:

OpenNode(leaf) =

{
ê(Tleafj

, Dleafj
) = ê(g

tleafj
/(γ+xi)

1 , g
qleafj

(0)/tleafj

2) = ê(Ai, g2)
qleafj

(0)

otherwisereturn⊥
For a node ρ which is not a leaf the algorithm proceeds as follows: For all children z of the
node ρ it calls OpenNode and stores output as Fz. Let Sρ be an arbitrary kρ sized set of
children nodes z such that Fz 6= ⊥ and if no such set exist return ⊥. Otherwise compute
Fρ = Πz∈SρF

∆Sρ,index(z)
z ; where ∆Sρ,index(z) = Πj∈{index(z):z∈Sρ−index(z)}(−j/(index(z)− j)).

5 Security of the scheme

In this section we will try proving the scheme to be correct, anonymous, and traceable.We say
the scheme is correct if honest signatures verify. The scheme is anonymous if signatures of same
attributes do not reveal signers identity. The scheme is traceable if we could ensure that we could
trace any signature even those created by a collusion of multiple users to a member of the forging
coalition.

5.1 ABS Scheme Correctness

Theorem 5.1 The ABS scheme is correct

Proof In order to do so we need to prove that R̄1 = R1, R̄2 = R2, R̄3 = R3, R̄4 = R4, R̄5 = R5

because that leads c = H(M,C1, C2, C3, R̄1, R̄2, R̄3, R̄4, R̄5) which means the signature is accepted.

R̄1 = usαC−c
1 = urα+cα.(uα)−c = urα = R1

R̄2 = vsβC−c
2 = urβ+cβ .(vβ)−c = vrβ = R2

R̄4 = Csx
1 .u−sδ1 = uα(rx+cx).u(−rδ1−cδ1) = Crx

1 .u−rδ1 = R4

R̄5 = Csx
2 .v−sδ2 = vβ(rx+cx).v(−rδ2−cδ2) = Crx

2 .v−rδ2 = R5

Finally,R̄3 = R3 holds for the following reasons:
ê(C3, g2)sx .ê(h,w)−sα−sβ .ê(h, g2)−sδ1

.−sδ2

= ê(C3, g2)rx+cx.ê(h,w)−rα−rβ−cα−cβ .ê(h, g2)−rδ1
−rδ2

−cxα−cxβ

= ê(C3, g
x
2)c.ê(h−α−β , wgx

2)c(ê(C3, g2)rx .ê(h,w)−rα−rβ .ê(h, g2)−rδ1
−rδ2)

= ê(C3h
−α−β , wgx

2)c.ê(C3, w)−c(R3)
= (ê(A,wgx

2)/ê(C3, w))cR3

= (ê(g1, g2)/Froot)cR3

5.2 ABS scheme Traceablity

Theorem 5.2 If SDH is hard on group (G1, G2) then the selective model of the Attribute Based
Signature Scheme is fully-traceable.

Proof In order to prove that we need three steps. Defining a security model for proving full-
traceability, introducing two types of signature forger, and then we show that the existence of
such forgers implies that SDH is easy.Suppose we are given an adversary Adam that breaks the full
traceability of the signature scheme. The security model will be defined as an interacting framework
between the Challenger and Adam as follows:

• Init: The Challenger runs Adam. Adam chooses the attribute tree it would be challenged
upon.

• Setup: The Challenger runs the setup algorithm as in section [3] with a bilinear pair
(G1, G2). It selects the generators g1, g2, a hash function H, ξ1, ξ2, u,v,h, and γ such that
they all satisfy properties mentioned in section [3]. It also chooses a tj for all attributes
j in the tree Adam gave. The Challenger has to come up with the pairs 〈Ai, xi〉 for an
i = 1, ..., n. Some of those pairs have xi = ? which implies that xi corresponding to Ai is not
known; Other pairs is a valid SDH pair. In Setup the Challenger creates a public key for the
same attribute tree. So Adam is given gpk = 〈g1, g2, h, u, v, w,Dleaf1 , ..., Dleafµ〉 and (ξ1, ξ2).

• Hash Queries: When the Challenger asks Adam for the hash
of(M,C1, C2, C3, R1, R2, R3, R4, R5), Adam responds with a random element in G1

and saves the answer just incase the same query is requested again.

• Signature Queries: Adam asks for a signature on a message M by a key index i and a set
of attributes ζ; where ζ satisfies the attribute tree chosen in Setup. If xi 6= ? Challenger
calculates Ti,j = A

tj
i for all attributes in ζ and signs the message normally to obtain σ and

give it to Adam. If xi = ? then Challenger picks randomly α, β ∈ Zp sets C1 = uα, C2 =
vβ, C3 = Aig

α+β
1 , and CTj = A

tj
i g

α+β
1 for every attribute in ζ. Now Challenger could get σ

as shown in the signature algorithm and gives it to Adam

• Private Key Queries: Adam asks for the private key in a certain index i for an attribute
set ζ. If xi 6= ? Challenger returns back 〈Ai, xi, Ti,1, ..., Ti,µ〉 where Ti,j = A

tj
i otherwise

Challenger declares failure.

• Output: If Adam is successful, it outputs a forged signature on a message M . Such that the
Challenger calculates A∗ using ξ1, ξ2, C1, C2 and C3. It calculates T ∗i,j for all attributes j
using CTj , ξ1, ξ2, C1, and C2 each time. Now challenger runs OpenNode as shown in [section
3] and if he outputs a result that does not equal ê(Ai, w) then declare failure and terminate.
Otherwise, if A∗ 6= Ai for all i output σ. If A∗ = Ai∗ for some i∗ and if si∗ = ? output σ.
Last possibility is having A∗ = Ai∗ but si 6= ? Challenger declares failure.

From this model of security there are two types of forgery. Type-I outputs a signature that could
be traced to some identity which is not part of {A1, ..., An} .Type-II has A∗ = Ai∗ where 1 ≤ i∗ ≤ n
but Adam did not do a private key query on i∗. We should prove that both forgeries are hard.

Type-I: If we consider Lemma 2.2 for a (n + 1)SDH, we could obtain g1,g2 and w. We
could also use the n pairs (Ai, xi) to calculate the private keys 〈Ai, xi, A

t1
i , ..., A

tµ
i 〉. We use these

values in interacting with Adam. Adam’s success leads to forgery of Type-I and the probability is ε.

Type-II: Using the same Lemma 2.2 but for a nSDH this time, we could obtain g1, g2 and w.
Then we could also use the n − 1 pairs (Ai, xi) to calculate the private keys 〈Ai, xi, A

t1
i , ..., A

tµ
i 〉.

In a random index i∗, we could choose the missing pair randomly where Ai∗ ∈ G1 and set xi∗ = ?.
The random private key 〈Ai∗ , xi∗ , A

t1
i∗ , ..., A

tµ
i∗ 〉. Adam in the security model will fail if he queries

the private key oracle in index i∗. Other private key queries will succeed. In the signature oracle
and because the hashing oracle is used it will be hard to distinguish between signatures with a SDH
pair and ones without. As for the output algorithm the probability of tracing to a forged signature
that leads to index i∗ is equal to ε/n.
Next is showing how the Forking Lemma [Section 2.5] could be applied here to prove that we could
generate new SDH pairs if a forgery of any type exists. Let Adam be a forger of any type in which
the security model succeeds with probability ὲ. A signature will be represented as 〈M,σ0, c, σ1, σ2〉.
M is the signed message. σ0 = 〈C1, C2, C3, R1, R2, R3, R4, R5〉. c is the value derived from hashing
σ0. σ1 = 〈sα, sβ , sx, sδ1 , sδ2〉 which are values used to calculate the missing inputs for the hash
function. Finally σ2 = 〈CT1, ..., CTµ〉 the values that depend on the set of attributes in each
signature oracle.
One simulated run of the adversary is described by a random string ω used by the adversary
Adam and a vector ` of the responses made by the hash oracle. Let S be a set of the pairs 〈ω, h〉
where Adam successfully forges the signature (M,σ0, c, σ1, σ2). Let Ind(ω, `) be the index of `
on which Adam queried (M,σ0). Let ν = Pr[S] = ὲ − 1/p which represents the probability of
the security model ending with a success subtracting the possibility that Adam guessed the hash
of (M,σ0) without the help of the hash oracle. For each χ, 1 ≤ χ ≤ qH , let Sχ be a set of
pairs 〈ω, h〉 where Ind(ω, `) = χ. Let Φ be the set of indices χ where Pr[Sχ|S] ≥ 1/2qH causing
Pr[Ind(ω, `) ∈ Φ|S] ≥ 1/2.
Let `|ba be the restriction of ` to its elements at indices a, a + 1, ..., b. For each χ ∈ Φ consider
the heavy row lemma (section 2.5) with a matrix with rows indexed with(ω, `|χ−1

1) and columns
(`|qH

χ). If (x, y) is a cell, then Pr[(x, y) ∈ Sχ] ≥ ν/2qH . Let the heavy rows Ωχ be the ones such

that ∀(x, y) ∈ Ωχ : Prỳ[(x, ỳ) ∈ Sχ] ≥ ν/(4qH). By the heavy row lemma Pr[Ωχ|Sχ] ≥ 1/2 which
leads to Pr[∃χ ∈ Φ : Ωχ ∩ Sχ|S] ≥ 1/4.
Therefore Adam’s probability in forging a signature is about ν/4. That signature derives from the
heavy row (x, y) ∈ Ωχ for some χ ∈ Φ, hence execution (ω, `) such that the Pr`̀[(ω, `̀) ∈ Sj |`̀|j−1

1 =
`|j−1

1] ≥ ν/(4qH). In other words if we have another simulated run of the adversary with `̀ that
differs from ` starting the jth query Adam will forge another signature 〈M,σ0, c̀, σ̀1, σ2〉 with the
probability ν/(4qH), where σ̀1 = 〈R̀1, R̀2, R̀3, R̀4, R̀5〉.
Now we show how we could extract from 〈σ0, c, σ1, σ2〉 and 〈σ0, c̀, σ̀1, σ2〉 a new SDH tuple. Let
∆c = c− c̀, ∆sα = sα − s̀α, and similarly for ∆sβ,∆sx,∆sδ1 , and ∆sδ2 .
Divide two instances of the equations used previously [in section 3]where one instance is with c̀
and the other is with c to get the following:

• Dividing R1/R̀1 we get
uα̃ = C1; where α̃ = ∆sα/∆c

• Dividing R2/R̀2 we get
vβ̃ = C2; where β̃ = ∆sβ/∆c

• Dividing Csx
1 /C s̀x

1 = usδ1/us̀δ1will lead to
∆sδ1 = α̃∆sx

• Similarly dividing Csx
2 /C s̀x

2 = vsδ2/us̀δ2will lead to
∆sδ2 = β̃∆sx

• Calculating the following equality:
(ê(g1, g2)/Froot)∆c = (ê(g1, g2)/ê(C3, w))∆c

= ê(C3, g2)∆sx .ê(h,w)−∆sα−∆sβ .ê(h, g2)−∆sδ1
−∆sδ2

= ê(C3, g2)∆sx .ê(h,w)−∆sα−∆sβ .ê(h, g2)−α̃∆sx−β̃∆sx

From the equations above if we let x̃ = ∆sx/∆c and Ã = C3h
−(α̃+β̃) we get the following equation:

ê(g1, g2)/ê(C3, w) = ê(C3, g2)x̃.ê(h,w)−α̃−β̃ ê(h, g2)−x̃(α̃+β̃)

ê(g1, g2) = ê(Ã, wgx̃
2)

Hence we obtain a new SDH pair (Ã, x̃) breaking Boneh and Boyens Lemma [Section 2.2]. Now
putting things together we get the following claims:

Claim 5.3 We could solve an instance of (n+ 1) SDH with a probability (ε− 1/p)2/16qH using a
Type one forger Adam

Claim 5.4 We could solve an instance of n SDH with a probability (ε/n − 1/p)2/16qH using a
Type two forger Adam

5.3 ABS Scheme Anonymity

Theorem 5.5 If the linear encryption is semantically secure then the ABS scheme is fully anony-
mous under the same attribute tree.

Assuming Adam is an adversary that breaks the anonymity of the ABS scheme. We will prove that
there is an adversary Eve that breaks the semantic security of the linear encryption using Adam’s
talent.
Eve is given the public key LEPK = 〈u, v, h〉 from the Challenger. Using the LEPK key Eve could
calculate an ABS public key for a certain attribute tree gpk = 〈u, v, h, w,Dleaf1 , ..., Dleafµ〉 for the
ABS scheme. Eve also calculates n private key bases gsk[i]base = 〈Ai, xi〉 where 1 ≤ i ≤ n. Eve
runs two oracles a signature oracle and a hash oracle. The hash oracle has a list that saves a unique
random value for each 9-element tuple. That random value is the response of the oracle. The hash
oracle should guarantee that no 9-element tuple have the same random value and that each time it
responds with the same random value for the same 9-element tuple. In the signature oracle Adam
sends an index i, a random messageM and a set of attributes ζ to Eve where ζ satisfies the tree. Eve
responds back with a signature σ = 〈C1, C2, C3, c, CT1, ...CTµ, sα, sβ , sx, sδ1 , sδ2〉 on that message
from user i. c is the response of the hash oracle for the tuple 〈M,C1, C2, C3, R1, R2, R3, R4, R5〉.
Now Adam could request from Eve his anonymity challenge by choosing two indices (i0 and i1),
set of attributes ζ and a message M asking for a signature of one of them. Eve sends Challenger
both 〈Ai0 , A

t1
i0
, ..., A

tµ
i0
〉 and 〈Ai1 , A

t1
i1
, ..., A

tµ
i1
〉 as a challenge for semantic security pretending that

they are messages. Challenger responds back with the ciphertext C̄ = 〈C1, C2, C3, CT1, ..., CTµ〉
of Aib where b ∈ {0, 1}. Eve generates a signature from C̄ and sends it to Adam. Adam returns a
b̀ to Eve. Finally Eve outputs b̀ as her answer to the Challenger. Eve has an high advantage on
guessing the right b̀ = b if and only if Adam could break into the anonymity of the ABS scheme.

6 Conclusion

In this paper we define the first attribute based signature scheme. An ABS scheme enables signing
with attributes rather than just a private key. It also verifies a person and his characteristics. We
define a security model for anonymity, and traceability for such schemes. We then construct a
scheme based on group signatures [3] and the idea of attribute trees [8].
We still have some open problems for future work.

• The revocation problem: This problem could be for removing certain attributes from a cer-
tain user. For example, an employee in Bob’s company could be transferred to a different
department. The revocation problem also includes removing a user from the system and that
is handy when an employee at Bob’s company quits his job.

• The attribute set anonymity: This problem involves ensuring more privacy for the signer. His
attributes should be kept a secret. For example when Alice sets her attribute tree and asks
for a corresponding signature, she does not need to know what sub-tree the employee in Bob’s
company satisfies. In other words, all she needs to know is whether in general the employee
owns enough attributes for her to accept the signature. No need to know the attributes
themselves. It is a stronger anonymity level that we would have liked to achieve.

• The Attribute set size effects efficiency: Finally, our scheme has a disadvantage when it comes
to having a huge number of attributes since the keys and signature are dependent on the size
of the attribute set a user owns or requests.

In general our paper contributes in providing a new application that requires a new cryptographic
scheme. We succeeded in constructing an implement-able algorithm which maintains the security
notions of a group signature: traceability and anonymity.

References

[1] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures: Formal defi-
nitions simplified requirements and a construction based on general assumptions. In Proceed-
ings of Eurocrypt 2003, volume 2656 of Lecture Notes in Computer Science, pages 614–629.
Springer-Verlag, 2003.

[2] D. Boneh and X. Boyen. Short signatures without random oracles. In Proceedings of Eurocrypt
2004, volume 3027 of Lecture Notes in Computer Science, pages 382–400. Springer-Verlag,
2004.

[3] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Proceedings of Crypto 2004,
volume 3152 of Lecture Notes in Computer Science, pages 41 – 55. Springer-Verlag, 2004.

[4] J. Camenisch. Efficient and generalized group signatures. In Proceedings of Eurocrypt 1997,
volume 1233 of Lecture Notes in Computer Science, pages 465–479. Springer-Verlag, 1997.

[5] J. Camenisch and M. Stadler. Efficient group signature schemes for large groups. In In
Advances in Cryptology CRYPTO97, volume 1296 of Lecture Notes in Computer Science,
pages 410–424. Springer-Verlag, 1997.

[6] D. Chaum and V. Heyst. Group signatures. In Proceedings of Eurocrypt 1991, volume 547 of
Lecture Notes in Computer Science, pages 257–265. Springer-Verlag, 1991.

[7] L. Chen and T.P. Pedersen. New group signature schemes. In Proceedings of Eurocrypt 1994,
volume 950 of Lecture Notes in Computer Science, pages 171–181. Springer-Verlag, 1995.

[8] V. Goyal, O. Pandeyy, A. Sahaiz, and B. Waters. Attribute-based encryption for fine-grained
access control of encrypted data. In Proceedings of the 13th ACM conference on Computer
and communications security, pages 89 – 98, 2006.

[9] Kazuo Ohta and Tatsuaki Okamoto. On concrete security treatment of signatures derived
from identification. In Advances in Cryptology - CRYPTO’98, volume 1462 of Lecture Notes
in Computer Science, pages 354–??, 1998.

[10] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures.
In Journal of Cryptography, volume 13 of Number 3, pages 361–396. Springer-Verlag, 2000.

