
Bingo Voting: Secure and coercion-free voting
using a trusted random number generator

Jens-Matthias Bohli, Jörn Müller-Quade, and Stefan Röhrich

Institut für Algorithmen und Kognitive Systeme / E.I.S.S.,
Universität Karlsruhe (TH)
76128 Karlsruhe, Germany

{bohli,muellerq,sr}@ira.uka.de

Abstract. It is debatable if current direct-recording electronic voting
machines can sufficiently be trusted for a use in elections. Reports about
malfunctions and possible ways of manipulation abound. Voting schemes
have to fulfill seemingly contradictory requirements: On one hand the
election process should be verifiable to prevent electoral fraud and on
the other hand each vote should be deniable to avoid coercion and vote
buying.

This work presents a new verifiable and coercion-free voting scheme
Bingo Voting, which is based on a trusted random number generator.
As a motivation for the new scheme two coercion/vote buying attacks
on voting schemes are presented which show that it can be dangerous to
let the voter contribute randomness to the voting scheme.

A proof-of-concept implementation of the scheme shows the practicality
of the scheme: all costly computations can be moved to a non time critical
pre-voting phase.

Keywords: secure electronic voting, coercion-free, receipt-free

1 Introduction

Elections have to meet a lot of requirements, e.g., the German consti-
tution speaks about the selection of the members of German House of
Representatives in general, direct, free, equal, and secret elections1. For
security considerations of voting protocols, mainly the last three proper-
ties are of interest: An election should be free, i.e., nobody can be coerced
to cast a certain vote, it should be equal, i.e., nobody can influence the
result more than with her own vote, and it should be secret: no one is
able to learn the votes of other people.

1 Grundgesetz Art. 38(1): “Die Abgeordneten des Deutschen Bundestages werden in
allgemeiner, unmittelbarer, freier, gleicher und geheimer Wahl gewählt.”



Traditional voting schemes using paper and ballot boxes cannot be
trusted to guarantee all these security properties. Ballot stuffing, mis-
counting, and the manipulation or destruction of votes during tallying
are possible. Current voting machines cannot be considered to be a secure
solution as experiences with malfunctioning machines in recent elections
in the US showed.

These problems led to an increasing interest in voting schemes which
allow the voter to verify that her vote was counted. However, such a
proof should be meaningful only for the direct recipient, because otherwise
coercion and vote buying become substantially simplified. Such schemes
are called coercion-free or receipt-free2.

An additional important requirement for voting schemes is usability. A
scheme must be convincing in a very direct way and one cannot expect all
voters to use electronic devices. This makes the design of a voting scheme
even more difficult, because many cryptographic techniques cannot be
used to directly convince humans.

Our Contribution

In this work we propose a new voting scheme, called Bingo Voting due to
the use of a random number generator, like a bingo cage. The new scheme
achieves:

– ballot casting assurance and universal verifiability, i.e., the voter can
check if her own vote is cast and counted as intended, and everyone
is able to verify that all votes are correctly counted as recorded on a
bulletin board without learning the content.

– depending on the binding property of the commitments used the
scheme offers either everlasting privacy or unconditional correctness.

– coercion-freeness, i.e., even if the voter deviates from the protocol she
does not gain any evidence which allows her to prove anything about
the contents of her vote.

These security properties are achieved relative to very realistic as-
sumptions:

– a non interactive commitment scheme with some homomorphic prop-
erties is needed, e.g., Pedersen commitments [1]. If general zero-knowl-
edge protocols are used in the post-voting phase, then no homomor-
phic properties are needed and if one is willing to use check samples

2 The term receipt-free might be misleading as the voter indeed obtains a receipt.



instead of giving proofs then even physical commitments, e.g., using
strong boxes, become possible.3

– A trusted random number generator is needed.
– The human capabilities assumed on the side of the voter are very

limited. Basically the voter needs to check equality of two random
numbers and check if her paper receipt has been posted to a bulletin
board. The scheme remains secure if not all voters actually verify
the process. It is enough if the attacker cannot predict who will be
verifying.

– If a voter should not only be able to detect cheating attempts, but
also to prove an electoral fraud, then the printed receipts should be
difficult to forge.

To show the practical applicability of the new scheme it has been
implemented in Java as a proof-of-concept.

Furthermore we present two new coercion/vote-buying attacks on ex-
isting schemes [2–5] which strongly suggest, that the voter should not
be trusted to contribute her own randomness. This gives an additional
motivation for the use of trusted random number generators.

2 Related Work

Several voting schemes have been proposed over the last years.
Protocols that require the user to provide random choices additional

to the actual vote [2–4] will be analyzed in the following section. These
protocols allow a practical attack which is overlooked in cryptographic
models as it exploits the limited memory of humans involved in the voting
process. ThreeBallot voting [6] also demands additional random choices
from the voter and, as already outlined in the paper, a coercion attack
becomes possible.

In Section 2.2 we will take a closer look at Punchscan [5] and point
out an attack if the choice of a layer (step E.1 in [7]) is not done before
the voter receives her ballot (as it was the case in earlier versions of
Punchscan). This shows possible ways of coercion, when the voter has
to make decisions after getting unpredictable input. We also describe an
adaption of Punchscan to voting machines which overcomes the problem
of checking the correct destruction of one of the ballot layers. However,
we show that the voter’s effort to check correctness of her vote remains
high.
3 However, samples instead of proofs would weaken the coercion-freeness as a small

fraction of votes is opened.



Some other protocols use encryptions which make it difficult for the
voter to directly check the correctness of the vote and therefore might not
be trusted by some voters. Instances of such protocols are Prêt à Voter [8],
Scratch & Vote [9], and Benaloh’s simple verifiable elections [10].

2.1 Voting Schemes Using the Order of User Inputs

Neff [2] proposed a voting scheme which is based on the temporal order of
the interaction between the voting machine and the user. Other schemes
use the same idea, e.g., the scheme by Reynolds [3]. Moran and Naor
present a scheme which ensures everlasting privacy [4] and they prove the
coercion-resistance of their scheme in a simulation-based model.

The basic concept behind these schemes is, that the voting machine
commits itself to some random values, e.g., by printing it on a receipt
without showing it to the voter. After the machine is committed, the
voter casts her vote and enters some randomness into the machine. This
randomness is then used to generate a proof that the vote will be counted
for the chosen candidate. In order to avoid coercion, the voter can also
input random values for the other candidates, but this is done before the
voting machine is committed, so the voting machine is able to produce
fake proofs for these candidates. On a receipt every candidate is printed
with the corresponding user choices. Crucial for these schemes is the or-
der of the interaction, first the user enters dummy values for the other
candidates, then the voting machine commits, after this the voter enters
the random value for the real candidate, so that the machine cannot fake
the proof for the real vote.

A “Babble” Attack Because of the limited memory of the human
brain there may be the possibility of a vote-buying/coercion attack, if
the scheme doesn’t restrict the length of the random choices by the voter
to very short lengths or there is a large number of candidates. Suppose the
attacker provides the voter with an ear piece, i.e., a small radio receiver
which allows the voter to listen to the attacker in the voting booth. The
adversary now remotely babbles a long stream of random choices through
the ear piece to the voter. The attacker coerces the voter to vote for a
special candidate and to enter the random values she hears through the
ear piece in the correct chronological order. Because the random choices
for the real vote are entered last (and this is required by the schemes) the
attacker can check if the random choice for the chosen candidate really
was sent after the choices used for the other candidates.



This attack requires that there are sufficiently many random choices
such that the voter can’t memorize and rearrange the random values.
Even if the voter had access to a pen and a paper in the booth the attack
remains dangerous as the attacker could observe the time the voter spends
in the voting booth: For very many or very long random values and an
appropriate timing when this information is sent over the ear piece it
takes time to write down all the random choices before starting to vote.

2.2 Punchscan

Paper ballot scheme Punchscan [7] is a paper based voting scheme that
recently attracted attention. A Punchscan ballot consists of two paper
sheets that are attached one upon the other (see Figure 1 for sample
ballots). On the top page, the list of candidates is given, assigned to each
candidate is a letter with the letters being in a random permutation. The
upper sheet has several holes through which letters from the lower sheet
are visible. Which letter shows in which hole is again randomized. To
vote, the voter will look for the letter assigned to her candidate, find the
letter in one of the holes, and mark the hole such that the mark is visible
on both sheets. The voter can choose one layer of her ballot as a receipt
to take home. A system of published commitments and reveals allows the
voter to verify the tally without being able to prove what she voted for.
For more details, we refer to the Punchscan webpage [5].

A Vote Buying Attack One way of vote buying is possible even though
the receipts do not reveal the actual vote. A vote buyer may offer a reward
for a certain top and bottom layer, respectively. Considering a contest
with two choices, say, YES or NO, a vote buyer interested in convincing
people to vote for NO might offer to pay for

– a top receipt where YES is assigned to the letter A and the left bullet
is marked, or

– a bottom receipt where A appears in the left bullet and is marked.

Both layers together constitute a YES-vote. A voter who votes YES might
hold both layers together, a top and bottom layer that would entitle her
for the reward. However, she has to shred one of her papers. A voter
for NO will have the benefiting layers on separate ballots, thus, being
able to choose the corresponding receipt. To maximize the probability
of the payment, voters are motivated to vote with NO. By enumerating
all possible ballots, see Figure 1, this becomes obvious: only in the first



possible ballot the voter can qualify for the reward by voting YES. In
the next two of the four possible ballots, the voter can qualify for the
reward by voting NO, and for the last ballot, it is impossible to produce
one of the rewarding layers. Voters following the attack unreservedly will
vote in favour of the coercer with probability of 1/2, vote against the
coercer with probability 1/4 and vote according to their own decision with
probability 1/4.

YES
NO

a b

b
a YES

NO

b a

b
a YES

NO

a b

a
b YES

NO

b a

a
b

Fig. 1. Possible Punchscan ballots for a two-candidate race.

The success probability and the effect of this attack diminishes when
more choices are available. Even though this attack is not published there
is evidence that this attack is known to the designers of Punchscan, be-
cause a change was made which prevents this attack: In the first step of
the election phase the voter is required to state her choice (top receipt or
bottom receipt) before she can see the ballot. We think the above attack
might be the motivation behind this step, as a connection to chain voting
as indicated in [7] does not seem obvious.

2.3 Computer-aided Punchscan

Instead of using a trusted paper shredder4, and to make the scheme more
usable, we will next adapt Punchscan for usage on a voting machine. As
in current voting machines a screen will offer the list with candidates and
the voter casts her vote by pressing the according button. For Punchscan,
the voter is finally asked to choose between the top or bottom layer. To
avoid the above-mentioned vote buying attack, it is important that the
voter announces which layer she intends to take home before seeing the
ballot. Summing up, the voting process will be as follows:

1. The voting machine chooses a ballot.
2. The voter indicates her vote and choice of receipt.
4 The trusted shredder is needed to check the destruction of the correct layer. Other-

wise, a simple chain voting attack becomes possible.



3. The voter is presented both parts of the ballot to verify the accuracy
of her vote.

4. The voter can take home the receipt of her choice. The other part of
the ballot is destroyed.

The computer-aided Punchscan will be by far easier to use. However, it
remains the rather complicated process of verifying the correctness of the
vote. By the nature of Punchscan, it is necessary to follow through two
permutations to check a vote, while there might be different presentations
of the permutation.

The voting machine has to be trusted with the handling of the ballot
during phases 1 and 2. I.e., the voter must be able to check that one ballot
(identified by the serial number) is selected in phase 1. In phase 2, she
indicates the vote and which layer to take home. The voter should not be
able to see the layout of the ballot before the choice of the layer. On the
other hand, the voting machine could unrecognizable modify the ballot
layer that was not chosen. Therefore the machine has to be constructed
in a way that makes obvious that the machine cannot alter the prepared
punchscan ballots other than casting a vote. Both layers have to be shown
to the voter in phase 3 to allow checking the correctness of her vote. This
will require following two permutations, as it was the case with the paper
ballot scheme. Finally, the voter receives the layer she has chosen. The
second layer has to be destroyed inside the voting machine.

3 Bingo Voting

3.1 Basic Idea

The basic idea for a verifiable vote is to have ballots with a unique serial
number. Each voter will cast her vote on the ballot and take a copy of
the ballot home. When the election result is published, all ballots are
published such that every voter can check that her vote is indeed counted
for the intended candidate. Unfortunately, this simple voting protocol
paves the way for vote buying or coercion. The voter can easily prove her
vote by showing her ballot.

Once the result and all ballots are published, however, it may be
possible for the voter to deny her vote, by fabricating a fake ballot for
any listed vote of her choice. Thus, a plausible enhancement of the simple
scheme would be to hand out fake ballots to the voter immediately in the
polling booth. This might be difficult to realize in a paper-only system
but possible with a machine that keeps track of all votes and is able to



issue a receipt for formerly casted ballots. To be able to give a fake receipt
to the first voters, however, requires some previously set up dummy votes
for all candidates as an initial pool to choose from. If the pool of fake
votes is small, the correctness is only marginally affected.

However, if an attacker is able to coerce a lot of voters, the reuse
of votes can be utilized for a vote-buying/coercion attack. The attacker
would check the receipts of the voters he coerces for numbers which ap-
pear more than once. These numbers have to be fake votes for every voter
besides one, this gives enough evidence to the adversary to coerce vot-
ers. The scheme we describe in the following will therefore make enough
dummy votes for all voters available. Every voter gets besides a receipt
for the vote actually cast faked receipts certifying a (dummy) vote for
all other candidates. All the serial numbers can be printed on the same
receipt, each number belonging to the candidate printed in the same line
(see the Vote Receipt in Figure 3 for an example).

The tallying of the real votes taking into account the fake votes can
be assured by means of cryptography.

On the receipt, every candidate has assigned a number representing
the serial number of the ballot. The voter must be assured, that her actual
vote—the number of the real ballot—is not a dummy vote. This is the
case if the voter can actually witness the random generation of the fresh
number that will represent her vote, while the dummy votes are previously
determined and committed. In the following, we describe the protocol in
a more formal and detailed way.

3.2 Preliminaries

The scenario we assume in the following is a poll with ` candidates and n
eligible voters. In the polling booth is a trusted random number generator
(RNG) and the voting machine available. The voting machine’s printer—
or the paper where the receipt is printed on—has to be trusted only if
evidence for electoral fraud needs to be transferable. To actually alter the
outcome of an election many votes have to be changed and it is therefore
enough if the printer prevents large-scale forgery of receipts.

3.3 Pre-Voting Phase

Before election day, the voting authority will generate a list with m =
n · ` random numbers N1, . . . , Nm representing the dummy votes. These
votes are assigned equally to the candidates P1, . . . , P`. The assignment
is described by a mapping φ : {1, . . . ,m} → {1, . . . , `}. An example for



candidate random number

P1 1234523134
P2 6665876824
P3 3422335718

P1 3953692256
P2 6875210932
P3 3940959973

P1 4516989092
P2 5253736656
P3 0671069428

P1 1894180419
P2 0838226760
P3 2539035690

Fig. 2. Example list of dummy votes

such a list is given in Figure 2. Unconditionally hiding commitments5

C1, . . . , Cm to the pairs (Ni, Pφ(i)) are computed using random coins ri.
The commitments Ci = commit((Ni, Pφ(i)); ri) are published such that
every voter can convince herself of the commitments.

The pairs (Ni, Pφ(i)) with random numbers and assigned candidates
are distributed to the electronic voting machines, such that every machine
has for each candidate one dummy vote per eligible voter on this machine.

3.4 Voting Phase

In the voting booth, a voter has to perform the following steps to cast a
vote, which are also shown in Figure 3:

1. The voter will first indicate her vote by pressing the according candi-
date’s button on the voting machine.

2. Next the random number generator generates a fresh random num-
ber R.

3. The random number R is transferred to the voting machine and as-
signed to the candidate of the voter’s choice.
For each other candidate, the voting machine will draw randomly one
number out of the pool of dummy votes for the respective candidate.
The machine will print out a receipt listing candidates and numbers:
The candidate that was voted is assigned the fresh random number R,
for the other candidates the respectively chosen dummy vote is shown.
Figure 3 contains a sample receipt.

5 Unconditionally hiding commitments yield everlasting privacy. To achieve uncondi-
tional correctness unconditionally binding commitments would have to been used.



P1

P2

P3

1234523134

6734252303

3422335718

Dummy Votes

P1

P2

P3

Voting Machine
Random

Number

Generator

7634875451

Vote Receipt
P1 1234523134

P2 7634875451

P3 3422335718

1. Vote

2. Generate random number

3. Print receipt

4. Compare receipt and

random number

Fig. 3. Voting phase

4. The voter has to verify that the number shown on the random number
generator is assigned to the party she intended to vote for. If this is
not the case, the voter has to protest immediately.

5. The voter leaves the booth and takes out the receipt. For any outsider
it is impossible to recognize the fresh random number and therefore
the vote this ballot implies.

3.5 Post-Voting Phase

The voting machines will send a tally, copies of the vote receipts, and the
remaining dummy vote/candidate pairs to the authority (or, if bandwidth
is a concern, only the receipts and the election authority calculates the
remaining data). The vote receipts should be mixed in the voting machine,
so that the position of the receipt does not allow to draw conclusions to
a specific voter, this limits the coercion abilities of the election authority.
Sorting the receipts, say, in lexicographic order would be one way to mix
the receipts. The election authority will publish the result consisting of
four sections:

– the final outcome of the poll;
– all receipts issued;



– a list of all unused dummy vote/candidate pairs with the respective
commitment and reveal information;

– non-interactive zero-knowledge proofs6 for the correctness, i.e., that
the dummy vote of every unopened commitment was indeed used on
one receipt.

Now every voter can easily verify that her receipt is included in the list
and therefore was counted for the tally. Every voter can verify that the
commitments with unused dummy votes are correctly revealed and the
number of remaining commitments is as expected. And finally the non-
interactive proof can be checked.

The non-interactive proof certainly needs more explanation. After all
unused commitments were revealed in the previous step, a list with the
unopened commitments Ci = commit(Ni, Pφ(i)) for i ∈ I with a set I
remains. If q out of n people voted, the set I is of size n`−q(`−1). It has
to be proven that every committed dummy vote Ni for i ∈ I appears on a
published receipt and every receipt contains `−1 dummy votes. However,
directly revealing the commitments would expose the votes.

Although the problem initially looks different to standard proofs in
e-voting protocols, the common approach to apply a shuffle and then re-
veal [11] can be used. At first new commitments C̃j = commit(Rj , Pvote(j))
on the fresh values Rj (the actual votes) and the voted party Pvote(j) on
each receipt j ∈ {1, . . . , q} are computed. This could be done by the vot-
ing authority or already in the voting machine and be part of the data
transmitted by the voting machine.

For every receipt j a list of commitments Cj
0 is assigned containing C̃j

and the dummy votes which were used for this receipt. It can easily be
verified that `− 1 dummy vote commitments and only one fresh commit-
ment is used. The union of these lists must contain all [Ci]i∈I and every
[C̃j ]j∈{1,...,q}, i.e., it contains commitments to all values that appear on
the receipts. Every list Cj

0 is now shuffled and revealed such that everyone
can check, that indeed all values on a receipt appear in one commitment
without being able to link the value to a primary commitment.

To prove the correctness of the shuffle we apply the method of ran-
domized partial checking [12] to every single list. Starting from the list
Cj

0, each commitment is transformed to a new “masked” commitment to

6 For efficiency reasons we will use “proofs” with 50% soundness in this paper as many
votes need to be manipulated to change the outcome of an election. To actually have
zero-knowledge proofs one would need several iterations.



the same value.7 Thereafter, the entries in the list are permuted to obtain
a new list Cj

1. This list is published and the same process is repeated to
obtain a list Cj

2. In an audit, for each entry in Cj
1 depending on a random

bit8 either the first or second transformation is revealed. E.g., for reveal-
ing the first transformation, the element of Cj

1 is linked to the element in
Cj

0 according to the permutation, and the correct masking of the commit-
ment is proven without revealing the content of the commitment. Finally,
the entries in list Cj

2 are not linkable to the commitments in Cj
0 but are

with very high probability commitments to the same values. The com-
mitments in Cj

2 are revealed to check that the committed values match
with the numbers on the voting receipts. An adversary cheating in this
proof will be detected with a probability of 50% per faked vote.

Our scheme scales rather well, after the creation of nl dummy commit-
ments in the pre-voting phase, additionally q commitments are created
for the real votes. During the proof, ql commitments have to be masked
two times to yield new commitments to the same value.

4 Attacks, Assumptions and Security

The main security goal is certainly to ensure correctness of the election re-
sult. This should be verifiable by the voters without sacrificing the secrecy
of the election. To enable verification, the voter gets a receipt, but this
cannot be used for vote buying or coercion. Depending on the commit-
ments, computational correctness and unconditional privacy (everlasting
security) or unconditional correctness and computational secrecy are pos-
sible.

Different assumptions are made to prevent the attacks described: For
correctness, our main assumption is a trusted random number generator
attached to the voting machine. One could even imagine to build such a
device mechanical, say, like a bingo cage, and read the random number
by sensors.

In order to provide coercion protection we must rely on the voting
machine and the voting authority. The voting machine must not be tam-

7 E.g., using Pedersen commitments [1] it is easy to generate such masked commit-
ments and to proof the equality.

8 The randomness and unpredictability for the voting authority is important for the
correctness property. It can be achieved by using a trusted random number generator
in public or by other means, some of them are discussed in [4]. The most practical
method probably would be using the Fiat-Shamir heuristic to handle the secure
hash of the whole transcript to that point as randomness, but solutions like using
physical sources or a coin flipping protocol are also possible.



pered with and must guarantee the secrecy of votes, likewise the voting
booth has to be secured, e.g., no hidden cameras must be able to surveil
the voting (this would already be a threat for classical elections). A se-
cure channel is needed for the transfer of the dummy votes and later
the results from the voting authority to the voting machine and back.
These assumptions may sound hard to achieve, but even with today’s
paper-based voting schemes the election authorities have to be trusted to
achieve coercion protection: Covertly marked ballots or similar may be
used to identify voters and bribe them.

honest voting authority hidden receipt coercion protection

+ + yes
+ − yes
− + yes
− − no

Fig. 4. Coercion protection in different situations.

In Figure 4 we give a short overview about the coercion protection
security property of our scheme in different situations. We distinguish
the assumption of an honest or corrupted voting authority. Additionally
we regard the situation, if the individual receipt of the voter is hidden
from the adversary (e.g., because the voter has destroyed the receipt)
in contrast to an adversary who knows which receipt belongs to which
voter. The voting machine is assumed to be uncorrupted, because with
full control over the voting machine an adversary may identify a voter and
record her behaviour. The correctness property of the election is omitted
in the table, because it is always fullfilled, even if the voting machine
would be corrupted (but the random number generator is always assumed
to be working properly).

4.1 Correctness

A vote is counted correctly, because the number on the ballot associated
with the candidate for which the user has voted is a freshly generated
random number. This is achieved by the trusted hardware number gener-
ator. The voter has to check if the number output on the random number
generator is associated to her candidate. No other votes can be counted
because the zero-knowledge proof guarantees `− 1 dummy votes on each



ballot and the probability that the fresh random number is a number
which was used for a dummy vote is negligible.

Fraud should not only be detected, but there should be evidence of the
fraud. Assume the voting machine will cast a vote for a candidate that
was not intended by the voter, however, pretends to behave correctly.
Our protocol makes this evident to the voter immediately in the polling
booth: the number that is shown on the RNG is not printed on the right
place. In this case the voter can immediately be given a possibility to
cancel the previous vote and revote (this will, however, need suitably
more commitments to be prepared in the pre-voting phase). To avoid
the situation that a receipt does not show up on the tally, one could
imagine trusted printers, which digitally sign their output or use special
unforgeable paper to allow the voter a prompt protest. Each voter can
check if her receipt appears on the list of ballots which is published after
the election. If a voter does not find her receipt, she is able to complain
and the special paper in the voting machine allows to prove that she
indeed has a valid receipt.

According to the definitions in [13] we achieve cast as intended by
comparing and checking the receipt and the output of the random number
generator by the voter, the vote is recorded as cast can easily be checked
through comparison with the public list of receipts, and the property
counted as recorded is achieved by the (public) proof at the end of the
election, so that universal verifiability is reached. Through the end-to-
end and direct verification of “cast as intended” and “recorded as cast”
we achieve ballot casting assurance (for a really direct and immediate
verification the public list of receipts has to be updated with new votes in
real time which would ease vote coercion attacks by the voting authority,
see the next section).

4.2 Coercion protection

The vote receipt cannot be used to prove anything about the contents
of a vote to a third party. The hiding property of the commitments in
the published dummy votes together with the information of the zero-
knowledge proof does not allow an adversary to distinguish the random
number of the trusted random number generator from the dummy votes
which were stored in the voting machine and published as a commitment.

Coercion protection against the voting authority can only be achieved
if the voting machine is uncorrupted and either the commitments of the
pre-voting phase were generated, deployed and later used for proving the
result in a secure way, e.g., via secure multi-party computations with



enough uncorrupted parties, or the voting authority cannot access the
receipt of the individual voters in order to match votes.

In case the election authority is corrupted (or corrupted parties some-
how gain access to the unveil information of the commitments to the
dummy votes) there is no way to prevent coercion, even if the voting
machines are working properly: One can be forced to bring the printed
receipt which, in the case described, reveals the party voted for. However,
another relevant attack can to a certain extend be prevented, even if the
adversary has access to the secret commitment information.

The voting machine mixes and thus anonymizes the votes, hence the
secrecy of a vote can be maintained as long as the attacker cannot obtain
the specific receipt of the voter. To protect voters from a coercion attack
after having voted, some non-government organisations (NGOs) could
collect paper receipts to check on the correctness of the vote and to help
voters, who fear coercion by a corrupted election authority, to get rid of
their receipts. If it is possible to anonymously dispose the paper receipt
the voter cannot be coerced afterwards and the correctness of the vote
will still be checked with a high probability unless many of the NGOs are
corrupted.

5 Implementation

We implemented a proof-of-concept implementation in Java [14]. Pedersen
commitments [1] were used as described for the underlying commitment
scheme, therefore everlasting security is achieved. Our straightforward
implementation in Java, which is not optimized for speed, needs about
0.6 seconds per potential voter (assuming a voter participation of 80%
and five candidates) for all three phases together on a standard 3 GHz
Pentium 4 CPU and a bit length of 1000 for the commitments. Most of
the time consuming work, generation of and calculations with the com-
mitments, can be separated to the pre-voting phase, where speed is not
a very important factor. Also the output size is acceptable, even includ-
ing some debugging information, repeating many things and writing the
commitments as ASCII encoded decimal numbers under 10 KBytes per
potential voter are used. This enables a voter to download the whole
information needed to check the proof of her electoral district.

6 Outlook

Further research is also required to enhance the usability and reduce the
administrative requirements of voting schemes. Possibly, a combination



of existing schemes, like the scheme of Moran and Naor [4] and our Bingo
Voting, would be an improvement in this respect.

The combined scheme would have an user interface similar to our
Bingo Voting scheme. The voter’s only input is the choice of a candidate.
After the voter has chosen her candidate, a random number is generated
by a trusted random number generator and transferred to the voting ma-
chine. The machine prints a receipt containing the name of each candidate
with an associated random number generated by the voting machine it-
self for the not elected candidates and the number of the random number
generator for the elected candidate. The voter has to check if the num-
ber of her candidate corresponds to the output of the random number
generator. Additionally to Bingo Voting, the voting machine commits to
proof information before the generation of the trusted random number
by printing it on the receipt and the voter has to check that it is done
before the random number generator is started. This information is used
to generate proofs of the election result as in [4].

This new scheme avoids the babbel attack and requires only a slightly
weaker assumption as in [4] because the commitment does not have to
be hidden from the voter. Still, it must be assumed, that the voting ma-
chine cannot exchange the commitment after receiving the trusted ran-
dom number. Compared to Bingo Voting, this assumption avoids the
administrative effort for generating and storing of the dummy votes.

7 Conclusions

We have shown, that many voting protocols where the user needs to
make decisions beyond choosing one candidate are susceptible to coer-
cion attacks. We could reveal new coercion attacks to recently proposed
voting protocols. To avoid those attacks, we introduce the assumption of
a trusted random number generator inside the polling booth. We have
presented a protocol basing on a random number generator, that makes
it easy for the voter to vote and check correctness of the vote and have
demonstrated that implementing our scheme is practical.

An open problem remaining is to find a suitable and realistic model
for the treatment of voting protocols. Attacks like the babble attack are
not covered by any security model known to us, even enhancements of
very strong simulation based models to handle coercion ignore such a
threat.



References

1. Pedersen, T.P.: Non-interactive and Information-Theoretic Secure Verifiable Se-
cret Sharing. In Feigenbaum, J., ed.: Advances in Cryptology – CRYPTO ’91:
Proceedings. Volume 576 of Lecture Notes in Computer Science., Springer (1991)
129–140

2. Neff, C.A.: Practical high certainty intent verification for encrypted votes. Draft
at http://www.votehere.net/vhti/documentation/vsv-2.0.3638.pdf (2004)

3. Reynolds, D.J.: A method for electronic voting with Coercion-free re-
ceipt. FEE 2005 (2005) Presentation: http://www.win.tue.nl/~berry/fee2005/
presentations/reynolds.ppt.

4. Moran, T., Naor, M.: Receipt-Free Universally-Verifiable Voting With Everlasting
Privacy. In Dwork, C., ed.: Advances in Cryptology – CRYPTO 2006. Volume
4117 of Lecture Notes in Computer Science., Springer (2006) 373–392

5. Chaum, D.: Punchscan (2006) http://punchscan.org/.
6. Rivest, R.L.: The ThreeBallot Voting System (2006) Draft online

available at time of writing http://theory.lcs.mit.edu/~rivest/

Rivest-TheThreeBallotVotingSystem.pdf.
7. Popoveniuc, S., Hosp, B.: An Introduction to Punchscan. IAVoSS Workshop

On Trustworthy Elections, WOTE 2006 (2006) http://punchscan.org/papers/

popoveniuc_hosp_punchscan_introduction.pdf.
8. Chaum, D., Ryan, P.Y., Schneider, S.: A Practical Voter-Verifiable Election

Scheme. In De Capitani di Vimercati, S., Syverson, P., Gollmann, D., eds.: Com-
puter Security – ESORICS 2005. Volume 3679 of Lecture Notes in Computer Sci-
ence., Springer (2005) 118–139

9. Adida, B., Rivest, R.L.: Scratch & Vote: Self-Contained Paper-Based Crypto-
graphic Voting. In: WPES ’06: Proceedings of the 5th ACM workshop on Privacy
in electronic society, ACM Press (2006) 29–40

10. Benaloh, J.: Simple Verifiable Elections. In: EVT ’06, Proceedings of the First
Usenix/ACCURATE Electronic Voting Technology Workshop, August 1st 2006,
Vancouver, BC, Canada. (2006) http://www.usenix.org/events/evt06/tech/

full_papers/benaloh/benaloh.pdf.
11. Chaum, D.: Untraceable Electronic Mail, Return Addresses, and Digital

Pseudonyms. Communications of the ACM 24 (1981) 84–88
12. Jakobsson, M., Juels, A., Rivest, R.L.: Making Mix Nets Robust For Electronic

Voting By Randomized Partial Checking. In: USENIX Security Symposium. (2002)
339–353

13. Adida, B., Neff, C.A.: Ballot Casting Assurance. In: EVT ’06, Proceedings of the
First Usenix/ACCURATE Electronic Voting Technology Workshop, August 1st
2006, Vancouver, BC, Canada. (2006) http://www.usenix.org/events/evt06/

tech/full_papers/adida/adida.pdf.
14. Sun Microsystems: Java Platform, Standard Edition (2006) http://java.sun.

com/.


