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Abstract. We introduce a variant of the random oracle model where oracle-dependent auxiliary input
is allowed. In this setting, the adversary gets an auxiliary input that can contain information about the
random oracle. Using simple examples we show that this model should be preferred over the classical
variant where the auxiliary input is independent of the random oracle.
In the presence of oracle-dependent auxiliary input, the most important proof technique in the random
oracle model—lazy sampling—does not apply directly. We present a theorem and a variant of the lazy
sampling technique that allows one to perform proofs in the new model almost as easily as in the old
one.
As an application of our approach and to illustrate how existing proofs can be adapted, we prove that
RSA-OAEP is IND-CCA2 secure in the random oracle model with oracle-dependent auxiliary input.
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1 Introduction

In [BR93] the following heuristic was advocated as a practical way to design cryptographic protocols:1 To
prove the security of a cryptographic scheme, one first introduces a random oracle O, i.e., a randomly
chosen function to which all parties including the adversary have access. One then proves the security of
the scheme that uses the random oracle and subsequently replaces the random oracle by a suitably chosen
function (or family of functions) H . The random oracle heuristic now states that if the scheme using O is
secure, the scheme using H is secure as well.

Unfortunately, a counter-example to this heuristic has been given in [CGH98]. It was shown that there
exist public key encryption and signature schemes that are secure in the random oracle model but lose
their security when instantiated with any function or family of functions. Nonetheless, the random oracle
heuristic still is an important design guideline for implementing cryptographic schemes.

Furthermore, [Pas03] pointed out that zero-knowledge proofs in the random oracle model can lose
their deniability when instantiated with a fixed function. In contrast to the result of [CGH98], this happens
even for natural protocols. However, [Pas03] was able to give conditions under which this effect does not
occur and gave a protocol that fulfilled these conditions.

Although the heuristic is known not to be sound in general, no practical scheme is known where it
fails, and schemes that are proven to be secure using this heuristic tend to be simpler and more efficient
than schemes that are shown to be secure in the standard model. As a consequence, schemes used in
practise are often based on the random oracle heuristic, e.g., the RSA-OAEP encryption scheme, introduced
in [BR95] and standardised in [PKC02], is one of the most widely used public-key encryption schemes,
and its security is based on the random oracle heuristic.

In the light of the results of [CGH98] and [Pas03], and of the practical importance of the random
oracle heuristic, it is important to try and learn what the exact limitations of the heuristic are, and, if
possible, give criteria to distinguish those protocols in the random oracle model that become insecure when
instantiated due to those limitations, and those protocols where we can at least hope—if not prove—that
their instantiations are secure. The augmented definition of zero-knowledge by [Pas03] is an example of
such a criterion.

In this paper, we uncover another such limitation of the random oracle world. We will see that there
are natural schemes secure in the random oracle model that become insecure with respect to auxiliary
input (or equivalently, with respect to nonuniform adversaries) when instantiated. As [Pas03] did for the
deniability, we give augmented definitions for the random oracle model with auxiliary input that allow
one to distinguish protocols that fail upon instantiation from those that do not (at least not due to the
abovementioned limitation).

Although such a result does not imply the soundness of the random oracle model, it helps to better
understand which protocol can reasonably be expected to be secure when instantiated with a fixed function.

We will now investigate the problem of auxiliary input in the random oracle model in more detail.
An important concept in cryptology is the auxiliary input. The auxiliary input is a string that is given to
the adversary at the beginning of the execution of some cryptographic protocol. This string is usually
chosen nonuniformly and depends on all protocol inputs. In other words, the auxiliary input models the
possibility that the adversary has some additional knowledge concerning the situation at the beginning
of the protocol. This additional knowledge may, e.g., represent information acquired in prior protocol
runs. It turns out that in many cases the presence of an auxiliary input is an essential concept for proving
secure sequential composition. Therefore, most modern cryptographic schemes are designed to be secure
even in the presence of an auxiliary input (given that the underlying complexity assumptions hold against
nonuniform adversaries).

However, when we try to combine these two concepts, the random oracle model and the auxiliary
input, undesirable effects may occur. We will demonstrate this by studying the definitions of two simple

1 However, the basic idea seems to have already appeared earlier.
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security notions: one-wayness and collision-resistance. First, consider the notion of a one-way function. A
function f is one-way (with respect to auxiliary input) if for any polynomial-time adversary A and any
auxiliary input z (more exactly, any sequence zk of strings of polynomial-length), the following probability
is negligible:

P
(
x

$← {0, 1}k, x′ ← A(1k, z, f(x)) : f(x′) = f(x)
)

In other words, let x be a random element, give f(x) to the adversary A, and then the probability shall
be negligible in the security parameter k that the adversary outputs some preimage x′ of f(x). When we
use the random oracle model, a random oracle O is additionally introduced, and the function f is allowed
to use the random oracle. E.g., if we set f := O, one-wayness of f means that for any polynomial-time
adversary A and any auxiliary input z, the following probability is negligible:

P
(
x

$← {0, 1}k, x′ ← AO(1k, z,O(x)) : O(x′) = O(x)
)
. (1)

Here O is a randomly chosen function (with some given domain and range), and the adversary is given
black-box access toO. It is now easy to see that f := O is indeed secure in the above sense: The adversary
can make at most a polynomial number of queries, and each query except O(x) returns a uniformly
random image (exploiting this latter fact is later called the lazy sampling technique). From this fact one
can conclude that the adversary must make an exponential number of queries to find a preimage of O(x),
hence f is secure. The presence of the auxiliary input does not have noticeable impact on the proof. The
random oracle heuristic now claims that f := H is oneway for a sufficiently unstructured function H ,
even in the presence of auxiliary input. So far, nothing out of the ordinary has happened.

We now try to use the same approach for another security property: collision-resistance. Again, we
set f := O, and then collision-resistance of f means that for any polynomial-time adversary A and any
auxiliary input z, the following probability is negligible:

P
(
(x1, x2)← AO(1k, z) : x1 6= x2 and O(x′) = O(x)

)
. (2)

This can again easily be proven using the lazy sampling technique: the answers to the adversary’s queries
are independent random values, and finding a collision requires two of these random values to be identical
which happens only with negligible probability. Again, the auxiliary input does not help the adversary,
since it does not contain any information on where a collision might be. We now use the random oracle
heuristic, replace O by some sufficiently unstructured function H , so that f = H , and then claim that f is
collision-resistant in the presence of an auxiliary input. But this of course is impossible, since the auxiliary
input may simply contain a collision of H , since H is a fixed function.2

Hence, the random oracle heuristic should not be applied to collision-resistance. On the other hand, we
would like to prove the one-wayness of f := O in the random oracle model. We hence need a stronger
variant of the random oracle heuristic that does not allow one to prove the collision-resistance of f , but
still allows one to prove its one-wayness. An inspection of our proof above reveals the mistake we made:
In the random oracle model, the auxiliary input was chosen before the random oracle, so it could not
contain a collision. After instantiation, the function H was fixed, so the auxiliary input did depend on H
and therefore could provide a collision. The random oracle heuristic should hence be recast as follows in
the case of auxiliary input: When a scheme is secure in the random oracle model with oracle-dependent
auxiliary input, it is still secure after replacing the random oracle by a sufficiently unstructured fixed
function H , even in the presence of auxiliary input.

2 If we replace O by a family of functions, i.e., some parameter i is chosen at the beginning of the protocol, and then
a funcion Hi is used, then the problem described here does not occur. Unfortunately, one is not always free to use
such a family of functions. On one hand, the index has in some way to be chosen, and we do not want to leave that
choice to the corrupted parties. On the other hand, practical applications usually instantiate the random oracle using
a fixed function like SHA-1 or SHA-256 [SHS02].
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It remains to clarify the formal meaning of oracle-dependent auxiliary input. Unfortunately, we cannot
simply say: “for randomly chosen O and every z”. At least, the semantics underlying constructions like (1)
and (2) get highly nontrivial in this case. Fortunately, there is another possibility. By an oracle function z
we mean a function that returns a string zO for each possible value of the random oracle O. So formally, z
is simply a function that maps functions to strings. Then a scheme is called secure in the random oracle
model with oracle-dependent auxiliary input if for any polynomial-time adversary A and for any oracle
function z into strings of polynomial length (that may depend on k, of course), the adversary cannot break
the scheme even when given zO as auxiliary input.

As with the traditional random oracle model, the exact form these definitions take depends on the
security notion under consideration. For example, the one-wayness and the collision-resistance of f := O
take the following form: for any polynomial-time adversary A and any oracle function z into strings of
polynomial-length, we have

P
(
x

$← {0, 1}k, x′ ← AO(1k, zO,O(x)) : O(x′) = O(x)
)

(3)

or
P
(
(x1, x2)← AO(1k, zO) : x1 6= x2 and O(x′) = O(x)

)
, (4)

respectively. However, we can give a simple guideline on how to transform a security definition in the
random oracle model with an oracle-independent auxiliary input z into a security definition with oracle-
dependent auxiliary input. First, one quantifies over oracle functions z instead of strings z. And then one
replaces all occurrences of the string z by zO.

It is now easy to see that (4) is not negligible: let zO encode a collision x1, x2, and let the adversary
output that collision. Since such a collision always exists (assuming a length-reducing f ), this breaks the
collision-resistance of f in the presence of oracle-dependent auxiliary input, as we would have expected.

On the other hand, we expect (3) to be negligible in the presence of oracle-dependent auxiliary input.
However, it is not so easy to see whether there may not be some possibility to encode information about
the random oracle in a string of polynomial length that allows one to find a preimage with non-negligible
probability. Although one-wayness is one of the weakest conceivable security notions, proving its security
with respect to oracle-dependent auxiliary input is quite difficult. (We encourage the reader to try and find
an elementary proof for the one-wayness of f .3) The reason for this difficulty lies in the fact that it is not
possible any more to apply the lazy sampling technique: given some information zO on the random oracle
O, the images under the random oracle are not independently nor uniformly distributed any more. We
therefore need new techniques if we want to be able to cope with oracle-dependent auxiliary input and to
prove more complex cryptographic schemes secure in this model. Such techniques will be presented in
this paper.

On nonuniform and uniform auxiliary input. In this work, we always consider nonuniform auxiliary
inputs, that is, the auxiliary input is not required to be the result of an efficient computation. This is the
most common modelling of auxiliary input in the cryptographic community. However, it is also possible
to consider uniform auxiliary inputs: In this case, the auxiliary input is not an arbitrary sequence of
strings, but is instead the output of a uniform probabilistic algorithm. The main motivation of the auxiliary
input, namely to model information gained from prior executions of cryptographic protocols on the same
data, and thus to allow for composability, is preserved by this uniform approach. (See [Gol93] for a
detailed analysis.) The main disadvantage of the uniform approach is that definitions and proofs get more
complicated due to the presence of another machine. This is why the nonuniform auxiliary input is more
commonly used.

Applying the uniform approach to our setting, a uniform oracle-dependent auxiliary input would be the
output of a polynomial-time oracle Turing machine Z with access to the random oracle. Since that Turing

3 We give a proof using the techniques from this paper in Lemma 10.
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machine could only make a polynomial number of queries, using the lazy sampling technique would be
easy: all positions of the random oracle that have not been queried by Z can be considered random.

However, if we use the random oracle heuristic to motivate the security of a protocol with respect to
uniform auxiliary input, the result is incompatible with existing theorems and definitions in the nonuniform
auxiliary input model. So to use the random oracle heuristic together with existing results, we either have to
reprove all existing results for the uniform case, or we have to use nonuniform oracle-dependent auxiliary
input. It is the latter approach we follow in this work.

Instantiating the random oracle with keyed families of functions. Above, we showed that the random
oracle is (unsurprisingly) not collision-resistant in the presence of auxiliary input. It follows that we may
not instantiate the random oracle with a fixed function if we need collision-resistance. On the other hand,
replacing the random-oracle by a keyed family of functions may be secure, since the auxiliary input cannot
encode a collision for each function. We do not claim that it is necessary to use oracle-dependent auxiliary
input when instantiating with families of functions. Rather, oracle-dependent auxiliary input provides a
tool for distinguishing the cases where the use of a single function4 is sufficient (e.g., in the case where we
require only one-wayness) and where a keyed family of functions is necessary (e.g., in the case that we
require collision-resistance). Since instantiating with a single function is much simpler (e.g., we do not
have to worry about who chooses the key), and is the usual practice in real-world protocols, examining
random oracle based protocols with respect to oracle-dependent auxiliary input may give additional insight
into when instantiation with single functions is permitted and when we have to use keyed families. Another
disadvantage of using a family of functions is that we have to ensure that the key is honestly generated,
which may introduce additional difficulties if no trusted party is available for this task.

Designing special protocols. An alternative to the approach in this paper would be to systematically
construct or transform a protocol so that it is secure with respect to oracle-dependent auxiliary input
(instead of verifying a given protocol). However, here the same arguments as in the previous paragraph
apply. First, we might not be interested in a new protocol, but might want to examine the security of an
existing protocol (that possibly even has already been implemented). Further, efficiency considerations
might prevent the use of more elaborate constructions.

1.1 Our results

We introduce and motivate the random oracle model with oracle-dependent auxiliary input (preceding
section). In this model, the auxiliary input given to the adversary may depend on the random oracle.

In order to be able to prove security in the new model, we introduce a new variant of the lazy sampling
technique that is applicable even in the presence of oracle-dependent auxiliary input. We show that one
can replace the random-oracle O by a new random oracle P that is independent of the auxiliary input,
except for a presampling. That is, a small fraction of the total random oracle P is fixed (and dependent on
the auxiliary input), while all other images are chosen independently and uniformly at random (and in
particular are independent of the auxiliary input). In this new setting, lazy sampling is possible again: an
oracle query that is not in the presampled set is given a random answer.

This also gives some insight into why some schemes are secure and some fail in the presence of
oracle-dependent auxiliary input: Intuitively the protocols that fail are those for which you can have a
“reason for a failure” (e.g., a collision) contained in a few entries of the random oracle.

As a technical tool, we also formulate a security amplification technique: for many security notions, se-
curity with respect to nonuniform polynomial-time adversaries implies security with respect to nonuniform
adversaries whose running time is bounded by some suitable superpolynomial function f . This technique

4 Here, by a single function we mean that the function is not parametrised by a key that has to be known by all parties.
However, the function may depend on the security parameter. Otherwise a property like collision-resistance trivially
cannot be fulfilled by a single function, even against uniform adversaries. See also [Rog06] in this context.
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is useful in the context of oracle-dependent auxiliary input, since some reduction proofs with presampling
tend to introduce superpolynomial adversaries.

As an application of our techniques, we show that RSA-OAEP is IND-CCA2 secure in the random oracle
model with oracle-dependent auxiliary input. Our proof closely follows the proof of [FOPS04] where the
security of RSA-OAEP was shown in the classical random oracle model. This allows the reader to better
compare the differences in the proof introduced by the oracle-dependent auxiliary input. However, we
believe that the result does not only exemplify our techniques but is worthwhile in its own light: it gives
the first evidence that RSA-OAEP as used in practical application (i.e., with the random oracle instantiated
with a fixed function H), is secure even in the presence of an auxiliary input.

1.2 Related work

In [Wee06], the problem of composition of zero-knowledge proofs in the random-oracle model is investi-
gated. It is shown that to guarantee sequential composition, oracle-dependent auxiliary input is necessary.
Their definition of oracle-dependent auxiliary input is somewhat weaker than ours in that the machine z
generating the auxiliary input is allowed only a polynomial number of queries to the random oracle (it is
similar to uniform oracle-dependent auxiliary input in that respect). They give protocols that are secure
with respect to that notion. It would be interesting to know whether the techniques developed here allow to
show their protocols to be secure even with respect to our stronger notion of oracle-dependent auxiliary
input.

In [GGKT05], it was shown that a random permutation is one-way with respect to oracle-dependent
auxiliary input. They showed that the advantage of the adversary is in 2−Ω(k) which is essentially the same
bound as we achieve for random functions in Section 3. However, their proof is specific to the property of
one-wayness and does not generalise to our setting. According to [GGKT05], a similar result was shown
for random functions in [Imp96]. However, their proofs apply only to the one-wayness of the random
oracle, while our results imply that many more cryptographic properties of the random oracle are preserved
in the presence of oracle-dependent auxiliary input.

In [Mau92, CM97, CCM02, DM02], unconditional security proofs in the bounded-storage model were
investigated. In this model, one assumes that the adversary is computationally unlimited, but that it may
only store a limited amount of data. One assumes that at the beginning of the protocol some large source
of randomness (e.g., a random oracle) is available to all parties. The security of the protocol then roughly
hinges on the following idea: The honest parties store some (small) random part of the source. Since the
adversary does not know which part has been chosen, and since it may not store the whole source, with
high probability the honest parties will find some part of the random source they both have information
about, but that is unknown to the adversary. To prove the security in this model, it is crucial to show
that the adversary cannot compress the source in a manner that contains enough information to break
the protocol. This is very similar to the scenario investigated here, since the oracle-dependent auxiliary
input can be seen as compressed information on the random oracle. Our results differ from those in the
bounded-storage model in two ways: first, our results cover a more general case, since we consider the
effect of auxiliary input on arbitrary protocols, while in the bounded-storage model a single protocol is
analysed that is specially designed to extract information from the random source that cannot be extracted
given only a part of the source. On the other hand, precisely due to the specialised nature of the protocols,
the bounds achieved in the bounded-storage model are better than those presented here. In particular, there
are protocols in the bounded storage model that are secure given a random source of polynomial size
[DM02], while our results are—at least with the present bounds—only useful if the domain of the random
oracle has superpolynomial size (cf. the exact bounds given by Theorem 2). It would be interesting to
know whether our techniques can be used in the context of the bounded-storage model, and to what extent
the techniques developed in the bounded-storage model can be applied to improve our bounds.
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1.3 Further applications

Besides the application described above, namely to be able to use the random-oracle heuristic in the case
of auxiliary input, our main result (the lazy sampling technique) may also be useful in other situations.

In [GGKT05] it was shown that a random permutation is one-way in the presence of oracle-dependent
auxiliary input. This was the main ingredient for several lower bounds on black-box constructions using
one-way permutations. Using our techniques, we might find lower bounds on black-box constructions
based on other cryptographic primitives: namely, we would show that the random oracle (or a protocol
using the random oracle) has a given security property X even in the presence of oracle-dependent
auxiliary input. Then using techniques from [GGKT05], lower bounds on black-box constructions based
on cryptographic primitives fulfilling X might be derived.

1.4 Organisation

In Section 1 we introduce and motivate the concept of oracle-dependent auxiliary input. In Section 2 we
present the main result of this paper: a theorem that allows one to use the lazy sampling technique even
in the presence of oracle-dependent auxiliary input. In Section 3 we give a simple example to show how
to use the lazy sampling technique. In Section 4 we present the security amplification technique. This
technique allows one to use superpolynomial adversaries in reduction proofs, which sometimes is needed
when using the lazy sampling technique. In Section 5 we prove that RSA-OAEP is IND-CCA2 secure in the
random oracle model with oracle-dependent auxiliary input.

1.5 Notation

For random variables A and B, we denote the Shannon-entropy of A by H(A), and the conditional entropy
of A given B by H(A|B). The statistical distance between A and B is denoted ∆(A;B). The operator
log means the logarithm base 2. The variable k always denotes the security parameter. In asymptotic
statements of theorems or definitions, some variables implicitly depend on the security parameter k. These
variables are then listed at the end of the theorem/definition. We call a nonnegative function in k negligible,
if it lies in k−ω(1). We call a nonnegative function non-negligible if it is not negligible.

Let O always denote the random oracle. Let Domain be the domain and Range the range of the
random oracle, i.e., O is a uniformly random function from Domain → Range . In an asymptotic setting,
O, Domain and Range implicitly depend on the security parameter k. In this case we always assume
#Domain and #Range to grow at least exponentially in k.

An oracle function g into X is a mapping from Domain → Range into X . We write the image of
some function O under g as gO.

An assignment S is a list S = (x1 → y1, . . . , xn → yn) with xi ∈ Domain and yi ∈ Range and with
xi 6= xj for i 6= j. The length of S is n. We call yi the image of xi under S. We write x ∈ S if xi = x for
some i. The image imS is defined as imS = {y1, . . . , yn}.

2 Lazy sampling with auxiliary input

The main result of this paper is the following theorem which guarantees that we can replace a random
oracle with oracle-dependent auxiliary input by a new random oracle that is independent of the auxiliary
input with the exception of some fraction of its domain (which is presampled). In order to formulate the
theorem, we first need to state what exactly we mean by an oracle with presampling:

Definition 1 (Random oracle with presampling). Let S = (x1 → y1, . . . , xn → yn) be an assignment.
Then the random oracle P with presampling S is defined as follows:

7



When queried x ∈ Domain with x = xi for some i ∈ {1, . . . , n}, the oracle returns yi. If x has
already been queried, the same answer is given again. Otherwise, a uniformly random element y is chosen
from Range and returned.

We can now state the main theorem.

Theorem 2 (Lazy sampling with auxiliary input). Let f ≥ 1 and q ≥ 0 be integers. Let z be an oracle
function with finite range Z and p := log #Z.

Then there is an oracle function S, such that SO is an assignment of length at most f , so that the
following holds: For any probabilistic oracle Turing machine A that makes at most q queries to the random
oracle, it is

∆
(
AO(zO); AP(zO)

)
≤
√
pq

2f

where P is the random oracle with presampling SO.

Before presenting the actual proof, we give a short sketch that is intended to serve as a guide through
the rest of the proof. To ease comparison with the details given later, we provide forward references to the
lemmas of the actual proof.

For any i, let Ji be the maximum amount of information that a sequence of i queries to the random
oracle O gives about the auxiliary input zO. Since |z| = p, Ji ≤ p for all i. Let Fi be the sequence of i
queries that achieves this bound, that is, the mutual information between zO and the oracle’s answers to Fi
is Ji.

Assume that the queries Fi have already been performed. Let G be a sequence of q queries. Then
the answers to the queries Fi and G together contain at most Jq+i bits of information about z. Thus the
answers to G contain at most Jq+i − Ji bits of information about z beyond what is already known from
the answers to Fi.

Consider the quantities J0, Jq, J2q, . . . , Jf+q (assuming that q divides f ). Since J0 ≥ 0 and Jf+q ≤ p,
there must be some f ′ ≤ f such that the Jf ′+q − Jf ′ ≤ pq

f . Thus, given the answers to F := Ff ′ , any
sequence G of q queries reveals at most pqf bits about the auxiliary input z. In other words, the answers
to G are almost independent of z (assuming that pqf is sufficiently small). Thus, if we fix the oracle P
to match the answers to F , but choose P independently of z everywhere else, with q queries we cannot
distinguish between P and the original oracle O. This gives Theorem 2 (except for the concrete bound√
pq/2f ).

In reality, however, the queries performed by A are adaptive, i.e., they depend on z and on the answer
to prior queries. So we cannot talk about a fixed sequence G of queries made by A. To overcome this
problem, we introduce the concept of an adaptive list (Definitions 3 and 4), which is a generalisation of
a sequence of queries where the queries are allowed to be adaptive. When considering adaptive lists, it
does not make immediate sense to speak about the mutual information between the answers to an adaptive
list G and the auxiliary input zO. In Definition 5 we therefore introduce quantities J(G) and J(G|F )
denoting the information that the answers to the adaptive list G contains about zO (given the answers
to the adaptive list F in the case of J(G|F )). For this quantity, we show that J(F ) ≤ p (Lemma 7) and
give a chain rule for the information contained in the concatenation of adaptive lists (Lemma 6). Then we
can construct the sequence F as in the proof sketch above (Lemma 8). However, F is now an adaptive
list. Finally, Theorem 2 is proven (page 10) by showing that the adversary A can be considered as an
adaptive list G of length q, and therefore cannot distinguish the answers to queries outside F from uniform
randomness. For convenience, in Corollary 9 we formulate an asymptotic version of Theorem 2.

We now give the details of the proof, broken down to several lemmas. First we have to define the
concept of an adaptive list. To capture the possibility of adaptive queries, an adaptive list is formally just
a deterministic oracle Turing machine. An adaptive list of length n makes n queries to the oracle and
outputs an assignment containing the queries and the results of these queries. To be able to talk about the

8



concatenation of adaptive lists, we slightly extend this idea. An adaptive list takes an auxiliary input z, but
also an assignment X . This assignment can be thought of as the queries made by an adaptive list executed
earlier. So in a concatenation of two adaptive lists, the queries of the second adaptive list can depend on
the results of the queries made by the first adaptive list. For definitional convenience, an adaptive list does
not only output its queries, but also the queries received as input. An adaptive list expecting a queries
as input and then making b− a queries, we call an a→ b adaptive list. We require that an adaptive list
never repeats a query. Note that an adaptive list is indeed a generalisation of a non-adaptive sequence of
queries: a sequence (x1, . . . , xn) corresponds to the 0→ n adaptive list querying the positions x1 to xn
and returning the results.

Definition 3 (Adaptive list). Let #Domain ≥ b ≥ a ≥ 0. An a → b adaptive list M is defined as a
deterministic oracle Turing machine that takes an assignment X = (x1 → y1, . . . , xa → ya) and a string
z ∈ Σ∗ as input and satisfies the following properties

– M = M(X, z) does not query the oracle at positions x1, . . . , xa.
– M never queries the oracle twice at the same position.
– M queries the oracle exactly b− a times.
– Let x′1, . . . , x

′
b−a be the positions of the oracle calls made by M (in that order). Let y′i := O(x′i) be

the corresponding oracle answers.
– Then M outputs the assignment (x1 → y1, . . . , xa → ya, x

′
1 → y′1, . . . , x

′
b−a → y′b−a).

We can now define simple operations on adaptive lists. The length of an adaptive list is the number of
queries it makes, and the composition of two adaptive lists is the adaptive list that first queries the first list,
and then executes the second, which gets the queries made by the first as input.

Definition 4 (Operations on adaptive lists). Let M be an a → b adaptive list. Then the length |M | is
defined as |M | := b− a.

Let N be an a→ b adaptive list, and M some b→ c adaptive list. Then the composition M ◦N is
defined as the oracle Turing machine that upon input of an assignment X and a string z ∈ Σ∗ outputs
MO(NO(X, z), z).

Obviously, M ◦N is an a→ c adaptive list, and |M ◦N | = |M |+ |N |.
We can now define the quantity J(M |N) for adaptive lists M,N . Intuitively, J(M |N) denotes the

information that the queries made by M (when executed after N ) contain about the auxiliary input zO

beyond what is already known from the queries made by N . Since the results to the queries made by M
should be uniformly random if they are independent of zO, we define J(M |N) as the quantity by which
the conditional entropy of M ’s queries given N ’s queries and zO is lower than the hypothetical value of
|M | · log #Range .

Definition 5 (Information of an adaptive list). Let N be some 0→ b adaptive list, and M some b→ c
adaptive list. Let further O be the random oracle and z a random variable (where z does not need to be
independent of O).

Then the information J(M |N) is defined by

J(M |N) := |M | · log #Range −H(M ◦NO(z)|NO(z), z).

(Note that J(M |N) implicitly depends on the joint distribution of O and z.)
We write short J(M) for J(M |∅) where ∅ is the adaptive list making no queries.

We now give two simple properties of the information J(M |N): a chain rule and an upper bound in
terms of the auxiliary input’s length.
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Lemma 6 (Chain rule for the information). Let N be some 0 → b adaptive list, M2 some b → c
adaptive list, and M1 some c→ d adaptive list. Then

J(M1 ◦M2|N) ≥ J(M1|M2 ◦N) + J(M2|N).

Lemma 7 (Bounds for the information). Let z be a random variable with finite range Z and p :=
log #Z. Let F be some 0→ b adaptive list. Then J(F ) ≤ p.

The proofs of these lemmas as well as of the subsequent ones are given in Appendices B–D.
Let Ji := maxF J(F ) where F ranges over all adaptive lists of length |F | = i. Choose Fi such that

J(Fi) = Ji. Consider the quantities J0, Jq, J2q, . . . , Jf+q (assuming that q divides f ). Since J0 ≥ 0 and
Jf+q ≤ p by Lemma 7, there must be some f ′ ≤ f such that Jf ′+q − Jf ′ ≤ pq

f =: ε. Defining F := Ff ′

we get J(G|F ) ≤ J(G ◦ Ff ′)− J(Ff ′) ≤ Jq+f ′ − Jf ′ ≤ ε by Lemma 6.
By definition of J(G|F ), this implies that the results of the queries made byG are only ε away from the

maximum possible entropy |G| · log #Range . This implies using a result from [Kul67] that the statistical
distance between those query-results and the uniform distribution is bounded by

√
ε/2, even when given

the results of the queries made by F and the auxiliary input zO. This is formally captured by the following
lemma which is the core of the proof of Theorem 2.

Lemma 8 (The adaptive list F ). Let f, q ≥ 1 be integers. Let z be a random variable with finite range
Z (z may depend on the random oracle O) and p := log #Z. Let Un denote the uniform distributions on
n-tupels over #Range (independent of z and O).

Then there is an adaptive list F with |F | ≤ f , such that for any |F | → min{|F | + q,#Domain}
adaptive list G, it is

∆
(
∇G ◦ FO(z), FO(z), z; U|G|, FO(z), z

)
≤
√
pq

2f
.

Here∇G◦F denotes the oracle Turing machine that behaves as G◦F but only outputs the oracle answers
that G got (instead of also outputting G’s input and G’s queries). More formally, if G ◦ FO(z) = (x1 →
y1, . . . , x|F |+|G| → y|F |+|G|), we have∇G ◦ FO(z) = (y|F |+1, . . . , y|F |+|G|).

Using Lemma 8, proving the main Theorem 2 is easy. For some adversary A let µ := ∆
(
AO(zO);

AP(zO)
)
. By fixing the worst-case random-tape, we can make the adversary A deterministic. Then A’s

output depends only on its input zO and the answers to its oracle queries. So if we let A just output the
queries it made, the statistical distance µ does not diminish. Further, if we give the presampled queries
SO as an additional input to A, we can assume A to make exactly q distinct queries, and not to query any
x ∈ SO. But then A fulfils the definition of an adaptive list, so by Lemma 8 we have µ ≤

√
pq
2f , which

proves Theorem 2.
We give the full details of the proof in Appendix E.
An interesting question is whether the bound

√
pq/2f on the statistical distance ∆ achieved by

Theorem 2 is tight. In particular, the bound falls only sublinearly with f , while we were unable to find a
counterexample where ∆ did not fall exponentially with f . So a tighter bound may be possible. However,
this would need to use new proof techniques, since the approach in this paper uses an averaging argument
that will at best give a bound that falls polynomially in f (cf. the computation of Jf ′+q − Jf ′ below
Lemma 7 above.)

Finally, for convenience we state an asymptotic version of Theorem 2 that hides the exact bounds
achieved there:

Corollary 9 (Lazy sampling with auxiliary input, asymptotic version). For any superpolynomial func-
tion f and any polynomial q and oracle function z into strings of polynomial length, there is an oracle
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function S, such that SO is an assignment of length at most f , so that for any probabilistic oracle Turing
machine A making at most q queries, the following random variables are statistically indistinguishable:

AO(1k, zO) and AP(1k, zO).

Here P is the random oracle with presampling SO.
(In this corollary, O, z, and S depend implicitly on the security parameter k.)

Proof. Immediate from Theorem 2. ut

3 Example: one-wayness of the random oracle

To give a first impression on how the lazy sampling technique is used in the random oracle model with
oracle-dependent auxiliary input, we show a very simple result: If we let f := O, then f is a one-way
function.

In Appendix F, as a second example we show that f := O is given-preimage collision-resistant.

Lemma 10 (The random oracle is one-way). Let g := O where O denotes the random oracle. Then g
is a one-way function in the random oracle model with oracle-dependent auxiliary input.

More formally, for any probabilistic polynomial-time oracle Turing machine A and any oracle func-
tion z into strings of polynomial length, the following probability is negligible (in k):

AdvA := P
(
x

$← Domain, x′ ← AO(1k, zO,O(x)) : O(x′) = O(x)
)

(In this lemma, O, Domain , f , and z depend implicitly on the security parameter k.)

We present this proof in some detail, to illustrate how Theorem 2 or Corollary 9 can be used. Since
these steps are almost identical in most situations, knowledge of this proof facilitates understanding of the
proofs given later on.

Proof. Let f := min{
√

#Range,
√

#Domain}. Let Ã be the oracle Turing machine that chooses a
random x from Domaink, then let A(1k, zO,O(x)) choose x′, and outputs 1 if and only ifO(x′) = O(x).
Then AdvA = P

(
ÃO(1k, zO) = 1

)
.

Since A is polynomial-time, Ã makes only a polynomial number of queries, so Corollary 9 applies to
Ã, hence ÃO(1k, zO) and ÃP(1k, zO) are statistically indistinguishable (where P is the random oracle
with presampling SO, and S is as in Corollary 9). Then consider the following game:

Game 1: x
$← Domain, x′ ← AP(1k, zO,P(x)) : P(x′) = P(x).

We call the probability that the last expression evaluates to true (i.e., that P(x′) = P(x)) the advantage
Adv1 of the game. Since Adv1 is the probability that ÃP(1k, zO) outputs 1, |AdvA−Adv1| is negligible.

(This step probably occurs at the beginning of virtually all proofs that use Theorem 2 or Corollary 9.
We are now in the situation that with at most f exceptions, the oracle query P(x) returns a fresh random
value, and can use standard techniques based on lazy sampling.)

We now modify A in the following way resulting in a machine A2: A2 expects an assignment S as
an additional argument. Whenever A would query the random oracle P with a value x, A2 first checks
if x ∈ S. If so, A returns the image of x under S. Otherwise, A2 queries its oracle. Then consider the
following game:

Game 2: x
$← Domain, y ← P(x), x′ ← AP2 (1k, zO, y, SO) : y = P(x′)

11



Obviously, Adv1 = Adv2.
Since for some x /∈ SO (which happens with probability at least 1 − f/#Domain), the oracle P

returns a random y ∈ #Range, the probability that y ∈ imSO is at most f/#Domain + f/#Range.
Furthermore, if x′ ∈ SO but y /∈ imSO, the predicate y = P(x′) will be false.

So |Adv2 −Adv3| ≤ P (y ∈ imSO) is negligible for the following game 3:

Game 3: x
$← Domain, y ← P(x), x′ ← AP2 (1k, zO, y, SO) :

if (x′ ∈ SO) then false else y = P(x′).

Note that in game 3, A2 never queries P at a position in SO. Furthermore, the query P(x′) is only
executed if x′ /∈ S. So P is only queried at a position in SO, if x ∈ SO, which has probability at most
f/#Domain . But when queried at positions outside SO, P behaves like a normal random oracle (i.e.,
without presampling). We can therefore replace the oracle P by a random oracleR (independent of O):

Game 4: x
$← Domain, y ← R(x), x′ ← AR2 (1k, zO, y, SO) :

if (x′ ∈ SO) then false else y = R(x′).

Then |Adv3 −Adv4| ≤ P (x ∈ SO) is negligible.
(We have now succeeded in completely separating the oracle from the auxiliary input;R is independent

from (zO, SO). From here on, the proof is a standard proof of one-wayness of the random oracle. Note
however, that SO has a length that may be superpolynomial, so A2 is not polynomially bounded any more.
In our case, this does not pose a problem, since we only use the fact that A2 uses a polynomial number of
queries. In proof that additionally need computational assumptions, one might need additional tools which
we present in Section 4.)

Consider the following game:

Game 5: x
$← Domain, y $← Range, x′ ← AR2 (1k, zO, y, SO) :

if (x′ ∈ SO) then false else y = R(x′).

Since A was polynomially bounded, there is a polynomial q bounding the number of oracle queries
of A2. The probability that A2 queries R at position x is therefore at most q/#Domain (since x is
randomly chosen and never used). Furthermore, game 4 and 5 only differ if A2 queriesR at position x. So
|Adv4 −Adv5| ≤ q/#Domain is negligible.

Since A2 makes at most q queries, the probability that one of these returns y is at most q/#Domain .
If x′ returns a value x′ it has not queried before, the probability that y = R(x′) is at most 1/#Domain .
So Adv5 ≤ (q − 1)/#Domain is negligible.

Collecting the bounds shown so far, we see that AdvA is negligible. ut

In the preceding proof, we have only verified that the advantage of the adversary is negligible. By
using Theorem 2 instead of Corollary 9 and computing the exact bounds, we even get AdvA ∈ 2−Ω(k)

which is essentially the same bound as given in [Imp96] and [GGKT05].

4 Security amplification

When using a random oracle with presampling, reduction proofs sometimes run into situations where the
adversary gets the presampling SO as an input. Unfortunately, this presampling is usually of superpoly-
nomial size, so the resulting adversary is not polynomial-time any more and a reduction to complexity
assumptions relative to polynomial-time adversaries is bound to fail. (E.g., in the proof of Lemma 10 the
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adversary A2 was not polynomial-time in the security parameter any more. In that case however, this did
not matter since we only used the polynomial bound on the number of queries made byA2.) An example of
a situation where superpolynomial adversaries occur, and do pose a problem, is the proof that RSA-OAEP
is secure with respect to oracle-dependent auxiliary input, cf. Section 5. One possibility is simply to assume
a stronger security notion; in the case of RSA-OAEP one could use, e.g., the RSA-assumption against
quasi-polynomial adversaries.

Fortunately, there is another way which allows to use standard assumptions (i.e., with respect to
polynomial-time adversaries) in many cases. We show that for some kinds of security notions, security
against polynomial-time adversaries implies security against adversaries with f -bounded runtime, where f
is a suitably chosen superpolynomial function. Using this fact we can finish our reduction proof: Corollary 9
guarantees that for any superpolynomial function f ′, we can replace the random oracle by a random oracle
with presampling of length f ′. We then choose f ′ to be the largest function such that all adversaries
constructed in our proof are still f -bounded. Such an f ′ is still superpolynomial, so Corollary 9 applies.
On the other hand, the resulting adversaries are efficient enough for the reduction to go through. This proof
method is applied in Section 5 to show the security of RSA-OAEP.

Instead of giving a general proof of our security amplification technique, we give here a proof for
the security notion of partial-domain one-wayness (Definition 11). The proof can easily be adapted to
other security notions (in particular, our proof does not exploit how the advantage Adv is defined for this
particular notion). In Appendix G we give a more general characterisation of the security notions for which
security amplification is possible.5

Definition 11 (Partial-domain one-way). A family of 1-1 functions fpk : B × C → D is partial-domain
one-way, if for any nonuniform polynomial-time adversary A, the following advantage is negligible:

AdvA,k := P
(
pk ← K(1k), (s, t) $← B × C, y ← fpk (s, t), s′ ← A(1k, y) : s = s′

)
.

Here K denotes the index generation algorithm for the family fpk of functions. Partial-domain one-way
against f -bounded adversaries for some function f is defined analogously.

(In this definition, B, C, and D depend implicitly on the security parameter k.)

Lemma 12 (Security amplification for partial-domain one-wayness). Let the family fpk be partial-
domain one-way (against polynomial-time nonuniform adversaries). Then there exists a superpolynomial
function f such that fpk is partial-domain one-way against f -bounded nonuniform adversaries.

Proof. For n ∈ N let µn(k) := max|A|≤n(AdvA,k) where A goes over all circuits of size at most n.
Assume there was a polynomial p with integer coefficients (an integer polynomial for short) such that
µp(k)(k) is not negligible in k. Then there is a nonuniform adversary A consisting of circuits Ak with
|Ak| ≤ p(k) such that AdvA,k ≥ µp(k)(k) is non-negligible. Since A is polynomial-time, this contradicts
the assumption that the fpk are partial-domain one-way. Hence µp := µp(k)(k) is negligible for all integer
polynomials p.

We say that a function µ asymptotically dominates a function ν if for all sufficiently large k we have
µ(k) ≥ ν(k). [Bel02] proves that for any countable set S of negligible functions, there is a negligible
function µ∗ that asymptotically dominates all µ ∈ S.

Therefore, there is a negligible function µ∗, that asymptotically dominates µp for every integer
polynomial p.

Let f(k) := max{p ∈ N : µp(k) ≤ µ∗(k)}. Then µfX(k)(k) ≤ µ∗(k) is negligible. So for any
nonuniform f -bounded adversary A the advantage AdvA,k is negligible. Furthermore, we can show that

5 This includes one-wayness, partial-domain one-wayness, IND-CPA, IND-CCA2, black-box stand-alone security of
function evaluations, UC (where the amplification concerns the running time of the environment), black-box
zero-knowledge, arguments, black-box arguments of knowledge.
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f is superpolynomial. Assume this is not the case. Then there an integer polynomial p such that p > f
infinitely often. But then µp > µ∗ holds infinitely often, in contradiction to the choice of µ∗ (by definition
of f ). Thus f is superpolynomial. ut

5 OAEP encryption

In [FOPS04] it was shown that RSA-OAEP (introduced by [BR95]) is secure in the random oracle model
under the RSA-assumption. However, their proof only covers the case that no auxiliary input is given (or at
least that the auxiliary input is not oracle-dependent). In this section, we extend this result to encompass the
case of oracle-dependent auxiliary input. On one hand, this gives a nontrivial example of the application of
the lazy sampling technique in combination with the security amplification technique. On the other hand,
this result is important in its own light, since it gives evidence that RSA-OAEP may be secure with respect
to an auxiliary input, even when the random oracle has been instantiated with a fixed function.

To read this section, it is helpful to have at least basic knowledge of the OAEP construction and its
proof from [FOPS04]. We recommend [FOPS04] as an introduction.

Theorem 13 (OAEP is secure with respect to oracle-dependent auxiliary input). Let fpk be a family
of partial-domain one-way trapdoor 1-1 functions (with the property, that the elements of the domain of
fpk consist of two components each of superlogarithmic length).

Then the OAEP encryption scheme based on fpk is IND-CCA2 secure in the random oracle model with
oracle-dependent auxiliary input.

This theorem implies that RSA-OAEP is IND-CCA2 secure under the RSA-assumption with respect to
oracle-dependent auxiliary input, since in [FOPS04] it is shown that the RSA family of functions is
partial-domain one-way.

At this point, we only describe on a high level, in what points our proof differs from the proof
in [FOPS04]. In Appendix H, we reproduce the full proof of [FOPS04] and highlight our changes for
comparison.

In [FOPS04], the proof has roughly the following outer form: First, the IND-CCA2 game is formulated
for the special case of the OAEP encryption scheme. Then the game is rewritten in a series of small
changes, to finally yield a plaintext extractor. If the first game had a non-negligible success probability
(i.e., the OAEP encryption scheme was not IND-CCA2 secure), the plaintext extractor had, for some random
ciphertext fpk (s, t), a non-negligible probability of outputting s. This breaks the assumption that fpk is
partial-domain one-way.

Our proof starts with the same game, except that the adversary now has access to an oracle-dependent
auxiliary input zO. Then we can use Corollary 9 to replace the random oracle O by a random oracle
P with presampling SO of a yet to determine superpolynomial subexponential length f (similar to the
first step in the proof of Lemma 10).6 In this new situation, for randomly chosen x ∈ Domain , with
overwhelming probability, the oracle response P(x) is uniformly distributed. Using this fact, most of the
rewriting steps in the sequence of games are the same as in [FOPS04], sometimes with slightly larger
errors to account for the possibility of randomly choosing an x ∈ SO. Only in the construction of the
plaintext extractor additional care has to be taken. Here the original argument uses that the answer to an
oracle query can be assumed to be random if the adversary has not yet queried it. From this they conclude
any ciphertext the decryption oracle would accept can also be decrypted by encrypting and comparing
all oracles queries that have been made by the adversary so far. This does not hold any more since the
auxiliary input zO can supply additional information on the presampled queries SO. We thus have to
change the plaintext extractor not only to encrypt all oracle queries but also all presampled queries SO.
Therefore the plaintext extractor is not polynomial-time anymore, but instead a nonuniform machine with

6 The actual proof uses Theorem 2, but the asymptotic version is sufficient.
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running time p(f) for some polynomial p. We consequently do not directly obtain a contradiction to the
partial-domain one-wayness, since therefore the plaintext extractor would have to be polynomial-time.

However, we can use the security amplification technique. By Lemma 12, there is a superpolynomial
function f ′ such that fpk is partial-domain one-way even against nonuniform f ′-bounded adversaries. By
choosing f small enough (but still superpolynomial), it is p(f) ≤ f ′, so the plaintext extractor is f ′-bounded,
and the fact that the plaintext extractor returns s for some fpk (s, t) with non-negligible probability is a
contradiction.

6 Open questions

We have shown how to apply the lazy sampling technique to the case of oracle-dependent auxiliary input.
Going further, the following open problems come to mind which we give in the form of several conjectures.

In Corollary 9, we require the length f of the presampling to be superpolynomial. This makes reduction
proofs more difficult, in particular it necessitates the use of the security amplification technique. It would
be preferable to be able to use a polynomial length f as stated by the following conjecture:

Conjecture 14 (Lazy-sampling with polynomial presampling) For all polynomials p and q, there is a
polynomial f , such that for any oracle function z into strings of length at most p, there is an oracle function
S, where SO is an assignment of length at most f , so that for any probabilistic oracle Turing machine A
that makes at most q oracle queries the following random variables are statistically indistinguishable:

AO(1k, zO) and AP(1k, zO).

Here P is the random oracle with presampling SO.
(In this conjecture, O, P , z, and S depend implicitly on the security parameter k.)

Note that this is the strongest possible order of quantifier for which we can still expect the conjecture
to be true. If f was independent of the length p of the auxiliary input, the conjecture could be disproven
by setting zO := O(1), . . . ,O(f + 1). If we try to choose f independent of the number of queries q, we
can give the following counterexample: Let zO := z1, . . . , zk with zi :=

⊕2i

µ=1O(i). For f < 2l we
can use 2l queries to check the value of zl. But if one of the queries O(1), . . . ,O(2l) is not presampled,⊕2i

µ=1 P(i) will be random and with high probability not equal to zl.
A further interesting point is whether oracle-dependent auxiliary input does give actual computational

power (beyond what is possible with a simple auxiliary input). It seems that information about some
random data that the adversary could generate himself does not help more than just some auxiliary
information. In that light, we state the following conjecture:

Conjecture 15 (Oracle-dependent auxiliary input does not give computational power) For any
polynomial-time adversary A, and for every oracle function z into strings of polynomial length there
is a polynomial-time simulator S and an auxiliary input z′ of polynomial length such that for any
polynomial-time (or even unbounded) ITM B,

〈AO(1k, zO), B(1k)〉 and 〈S(1k, z′), B(1k)〉

are computationally (or even statistically) indistinguishable.
Here 〈A,B〉 denotes the output of B in an interaction of A and B.
(In this conjecture, O, z, and z′ depend implicitly on the security parameter k.)
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A weaker, but still interesting variant would be to quantify over the ITM B first (i.e., to choose the
simulator S in dependence of B). A stronger variant would require z and z′ to be of same length.

Note that this conjecture is weaker than Conjecture 14. A random oracle with a presampling of
polynomial length can be simulated using an auxiliary input of polynomial length (that simply contains the
presampling).

Finally, it would be helpful to generalise the lazy sampling technique to more general types of random
oracles, like random permutations (with or without access to the inverse), the generic group model, or
ideal ciphers. If the following conjecture were true, the proof methods presented in this paper could be
applied to those settings, too.

Conjecture 16 (Other types of oracles) Let µ be a distribution on functions. LetO be a random function
chosen according to µ. Let S be an assignment. We say that f matches S if for any x ∈ S, f(x) is the
image of x under S. A random oracle P with presampling S is a random function chosen according to µ
under the condition that P matches S.

Then Corollary 9 holds in this extended setting.
(In this conjecture, µ, O, P , and S depend implicitly on the security parameter k.)

Note that Corollary 9 is a special case of this conjecture. If the Definition 3 of adaptive lists could be
generalised to this case, so that Lemmas 6 and 7 still apply, the conjecture could be shown similarly to
Corollary 9.

Most desirable would be a combination of Conjectures 14 and 16, of course.
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A An auxiliary lemma

Lemma 17 (Conditional entropy). Let A,B,C,U be discrete random variables.

(i) H(A,B|C) = H(A|B,C) +H(B|C).
(ii) H(A|C) ≤ H(A|B) +H(B|C).

(iii) If A has range M , and U is the uniform distribution on M (and independent of B), and H(A|B) ≥
log #M − ε, then ∆(A,B; U,B) ≤

√
ε/2.

Proof. Equality (i) is shown as

H(A,B|C) = −
∑
a,b,c

P (A = a,B = b, C = c) logP (A = a,B = b|C = c)

= −
∑
a,b,c

P (A = a,B = b, C = c) logP (A = a|B = b, C = c)P (B = b|C = c)

= H(A|B,C) +H(B|C).

Inequality (ii) follows from (i) by

H(A|C) ≤ H(A,B|C) = H(A|B,C) +H(B|C) ≤ H(A|C) +H(B|C).

We now show (iii). Let HKL denote the Kullback-Leibler distance or relative entropy, defined as
HKL(A;B) :=

∑
x P (A = x) log P (A=x)

P (B=x) .
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Then for any random variable X with range M , it is

HKL(X;U) =
∑
x∈M

P (X = x) log
(
P (X = x)#M

)
=
∑
x∈M

(
P (X = x) logP (X = x)

)
+ log #M

= log #M −H(X).

Further, in [Kul67] it is shown that ∆(X;U) ≤
√
HKL(X;U)/2, so

∆(X;U) ≤
√

(log #M −H(X))/2. (5)

Let Ab denote the random variable A conditioned on the event B = b. (I.e., P (Ab = x) = P (A =
x|B = b).) Then

H(A|B) = −
∑
a,b

P (A = a,B = b) logP (A = a|B = b)

= −
∑
b

P (B = b)
∑
a

P (Ab = a) logP (Ab = a) =
∑
b

P (B = b)H(Ab). (6)

Therefore,

∆(A,B; U,B) =
∑
x,b

|P (A = x,B = b)− P (U = x,B = b)|

=
∑
x,b

P (B = b)
∣∣P (A = x|B = b)− P (U = x|B = b)

∣∣
(∗)=
∑
b

P (B = b)∆(Ab;U)

(5)

≤
∑
b

P (B = b)
√

1
2

(
log #M −H(Ab)

)
(∗∗)

≤
√

1
2

∑
b

P (B = b
(
log #M −H(Ab)

)
(6)=
√

1
2

(
log #M −H(A|B)

)
≤
√
ε/2.

Here (∗) uses the fact that U and B are independent, and (∗∗) is an application of Jensen’s inequality. ut

B Proof of Lemma 6

Proof. Using the definition of J(M |N), |M | and Lemma 17 (ii), we get

J(M1 ◦M2|N) = |M1| log #Range + |M2| log #Range

−H(M1 ◦M2 ◦NO(z)|NO(z), z)
≥ |M1| log #Range + |M2| log #Range

−H(M1 ◦M2 ◦NO(z)|M2 ◦NO(z), z)

−H(M2 ◦NO(z), z|NO(z), z)
= J(M1|M2 ◦N) + J(M2|N). ut
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C Proof of Lemma 7

Proof. Let G be an arbitrary b→ #Domain adaptive list. (Such an adaptive list always exists, it simply
has to query the oracle at all positions not already contained in its input.)

Since G ◦ F is an 0 → #Domain adaptive list, it outputs the complete random oracle O. So
H(G ◦ FO(z)|z) ≥ H(O|z).

Furthermore, by Lemma 17 (i), it is

H(G ◦ FO(z)|z) = H(G ◦ FO(z)|FO(z), z) +H(FO(z)|z).

Combining these inequalities, we get

H(FO(z)|z) ≥ H(O|z)−H(G ◦ FO(z)|FO(z), z). (7)

Since the random oracle is a uniformly distributed Domain → Range function, H(O) =
#Domain log #Range . Since z has range Z, H(z) ≤ log #Z = p. So

H(O|z) = H(O, z)−H(z) ≥ H(O)−H(z) ≥ #Domain log #Range − p. (8)

Let ∇G ◦ F denote the oracle Turing machine, that behaves as does G ◦ F , but only outputs the
oracle answers that G got (instead of also outputting G’s input and G’s queries). More formally, if
G ◦ FO(z) = (x1 → y1, . . . , x|F |+|G| → y|F |+|G|), it is∇G ◦ FO(z) = (y|F |+1, . . . , y|F |+|G|).

Given the inputs of a deterministic oracle Turing machine and the answers to all its oracle queries (in
the correct order, but without the positions at which the oracle has been queried), one can simulate the
oracle Turing machine and calculate its output. So from ∇G ◦ FO(z), FO(z) and z one can calculate
G ◦ FO(z), thus H(∇G ◦ FO(z)|FO(z), z) ≥ H(G ◦ FO(z)|FO(z), z).

Since∇G◦FO(z) outputs #Domain−|F | elements of #Range , it is H(∇G◦FO(z)|FO(z), z) ≤
(#Domain − |F |) log #Range , and thus also

H(G ◦ FO(z)|FO(z), z) ≤ (#Domain − |F |) log #Range.

Combining this with (7) and (8), we get

H(FO(z)|z) ≥ |F |(log #Range)− p.

So finally, J(F ) = |F | log #Range −H(FO(z)|z) ≤ p. ut

D Proof of Lemma 8

Proof. For any i ≤ #Domain , let Ji := maxF J(F ) where the maximum goes over all 0→ i adaptive
lists F . Note that the maximum exists, since there are only finitely many different 0→ i adaptive lists F .7

For i > #Domain , set Ji := J#Domain . By Lemma 7, Ji ≤ p for any i ≥ 0.
We first show that there is an f ′ ≤ f such that Jf ′+q − Jf ′ ≤ pq

f . Assume this was not the case. Then
(using J0 ≥ 0)

J⌊ f
q

⌋
q+q
≥

⌊
f
q

⌋∑
µ=0

Jqµ+q − Jqµ >
(⌊

f
q

⌋
+ 1
) pq
f
≥ p,

7 Here, we consider two adaptive list as equal, if they implement the same function. Of course, there are infinitely
many Turing machines implementing the same function. Then, since input and output domain are finite (these are
assignments of a fixed length and a string z from the finite set Z), and the oracle is chosen from a finite set, there
are only a finite number of such functions.
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which is a contradiction to Ji ≤ p.
Let F be a 0→ f ′ adaptive list, such that J(F ) = Jf ′ . Since f ′ ≤ f it is |F | ≤ f .
For any f ′ → min{f ′+q,#Domain} adaptive listG, it is J(G◦F ) ≥ J(G|F )+J(F ) by Lemma 6.

Further, J(G ◦ F ) ≤ Jf ′+q (if f ′ + q > #Domain , we use Jf ′+q = J#Domain ). So

J(G|F ) ≤ J(G ◦ F )− J(F ) ≤ Jf ′+q − Jf ′ ≤
pq

f
. (9)

By Definition 5, it is

H(G ◦ FO(z)|FO(z), z) = |G| log #Range − J(G|F ).

Since the output of ∇G ◦ F is contained in the output of G ◦ F , we have

H(∇G ◦ FO(z)|FO(z), z) ≤ H(G ◦ FO(z)|FO(z), z) = |G| log #Range − J(G|F ).

Furthermore, the output of∇G ◦ F consists of |G| elements of #Range . So by Lemma 17 (iii), it follows

∆
(
∇G ◦ FO(z), F (z), z; U|G|, FO(z), z

)
≤
√
J(G|F )

2
(9)

≤
√
pq

2f
. ut

E Proof of Theorem 2

Proof. If q = 0 the machine A never queries the oracle, so the inequality is trivially fulfilled. We can
therefore assume q ≥ 1.

Now let F be the adaptive list from Lemma 8 with z := zO. It is f ′ := |F | ≤ f . Define SO as
FO(zO). Then SO is an assignment of length f ′ ≤ f .

To show the theorem, let A be any oracle Turing machine making at most q queries. Then set

µ := ∆
(
AO(zO); AP(zO)

)
.

We have to show that µ ≤
√

pq
2f .

By fixing that random tape of A for which the above statistical distance is maximal, we can assume
A to be deterministic. We now construct a new deterministic oracle Turing machine A1 that takes an
assignment S and a string z as input, and then runs A on input z, with the following difference: Whenever
A queries the oracle at a position xi, and xi → yi is contained in S, A receives the answer yi. In all other
cases A’s query is passed through to the oracle A1 has access to. Finally, A1 outputs A’s output.

Obviously, A1 still makes at most q oracle queries. Furthermore, if A1 has access to a random oracle
R independent of O, A1 effectively simulates P for A by answering with the values prescribed by SO if
applicable, and with fresh randomness fromR otherwise. More formally, the random variables AP(zO)
and AR1 (SO, zO) are identically distributed.

Now consider the case that A1 has access to the random oracle O. Since by construction of SO, for
any x→ y in the assignment SO, it is O(x) = y, the simulated A always receives the answers O would
have given. So the random variables AO(zO) and AO1 (SO, zO) are identically distributed.

It follows
∆
(
AO1 (SO, zO); AR1 (SO, zO)

)
= µ. (10)

We now replace A1 by a new deterministic oracle Turing machine A2 with the following changes:
A2 never calls the oracle twice with the same argument. A2 never queries the oracle at any position that
occurs in the assignment S given as argument. And A2 makes exactly q′ queries to the oracle, where
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q′ := min{q,#Domain − f ′}. (A2 does not need to make more than #Domain − f ′ queries, because S
has length f ′, so f ′ positions of the random oracle are already known.) Then (10) also holds for A2.

Now we construct a new deterministic oracle Turing machine G that behaves as follows: On input S, z,
the machine G runs A2 on input S, z. Let x1, . . . , xn be the positions of the oracle queries the simulated
A2 makes (in the correct order), and let yi be the corresponding answers. Finally, G outputs the assignment
(S, x1 → y1, . . . , xn → yn). Then G is an f ′ → f ′ + q′ adaptive list.

Since A2 is deterministic, given its input and the answers yi to its oracle queries, we can calculate its
output. Therefore

∆
(
GO(SO, zO), SO, zO; GR(SO, zO), SO, zO

)
≥ ∆

(
AO2 (SO, zO); AR2 (SO, zO)

)
= µ.

Let now∇G again be defined as in the proof of Lemma 7. As before, we can calculate the output of∇G
from its inputs and the results of its oracle queries (even without the positions of these queries). So it also
holds

∆
(
∇GO(SO, zO), SO, zO; ∇GR(SO, zO), SO, zO

)
≥ µ.

Since∇G only outputs the results of its oracle queries and never queries the oracle twice at the same posi-
tion, andR is independent ofO, the output of∇GR consists of |G| uniformly and independently chosen el-
ements of #Range that are independent of SO and zO. So the random variables (∇GR(SO, zO), SO, zO)
and (U|G|, SO, zO) are identically distributed. It follows

∆
(
∇GO(SO, zO), SO, zO; U|G|, SO, zO

)
≥ µ, (11)

where U|G| is the uniform distribution on |G|-tupels over #Range . But sinceG is an f ′ → f ′+q′ adaptive
list, and f ′ + q′ = min{|F |+ q,#Domain}, and since F has the properties stated in Lemma 8, we have

∆
(
∇G ◦ FO(zO), FO(zO), zO; U|G|, FO(zO), zO

)
≤
√
pq

2f
. (12)

Since FO(zO) = SO, and ∇G ◦ FO(zO) = ∇GO(FO(zO), zO) = ∇GO(SO, zO), the left hand sides
of (11) and (12) are equal, and therefore µ ≤

√
pq
2f . ut

F Example: given-preimage collision-resistance

Lemma 18 (The random-oracle is given-preimage collision-resistant). Let g := O where O denotes
the random oracle. Then g is given-preimage collision-resistant in the random oracle model with oracle-
dependent auxiliary input.

More formally, for any probabilistic polynomial-time oracle Turing machine A and any oracle func-
tion z into strings of polynomial length, the following probability is negligible (in k):

P
(
x

$← Domain, x′ ← AO(1k, zO, x) : x 6= x′ and O(x) = O(x′)
)

(In this lemma, O, Domain , f , and z depend implicitly on the security parameter k.)

Proof. First, as we did in the proof of Lemma 10, we set f as klog k, and then can transform the game
from the lemma into the following game (using Corollary 9):

Game 1: x
$← Domain, x′ ← AP(1k, zO, x) : x 6= x′ and P(x) = P(x′)

Here P is the random oracle with presampling SO and the length of SO is bounded by f . Then |AdvA −
Adv1| is negligible.
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As in the proof of Lemma 10 we construct a new adversary A2 that gets the assignment SO and never
queries P at positions in SO. Then Adv1 = Adv2 is negligible for the following Game 2:

Game 2: x
$← Domain, x′ ← AP2 (1k, zO, x, SO) : x 6= x′ and P(x) = P(x′)

We now construct the following game:

Game 3: x
$← Domain, x′ ← AP2 (1k, zO, x, SO) :

if (x′ ∈ SO) then false else x 6= x′ and P(x) = P(x′)

If P(x) /∈ imSO and x′ ∈ SO, it is never P(x) = P(x′), so |Adv2 − Adv3| is bounded by P (P(x) ∈
imSO) which is negligible (cf. the proof of Lemma 10).

In game 3, the oracle P is only queried at a position in SO if x ∈ SO. Since this happens only with
negligible probability, we can replace P by a random oracleR which is independent of O.

Game 4: x
$← Domain, x′ ← AR2 (1k, zO, x, SO) :

if (x′ ∈ SO) then false else x 6= x′ andR(x) = R(x′)

Then |Adv3 −Adv4| is negligible.
Since A was polynomial-time, there is a polynomial bound q on the number of queries made by A2.

SinceR returns random elements of Range, the probability that one of these queries (at a position other
than x) returns R(x) is bounded by q/#Range. Also the probability that R(x′) = y is bounded by
1/#Domain if x′ 6= x and x′ was not queried before. So Adv4 ≤ (q+1)/#Domain which is negligible.

Collecting all bounds, we see that AdvA is negligible. ut

G Normal security notions and security amplification

In Section 4 we have shown that for the notion of partial-domain one-wayness, a technique we called
security amplification is applicable. The proof given there was quite independent of the details of the
notion of partial-domain one-wayness, and it generalises to many other security definitions of similar
form. We are now going to characterise a large class of security notions (called normal security notions
henceforth) to which this proof technique applies.

Before presenting the definition of a normal security notion, which is quite abstract, we analyse an
example security notion to identify its components. A proof system π = (P, V ) consisting of a prover P
and a verifier V is black-box statistical zero-knowledge (for some language L) if the following holds:

∃S ∀A, x : ∆
(
〈P (1k, x),Ak(x)〉; SAk(1k, x)

)
is negligible in k.

Here S is a uniform polynomial-time oracle Turing machine, A a nonuniform polynomial-time adversary
(i.e., a sequence of circuits Ak), and x is a sequence of strings of polynomial length such that xk ∈ L for
all k.

We can now identify some structure in this definition: Innermost, we have the statement that some
quantity (the statistical distance in this case) is negligible. We call this quantity the advantage of the
adversary and write it AdvSk (Ak, xk) := ∆

(
〈P (1k, x),Ak(x)〉; SAk(1k, x)

)
.

Further, we can group the quantifiers appearing in this definition into two types: First, we have the
universal quantifiers forA and x. If we want to consider variants of the notion with respect to another class
of adversaries (e.g., f -bounded nonuniform adversaries), these are the quantifiers that have to be modified.
The remaining quantifiers (in this case only ∃S) we subsume as a function Φ on predicates. That is, for any
predicate PS depending on S , let Φ(PS) := true if and only if ∃S : PS . Then we can write the notion of
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black-box statistical zero-knowledge as follows (where we give the simulator the name X better to match
Definition 19 below):

Φ
(
∀(A, x) ∈ A : AdvXk (Ak, xk) is negligible

)
Here A is the set of all pairs (A, x) where A is a nonuniform polynomial-time adversary, and x a sequence
of string xk ∈ L of polynomial length. Note that we can parametrise the power of the adversaries by
modifying the set A.

In this definition, there is no structural difference between A and x any more. So we can simply write
A instead of (A, x), and let Ak := (Ak, xk). Then the definition finally has the form all normal security
notions must have:

Φ
(
∀A ∈ A : AdvXk (Ak) is negligible

)
The actual definition of a normal security notion (which introduces some additional constraints on the
function Φ) is given by the following definition.

Definition 19 (Normal security notion). In the scope of this section, a point-adversary is some object
(the type depending on the security notion under consideration). An adversary A is a sequence Ak of
point-adversaries (k ∈ N can be thought of as the security parameter). E.g., A could be a family of
circuits. Or A could be an interactive Turing machine and then Ak is that Turing machine running with
security parameter k. We assume that some nonnegative integer-valued function |·| (the size) is defined
on the set of all point-adversaries. We call an adversary A nonuniformly f -bounded for some function f ,
if |Ak| ≤ f(k) for all sufficiently large k ∈ N. We call an adversary nonuniformly polynomial, if he is
p-bounded for some polynomial p.

A function Φ that assigns a truth value (true/false) to any predicate parametrised on some value X
we call a quantifier. A quantifier Φ is monotone when the following holds: If Φ(AX) = true and ∀X :
AX ⇒ BX , then Φ(BX) = true. We call Φ countably compact, if for any set X with Φ(X ∈ X) = true
there exists a countable set X′ ⊆ X with Φ(X ∈ X′) = true .8

An advantage function Adv is a nonnegative real-valued family of functions on point-adversaries that
is parametrised by k ∈ N (the security parameter) and X . (I.e., AdvXk (Ak) is a nonnegative real number
for an adversary A.)

A security notion is normal, if for any π (of a type that depends on the security notion, e.g. a protocol),
there is a countably compact monotone quantifier Φ and an advantage function Adv such that for any set
A of adversaries the statement “π is secure with respect to adversaries in A” can be written as

Φ
(
∀A ∈ A : AdvXk (Ak) is negligible in k

)
.

The following lemma gives some examples of normal security notions.

Lemma 20 (Normal security notions). The following security notions are normal: One-wayness, partial-
domain one-wayness, IND-CPA, IND-CCA2, black-box standalone-security of function evaluations, UC (with
dummy-adversary and the environment considered as adversary), black-box zero-knowledge, arguments,
black-box arguments of knowledge.

Proof. Each of the notions can easily be recast into the form required by Definition 19. Then it is
straightforward to check that the quantifier Φ is countably compact and monotone. ut

We can apply the security amplification technique to all normal security notions. In particular, the
technique is applicable to all notions given in Lemma 20.

8 Examples for countably compact monotone quantifiers are the existential quantifier (∃X ∈ M ), the universal
quantifier (∀X ∈ M ) with a countable set M , the threshold quantifier (“there are at least n elements X such
that. . . ”), and combinations of these.
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Theorem 21 (Security amplification). For a normal security notion it holds, that if π is secure with
respect to nonuniformly polynomial adversaries, then there is a superpolynomial function f , such that π is
secure with respect to nonuniformly f -bounded adversaries.

Proof. Let π be fixed. Then there are a monotone quantifier Φ and an advantage function Adv, such that
for any set A of adversaries, π is secure with respect to A iff

Φ
(
∀A ∈ A : AdvXk (Ak) is negligible in k

)
.

Let AP be the set of all nonuniformly polynomial adversaries. Assume that π is secure with respect
to adversaries in AP . Let X be the set of all X that satisfy ∀A ∈ AP : (AdvXk (Ak) is negligible in k).
Then Φ(X ∈ X) = true. Since Φ is countably compact, there is a countable set X′ ⊆ X such that
Φ(X ∈ X′) = true .

Fix some X ∈ X′.
For an n ∈ N let µn(k) := sup|Ak|≤p(AdvXk (Ak)) where Ak goes over all point-adversaries. Assume

there was a polynomial p with integer coefficients (an integer polynomial for short) such that µp(k)(k)
is not negligible in k. Then there is a sequence of point-adversaries Ak with |Ak| ≤ p(k) such that
AdvXk (Ak) ≥ µp(k)− 2−k. Since µp(k)− 2−k is non-negligible, and the adversary A consisting of these
Ak is in AP , and X ∈ X, this is a contradiction to the definition of X. So µp is negligible for all integer
polynomials p.

We say, a function µ asymptotically dominates a function ν, if for all sufficiently large k it is µ(k) ≥
ν(k). [Bel02] proves that for any countable set S of negligible functions, there is a negligible function µ∗

that asymptotically dominates all µ ∈ S.
Therefore, there is a negligible function µ∗, that asymptotically dominates µp for every integer

polynomial p.
Let fX(k) := max{p ∈ N : µp(k) ≤ µ∗(k)}. Then µfX(k)(k) ≤ µ∗(k) is negligible. So for any

nonuniformly fX -bounded adversary A the advantage AdvXk (Ak) ≤ µfX is negligible. Furthermore, we
can show that fX is superpolynomial. Assume this was not the case. Then there an integer polynomial p
such that p > fX infinitely often. But then µp > µ∗ infinitely often, in contradiction to the choice of µ∗.
So fX is superpolynomial.

Again by the result of [Bel02], and since X′ is countable, there is a negligible function ν that asymp-
totically dominates all 1/fX with X ∈ X′. Set f := 1/ν. Then for every X ∈ X′, fX asymptotically
dominates f . In particular, for any X ∈ X′, it holds that for any nonuniformly f -bounded adversary A the
advantage AdvXk (Ak) is negligible.

Let Af be the set of all nonuniformly f -bounded adversaries. Then we have X ∈ X′ ⇒ ∀A ∈
Af : (AdvXk (Ak) is negligible). Since furthermore Φ(X ∈ X′) = true and Φ is monotone, it follows
Φ
(
∀A ∈ Af : AdvXk (Ak) is negligible

)
= true. So π is secure with respect to nonuniformly f -bounded

adversaries. ut

H Security of OAEP encryption

Definition 22 (IND-CCA2 security). An encryption scheme E is IND-CCA2 secure in the random oracle
model with oracle-dependent auxiliary input if the following holds:

For a given secret/public key pair (sk , pk), let the decryption oracle DOsk (c) return the decryption of c
under E , or ⊥ if the decryption fails.
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For an adversary A and an oracle function z into strings of polynomial length, the advantage AdvIND
A

is defined as

AdvIND
A := 2P

(
(pk , sk)← KO(1k),

(m1,m2)← AO,D
O
sk (1k, zO, pk),

b
$← {0, 1}, y∗ ← EOpk (mb),

b′ ← AO,D
O
sk (1k, zO, pk , y∗) :

b = b′
)
− 1.

Here KO(1k) denotes the key generation algorithm of E . Further, EOpk (m) is the encryption of m with
respect to E using public key pk . We assume that the adversary A is able to store an internal state between
its two activations, and that the two messages m1,m2 are of fixed length.

Then the encryption scheme E is secure if for any probabilistic polynomial-time adversary A and any
oracle function z into strings of polynomial length, where the adversary A does not call DOsk with the
ciphertext y∗, the advantage AdvIND

A is negligible.
(In this definition, O, z, and AdvIND

A depend implicitly on the security parameter k.)

Definition 23 (OAEP encryption). Let k0 and k1 be superlogarithmic functions of the security parameter
k with k0 + k1 < k.

Let fpk be a family of 1-1 trapdoor functions with domain {0, 1}k−k0 × {0, 1}k0 . Let gsk denote the
inverse of fpk if sk is a secret key corresponding to the public key pk .

The OAEP encryption scheme (for that family of functions fpk ) assumes two random oracles G :
{0, 1}k0 → {0, 1}k−k0 and H : {0, 1}k−k0 → {0, 1}k0 . (We can assume these to be part of a single
random oracle O by defining e.g. G(x) := O(1, x) and H(x) := O(1, x) where the output of O is
appropriately truncated.) To encrypt a message m ∈ {0, 1}k−k0−k1 , we set

r
$← {0, 1}k0

s← (m‖0k1)⊕G(r)
t← r ⊕H(s)
c← fpk (s, t)

Then c is the encryption of m.
To decrypt a cyphertext c, we set

(s, t)← gsk (c)
r ← t⊕H(s)
M ← s⊕G(r)

If M has the form m‖0k1 , the decryption is m. Otherwise, the decryption fails (i.e., the cyphertext is
rejected).

(In this definition, O, P , G, and H depend implicitly on the security parameter k.)

Proof (of Theorem 13). To allow the reader to see to what extent the proof of the OAEP security has to be
changed to apply to the setting of oracle-dependent auxiliary input, we very closely follow the original
proof from [FOPS04, Section 4].9 To highlight the differences, we use the following convention: The proof

9 Note that there are two proofs in [FOPS04], one in Section 4 and one in the appendix. The proof in the appendix is
that from the conference version [FOPS01]. We choose the proof from Section 4 as our guideline, since it comes
with more formal details and therefore seems better suited to show the applicability of our technique.
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from [FOPS04] is given almost literally, and all changes necessary due to the oracle-dependent auxiliary
input are typeset in italic.

To show the theorem, we proceed by giving a sequence of games and deriving bounds for the probabil-
ities of given events. We start with the probability that the adversary breaks the OAEP encryption scheme
and finally relate it to probability that the adversary breaks the partial-domain one-wayness property of the
underlying trapdoor function.

For any adversary A, let ε := AdvIND
A denote the advantage of A in the IND-CCA2 game (cf. Defini-

tion 22). (The advantage ε depends implicitly on k.)
Let f be a some superpolynomial nonnegative integer-valued function with f ≥ 1 such that f · 2−k0

and f · 2k1 are negligible. (We will fix a concrete choice of f below.)

GAME0 A pair of keys (pk , sk) is generated by the key generation algorithm of the OAEP scheme (which
is the same as that of the underlying trapdoor functions). Let f := fpk denote the trapdoor function
corresponding to the public key pk , and let g := gsk denote its inverse. The adversary A is given the
public key pk , the oracle dependent auxiliary input zO and access to the decryption oracle DOsk and
the random oracle O.10 Then adversary is expected to output a pair of messages (m1,m2) of length
k − k0 − k1.
Now a challenge ciphertext y∗ is produced as follows: First, a random bit b ∈ {0, 1} is chosen. Then
the ciphertext y∗ is constructed as follows:

r∗
$← {0, 1}k0 , s∗ ← (mb‖0k1)⊕G(r∗), t∗ ← r∗ ⊕H(s∗), x∗ ← (s∗, t∗), y∗ ← f(x∗).

The ciphertext y∗ is then given to A. Additionally, A still has access to zO, pk , DOsk and O. However,
A does not query the decryption of y∗ from DOsk . The adversary A then outputs a bit b′. We denote by
S0 the event b = b′ and use a similar notation Si for any GAMEi below. By definition of the OAEP
scheme, it is P (S0) = 1

2 + ε
2 .

Let qG, qH and qD denote the number of queries made by A to the oracles G, H and DOsk , respectively.
GAME 1

2
Let SO be as in Theorem 2 an assignment of length at most f. Let P be the random oracle with
presampling SO. By virtue of Theorem 2 (and using the technique presented in the first step of the
proof of Lemma 10), we can replace every occurrence ofO by an occurrence ofP (with exception of the
auxiliary input zO, which stays zO and does not become zP ). By Theorem 2 it is |P (S0)− P (S 1

2
)| ≤√

pq
2f , where p is the length of the auxiliary input zO and q := qG + qH + 2qD + 2 is an upper bound

on the number of oracle queries made in GAME0.
To avoid too cluttered a notation, from now on, we denote by G and H the oracles that are part of P
(instead of being part of O as in GAME0).

GAME1 We modify GAME 1
2

by moving the generation of the seed r∗ and its image G(r∗) to the beginning

of the game. More precisely, we randomly choose ahead of time some r+ $← {0, 1}k0 and g+ $←
{0, 1}k−k0 and use r+ instead of r∗ and g+ instead of G(r∗). The game obeys the following two
rules:
Rule 1. r∗ = r+ and s∗ = (mb‖0k1)⊕ g+. The other variables are generated as described above.
Rule 2. Whenever the random oracle G is queried at r+, the answer is g+.
Since we still choose r+ randomly and independently, and since P returns a uniformly chosen element
when queried at position r+ unless r+ ∈ SO, the two games differ only if r+ ∈ SO. This happens
with probability at most f · 2−k0 . So we get

|P (S1)− P (S 1
2
)| ≤ f · 2−k0 .

10 Here we assume that G and H are part of the same random oracle O. One could also define G and H as different
random oracles and then use an auxiliary input zG,H and write the decryption oracle as DG,H

sk .
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GAME2 For this game we remove the Rule 2 in the GAME1 and restore the calls to G. Therefore g+ is used
for the construction of x∗ but does not appear anywhere else in the computation. Thus, since mb

appears in the calculation only in the form of (mb‖0k1)⊕ g+, the view of A does not depend on b. So
P (S2) = 1

2 .
GAME1 and GAME2 may only differ if r∗ = r+ is queried from G. Let AskG2 denote the event that
r+ is queried from G in GAME2 by the adversary A or by the decryption oracle (and similarly AskGi
for GAMEi below). Then

|P (S2)− P (S1)| ≤ P (AskG2).

GAME3 Like we did in GAME1, we now move the generation of s∗ andH(s∗) up front and make it independent

of the other variables. More precisely, we now choose s+ $← {0, 1}k−k0 and h+ $← {0, 1}k0 randomly,
and use s+ instead of s∗, and h+ instead of H(s∗) = H(s+). The game uses the following two rules:
Rule 1’. g+ = (mb‖0k1)⊕ s+ and t∗ = r+ ⊕ h+.
Rule 2’. Whenever the random oracle H is queried at s+, the answer is h+.
Since s∗ = (mb‖0k1)⊕ g+ for randomly chosen g+ in GAME1, replacing s∗ by s+ (and defining g+

as prescribed by Rule 1’) does not change the game. Furthermore, H(s+) is uniformly chosen by the
random oracle unless s+ ∈ SO. The probability that s+ ∈ SO is bounded by f · 2−k+k0 . So

|P (AskG2)− P (AskG3)| ≤ f · 2−k+k0 .

GAME4 We now remove Rule 2’ from GAME3 and thus restore the original meaning of H(s+). Then h+ is
used only in the computation of x∗ but does not appear anywhere else. GAME3 and GAME4 differ
only if s+ is queried from H . Let AskH4 denote the event that s+ is queried from H . (And similarly
AskHi for GAMEi.) Then

|P (AskG3)− P (AskG4)| ≤ P (AskH4).

Furthermore, since r+ = t∗ ⊕ h+, and h+ is never revealed, r+ is independent of the adversary A’s
view. So P (AskG4) ≤ (qG + qD) · 2−k0 (where qG is the number of G-queries made by A, and qD
the number of decryption oracle queries).

GAME5 We again change the way the challenge ciphertext is generated. We now choose t+ $← {0, 1}k0 and
replace t∗ by t+. Note that now the ciphertext y∗ = f(s+, t+) is a uniformly chosen image of f ,
independent of the other random variables A learns. Furthermore, since t∗ = h+ ⊕ r+ in GAME4,
and h+ and r+ where uniformly distributed and not used by the adversary, replacing t∗ by t+ does
not change the game. Thus

P (AskH5) = P (AskH4).

GAME6 We now change the decryption oracle D. When D is queried with a ciphertext y = f(s, t), let
r := t⊕H(s). If r has not been previously queried from G and r is not contained in the assignment
SO the modified decryption oracle rejects the ciphertext. Since G(r) is uniformly distributed for
r /∈ SO, it only happens with probability 2−k1 that s⊕G(r) has the form m‖0k1 (and otherwise the
ciphertext is not accepted by the original oracle, either). The adversary makes at most qD queries to D,
so

|P (AskH6)− P (AskH5)| ≤ qD · 2−k1 .

Note that the new decryption oracle does not query G any more, because the necessary query already
has been made.

GAME7 Now the decryption oracle additionally rejects cyphertexts y in the case that s (as defined in GAME6)
has not previously been queried from H , nor is s ∈ SO. This behaviour differs from the behaviour in
GAME6 only if r has been queried from G while H(s) has not been asked and s /∈ SO. But if s /∈ SO,
the value of H(s) is uniformly distributed and so is r = H(s)⊕ t, so the probability that r has been
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queried from G is at most qG · 2−k0 (the decryption oracle from GAME8 does not query G any more).
Since A makes at most qD queries to the decryption oracle, we get

|P (AskH7)− P (AskH6)| ≤ qDqG · 2−k0 .

GAME8 Since the decryption oracle only decrypts some ciphertext y if s and r have already been queried
from G or H , resp., or can be found in SO, we can replace the decryption oracle by the following
algorithm: Let G-List denote the queries already made to G, and H-List those made to H . Then for
each r ∈ G-List ∪ SO and s ∈ H-List ∪ SO, check whether f(s, t) = y where t := r ⊕H(s). If so,
the decryption can be completed without use of the secret key sk . Otherwise, the ciphertext is rejected.
Since the decryption oracle from GAME7 rejects all cyphertexts that do not pass the test f(s, t) = y
for some of the tested values for r, s, we have

P (AskH8) = P (AskH7).

There are at most qH queries to H . P (AskH8) is the probability that one of these is made at the
position s+. So when we randomly choose one of the queries to H and output it, with proba-
bility at least P (AskH8)/qH we output an s satisfying (s, t) = g(y∗). So we have constructed
an adversary A∗ against the partial-domain one-wayness of fpk that has a success probability
Advpdo

A∗ = P (AskH8)/qH .

To conclude our proof, we have to see that a non-negligible advantage ε = AdvIND
A against the

IND-CCA2 game implies a non-negligible advantage δ := Advpdo
A∗ against the partial-domain one-wayness

of fpk , and that the adversary A∗ is polynomial-time. The first is an easy calculation given the bounds
we identified above, but on the second we must fail: A∗ has to consider all the superpolynomially many
values in SO. However, we will use the security amplification technique presented in Section 4 to solve
this problem.

First, let us calculate ε from δ:

ε

2
= |P (S0)− P (S2)| ≤

√
pq

2f
+ f · 2−k0 + P (AskG2)

P (AskG2) ≤ f · 2−k+k0 + P (AskG4) + P (AskH4)

≤ f · 2−k+k0 + (qG + qD) · 2−k0 + P (AskH4)

P (AskH4) ≤ qD · 2−k1 + qDqG · 2−k0 + qHδ

Here p is the length of the auxiliary input, and q := qG + qH + 2qD + 2 the total number of queries to the
random oracle. If δ is negligible, and q and p are polynomially bounded, and f is superpolynomial, and
f · 2−k0 , f · 2−k1 are negligible, then ε is negligible.

It is left to show that δ is indeed negligible under the assumption that fpk is partial-domain one-
way. Unfortunately, the running time of A∗ is only bounded by τ ≤ p(f + k) for some polynomial
p independent of f. The runtime τ is obviously not polynomially bounded for superpolynomial f . But
Lemma 12 guarantees, that there is a superpolynomial function f ′ such that fpk is partial-domain one-way
even against f ′-bounded nonuniform adversaries. We then can choose a superpolynomial f such that
τ ≤ f ′. We can further choose f small enough (but still superpolynomial) such that f ≤ 2−k0/2, 2−k1/2.
Then f · 2−k0 , f · 2−k1 are negligible. For this choice of f, the adversary A∗ has f ′-bounded running
time, so δ = Advpdo

A∗ is negligible. Since δ is negligible, so is ε, which proves that the OAEP scheme is
IND-CCA2 secure in the random oracle model with oracle-dependent auxiliary input. ut
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