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Abstract

With computer networks spreading into a variety of new environments, the need to au-
thenticate and secure communication grows. Many of these new environments have particular
requirements on the applicable cryptographic primitives. For instance, several applications re-
quire that communication overhead be small and that many messages be processed at the same
time. In this paper we consider the suitability of public key signatures in the latter scenario.
That is, we consider signatures that are 1) short and 2) where many signatures from (possibly)
different signers on (possibly) different messages can be verified quickly.

We propose the first batch verifier for messages from many (certified) signers without random
oracles and with a verification time where the dominant operation is independent of the number
of signatures to verify. We further propose a new signature scheme with very short signatures,
for which batch verification for many signers is also highly efficient. Prior work focused almost
exclusively on batching signatures from the same signer. Combining our new signatures with
the best known techniques for batching certificates from the same authority, we get a fast batch
verifier for certificates and messages combined. Although our new signature scheme has some
restrictions, it is very efficient and still practical for some pervasive communication applications.

1 Introduction

As the world moves towards pervasive computing and communication, devices from vehicles to
dog collars will soon be expected to communicate with their environments. For example, many
governments and industry consortia are currently planning for the future of intelligent cars that
constantly communicate with each other and the transportation infrastructure to prevent accidents
and to help alleviate traffic congestion [12, 40]. Raya and Hubaux suggest that vehicles will transmit
safety messages every 300ms to all other vehicles within a minimum range of 110 meters [39], which
in turn may retransmit these messages.

For such pervasive systems to work properly, there are many competing constraints [12, 40,
29, 39]. First, there are physical limitations, such as a limited spectrum allocation for specific
types of communications and the potential roaming nature of devices, that require that messages
be kept very short and (security) overhead be minimal [29]. Yet for messages to be trusted by
their recipients, they need to be authenticated in some fashion, so that entities spreading false
information can be held accountable. Thus, some short form of authentication must be added.
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Third, different messages from many different signers may need to be verified and processed quickly
(e.g., every 300ms [39]). A possible fourth constraint that these authentications remain anonymous
or pseudonymous, we leave as an exciting open problem.

In this work, we consider the suitability of public key signatures to the needs of pervasive
communication applications. Generating one signature every 300ms is not a problem for current
systems, but transmitting and/or verifying 100+ messages per second might pose a problem. Us-
ing RSA signatures for example seems attractive as they are verified quickly, however, one would
need approximately 3000 bits to represent a signature on a message plus the certificate (i.e., the
public key and signature on that public key) which might be too much for some applications (see
Section 8.2 of [39]). While many new schemes based on bilinear maps can provide the same security
with significantly smaller signatures, they take significantly more time to verify. Thus, it is not
immediately clear what the proper tradeoff between message length and verification time is for
many pervasive communication applications. However, in some applications, there is evidence that
doing a small amount of additional computation is more advantageous than sending longer mes-
sages. For example, Landsiedel, Wehrle, and Götz showed that for applications using Mica2 sensors
transmitting data consumes significantly more battery power than keeping the CPU active [32].

1.1 Our Contributions

Now, if one wants both, short signatures and short verification times, it seems that one needs to
improve on the verification of the bilinear-map based schemes. In this paper we take this route and
investigate the known batch-verification techniques and to what extent they are applicable to such
schemes. More precisely, the main contributions of this paper are:

1. We instantiate the general batch verification definitions of Bellare, Garay, and Rabin [2] to the
case of signatures from many signers. We also do this for a weaker notion of batch verification
called screening and show the relation of these notions to the one of aggregate signatures.
Surprisingly, for most known aggregate signature schemes a batching algorithm is provably
not obtained by aggregating many signatures and then verifying the aggregate.

2. We present a batch verifier for the Chatterjee-Sarkar IBS scheme [15]. (More precisely, this
is the IBS scheme implicitly defined by the Chatterjee-Sarkar hierarchical IBE [15] and it
can also be viewed as an optimized variant of the Boyen-Waters IBS [7] as we will discuss
later.) To our knowledge, this is the first batch verifier for a signature scheme without random
oracles. Let z be the additional security parameter required by the Chatterjee-Sarkar IBS.
When identities and messages are k bits, viewed as z chunks of k/z bits each, our algorithm
verifies n Chatterjee-Sarkar IBS signatures using only (z + 3) pairings. Individually verifying
n signatures would cost 3n pairings.

3. We present a new signature scheme, CL*, derived from the Camenisch and Lysyanskaya sig-
nature scheme [9]. We show that CL* can be realized without random oracles when the
message space is polynomial. CL* signatures require only one-third the space of the original
CL signatures– on par with the shortest signatures known [5] –, but users may only issue
one signature per period (e.g., users might only be allowed to sign one message per 300ms).
We present a batch verifier for these signatures from many different signers that verifies n
signatures using only three total pairings, instead of the 5n pairings required by n original
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CL signatures. Yet, our batch verifier has the restriction that it can only batch verify sig-
natures made during the same period. CL* signatures form the core of the only public key
authentication, known to us, that is extremely short and highly efficient to verify in bulk.

4. Often signatures and certificates need to be verified together. This happens implicitly in IBS
schemes, such as Chatterjee-Sarkar. To achieve this functionality with CL* signatures, we use
a known batch verifier for the Boneh, Lynn, and Shacham signatures in the random oracle
model [5, 4] that can batch verify n signatures from the same signer using only two pairings.

1.2 Batch Verification Overview

Batch cryptography was introduced in 1989 by Fiat [19] for a variant of RSA. Later, in 1994,
Naccache, M’Räıhi, Vaudenay and Raphaeli [38] gave the first efficient batch verifier for DSA
signatures, however an interactive batch verifier presented in an early version of their paper was
broken by Lim and Lee [34]. In 1995 Laih and Yen proposed a new method for batch verification of
DSA and RSA signatures [31], but the RSA batch verifier was broken five years later by Boyd and
Pavlovski [6]. In 1998 Harn presented two batch verification techniques for DSA and RSA [24, 25]
but both were later broken [6, 27, 28]. The same year, Bellare, Garay and Rabin took the first
systematic look at batch verification [2] and presented three generic methods for batching modular
exponentiations, called the random subset test, the small exponents test and the bucket test which
are similar to the ideas from [38, 31]. They showed how to apply these methods to batch verification
of DSA signatures and also introduced a weaker form of batch verification called screening. In 2000
some attacks against different batch verification schemes, mostly ones based on the small exponents
test and related tests, were published [6]. These attacks do not invalidate the proof of security for
the small exponents test, but rather show how the small exponents test is often used in a wrong way.
However, they also describe methods to repair some broken schemes based on this test. In 2001
Hoshino, Masayuki and Kobayashi [26] pointed out that the problem discovered in [6] might not be
critical for batch verification of signatures, but when using batch verification to verify for example
zero-knowledge proofs, it would be. In 2004 Yoon, Cheon and Kim proposed a new ID-based
signature scheme with batch verification [17], but their security proof is for aggregate signatures and
does not meet the definition of batch verification from [2]; hence their title is somewhat misleading.
Of course not all aggregate signature schemes claim to do batch verification. For example Gentry
and Ramzan present a nice aggregate signature scheme in [21] that does not claim to be, nor is,
a batch verification scheme. Other schemes for batch verification based on bilinear maps were
proposed [13, 43, 44, 45] but all were later broken by Cao, Lin and Xue [11]. In 2006, a method
was proposed for identifying invalid signatures in RSA-type batch signatures [33], but Stanek [41]
showed that this method is flawed.

1.3 Efficiency of Prior Work and our Contributions

Efficiency will be given as an abstract cost for computing different functions. We begin by discussing
prior work on RSA, DSA, and BLS signatures mostly for single signers, and then discuss our new
work on Chatterjee-Sarkar, BLS, and CL signatures for many signers. Note that Lim [35] provides
a number of efficient methods for doing m-term exponentiations and Granger and Smart [23] give
improvements over the naive method for computing a product of pairings, which is why we state
them explicitly.
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m-MultPairCostsG,H s m-term pairings
∏m

i=1 e(gi, hi) where gi ∈ G, hi ∈ H.
m-MultExpCostsG(k) s m-term exponentiations

∏m
i=1 gai where g ∈ G, |ai| = k.

PairCostsG,H s pairings e(gi, hi) for i = 1 . . . s, where gi ∈ G, hi ∈ H.
ExpCostsG(k) s exponentiations gai for i = 1 . . . s where g ∈ G, |ai| = k.
GroupTestCostsG Testing whether or not s elements are in the group G.
HashCostsG Hashing s values into the group G.
MultCosts s multiplications in one or more groups.

If s = 1 we will omit it. Throughout this paper we assume that n is the number of message/signature
pairs and `b is a security parameter such that the probability of accepting a batch that contains an
invalid signature is at most 2−`b .

RSA* is a modified version of RSA by Boyd and Pavlovski [6]. The difference to normal RSA is
that the verification equation accepts a signature σ as valid if ασe = m for some element α ∈ Z∗

m of
order no more than 2, where m is the product of two primes. The signatures are usually between
1024 − 2048 bits and the same for the public key. A single signer batch verifier for this signature
scheme with cost n-MultExpCost2Zm

(`b)+ExpCostZm
(k), where k is the number of bits in the public

exponent e, can be found in [6]. Note that verifying n signatures by verifying each signature
individually only costs ExpCostnZm

(k), so for small values of e (|e| < 2`b/3) the naive method is a
faster way to verify RSA signatures and it can also handle signatures from multiple signers. Bellare
et al. [2] presents a screening algorithm for RSA that assumes distinct messages from the same
signer and costs 2n + ExpCostZm

(k).

DSA** is a modified version of DSA from [38] compatible with the small exponents test from [6].
There are two differences to normal DSA. First there is no reduction modulo q, so the signatures
are 672 bits instead of 320 bits and second, individual verification should check both a signature σ
and −σ and accept if one of them holds. Messages and public keys are both 160 bits long. Using the
small exponents test the cost is n-MultExpCostG(`b) + ExpCost2G(160) + HashCostnG + MultCost2n+1

multiplications. This method works for a single signer only.

Chatterjee-Sarkar IBS is an IBS scheme derived from the Chatterjee and Sarkar HIBE scheme
in [15] for which we provide a batch verifier without random oracles in Section 4. An interesting
property of this scheme is that the identity does not need to be verified separately. Identities
and messages are k bits divided into z logical chunks, each of k/z bits, where z is a security
parameter, and a signature is three bilinear group elements. The computational effort required
depends on the number of messages and the security parameters. Let M = n-MultExpCostGT

(`b) +
n-MultExpCost3G(`b) + PairCost3G,G + GroupTestCost3n

G + MultCost3 and refer to the table below for
efficiency of the scheme.

n ≤ 2z : M +2n-MultPairCostG,G + z-MultExpCost2n
G (k

z ) + ExpCost2n
G (`b)

n > 2z : M +z-MultPairCostG,G + ExpCost2n
G (k

z + `b) + MultCostzn

The naive application of Chatterjee-Sarkar IBS to verify n signatures costs PairCost3n
G,G +

z-MultExpCost2n
G (k

z ) + MultCost4n. Also note that in many security applications we do not need to
transmit the identity as a separate parameter, as it is already included in the larger protocol. For
example, the identity may be the hardware address of the network interface card.
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BLS is the signature scheme by Boneh, Lynn and Shacham [5, 4]. We discuss batch verifiers for
BLS signatures based on the small exponents test. For a screening algorithm, aggregate signatures
by Boneh, Gentry, Lynn and Shacham [3] can be used. The signature is only one group element in
a bilinear group and the same for the public key. For different signers the cost of batch verifica-
tion is n-MultPairCostG,G + n-MultExpCostG(`b) + PairCostG,G + ExpCostnGT

(`b) + GroupTestCostnG +
HashCostnG, but for single signer it is only n-MultExpCost2G(`b) + PairCost2G,G + GroupTestCostnG +
HashCostnG.

CL* is a new variant of Camenisch and Lysyanskaya signatures [9] presented in Section 5. The
signature is only one bilinear group element and the same for the public key. Batch verification
costs n-MultExpCost2G(`b)+n-MultExpCostG(|w|+ `b)+PairCost3G,G +GroupTestCostnG +HashCostnG,
where w is the output of a hash function. However, the scheme has some additional restrictions.

Bucket Test. Bellare, Garay and Rabin [2] provide a method called the bucket test which is
even more efficient than the small exponents test for large values of n. We note that one can use
the tests we outline in this paper as subroutines to the bucket test to further speed up verification.

2 Definitions

Recall that a digital signature scheme is a tuple of algorithms (Gen,Sign,Verify) that also is cor-
rect and secure. The correctness property states that for all Gen(1`) → (pk , sk), the algorithm
Verify(pk ,m, Sign(sk ,m)) = 1.

There are two common notions of security. Goldwasser, Micali, and Rivest [22] defined a scheme
to be unforgeable as follows: Let Gen(1`)→ (pk , sk). Suppose (m, σ) is output by a p.p.t. adversary
A with access to a signing oracle Osk (·) and input pk . Then the probability that m was not
queried to Osk (·) and yet Verify(pk ,m, σ) = 1 is negligible in `. An, Dodis, and Rabin [1] proposed
the notion of strong unforgeability, where if A outputs a pair (m,σ) such that Verify(pk ,m, σ) = 1,
then except with negligible probability at some point oracle Osk (·) was queried on m and outputted
signature σ exactly. In other words, an adversary cannot create a new signature even for a previously
signed message. Our batch verification definitions work with either notion. The signatures used in
Section 4 meet the GMR [22] definition, while those in Section 5 meet the ADR [1] definition.

Now, we consider the case where we want to quickly verify a set of signatures on (possibly)
different messages by (possibly) different signers. The input is {(t1,m1, σ1), . . . , (tn,mn, σn)}, where
ti specifies the verification key against which σi is purported to be a signature on message mi. We
extend the definitions of Bellare, Garay and Rabin [2] to deal with multiple signers. And this is an
important point that wasn’t a concern with only a single signer: one or more of the signers may
be maliciously colluding.

Definition 2.1 (Batch Verification of Signatures) Let ` be the security parameter. Suppose
(Gen,Sign,Verify) is a signature scheme, n ∈ poly(`), and (pk1, sk1), . . . , (pkn, skn) are generated
independently according to Gen(1`). Then we call probabilistic Batch a batch verification algorithm
when the following conditions hold:

• If Verify(pk ti ,mi, σi) = 1 for all i ∈ [1, n], then Batch((pk t1 ,m1, σ1), . . . , (pk tn ,mn, σn)) = 1.

• If Verify(pk ti ,mi, σi) = 0 for any i ∈ [1, n], then Batch((pk t1 ,m1, σ1), . . . , (pk tn ,mn, σn)) = 0
except with probability negligible in k, taken over the randomness of Batch.
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Note that Definition 2.1 does not require verification keys to belong to honest users, only to keys
that were generated honestly (and are perhaps now held by an adversary). In practice, users could
register their keys and prove some necessary properties of the keys at registration time.

Confusion between Batch Verification, Aggregate Signatures, and Screening. As we
discussed in the introduction, several works (e.g., [17, 18]) claim to do batch verification when, in
fact, they often meet a weaker guarantee called screening [2]. However, in most cases the confusion
is about words, e.g. when the words batch verification are used to describe an aggregate signature
scheme.

Definition 2.2 (Screening of Signatures) Let ` be the security parameter. Suppose (Gen,Sign,
Verify) is a signature scheme, n ∈ poly(`) and (pk∗, sk∗) ← Gen(1`). Let Osk∗(·) be an oracle that
on input m outputs σ = Sign(sk∗,m). Then for all p.p.t. adversaries A, we call probabilistic Screen
a screening algorithm when µ(`) defined as follows is a negligible function:

Pr[(pk∗, sk∗)← Gen(1`), (pk1, sk1)← Gen(1`), . . . , (pkn, skn)← Gen(1`),

D ← AOsk∗ (·)(pk∗, (pk1, sk1), . . . , (pkn, skn)) :
Screen(D) = 1 ∧ (pk∗,mi, σi) ∈ D ∧ mi 6∈ Q] = µ(`),

where Q is the set of queries that A made to O.

The above definition is generalized to the multiple-signer case from the single-signer screening
definition of Bellare et al. [2].

Interestingly, screening is the (maximum) guarantee that most aggregate signatures offer if one
were to attempt to batch verify a group of signatures by first aggregating them together and then
executing the aggregate-verification algorithm. Consider the aggregate signature scheme of Boneh,
Gentry, Lynn and Shacham [3] based on the BLS signatures [5, 4]. First, we describe the BLS
signatures. Let e : G × G → GT , where g generates the group G of prime order q. Gen chooses a
random sk ∈ Zq and outputs pk = gsk . A signature on message m is σ = H(m)sk , where H is a hash
function. To verify signature σ on message m, one checks that e(σ, g) = e(H(m), pk). Given a group
of message-signature pairs (m1, σ1), . . . , (mn, σn) (all purportedly from the same signer), BGLS
aggregates them as A =

∏n
i=1 σi. Then all signatures can be verified in aggregate (i.e., screened)

by testing that e(A, g) = e(
∏n

i=1 H(mi), pk). This scheme is not, however, a batch verification
scheme since, for any a 6= 1 ∈ G, the two invalid message-signature pairs P1 = (m1, a ·H(m1)sk )
and P2 = (m2, a

−1 · H(m2)sk ) will verify under Definition 2.2 (as BGLS prove [3]), but will not
verify under Definition 2.1. Indeed, for some pervasive computing applications only guaranteeing
screening would be disastrous, because only P1 may be relevant information to forward to the next
entity – and it won’t verify once it arrives! To be fair, batch verification is not what aggregate
schemes were designed to do, but it is a common misuse of them.

Let D = {(t1,m1, σ1), . . . , (tn,mn, σn)}. We note that while Screen(D) = 1 does not guarantee
that Verify(pk ti ,mi, σi) for all i; it does guarantee that the holder of sk ti authenticated mi. Thus,
we can always prove this by first creating a new signature scheme (Gen,Sign, Verify′) where the
verification algorithm Verify′ is modified w.r.t. the original scheme as follows. Apart from the
original signatures, it also accepts signatures σ′

i derived from D such that if and only if for all
(ti,mi, σi) ∈ D, Verify′(pk ti ,mi, σ

′
i) = 1 we have Screen(D) = 1. One method to construct σ′

i would
be to give a zero-knowledge proof of knowledge of D such that Screen(D) = 1, although (using the
naive solution) these new signatures σ′

i will require O(n) space and Verify′ will run in O(n) time.
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3 Algebraic Setting and Group Membership

Bilinear Groups. Let BSetup be an algorithm that, on input the security parameter 1`, outputs
the parameters for a bilinear map as (q, g, G, GT , e), where G, GT are of prime order q ∈ Θ(2`).
The efficient mapping e : G×G→ GT is both: (Bilinear) for all g ∈ G and a, b← Zq, e(ga, gb) =
e(g, g)ab; and (Non-degenerate) if g generates G, then e(g, g) 6= 1. Following prior work, we write
G and GT in multiplicative notation, although G is actually an additive group. Our constructions
from Section 5 also work in the setting e : G1 × G2 → GT , where G1 and G2 are distinct groups,
possibly without efficient isomorphisms between them, but it is more tedious to write. However, this
later implementation allows for the shortest group elements. We note that if the Chatterjee-Sarkar
IBS scheme also works in this setting, so will our proposed batch verifier in Section 4.

Testing Membership in G. In a non-bilinear setting, Boyd and Pavlovski [6] observed that
the proofs of security for many previous batch verification or screening schemes assumed that
the signatures (potentially submitted by a malicious adversary) were elements of an appropriate
subgroup. For example, it was common place to assume that signatures submitted for batch DSA
verification contained an element in a subgroup G of Z∗

p of prime order q. Boyd and Pavlovski [6]
pointed out efficient attacks on many batching algorithms via exploiting this issue. Of course, group
membership cannot be assumed, it must be tested and the work required by this test might well
obliterate all batching efficiency gains. E.g., verifying that an element y is in G by testing if yq

mod q = 1; easily obliterates the gain of batching DSA signatures. Boyd and Pavlovski [6] suggest
methods for overcoming this problem through careful choice of q.

In this paper, we will work in a bilinear setting, and we must be careful to avoid this common
mistake in batch verification. To do so, we must say more about the groups in which we are
working. Let E be an elliptic curve over a finite field Fp and let O denote the point at infinity. We
denote the group of points on E defined over Fp as E(Fp). Then, a prime subgroup G ⊆ E(Fp) of
order q is chosen appropriately for our mapping. Our proofs will require that elements of purported
signatures are members of G and not E(Fp) \ G. The question is: how efficiently can this fact
be verified? Determining whether some data represents a point on a curve is easy. The question
is whether it is in the correct subgroup. Assuming we have a bilinear map e : G1 × G2 → GT .
In all the schemes we use, signatures are in G1, so this is the group we are interested in testing
membership of. Elements in G1 will always be in Fp and have order q, so we can use cofactor
multiplication: The curve has hq points over Fp, so if an element y satisfies the curve equation and
hy 6= O (here G1 is expressed in additive notation), then that element is in G1. If one chooses a
curve with h = 1 then this test is trivial, but even if h > 1, but still much smaller than q, this test
is efficient. Chen, Cheng and Smart discuss this and ways to test membership in G2 in [16].

4 Batch Verification without Random Oracles

In this section, we present a method for batch verifying signatures together with their accompanying
certificates. We propose using Chatterjee-Sarkar Two-Level Hierarchical Signatures [15] with the
first level corresponding to the certificate and the second level used for signing messages. We
assume all certificates originate from the same authority. The HIBE scheme is secure under the
Decision Bilinear Diffie-Hellman assumption in the plain model [15], and we conjecture the IBS
scheme requires only the Computational Diffie-Hellman assumption.
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This batch verification method can execute in different modes, optimizing for the lowest runtime.
Let n be the number of certificate/signature pairs, let 2k be the number of users and let there be
k bits per message. Let z be the additional security parameter required by the Chatterjee-Sarkar
IBS. Furthermore assume that the k bits are divided into z elements of k/z bits each. Then our
batch verifier will verify n certificate/signature pairs with asymptotic complexity of the dominant
operations roughly MIN{(2n + 3) , (z + 3)}.

On the practical side, we note that as z grows there is a corresponding degration in the concrete
security of the IBS scheme (see [15] for a detailed discussion of these tradeoffs.) Setting z = k/32,
however, seems a reasonable choice. Suppose we use SHA256 to hash all the messages (k = 256)
and we choose the elements to be 32 bits (k/z = 32), then roughly when n ≥ 3 batch verification
becomes faster than individual verification.

4.1 Batch Verification for Chatterjee-Sarkar IBS

We describe a batch verification algorithm for the Chatterjee-Sarkar IBS scheme [15], where the
number of pairings depends on the security parameter and not on the number of signatures. Chat-
terjee and Sarkar actually describe a HIBE scheme in [15], but any HIBE is known to imply an
IBS scheme [7]. Indeed, in the conference version of this paper [8], we presented a batch verifier for
the IBS scheme implicitly defined by the Waters HIBE [42] and later explicitly described by Boyen
and Waters [7]. However, Naccache [37] showed how to drastically improve the practicality of the
Waters IBE and then Chatterjee-Sarkar showed how to do the same for the Waters HIBE. Thus, it
makes sense to only describe batching for the Chatterjee-Sarkar IBS, since it is essentially a gener-
alized, optimized version of the Boyen-Waters IBS. In fact, the structure of this optimized variant
is uniquely suited for additional optimizations when batching. The efficiency gain over the corre-
sponding scheme described in [8] is considerable. Here we explicitly describe the Chatterjee-Sarkar
IBS and then show how to batch verify these signatures.

We assume that the identities and messages are both bit strings of length k represented by z
blocks of k/z bits each. (If this is not the case, then let k be the larger bit length and then pre-pad
the shorter string with zeros.) Let BSetup(1`)→ (q, g, G, GT , e).

Setup: First choose a secret α ∈ Zq and h ∈ G and calculate A = e(g, h)α. Then pick two random
integers y′1, y

′
2 ∈ Zq and a random vector y = (y1, . . . , yk) ∈ Zk

q . The master secret key is
MK = hα and the public parameters are given as: PP = g,A, u′

1 = gy′1 , u′
2 = gy′2 , u1 =

gy1 , . . . , uk = gyk .
We use the notation of Chatterjee and Sarkar [15] to define the following function. Let
v = (v1, . . . , vz), where each vi is a (k/z)-bit string. For i ∈ {1, 2}, let:

Ui(v) = u′
i

z∏
j=1

u
vj

j .

Extract: To create a private key for a user with identity ID ∈ {0, 1}k, select r ∈ Zq and return

KID =
(
gα · U1(ID)r, g−r

)
.

Sign: To sign a message m ∈ {0, 1}k using private key K = (K1,K2), select s ∈ Zq and return

S =
(
K1 · U2(m)s, K2, g−s

)
.
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Verify: To verify a signature S = (S1, S2, S3) from identity ID ∈ {0, 1}k on message m ∈ {0, 1}k,
check that:

e(S1, g) · e(S2, U1(ID)) · e(S3, U2(m)) = A.

If this equation holds, output accept; otherwise output reject.

We now introduce a batch verifier for this signature scheme. The basic idea is to adopt the small
exponents test from [2] and to take advantage of the peculiarities of bilinear maps. Let KeyGen,
Sign and Verify be as before.

Batch Verify: Suppose we want to verify n purported signatures. Let κi
j and mi

j denote the j’th
(k/z)-bit block of the identity of the i’th signer and the message signed by the i’th signer,
respectively. Let Si = (Si

1, S
i
2, S

i
3) denote the signature from the i’th signer. First check if

Si
1, S

i
2, S

i
3 ∈ G for all i. If not; output reject. Otherwise generate a vector ∆ = (δ1, . . . , δn)

where each δi is a random element of `b bits from Zq and set

P = e(
n∏

i=1

Si
1
δi , g) · e(

n∏
i=1

Si
2
δi , u′

1) · e(
n∏

i=1

Si
3
δi , u′

2).

Depending on the values of z and n (c.f. below), pick and check one of the following equations:

n∏
i=1

Aδi = P ·
n∏

i=1

e(Si
2
δi ,

z∏
j=1

u
κi

j

j ) · e(Si
3
δi ,

z∏
j=1

u
mi

j

j )

 (1)

n∏
i=1

Aδi = P ·
z∏

j=1

e(
n∏

i=1

(Si
2
κi

j · Si
3
mi

j )δi , uj) (2)

Output accept if the chosen equation holds; otherwise output reject.

Let us discuss which equation should be picked. If n < 2z, use equation 1; otherwise, use
equation 2.

Theorem 4.1 The above algorithm is a batch verifier for the Chatterjee-Sarkar IBS.

Proof. First we show that Verify(IDt1 ,M1, S1) = · · · = Verify(IDtn ,Mn, Sn) = 1 implies that
Batch((IDt1 ,M1, S1), . . . , (IDtn ,Mn, Sn)) = 1. This follows from the verification equation for the
Chatterjee-Sarkar IBS scheme:

n∏
i=1

Aδi =
n∏

i=1

(
e(Si

1, g) · e(Si
2, U1(IDti)) · e(Si

3, U1(Mi))
)δi

= e(
n∏

i=1

Si
1
δi , g) ·

n∏
i=1

e(Si
2
δi , u′

1

z∏
j=1

u
κi

j

j ) ·
n∏

i=1

e(Si
3
δi , u′

2

z∏
j=1

u
mi

j

j )

= P ·
n∏

i=1

e(Si
2
δi ,

z∏
j=1

u
κi

j

j ) · e(Si
3
δi ,

z∏
j=1

u
mi

j

j )

 (3)
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Since for all i, Verify(IDti ,Mi, Si) = 1, (Si
1, S

i
2, S

i
3) are valid signatures and hence we can write

Si
2 = gbi and Si

3 = gci for some elements bi, ci ∈ Zq. To complete the first part of this proof, we we
only need to show that equation 3 is the same as equation 2:∏n

i=1 e(Si
2
δi ,

∏z
j=1 u

κi
j

j ) ·
∏n

i=1 e(Si
3
δi ,

∏z
j=1 u

mi
j

j ) =
∏n

i=1

(
e(gbi , g

Pz
j=1 κi

jyj ) · e(gci , g
Pz

j=1 mi
jyj )

)δi

=∏n
i=1

(
e(g, g)

Pz
j=1(δibiκ

i
jyj+δicim

i
jyj)

)
=

∏z
j=1

(
e(g, g)yj

Pn
i=1(δibiκ

i
j+δicim

i
j )

)
=

∏z
j=1 e(

∏n
i=1(S

i
2
κi

j ·

Si
3
mi

j )δi , uj).
We must now show the other direction. This proof is an application of the technique for proving

the small exponents test in [2]. Since Si
1, S

i
2, S

i
3 ∈ G we can write Si

1 = gai , Si
2 = gbi and Si

3 = gci

for some ai, bi, ci ∈ Zq just as before. This means that the verification equation for the Chatterjee-
Sarkar IBS can be rewritten as:

e(g, g)α = e(ga, g) · e(gb, gy′1g
Pz

j=1 yjκj ) · e(gc, gy′2g
Pz

j=1 yjmj )

= e(g, g)a+by′1+cy′2+b
Pz

j=1 yjκj+c
Pz

j=1 yjmj (4)

Using equation 1, 3 and 4 we get the following version of the batch verification equation:

e(g, g)
Pn

i=1 δiα = e(g, g)
Pn

i=1 δi(ai+biy
′
1+ciy

′
2+bi

Pz
j=1 yjκi

j+ci
Pz

j=1 yjmi
j) (5)

Setting βi = α−
(
ai + biy

′
1 + ciy

′
2 + bi

∑z
j=1 yjκ

i
j + ci

∑z
j=1 yjm

i
j

)
and rewriting equation 5 we get:

e(g, g)
Pn

i=1 δiα−
Pn

i=1 δi(ai+biy
′
1+ciy

′
2+bi

Pz
j=1 yjκi

j+ci
Pz

j=1 yjmi
j) = 1

⇒
n∑

i=1

δiα−
n∑

i=1

δi

ai + biy
′
1 + ciy

′
2 + bi

z∑
j=1

yjκ
i
j + ci

z∑
j=1

yjm
i
j

 ≡ 0 (mod q)

⇒
n∑

i=1

δiβi ≡ 0 (mod q) (6)

Assume that Batch((IDt1 ,M1, S1), . . . , (IDtn ,Mn, Sn)) = 1, but for at least one i it is the case
that Verify(IDti ,Mi, Si) = 0. Assume wlog that this is true for i = 1, which means that β1 6= 0.
Since q is a prime then β1 has an inverse γ1 such that β1γ1 ≡ 1 (mod q). This and equation 6 gives
us:

δ1 ≡ −γ1

n∑
i=2

δiβi (mod q) (7)

Given (IDti ,Mi, Si) where i = 1 . . . n, let E be an event that occurs if Verify(IDt1 ,M1, S1) = 0
but Batch((IDt1 ,M1, S1), . . . , (IDtn ,Mn, Sn)) = 1, or in other words that we break batch verifica-
tion. Note that we do not make any assumptions about the remaining values. Let ∆′ = δ2, . . . , δn

denote the last n−1 values of ∆ and let |∆′| be the number of possible values for this vector. Equa-
tion 7 says that given a fixed vector ∆′ there is exactly one value of δ1 that will make event E happen,
or in other words that the probability of E given a randomly chosen δ1 is Pr[E|∆′] = 2−`b . So if we
pick δ1 at random and sum over all possible choices of ∆′ we get Pr[E] ≤

∑|∆′|
i=1 (Pr[E|∆′] · Pr[∆′]).

Plugging in the values, we get: Pr[E] ≤
∑2`b(n−1)

i=1

(
2−`b · 2−`b(n−1)

)
= 2−`b . 2 2
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5 Faster Batch Verification with Restrictions

In this section, we present a second method for batch verifying signatures together with their
accompanying certificates. We propose using the BLS signature scheme [5] for the certificates and
a modified version of the CL signature scheme [9] for signing messages. This method requires
only two pairings to verify n certificates (from the same authority) and three pairings to verify
n signatures (from possibly different signers). The cost for this significant efficiency gain is some
usage restrictions, although as we will discuss, these restrictions may not be a problem for some of
the applications we have in mind.

Certificates: We use a batch verifier for BLS signatures from the same authority as described in
Section 5.1. The scheme is secure under CDH in the random oracle model. To verify n BLS
certificates costs n-MultExpCost2G(`b) + PairCost2G,G + GroupTestCostnG + HashCostnG, using the
Section 1.2 notation.

Signatures: We describe a new signature scheme CL* with a batch verifier in Section 5.2. The
scheme is secure under the LRSW assumption in the plain model when the message space is
a polynomial and in the random oracle model when the message space is super-polynomial.
We assume that there are discrete time or location identifiers φ ∈ Φ. A user can issue at
most one signature per φ (e.g., this might correspond to a device being allowed to broadcast
at most one message every 300ms) and only signatures from the same φ can be batch verified
together. To verify n CL* signatures, costs n-MultExpCost2G(`b)+n-MultExpCostG(|w|+ `b)+
PairCost3G,G + GroupTestCostnG + HashCostnG, where w is the output of a hash function.

5.1 Batch Verification of BLS Signatures

We describe a batch verifier for many signers for the Boneh, Lynn, and Shacham signatures [5, 4]
described in Section 2, using the small exponents test [2].

Batch Verify: Given purported signatures σi from n users on messages Mi for i = 1 . . . n, first
check that σi ∈ G for all i and if not; output reject. Otherwise compute hi = H(Mi) and generate
a vector δ = (δ1, . . . , δn) where each δi is a random element of `b bits from Zq. Check that
e(

∏n
i=1 σδi

i , g) =
∏n

i=1 e(hi, pk i)δi . If this equation holds, output accept; otherwise output reject.

Theorem 5.1 The algorithm above is a batch verifier for BLS signatures.

Proof. The proof is similar to proof 4.1 and omitted for space reasons. 2

Single Singer for BLS. However, BLS [5, 4] previously observed that if we have a single signer
with public key v, the verification equation can be written as e(

∏n
i=1 σδi

i , g) = e(
∏n

i=1 hδi
i , v) which

reduces the load to only two pairings.

Theorem 5.2 ([5, 4]) The algorithm above is a single-signer, batch verifier for BLS signatures.
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5.2 A New Signature Scheme CL*

In this section we introduce a new signature scheme secure under the LRSW assumption [36], which
is based on the Camenisch and Lysyanskaya signatures [9].

Assumption 5.3 (LRSW Assumption) Let BSetup(1`)→ (q, g, G, GT , e). Let X, Y ∈ G, X =
gx, and Y = gy. Let OX,Y (·) be an oracle that, on input a value m ∈ Z∗

q, outputs a triple A =
(a, ay, ax+mxy) for a randomly chosen a ∈ G. Then for all probabilistic polynomial time adversaries
A(·), ν(`) defined as follows is a negligible function:

Pr[(q, g, G, GT , e)← BSetup(1`);x← Zq; y ← Zq;X = gx;Y = gy;

(m,a, b, c)← AOX,Y (q, g, G, GT , e, X, Y ) : m /∈ Q ∧ m ∈ Z∗
q ∧

a ∈ G ∧ b = ay ∧ c = ax+mxy] = ν(`) ,

where Q is the set of queries that A made to OX,Y (·).

The Original CL Scheme. Recall the Camenisch and Lysyanskaya signature scheme [9]. Let
BSetup(1`) → (q, g, G, GT , e). Choose the secret key (x, y) ∈ Z2

q at random and set X = gx

and Y = gy. The public key is pk = (X, Y ). To sign a message m ∈ Z∗
q , choose a random

a ∈ G and compute b = ay, c = axbxm. Output the signature (a, b, c). To verify, check whether
e(X, a) · e(X, b)m = e(g, c) and e(a, Y ) = e(g, b) holds.

CL*: A version of the CL Scheme Allowing Batch Verification. Our goal is to batch-verify
CL signatures made by different signers. That is we need to consider how to verify equations of
the form e(X, a) · e(X, b)m = e(g, c) and e(a, Y ) = e(g, b). The fact that the values X, a, b, and c
are different for each signature seems to prevent efficient batch verification. Thus, we need to find
a way such that many different signers share some of these values. Obviously, X and c need to be
different. Now, depending on the application, all the signers can use the same value a by choosing
a as the output of some hash function applied to, e.g., the current time period or location. We
then note that all signers can use the same b in principle, i.e., have all of them share the same Y as
it is sufficient for each signer to hold only one secret value (i.e., sk = x). Indeed, the only reason
that the signer needs to know Y is to compute b. However, it turns out that if we define b such
that loga b is not known, the signature scheme is still secure. So, for instance, we can derive b in a
similar way to a using a second hash function. Thus, all signers will virtually sign using the same
Y per time period (but a different one for each period).

Let us now describe the resulting scheme. Let BSetup(1`)→ (q, g, G, GT , e). Let φ ∈ Φ denote
the current time period or location, where |Φ| is polynomial. LetM be the message space, for now
letM = {0, 1}∗. Let H1 : Φ→ G, H2 : Φ→ G, and H3 :M×Φ→ Zq be different hash functions.

KeyGen: Choose a random x ∈ Zq and set X = gx. Set sk = x and pk = X.
Sign: If this is the first call to Sign during period φ ∈ Φ, then on input message m ∈ M, set

w = H3(m||φ), a = H1(φ), b = H2(φ) and output the signature σ = axbxw. Otherwise, abort.
Verify: On input message-period pair (m,φ) and purported signature σ, compute w = H3(m||φ),

a = H1(φ) and b = H2(φ), and check that e(σ, g) = e(a,X) · e(b, X)w. If true, output accept;
otherwise output reject.

12



Theorem 5.4 Under the LRSW assumption in G, the CL* signature scheme is existentially un-
forgeable in the random oracle model for message space M = {0, 1}∗.

Proof. We show that if there exists a p.p.t. adversary A that succeeds with probability ε in forging
CL* signatures, then we can construct a p.p.t. adversary B that solves the LRSW problem with
probability ε · |Φ|−1 · q−1

H in the random oracle model, where qH is the maximum number of oracle
queries A makes to H3 during any period φ ∈ Φ. Recall that |Φ| is a polynomial. Adversary
BOX,Y (·) against LRSW operates as follows on input (q, g, G, GT , e, X, Y ). Let ` be the security
parameter. We assume that Φ is pre-defined. Let qH be the maximum number of queries A makes
to H3 during any period φ ∈ Φ.

1. Setup: Send the bilinear parameters (q, g, G, GT , e) to A. Choose a random w′ ∈ M and
query OX,Y (w′) to obtain an LRSW instance (w′, a′, b′, c′). Choose a random φ′ ∈ Φ. Treat
H1,H2,H3 as random oracles. Allow A access to the hash functions H1,H2,H3.

2. Key Generation: Set pk∗ = X. For i = 1 to n, choose a random sk i ∈ Zq and set pk i = gsk i .
Output to A the keys pk∗ and all (pk i, sk i) pairs.

3. Oracle queries: B responds to A’s hash and signing queries as follows. Choose random ri and
si in Zq for each time period (except φ′). Set up H1 and H2 such that:

H1(φi) =

{
gri if φi 6= φ′

a′ otherwise
(8)

and

H2(φi) =

{
gsi if φi 6= φ′

b′ otherwise
(9)

Pick a random j in the range [1, qH ]. Choose random tl,i ∈ Zq, such that tl,i 6= w′, for
l ∈ [1, qH ] and i ∈ [1, |Φ|]. Set up H3 such that:

H3(ml||φi) =

{
tl,i if φi 6= φ′ or l 6= j

w′ otherwise
(10)

B records m∗ := mj . Finally, set the signing query oracle such that on the lth query involving
period φi:

Osk∗(ml||φi) =


abort if φi = φ′ and l 6= j

c′ else if φi = φ′ and l = j

XriX(si)tl,i otherwise

(11)

4. Output: At some point A stops and outputs a purported forgery σ ∈ G for some (ml, φi). If
φi 6= φ′, B did not guess the correct period and thus B outputs a random guess for the LRSW
game. If ml = m∗ or the CL* signature does not verify, A’s output is not a valid forgery and
thus B outputs a random guess for the LRSW game. Otherwise, B outputs (tl,i, a′, b′, σ) as
the solution to the LRSW game.

We now analyze B’s success. If B is not forced to abort or issue a random guess, then we
note that σ = H1(φi)xH2(φi)xH3(ml||φi). In this scenario φi = φ′ and tl,i 6= w′. We can substitute
as σ = (a′)x(b′)x(tl,i). Thus, we see that (tl,i, a′, b′, σ) is indeed a valid LRSW instance. Thus, B
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succeeds at LRSW whenever A succeeds in forging CL* signatures, except when B is forced to abort
or issue a random guess. First, when simulating the signing oracle, B is forced to abort whenever it
incorrectly guesses which query to H3, during period φ′, A will eventually query to Osk∗(·, ·). Since
all outputs of H3 are independently random, B will be forced to abort at most q−1

H probability.
Next, provided that A issued a valid forgery, then B is only forced to issue a random guess when
it incorrectly guesses which period φ ∈ Φ that A will choose to issue its forgery. Since, from the
view of A conditioned on the event that B has not yet aborted, all outputs of the oracles are
perfectly distributed as either random oracles (H1,H2,H3) or as a valid CL* signer (Osk∗). Thus,
this random guess is forced with probability at most |Φ|−1. Thus, if A succeeds with ε probability,
then B succeeds with probability ε · |Φ|−1 · q−1

H . 2 2

Theorem 5.5 Under the LRSW assumption in G, the CL* signature scheme is existentially un-
forgeable in the plain model when |M| is polynomial.

Proof sketch. If there exists a p.p.t. adversary A that succeeds with probability ε in forging CL*
signatures when |M| = poly(`), then we can construct a p.p.t. adversary B that solves the LRSW
problem with probability ε · |Φ|−1 · |M|−1. Canetti, Halevi, and Katz [10] described one method of
constructing a universal one-way hash function that satisfies a polynomial number of input/output
constraints, i.e., pairs (xi, yi) such that H(xi) = yi. Furthermore, we note that H1, H2 and H3 have
|Φ|, |Φ|, and |Φ| · |M| constraints, respectively. Since these are all polynomials, B can efficiently
construct the appropriate hash functions. The analysis follows the proof with random oracles. 2

Efficiency Note. First, we observe that the CL* signatures are very short, requiring only one
element in G. Since the BLS signatures also require only one element in G, and since a public key
for the CL* scheme is also only one group element, the entire signature plus certificate could be
transmitted in three G elements. In order to get the shortest representation for these elements,
we need to use asymmetric bilinear maps e : G1 × G2 → GT , where G1 6= G2, which will allow
elements in G1 to be 160 bits and elements of G2 to be 1024 bits for a security level comparable
to RSA-1024 [30, 20]. For BLS this means that the public key will be around 1024 bits, but since
we use it for single signer, the public key of the certifying authority is probably embedded in the
systems at production time. For CL* signatures we need to hash into G1 which according to
Galbraith, Paterson and Smart [20] can be done efficiently. To summarize; using BLS and CL* we
can represent the signature plus certificate using approximately 1344 bits with security comparable
to RSA-1024, compared to around 3072 bits for actually using RSA-1024. We note that this is
based on current state of the art for pairings, and might improve in the future.

Second, suppose one uses the universal one-way hash functions described by Canetti, Halevi, and
Katz [10] to remove the random oracles from CL*. These hash functions require one exponentiation
per constraint. In our case, we may require as many as |Φ| · |M| constraints. Thus, the cost to
compute the hashes may dampen the efficiency gains of batch verification. However, our scheme will
benefit from improvements in the construction of universal one-way hash functions with constraints.
To keep |Φ| small in practice, users might need to periodically change their keys.

Batch Verification of CL* Signatures. Batch verification of n signatures σ1, . . . , σn on messages
m1, . . . ,mn for the same period φ can be done as follows. Assume that user i with public key Xi

signed message mi. Set wi = H(mi||φ). First check if σi ∈ G for all i. If not; output reject.
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Otherwise pick a vector ∆ = (δi, . . . , δn) with each element being a random `b-bit number and
check that e(

∏n
i=1 σδi

i , g) = e(a,
∏n

i=1 Xδi
i ) · e(b,

∏n
i=1 Xwiδi

i ). If this equation holds, output accept;
otherwise output reject.

Theorem 5.6 The algorithm above is a batch verifier for CL* signatures.

Proof. The proof is similar to proof 4.1 and omitted for space reasons. 2

6 Conclusions and Open Problems

In this paper we focused on batch verification of signatures. We overviewed the large body of existing
work, almost exclusively dealing with single signers. We extended the general batch verification
definition of Bellare, Garay and Rabin [2] to the case of multiple signers. We then presented, to
our knowledge, the first efficient and practical batch verification scheme for signatures without
random oracles. We focused on solutions that comprehended the time to verify the signature
and the corresponding certificate for the verification key. First, we presented a batch verifier for
the Chatterjee-Sarkar IBS that can verify n signatures using only z + 3 pairings (the dominant
operation), where identities are k bits divided into z elements, each of k/z bits. This is a significant
improvement over the 3n pairings required by individual verification. Second, we presented a
solution in the random oracle model that batch verifies n certificates and n CL* signatures using
only 5 pairings. Here, CL* is a variant of the Camenisch-Lysyanskaya signatures that is much
shorter, allows for efficient batch verification from many signers, but where only one signature can
be safely issued per period.

It is an open problem to find a fast batch verification scheme for short signatures without the
period restrictions from Section 5. Another exciting open problem is to develop fast batch verifiers
for various forms of anonymous authentication such as group signatures, e-cash, and anonymous
credentials.
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