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Abstract

With computer networks spreading into a variety of new environments, the need to au-
thenticate and secure communication grows. Many of these new environments have particular
requirements on the applicable cryptographic primitives. For instance, several applications re-
quire that communication overhead be small and that many messages be processed at the same
time. In this paper we consider the suitability of public key signatures in the latter scenario.
That is, we consider signatures that are 1) short and 2) where many signatures from (possibly)
different signers on (possibly) different messages can be verified quickly. Prior work focused
almost exclusively on batching signatures from the same signer.

We propose the first batch verifier for messages from many (certified) signers without random
oracles and with a verification time where the dominant operation is independent of the number
of signatures to verify. We further propose a new signature scheme with very short signatures, for
which batch verification for many signers is also highly efficient. Combining our new signatures
with the best known techniques for batching certificates from the same authority, we get a fast
batch verifier for certificates and messages combined. Although our new signature scheme has
some restrictions, it is very efficient and still practical for some communication applications.

1 Introduction

As the world moves towards pervasive computing and communication, devices from vehicles to
dog collars will soon be expected to communicate with their environments. For example, many
governments and industry consortia are currently planning for the future of intelligent cars that
constantly communicate with each other and the transportation infrastructure to prevent accidents
and to help alleviate traffic congestion [15, 46]. Raya and Hubaux suggest that vehicles will transmit
safety messages every 300ms to all other vehicles within a minimum range of 110 meters [44], which
in turn may retransmit these messages.

For such pervasive systems to work properly, there are many competing constraints [15, 46,
33, 44]. First, there are physical limitations, such as a limited spectrum allocation for specific
types of communications and the potential roaming nature of devices, that require that messages
be kept very short and (security) overhead be minimal [33]. Yet for messages to be trusted by
their recipients, they need to be authenticated in some fashion, so that entities spreading false
information can be held accountable. Thus, some short form of authentication must be added.
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Third, different messages from many different signers may need to be verified and processed quickly
(e.g., every 300ms [44]). A possible fourth constraint that these authentications remain anonymous
or pseudonymous, we leave as an exciting open problem.

In this work, we consider the suitability of public key signatures to the needs of pervasive
communication applications. Generating one signature every 300ms is not a problem for current
systems, but transmitting and/or verifying 100+ messages per second might pose a problem. Using
RSA signatures for example seems attractive as they are verified quickly, however, one would need
approximately 3000 bits to represent a signature on a message plus the certificate (i.e., the public
key and signature on that public key) which might be too much for some applications (see Section
8.2 of [44]). While many new schemes based on bilinear maps can provide the same security with
significantly smaller signatures, they take significantly more time to verify. Thus, it is not imme-
diately clear what the proper tradeoff between message length and verification time is for many
pervasive communication applications. However, in some applications, there is evidence that doing
a small amount of additional computation is more advantageous than sending longer messages. For
example, Landsiedel, Wehrle, and Götz showed that for applications using Mica2 sensors transmit-
ting data consumes significantly more battery power than keeping the CPU active [36], and in [3]
Barr and Asanović note that wireless transmission of just a single bit, can use more than 1000 times
the energy required for a 32 bit computation.

Fast verification of many signatures is an interesting problem in other scenarios as well. Consider
a scenario where a mail server receives a lot of signed e-mails. To handle a variety of different e-
mail clients on the internal network, it is easier to let the server do signature verification and insert
a message into the body of the e-mail about who signed it. Assuming the internal network and
the mail server are secure, clients can rely on the signature being correct without having to verify
it themselves. However, the actual digital signature can still be attached to the e-mail should a
dispute about the authenticity of the message later arise. To keep resource usage on the server to
a minimum, signature verification should be fast, but we can take advantage of the fact that the
server can buffer messages for a short period before verifying all of them.

1.1 Our Contributions

Now, if one wants both, short signatures and short verification times, it seems that one needs to
improve on the verification of the bilinear-map based schemes or try to reduce the signature size
of a fast signature scheme such as RSA. In this paper we take the first route and investigate the
known batch-verification techniques and to what extent they are applicable to bilinear-map based
schemes, whereas for example Gentry provides a method for compressing Rabin signatures in [24].
We note that while these two techniques are not mutually exclusive (in fact Gentry mentions that
the compressed Rabin signatures can be aggregated [24]), compressing signatures has not been the
focus of our work. More precisely, the main contributions of this paper are:

1. We instantiate the general batch verification definitions of Bellare, Garay, and Rabin [4] to the
case of signatures from many signers. We also do this for a weaker notion of batch verification
called screening and show the relation of these notions to the one of aggregate signatures.
Surprisingly, for most known aggregate signature schemes a batching algorithm is provably
not obtained by aggregating many signatures and then verifying the aggregate.

2. We present a batch verifier for the Π-IBS scheme [17]. (More precisely, this is the IBS scheme
implicitly defined by the Chatterjee-Sarkar hierarchical IBE [17] and it can also be viewed as a
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generalized version of the Boyen-Waters IBS [10] as we will discuss later.) To our knowledge,
this is the first batch verifier for a signature scheme without random oracles. Let z be the
additional security parameter required by the Π-IBS. When identities and messages are k
bits, viewed as z chunks of k/z bits each, our algorithm verifies n Π-IBS signatures using only
(z + 3) pairings. Individually verifying n signatures would cost 3n pairings.

3. We present a new signature scheme, Π-Sig, derived from the Camenisch and Lysyanskaya
signature scheme [12], which is secure in the random oracle model. Π-Sig signatures require
only one-third the space of the original CL signatures– on par with the shortest signatures
known [8] –, but users may only issue one signature per period (e.g., users might only be
allowed to sign one message per 300ms). We present a batch verifier for these signatures from
many different signers that verifies n signatures using only three total pairings, instead of the
5n pairings required by n original CL signatures. Yet, our batch verifier has the restriction
that it can only batch verify signatures made during the same period. Π-Sig signatures form
the core of the only public key authentication, known to us, that is extremely short and highly
efficient to verify in bulk.

4. Often signatures and certificates need to be verified together. This happens implicitly in IBS
schemes. To achieve this functionality with Π-Sig signatures, we can issue signatures with
Π-Sig and certificates with the Boneh, Lynn and Shacham signatures [8]. Then we can batch
the Π-Sig signatures (on any message from any signer) using a new batch verifier proposed
herein; and we can batch the BLS certificates (on any public key from the same authority)
using a known batch verifier that can batch verify n signatures from the same signer using
only two pairings.

1.2 Batch Verification Overview

Batch cryptography was introduced in 1989 by Fiat [22] for a variant of RSA. Later, in 1994,
Naccache, M’Räıhi, Vaudenay and Raphaeli [43] gave the first efficient batch verifier for DSA
signatures, however an interactive batch verifier presented in an early version of their paper was
broken by Lim and Lee [38]. In 1995 Laih and Yen proposed a new method for batch verification of
DSA and RSA signatures [35], but the RSA batch verifier was broken five years later by Boyd and
Pavlovski [9]. In 1998 Harn presented two batch verification techniques for DSA and RSA [28, 29]
but both were later broken [9, 31, 32]. The same year, Bellare, Garay and Rabin took the first
systematic look at batch verification [4] and presented three generic methods for batching modular
exponentiations, called the random subset test, the small exponents test and the bucket test which
are similar to the ideas from [43, 35]. They showed how to apply these methods to batch verification
of DSA signatures and also introduced a weaker form of batch verification called screening. In 2000
some attacks against different batch verification schemes, mostly ones based on the small exponents
test and related tests, were published [9]. These attacks do not invalidate the proof of security for
the small exponents test, but rather show how the small exponents test is often used in a wrong way.
However, they also describe methods to repair some broken schemes based on this test. In 2001
Hoshino, Masayuki and Kobayashi [30] pointed out that the problem discovered in [9] might not be
critical for batch verification of signatures, but when using batch verification to verify for example
zero-knowledge proofs, it would be. In 2004 Yoon, Cheon and Kim proposed a new ID-based
signature scheme with batch verification [19], but their security proof is for aggregate signatures and
does not meet the definition of batch verification from [4]; hence their title is somewhat misleading.
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Other schemes for batch verification based on bilinear maps were proposed [16, 49, 50, 51] but all
were later broken by Cao, Lin and Xue [14]. In 2006, a method was proposed for identifying invalid
signatures in RSA-type batch signatures [37], but Stanek [47] showed that this method is flawed.

Bellare, Garay and Rabin Testing Techniques. Let g generate a group of prime order. In
1998, Bellare, Garay and Rabin described some tests [4], for verifying equations of the form yi = gxi

for i = 1 to n, which we will use again. Obviously if one just multiplies these equations together
and checks if

∏n
i=1 yi = g

∑n
i=1 xi , it is easy to produce two pairs (x1, y1) and (x2, y2) such that the

product of them verifies correctly, but each individual verification does not, e.g. by submitting the
pairs (x1 − α, y1) and (x2 + α, y2) instead. Let us review three fixes to this broken proposal.

Random Subset Test: The first idea is to pick a random subset of these pairs (xi, yi) and multiply
them together, hoping to split up the pairs that were specifically crafted to cancel each other
out. Repeating this test ` times, picking a new random subset every time, results in the
probability of accepting invalid pairs being 2−`.

Small Exponents Test: Instead of picking a random subset every time, one can instead choose
exponents δi of (a small number of) ` bits and compute

∏n
i=1 y

δi
i = g

∑n
i=1 xiδi . They also

prove that this test results in the probability of accepting a bad pair being 2−`. The size
of ` is a tradeoff between efficiency and security and hence it is difficult to give an exact
recommendation for it. It all depends on the application and how critical it is not to accept
even a single invalid signature. For just a rough check that all signatures are correct 20 bits
seems reasonable. In a higher security setting we should probably be using around 64 bits.

Bucket Test: Finally, a method called the bucket test is even more efficient than the small ex-
ponents test for large values of n. The idea is to repeat a test called the atomic bucket test
m times. The atomic bucket test works by first putting the n instances one wants to verify
into M buckets at random. This results in M new instances of the same problem, which are
then checked using the small exponents test with security parameter m. After repeating the
atomic bucket test m times, the probability of accepting a bad pair in the original n instances
is at most 2−m.

1.3 Efficiency of Prior Work and our Contributions

Efficiency will be given as an abstract cost for computing different functions. We begin by discussing
prior work on RSA, DSA, and BLS signatures mostly for single signers, and then discuss our new
work on Π-IBS, Π-Sig and BLS signatures for many signers. Note that Lim [39] provides a number of
efficient methods for doing m-term exponentiations and Granger and Smart [27] give improvements
over the naive method for computing a product of pairings, which is why we state them explicitly.

m-MultPairCostsG,H s m-term pairings
∏m
i=1 e(gi, hi) where gi ∈ G, hi ∈ H.

m-MultExpCostsG(k) s m-term exponentiations
∏m
i=1 g

ai where g ∈ G, |ai| = k.
PairCostsG,H s pairings e(gi, hi) for i = 1 . . . s, where gi ∈ G, hi ∈ H.
ExpCostsG(k) s exponentiations gai for i = 1 . . . s where g ∈ G, |ai| = k.
GroupTestCostsG Testing whether or not s elements are in the group G.
HashCostsG Hashing s values into the group G.
MultCosts s multiplications in one or more groups.
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If s = 1 we will omit it. Throughout this paper we assume that n is the number of message/signature
pairs and `b is a security parameter such that the probability of accepting a batch that contains an
invalid signature is at most 2−`b .

RSA* is a modified version of RSA by Boyd and Pavlovski [9]. The difference to normal RSA is
that the verification equation accepts a signature σ as valid if ασe = m for some element α ∈ Z∗m of
order no more than 2, where m is the product of two primes. The signatures are usually between
1024 − 2048 bits and the same for the public key. A single signer batch verifier for this signature
scheme with cost n-MultExpCost2

Zm
(`b) + ExpCostZm

(k), where k is the number of bits in the public
exponent e, can be found in [9]. Note that verifying n signatures by verifying each signature
individually only costs ExpCostnZm

(k), so for small values of e (|e| < 2`b/3) the naive method is a
faster way to verify RSA signatures and it can also handle signatures from multiple signers. Bellare
et al. [4] presents a screening algorithm for RSA that assumes distinct messages from the same
signer and costs 2n+ ExpCostZm

(k).

DSA** is a modified version of DSA from [43] compatible with the small exponents test from [9].
There are two differences to normal DSA. First there is no reduction modulo q, so the signatures
are 672 bits instead of 320 bits and second, individual verification should check both a signature σ
and −σ and accept if one of them holds. Messages and public keys are both 160 bits long. Using the
small exponents test the cost is n-MultExpCostG(`b) + ExpCost2

G(160) + HashCostnG + MultCost2n+1

multiplications. This method works for a single signer only.

Π-IBS is an IBS scheme derived from the Chatterjee and Sarkar HIBE scheme [17] for which we
provide a batch verifier without random oracles in Section 4. An interesting property of this scheme
is that the identity does not need to be verified separately. Identities and messages are k bits divided
into z logical chunks, each of k/z bits, where z is a security parameter, and a signature is three
bilinear group elements. The computational effort required depends on the number of messages
and the security parameters. Let M = n-MultExpCostGT

(`b) + n-MultExpCost3
G(`b) + PairCost3

G,G +
GroupTestCost3n

G + MultCost3 and refer to the table below for efficiency of the scheme.

n ≤ 2z : M +2n-MultPairCostG,G + z-MultExpCost2n
G (kz ) + ExpCost2n

G (`b)
n > 2z : M +z-MultPairCostG,G + ExpCost2n

G (kz + `b) + MultCostzn

The naive application of Π-IBS to verify n signatures costs PairCost3n
G,G + z-MultExpCost2n

G (kz ) +
MultCost4n. Also note that in many security applications we do not need to transmit the identity
as a separate parameter, as it is already included in the larger protocol. For example, the identity
may be the hardware address of the network interface card.

BLS is the signature scheme by Boneh, Lynn and Shacham [8]. We discuss batch verifiers for BLS
signatures based on the small exponents test. For a screening algorithm, aggregate signatures by
Boneh, Gentry, Lynn and Shacham [7] can be used. The signature is only one group element in
a bilinear group and the same for the public key. For different signers the cost of batch verifica-
tion is n-MultPairCostG,G +n-MultExpCostG(`b) + PairCostG,G + ExpCostnGT

(`b) + GroupTestCostnG +
HashCostnG, but for single signer it is only n-MultExpCost2

G(`b) + PairCost2
G,G + GroupTestCostnG +

HashCostnG.
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Π-Sig is a new variant of Camenisch and Lysyanskaya signatures [12] presented in Section 5 designed
specifically to enable efficient batch verification. The signature is only one bilinear group element
and the same for the public key. Batch verification costs n-MultExpCost2

G(`b)+n-MultExpCostG(|w|+
`b)+PairCost3

G,G +GroupTestCostnG +HashCostnG, where w is the output of a hash function. However,
the scheme has some additional restrictions.

Small Exponents and Bucket Tests. Recall the various testing techniques covered in Sec-
tion 1.2. Our batch verifiers in this paper make use of the small exponents test, but since the
bucket test uses the small exponents test as a subroutine, we note that we can also use the bucket
test to further speed up verification of many signatures.

2 Definitions

Recall that a digital signature scheme is a tuple of algorithms (Gen,Sign,Verify) that also is cor-
rect and secure. The correctness property states that for all Gen(1`) → (pk , sk), the algorithm
Verify(pk ,m,Sign(sk ,m)) = 1.

There are two common notions of security. Goldwasser, Micali and Rivest [26] defined a scheme
to be unforgeable as follows: Let Gen(1`)→ (pk , sk). Suppose (m,σ) is output by a p.p.t. adversary
A with access to a signing oracle Osk (·) and input pk . Then the probability that m was not queried
to Osk (·) and yet Verify(pk ,m, σ) = 1 is negligible in `. An, Dodis and Rabin [1] proposed the
notion of strong unforgeability, where if A outputs a pair (m,σ) such that Verify(pk ,m, σ) = 1,
then except with negligible probability at some point the signing oracle Osk (·) was queried on m
and outputted signature σ exactly. In other words, an adversary cannot create a new signature
even for a previously signed message. Our batch verification definitions work with either notion.
The signatures used in Section 4 meet the GMR [26] definition, while those in Section 5 meet the
stronger ADR [1] definition.

Now, we consider the case where we want to quickly verify a set of signatures on (possibly)
different messages by (possibly) different signers. The input is {(t1,m1, σ1), . . . , (tn,mn, σn)}, where
ti specifies the verification key against which σi is purported to be a signature on message mi. We
extend the definitions of Bellare, Garay and Rabin [4] to deal with multiple signers. And this is an
important point that wasn’t a concern with only a single signer: one or more of the signers may
be maliciously colluding.

Definition 2.1 (Batch Verification of Signatures) Let ` be the security parameter. Suppose
(Gen,Sign,Verify) is a signature scheme, n ∈ poly(`), and (pk1, sk1), . . . , (pkn, skn) are generated
independently according to Gen(1`). Then we call probabilistic Batch a batch verification algorithm
when the following conditions hold:

• If Verify(pk ti ,mi, σi) = 1 for all i ∈ [1, n], then Batch((pk t1 ,m1, σ1), . . . , (pk tn ,mn, σn)) = 1.

• If Verify(pk ti ,mi, σi) = 0 for any i ∈ [1, n], then Batch((pk t1 ,m1, σ1), . . . , (pk tn ,mn, σn)) = 0
except with probability negligible in k, taken over the randomness of Batch.

Note that Definition 2.1 requires that signing keys be generated honestly, but then they can be
later held by an adversary. In practice, users could register their keys and prove some necessary
properties of the keys at registration time [2].
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Confusion between Batch Verification, Aggregate Signatures and Screening. As we
discussed in the introduction, several works (e.g., [19, 20]) claim to do batch verification when, in
fact, they often meet a weaker guarantee called screening [4]. In most cases the confusion is about
words, i.e., when the words batch verification are used to describe an aggregate signature scheme.

Definition 2.2 (Screening of Signatures) Let ` be the security parameter. Suppose (Gen,Sign,
Verify) is a signature scheme, n ∈ poly(`) and (pk0, sk0) ← Gen(1`). Let Osk0(·) be an oracle that
on input m outputs σ = Sign(sk0,m). Then for all p.p.t. adversaries A, we call probabilistic Screen
a screening algorithm when µ(`) defined as follows is a negligible function:

Pr[(pk0, sk0)← Gen(1`), (pk1, sk1)← Gen(1`), . . . , (pkn, skn)← Gen(1`),

D ← AOsk0
(·)(pk0, (pk1, sk1), . . . , (pkn, skn)) :

Screen(D) = 1 ∧ (pk0,m, σ) ∈ D ∧ m 6∈ Q] = µ(`),

where Q is the set of queries that A made to Osk0(·) and for all (a, b, c) ∈ D, a ∈ {0, . . . , n}.

The above definition is generalized to the multiple-signer case from the single-signer screening
definition of Bellare, Garay and Rabin [4].

Interestingly, screening is the (maximum) guarantee that most aggregate signatures offer if
one were to attempt to batch verify a group of signatures by first aggregating them together and
then executing the aggregate-verification algorithm. Consider the aggregate signature scheme of
Boneh, Gentry, Lynn and Shacham [7] based on the BLS signatures [8]. First, we review the BLS
signatures. Let e : G × G → GT , where g generates the group G of prime order q. To generate a
key pair, choose a random sk ∈ Zq and set pk = gsk . A signature on message m is σ = H(m)sk ,
where H : {0, 1}∗ → G is a hash function. To verify signature σ on message m, one checks
that e(σ, g) = e(H(m), pk). Given a group of message-signature pairs (m1, σ1), . . . , (mn, σn) (all
purportedly from the same signer), BGLS aggregates them as A =

∏n
i=1 σi. Then all signatures can

be verified in aggregate (i.e., screened) by testing that e(A, g) = e(
∏n
i=1H(mi), pk). This scheme

is not, however, a batch verification scheme since, for any a 6= 1 ∈ G, the two invalid message-
signature pairs P1 = (m1, a ·H(m1)sk ) and P2 = (m2, a

−1 ·H(m2)sk ) will verify under Definition 2.2
(as BGLS prove [7]), but will not verify under Definition 2.1. Indeed, for some pervasive computing
applications only guaranteeing screening would be disastrous, because only P1 may be relevant
information to forward to the next entity – and it won’t verify once it arrives! Also recall the e-mail
scenario from section 1. If we only did screening on the server, a user could send n messages with
invalid signatures (to different receivers) that would screen correctly. The sender could then later
claim that he did not send one of the messages and indeed the signature will not verify unless one
can get hold of all n messages! To be fair, batch verification is not what aggregate schemes were
designed to do, but it is a common misuse of them.

Let’s make one final observation about the relationship between batch verification and screening.
Let D = {(t1,m1, σ1), . . . , (tn,mn, σn)}. We note that while Screen(D) = 1 does not guarantee that
Verify(pk ti ,mi, σi) for all i; it does guarantee that the holder of sk ti authenticated mi. That is, for
all i, the holder of sk ti helped to create σi, which may or may not be a valid signature for mi. Thus,
a screening scheme can be employed to hold users accountable for the messages they “sign” in a set
D such that Screen(D) = 1, but to do this the entire set D must be recorded or retransmitted to a
third party. In the authenticated email scenario, where the mailserver is verifying the signatures on
emails for many different users, releasing D (in the event of disputes) raises serious privacy issues.
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One could consider releasing a non-interactive zero-knowledge proof of knowledge of D such that
Screen(D) = 1, although the naive approach will require O(|D|) space and O(|D|) time to verify.

3 Algebraic Setting and Group Membership

Bilinear Groups. Let BSetup be an algorithm that, on input the security parameter 1`, outputs
the parameters for a bilinear map as (q, g,G,GT , e), where G,GT are of prime order q ∈ Θ(2`).
The efficient mapping e : G×G→ GT is both: (Bilinear) for all g ∈ G and a, b← Zq, e(ga, gb) =
e(g, g)ab; and (Non-degenerate) if g generates G, then e(g, g) 6= 1. Following prior work, we write
G and GT in multiplicative notation, although G is actually an additive group. This bilinear map
is called a symmetric bilinear map. A more general version of the bilinear map is the asymmetric
bilinear map e : G1 × G2 → GT , where G1 and G2 are distinct groups, possibly without efficient
isomorphisms between them. Getting into details about how these bilinear maps are constructed
is not the purpose of this paper, so we just give a very brief overview required for reasoning about
the efficiency of our schemes.

G1 and G2 are groups of points on some curve and GT is a subgroup of a multiplicative group
over a related finite field. All groups have the same order q. Let E be an elliptic curve. We denote
the group of points on E defined over Fp as E(Fp). G1 (or G in the symmetric setting) is a subgroup
of E(Fp), G2 is usually defined as a subgroup of E(Fpk) where k is the embedding degree and GT

is a subgroup of F∗
pk . Let F be the number of bits in the representation of p and let G be the

number of bits in the representation of q. In the asymmetric setting, one can choose G = F which
means that elements of G1 can be over the smallest possible field, however this is not possible for
the symmetric case due to constraints on the possible choices of p, q and k. Hence in the symmetric
case G < F and hence we can not represent element of G using only G bits [45].

So far it seems that the asymmetric setting allows for the shortest group elements, but this is
only half the truth. The MOV attack states that solving the discrete logarithm problem on a curve,
reduces to solving it over the corresponding finite field [41], which means that the bitlength of pk

must be comparable to that of an RSA modulus to provide the same level of security. This has
implications for the size of elements in G2. For the asymmetric case, if we aim for security level
comparable to 1024 bits RSA, one can choose F to be approximately 160 bits and hence elements
in G1 will be 160 bits [34, 23]. However, elements in Fpk (and hence G2) must be of size 1024 bits.
In the symmetric case, F must be at least 512 bits for curves with embedding degree k = 2, and
hence we need 512 bits to represent an element of G.

Our constructions from Section 5 also work in the asymmetric setting which allows us to use a
short representation of the signatures. The Π-IBS scheme from Section 4 can be modified to work
in the asymmetric setting, but some parts of the signature will end up in the large group. We refer
to the efficiency note paragraphs in Section 4 and 5 for a more detailed discussion.

Complexity Assumptions. In the coming sections, we will refer to the following complexity
assumptions.

Assumption 3.1 (Computational Diffie-Hellman [21]) Let g generate a group G of prime
order q ∈ Θ(2`). For all p.p.t. adversaries A, the following probability is at most 1/2 plus a
negligible function in `:

Pr[a, b, c ← Zq; x0 ← gab; x1 ← gc; z ← {0, 1}; z′ ← A(g, ga, gb, xz) : z = z′].
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Assumption 3.2 (Decisional Bilinear Diffie-Hellman [6]) Let BSetup(1`)→ (q, g,G, GT , e),
where g generates G. For all p.p.t. adversaries A, the following probability is at most 1/2 plus a
negligible function in `:

Pr[a, b, c, d← Zq; x0 ← e(g, g)abc; x1 ← e(g, g)d; z ← {0, 1}; z′ ← A(g, ga, gb, gc, xz) : z = z′].

Assumption 3.3 (LRSW [40]) Let BSetup(1`) → (q, g,G,GT , e). Let X,Y ∈ G, X = gx, and
Y = gy. Let OX,Y (·) be an oracle that, on input a value m ∈ Z∗q, outputs a triple A = (a, ay, ax+mxy)
for a randomly chosen a ∈ G. For all p.p.t. adversaries A(·), the following probability is negligible
in `:

Pr[(q, g,G,GT , e)← BSetup(1`);x← Zq; y ← Zq;X = gx;Y = gy;

(m, a, b, c)← AOX,Y (q, g,G,GT , e, X, Y ) : m /∈ Q ∧ m ∈ Z∗q ∧
a ∈ G ∧ b = ay ∧ c = ax+mxy]

where Q is the set of queries that A made to OX,Y (·).

Testing Membership in G. In a non-bilinear setting, Boyd and Pavlovski [9] observed that
the proofs of security for many previous batch verification or screening schemes assumed that
the signatures (potentially submitted by a malicious adversary) were elements of an appropriate
subgroup. For example, it was common place to assume that signatures submitted for batch DSA
verification contained an element in a subgroup G of Z∗p of prime order q. Boyd and Pavlovski [9]
pointed out efficient attacks on many batching algorithms via exploiting this issue. Of course, group
membership cannot be assumed, it must be tested and the work required by this test might well
obliterate all batching efficiency gains. E.g., verifying that an element y is in G by testing if yq

mod q = 1; easily obliterates the gain of batching DSA signatures. Boyd and Pavlovski [9] suggest
methods for overcoming this problem through careful choice of q.

In this paper, we will work in a bilinear setting, and we must be careful to avoid this common
mistake in batch verification. Our proofs will require that elements of purported signatures are
members of G and not E(Fp) \ G. The question is: how efficiently can this fact be verified?
Determining whether some data represents a point on a curve is easy. The question is whether it is
in the correct subgroup. Assume we have a bilinear map e : G1 ×G2 → GT . In all the schemes we
use, signatures are in G1, so this is the group we are interested in testing membership of. Elements
in G1 will always be in Fp and have order q, so we can use cofactor multiplication: The curve has
hq points over Fp, so if an element y satisfies the curve equation and hy 6= O (here O is the point
at infinity and G1 is expressed in additive notation), then that element is in G1. If h is small then
this test is efficient. Chen, Cheng and Smart [18] discuss this and ways to test membership in G2.

4 Batch Verification without Random Oracles

In this section, we present a method for batch verifying an identity-based signature scheme Π-IBS.
This batch verification method can execute in different modes, optimizing for the lowest runtime.
Let n be the number of certificate/signature pairs, let 2k be the number of users and let there be k
bits per message. Let z be the additional security parameter required by the Π-IBS. Furthermore
assume that the k bits are divided into z elements of k/z bits each. Then our batch verifier will
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verify n certificate/signature pairs with asymptotic complexity of the dominant operations roughly
MIN{(2n+ 3) , (z + 3)}.

On the practical side, we note that as z grows there is a corresponding degradation in the
concrete security of the IBS scheme (see [17] for a detailed discussion of these tradeoffs.) Setting
z = k/32, however, seems a reasonable choice. Suppose we use SHA256 to hash all the messages
(k = 256) and we choose the elements to be 32 bits (k/z = 32), then roughly when n ≥ 3 batch
verification becomes faster than individual verification.

4.1 Batch Verification for Π-IBS

We describe a batch verification algorithm for the Π-IBS scheme [17], where the number of pairings
depends on the security parameter and not on the number of signatures and where no random
oracles are necessary. The underlying Π-IBS signature scheme appears only implicitly in prior
work, so let us clearly explain its origin. We begin with the observation by Boyen and Waters
that an IBS scheme is realized by the key issuing algorithm of any (fully-secure) 2-level hierarchical
identity-based encryption (HIBE) scheme [10].

In 2004, Boneh and Boyen described an efficient HIBE in the selective-ID security model [5]. In
2005, Waters described how to alter this scheme to make it fully-secure [48]. The IBS scheme that
can be extracted from Waters 2-HIBE was proven secure under CDH in the standard model by
Boyen and Waters [10]. In the conference version of this paper [11], we presented a batch verifier
for this IBS scheme. Let n be the number of certificate/signature pairs, let 2k1 be the number of
users, and let k2 be the bits per message. Then our batch verifier from the conference version can
verify n certificate/signature pairs with asymptotic complexity of the dominant operations roughly
MIN{(2n+ 3) , (k1 + n+ 3) , (n+ k2 + 3) , (k1 + k2 + 3)}. Suppose there are one billion users
(k1 = 30) and SHA256 is used to hash all the messages (k2 = 256), then when n ≥ 31 batching
becomes faster than individual verification and at most 289 dominant operations will have to be
performed regardless of n.

Fortunately, we are able to significantly improve the efficiency of these prior results. We begin
by recalling that in 2005 Naccache showed how to generalize the Waters IBE to optimize it for
efficiency [42]. These ideas were extended in 2006 by Chatterjee and Sarkar to Waters HIBE and
the resulting HIBE was proven secure under DBDH in the standard model [17]. We call the IBS
scheme implicitly defined by this generalized HIBE as Π-IBS. It is known to be secure under
DBDH [17] and we conjecture that its security can be shown under CDH.

The Π-IBS scheme and its batch verification algorithm are both considerably more practical than
the non-generalized version presented in our conference paper [11]. Indeed, the structure imposed
by the generalization [42, 17] make the Π-IBS scheme particularly well-suited for batch verification.
We now explicitly describe the Π-IBS and then show how to batch verify these signatures.

We assume that the identities and messages are both bit strings of length k represented by z
blocks of k/z bits each. (If this is not the case, then let k be the larger bit length and then pre-pad
the shorter string with zeros.) Let BSetup(1`)→ (q, g,G,GT , e).

Setup: First choose a secret α ∈ Zq and h ∈ G and calculate A = e(g, h)α. Then pick two random
integers y′1, y

′
2 ∈ Zq and a random vector y = (y1, . . . , yz) ∈ Zzq . The master secret key is

MK = hα and the public parameters are given as: PP = g,A, u′1 = gy
′
1 , u′2 = gy

′
2 , u1 =

gy1 , . . . , uz = gyz .

10



We use the notation of Chatterjee and Sarkar [17] to define the following function. Let
v = (v1, . . . , vz), where each vi is a (k/z)-bit string. For i ∈ {1, 2}, let:

Ui(v) = u′i

z∏
j=1

u
vj

j .

Extract: To create a private key for a user with identity ID = κ1, . . . , κz, select r ∈ Zq and return
KID = (hα · U1(ID)r, g−r) .

Sign: To sign a message m = m1, . . . ,mz using private key K = (K1,K2), select s ∈ Zq and return

S =
(
K1 · U2(m)s, K2, g

−s) .
Verify: To verify a signature S = (S1, S2, S3) from identity ID = κ1, . . . , κz on message m =

m1, . . . ,mz, check that:

A = e(S1, g) · e(S2, U1(ID)) · e(S3, U2(m)).

If this equation holds, output accept; otherwise output reject.

We now introduce a batch verifier for this signature scheme. The basic idea is to adopt the
small exponents test from [4] and to take advantage of the peculiarities of bilinear maps.

Batch Verify: Suppose we want to batch verify n purported signatures. Let κij and mi
j denote the

j’th (k/z)-bit block of the identity of the i’th signer and the message signed by the i’th signer,
respectively. Let Si = (Si1, S

i
2, S

i
3) denote the signature from the i’th signer. First check if

Si1, S
i
2, S

i
3 ∈ G for all i. If not; output reject. Otherwise generate a vector ∆ = (δ1, . . . , δn)

where each δi is a random element of `b bits from Zq and set

P = e(
n∏
i=1

Si1
δi , g) · e(

n∏
i=1

Si2
δi , u′1) · e(

n∏
i=1

Si3
δi , u′2).

Depending on the values of z and n (c.f. below), pick and check one of the following equations:

n∏
i=1

Aδi = P ·
n∏
i=1

e(Si2
δi ,

z∏
j=1

u
κi

j

j ) · e(Si3
δi ,

z∏
j=1

u
mi

j

j )

 (1)

n∏
i=1

Aδi = P ·
z∏
j=1

e(
n∏
i=1

(Si2
κi

j · Si3
mi

j )δi , uj) (2)

Output accept if the chosen equation holds; otherwise output reject.

Let us discuss which equation should be picked. If n < 2z, use equation 1; otherwise, use
equation 2.

Theorem 4.1 The above algorithm is a batch verifier for the Π-IBS.
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Proof. First we show that Verify(IDt1 ,M1, S1) = · · · = Verify(IDtn ,Mn, Sn) = 1 implies that
Batch((IDt1 ,M1, S1), . . . , (IDtn ,Mn, Sn)) = 1. This follows from the verification equation for the
Π-IBS scheme:

n∏
i=1

Aδi =
n∏
i=1

(
e(Si1, g) · e(Si2, U1(IDti)) · e(Si3, U1(Mi))

)δi (3)

= e(
n∏
i=1

Si1
δi , g) ·

n∏
i=1

e(Si2
δi , u′1

z∏
j=1

u
κi

j

j ) ·
n∏
i=1

e(Si3
δi , u′2

z∏
j=1

u
mi

j

j )

= P ·
n∏
i=1

e(Si2
δi ,

z∏
j=1

u
κi

j

j ) · e(Si3
δi ,

z∏
j=1

u
mi

j

j )

 (4)

For the first part of the proof, all we need now is to show that equation 1 is equivalent to
equation 2. Since for all i, Verify(IDti ,Mi, Si) = 1, (Si1, S

i
2, S

i
3) are valid signatures and hence we

can write Si2 = gbi and Si3 = gci for some elements bi, ci ∈ Zq. Now we rewrite the part inside the
parenthesis of equation 1 and get equation 2:

n∏
i=1

e(Si2
δi ,

z∏
j=1

u
κi

j

j ) ·
n∏
i=1

e(Si3
δi ,

z∏
j=1

u
mi

j

j ) =
n∏
i=1

(
e(gbi , g

∑z
j=1 κ

i
jyj ) · e(gci , g

∑z
j=1m

i
jyj )
)δi

=
n∏
i=1

(
e(g, g)

∑z
j=1(δibiκ

i
jyj+δicim

i
jyj)
)

=
z∏
j=1

(
e(g, g)yj

∑n
i=1(δibiκ

i
j+δicim

i
j )
)

=
z∏
j=1

e(
n∏
i=1

(Si2
κi

j · Si3
mi

j )δi , uj).

We must now show the other direction. This proof is an application of the technique for proving
the small exponents test in [4]. Batch verification accepts so we know that Si1, S

i
2, S

i
3 ∈ G and hence

we can write Si1 = gai , Si2 = gbi and Si3 = gci for some ai, bi, ci ∈ Zq. Also since h ∈ G we can write
h = gd for some d ∈ Zq.

Since equation 3 is just an (inefficient) variant of the batch verification, we know that it holds,
and we can rewrite it as:

n∏
i=1

Aδi =
n∏
i=1

(
e(gai , g) · e(gbi , gy

′
1g

∑z
j=1 yjκj ) · e(gci , gy

′
2g

∑z
j=1 yjmj )

)δi
=

n∏
i=1

e(g, g)δi(ai+biy
′
1+ciy

′
2+bi

∑z
j=1 yjκj+ci

∑z
j=1 yjmj)

= e(g, h)
∑n

i=1 δid
−1(ai+biy

′
1+ciy

′
2+bi

∑z
j=1 yjκ

i
j+ci

∑z
j=1 yjm

i
j)

⇒
n∑
i=1

δiα−
n∑
i=1

δid
−1

ai + biy
′
1 + ciy

′
2 + bi

z∑
j=1

yjκ
i
j + ci

z∑
j=1

yjm
i
j

 ≡ 0 (mod q)
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Setting βi = α− d−1
(
ai + biy

′
1 + ciy

′
2 + bi

∑z
j=1 yjκ

i
j + ci

∑z
j=1 yjm

i
j

)
this can be written as:

n∑
i=1

δiβi ≡ 0 (mod q) (5)

Assume that Batch((IDt1 ,M1, S1), . . . , (IDtn ,Mn, Sn)) = 1, but for at least one i it is the case
that Verify(IDti ,Mi, Si) = 0. Assume wlog that this is true for i = 1, which means that β1 6= 0.
Since q is a prime then β1 has an inverse γ1 such that β1γ1 ≡ 1 (mod q). This and equation 5 gives
us:

δ1 ≡ −γ1

n∑
i=2

δiβi (mod q) (6)

Given (IDti ,Mi, Si) where i = 1 . . . n, let E be an event that occurs if Verify(IDt1 ,M1, S1) = 0
but Batch((IDt1 ,M1, S1), . . . , (IDtn ,Mn, Sn)) = 1, or in other words that we break batch verifica-
tion. Note that we do not make any assumptions about the remaining values. Let ∆′ = δ2, . . . , δn
denote the last n−1 values of ∆ and let |∆′| be the number of possible values for this vector. Equa-
tion 6 says that given a fixed vector ∆′ there is exactly one value of δ1 that will make event E happen,
or in other words that the probability of E given a randomly chosen δ1 is Pr[E|∆′] = 2−`b . So if we
pick δ1 at random and sum over all possible choices of ∆′ we get Pr[E] ≤

∑|∆′|
i=1 (Pr[E|∆′] · Pr[∆′]).

Plugging in the values, we get: Pr[E] ≤
∑2`b(n−1)

i=1

(
2−`b · 2−`b(n−1)

)
= 2−`b . 2

Efficiency Note. The signature for Π-IBS consists of three group elements, but since it is
identity-based there is no public key, and we assume that the identity is given ”for free” e.g. it
could be the hardware address of the network interface card. Hence the size of the signature that
verifies both the message and the identity depends only on the size of these group elements. We
have described the scheme in the symmetric bilinear setting e : G×G → GT because the original
scheme does not work in the asymmetric bilinear setting e : G1×G2 → GT . However, by switching
the order of the elements in the first pairing and modifying the public parameters accordingly, the
scheme also works in the asymmetric bilinear setting.

In the symmetric bilinear setting elements must be around 512 bits for security comparable to
1024 bits RSA, which gives us a total signature size of 1536 bits. In the asymmetric bilinear setting
the elements S2 and S3 can be represented using 160 bits, whereas S1 needs 1024 bits. However
Koblitz and Menezes [34] note that if the embedding degree k is even and k ≥ 2 one only needs
to represent the x coordinate as the y coordinate can be computed from it. Hence we only need
512 bits for S1 at the cost of some (small) additional computation per signature we want to verify.
So all in all we can represent the signature on the message and the identity using only 832 bits.
However, it might not be efficient to test membership of the group G2, which is needed for batch
verification.

5 Faster Batch Verification with Restrictions

In this section, we present a second method for batch verifying signatures together with their
accompanying certificates. We propose using the BLS signature scheme [8] for the certificates and
a modified version of the CL signature scheme [12] for signing messages. This method requires
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only two pairings to verify n certificates (from the same authority) and three pairings to verify
n signatures (from possibly different signers). The cost for this significant efficiency gain is some
usage restrictions, although as we will discuss, these restrictions may not be a problem for some of
the applications we have in mind.

Certificates: We use a batch verifier for BLS signatures from the same authority as described in
Section 5.1. The scheme is secure under CDH in the random oracle model. To verify n BLS
certificates costs n-MultExpCost2

G(`b) + PairCost2
G,G + GroupTestCostnG + HashCostnG, using the

Section 1.2 notation.

Signatures: We describe a new signature scheme Π-Sig with a batch verifier in Section 5.2. The
scheme is secure under the LRSW assumption in the plain model when the size of the message
space is a polynomial and in the random oracle model when the size of the message space
is super-polynomial. We assume that there are discrete time or location identifiers φ ∈ Φ.
A user can issue at most one signature per φ (e.g., this might correspond to a device being
allowed to broadcast at most one message every 300ms) and only signatures from the same
φ can be batch verified together. To verify n Π-Sig signatures, costs n-MultExpCost2

G(`b) +
n-MultExpCostG(|w|+ `b)+PairCost3

G,G +GroupTestCostnG +HashCostnG, where w is the output
of a hash function.

5.1 Batch Verification of BLS Signatures

We describe a batch verifier for many signers for the Boneh, Lynn, and Shacham signatures [8]
described in Section 2, using the small exponents test [4].

Batch Verify: Given purported signatures σi from n users on messages Mi for i = 1 . . . n, first
check that σi ∈ G for all i and if not; output reject. Otherwise compute hi = H(Mi) and generate
a vector δ = (δ1, . . . , δn) where each δi is a random element of `b bits from Zq. Check that
e(
∏n
i=1 σ

δi
i , g) =

∏n
i=1 e(hi, pk i)δi . If this equation holds, output accept; otherwise output reject.

Theorem 5.1 The algorithm above is a batch verifier for BLS signatures.

Proof. First we show that Verify(IDt1 ,M1, S1) = · · · = Verify(IDtn ,Mn, Sn) = 1 implies that
Batch((IDt1 ,M1, S1), . . . , (IDtn ,Mn, Sn)) = 1. This follows from the verification equation for the
BLS scheme:

n∏
i=1

e(σi, g)δi =
n∏
i=1

e(hi, pk i)
δi ⇔ e(

n∏
i=1

σδii , g) =
n∏
i=1

e(hi, pk i)
δi (7)

We must now show the other direction. This proof is again an application of the technique for
proving the small exponents test in [4]. Batch verification accepts so we know that σi ∈ G and
hence we can write σi = gci for some ci ∈ Zq. We also know that hi ∈ G so we write it as hi = gri .
Recall that pki = gxi . We know that equation 7 holds, so we can rewrite it as:
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n∏
i=1

e(σi, g)δi =
n∏
i=1

e(hi, pk i)
δi =

n∏
i=1

e(g, g)δirixi

⇒ e(g, g)
∑n

i=1 δici = e(g, g)
∑n

i=1 δirixi

⇒
n∑
i=1

δici −
n∑
i=1

δirixi ≡ 0 (mod q)

Setting βi = ci − rixi this is equivalent to:

n∑
i=1

δiβi ≡ 0 (mod q)

The rest of the proof follows from the last part of the proof of Theorem 4.1. 2

Single Singer for BLS. However, BLS [8] previously observed that if we have a single signer
with public key v, the verification equation can be written as e(

∏n
i=1 σ

δi
i , g) = e(

∏n
i=1 h

δi
i , v) which

reduces the load to only two pairings.

Theorem 5.2 ([8]) The algorithm above is a single-signer, batch verifier for BLS signatures.

5.2 A New Signature Scheme Π-Sig

In this section we introduce a new signature scheme secure under the LRSW assumption [40], which
is based on the Camenisch and Lysyanskaya signatures [12].

The Original CL Scheme. Recall the Camenisch and Lysyanskaya signature scheme [12]. Let
BSetup(1`) → (q, g,G,GT , e). Choose the secret key sk = (x, y) ∈ Z2

q at random and set X = gx

and Y = gy. The public key is pk = (X,Y ). To sign a message m ∈ Z∗q , choose a random
a ∈ G and compute b = ay, c = axbxm. Output the signature (a, b, c). To verify, check whether
e(X, a) · e(X, b)m = e(g, c) and e(a, Y ) = e(g, b) holds.

Π-Sig: A version of the CL Scheme Allowing Batch Verification. Our goal is to batch-
verify CL signatures made by different signers. That is we need to consider how to verify equations
of the form e(X, a) · e(X, b)m = e(g, c) and e(a, Y ) = e(g, b). The fact that the values X, a, b, and
c are different for each signature seems to prevent efficient batch verification. Thus, we need to find
a way such that many different signers share some of these values. Obviously, X and c need to be
different. Now, depending on the application, all the signers can use the same value a by choosing
a as the output of some hash function applied to, e.g., the current time period or location. We
then note that all signers can use the same b in principle, i.e., have all of them share the same Y as
it is sufficient for each signer to hold only one secret value (i.e., sk = x). Indeed, the only reason
that the signer needs to know Y is to compute b. However, it turns out that if we define b such
that loga b is not known, the signature scheme is still secure. So, for instance, we can derive b in a
similar way to a using a second hash function. Thus, all signers will virtually sign using the same
Y per time period (but a different one for each period).
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We note that the idea of sharing some value between the signers in order to efficiently perform
some operation on the signatures is not new. Gentry and Ramzan present an identity based
aggregate signature scheme [25] in which signatures can only be aggregated if all signers agree on
some dummy message that none of them have used before.

Let us now describe the resulting scheme. Let BSetup(1`)→ (q, g,G,GT , e). Let φ ∈ Φ denote
the current time period or location, where |Φ| is polynomial. LetM be the message space, for now
let M = {0, 1}∗. Let H1 : Φ→ G, H2 : Φ→ G, and H3 :M×Φ→ Zq be different hash functions.

KeyGen: Choose a random x ∈ Zq and set X = gx. Set sk = x and pk = X.

Sign: If this is the first call to Sign during period φ ∈ Φ, then on input message m ∈ M, set
w = H3(m||φ), a = H1(φ), b = H2(φ) and output the signature σ = axbxw. Otherwise, abort.

Verify: On input message-period pair (m,φ) and purported signature σ, compute w = H3(m||φ),
a = H1(φ) and b = H2(φ), and check that e(σ, g) = e(a,X) · e(b,X)w. If true, output accept;
otherwise output reject.

Theorem 5.3 Under the LRSW assumption in G, the Π-Sig signature scheme is existentially
unforgeable in the random oracle model for message space M = {0, 1}∗.

Proof. We show that if there exists a p.p.t. adversary A that succeeds with probability ε in forging
Π-Sig signatures, then we can construct a p.p.t. adversary B that solves the LRSW problem with
probability ε · |Φ|−1 · q−1

H in the random oracle model, where qH is the maximum number of oracle
queries A makes to H3 during any period φ ∈ Φ. Recall that |Φ| is a polynomial. Adversary
BOX,Y (·) against LRSW operates as follows on input (q, g,G,GT , e, X, Y ). Let ` be the security
parameter. We assume that Φ is pre-defined. Let qH be the maximum number of queries A makes
to H3 during any period φ ∈ Φ.

1. Setup: Send the bilinear parameters (q, g,G,GT , e) to A. Choose a random w′ ∈ M and
query OX,Y (w′) to obtain an LRSW instance (w′, a′, b′, c′). Choose a random φ′ ∈ Φ. Treat
H1, H2, H3 as random oracles. Allow A access to the hash functions H1, H2, H3.

2. Key Generation: Set pk∗ = X. For i = 1 to n, choose a random sk i ∈ Zq and set pk i = gsk i .
Output to A the keys pk∗ and all (pk i, sk i) pairs.

3. Oracle queries: B responds to A’s hash and signing queries as follows. Choose random ri and
si in Zq for each time period (except φ′). Set up H1 and H2 such that:

H1(φi) =

{
gri if φi 6= φ′

a′ otherwise
(8)

and

H2(φi) =

{
gsi if φi 6= φ′

b′ otherwise
(9)

Pick a random j in the range [1, qH ]. Choose random tl,i ∈ Zq, such that tl,i 6= w′, for
l ∈ [1, qH ] and i ∈ [1, |Φ|]. Set up H3 such that:

H3(ml||φi) =

{
tl,i if φi 6= φ′ or l 6= j

w′ otherwise
(10)
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B records m∗ := mj . Finally, set the signing query oracle such that on the lth query involving
period φi:

Osk∗(ml||φi) =


abort if φi = φ′ and l 6= j

c′ else if φi = φ′ and l = j

XriX(si)tl,i otherwise

(11)

4. Output: At some point A stops and outputs a purported forgery σ ∈ G for some (ml, φi). If
φi 6= φ′, B did not guess the correct period and thus B outputs a random guess for the LRSW
game. If ml = m∗ or the Π-Sig signature does not verify, A’s output is not a valid forgery
and thus B outputs a random guess for the LRSW game. Otherwise, B outputs (tl,i, a′, b′, σ)
as the solution to the LRSW game.

We now analyze B’s success. If B is not forced to abort or issue a random guess, then we note
that σ = H1(φi)xH2(φi)x·H3(ml||φi). In this scenario φi = φ′ and tl,i 6= w′. We can substitute as
σ = (a′)x(b′)x·(tl,i). Thus, we see that (tl,i, a′, b′, σ) is indeed a valid LRSW instance. Thus, B
succeeds at LRSW whenever A succeeds in forging Π-Sig signatures, except when B is forced to
abort or issue a random guess. First, when simulating the signing oracle, B is forced to abort
whenever it incorrectly guesses which query to H3, during period φ′, A will eventually query to
Osk∗(·, ·). Since all outputs of H3 are independently random, B will be forced to abort at most q−1

H

probability. Next, provided that A issued a valid forgery, then B is only forced to issue a random
guess when it incorrectly guesses which period φ ∈ Φ that A will choose to issue its forgery. Since,
from the view of A conditioned on the event that B has not yet aborted, all outputs of the oracles
are perfectly distributed as either random oracles (H1, H2, H3) or as a valid Π-Sig signer (Osk∗).
Thus, this random guess is forced with probability at most |Φ|−1. Thus, if A succeeds with ε
probability, then B succeeds with probability ε · |Φ|−1 · q−1

H . 2

On Removing the Random Oracles. In the previous proof, notice that we treated hash
functions H1, H2 and H3 as independent random oracles which were (statically) programmed in
|Φ|, |Φ|, and |Φ| · |M| points, respectively, where Φ is the set of time period identifiers and M
is the signing message space. Recall that, as before, |Φ| is restricted to be polynomial in the
security parameter. Now, for sufficiently short message spaces, e.g., ISO defined error messages,
we can replace all three random oracles in the security proof of Π-Sig by concrete hash functions.
Suppose that given a set of pairs (x1, y1), . . . , (xk, yk), it is possible to efficiently sample a function
H : {0, 1}` → G (where k < 2` + 1) from a (2` + 1)-independent function family H such that for
each H ∈ H, we have H(xi) = yi for i = 1 to k. If such types of hash function families exist then
we could simple constrain them exactly as we programmed our random oracles.

Fortunately, Canetti, Halevi, and Katz [13] describe a method of efficiently constructing such
a hash function family which allows to map strings to bilinear map elements (or to map strings to
elements in another prime-order algebraic group such as Zq). Boneh and Boyen describe another
such family [5]. Any family satisfying the constraints above will work for our purposes, where
H1 and H2 map into bilinear group G and H3 maps into Zq. The construction remains as before
and the new security proof simply uses concrete functions with constraints mirroring the points
(statically) programmed in the oracles.

Lemma 5.4 Under the LRSW assumption in G, the Π-Sig signature scheme is existentially un-
forgeable in the plain model when |M| are polynomial in the security parameter.
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Batch Verification of Π-Sig Signatures. Batch verification of n signatures σ1, . . . , σn on mes-
sages m1, . . . ,mn for the same period φ can be done as follows. Assume that user i with public
key Xi signed message mi. Set wi = H(mi||φ). First check if σi ∈ G for all i. If not; output
reject. Otherwise pick a vector ∆ = (δi, . . . , δn) with each element being a random `b-bit number
and check that e(

∏n
i=1 σ

δi
i , g) = e(a,

∏n
i=1X

δi
i ) · e(b,

∏n
i=1X

wiδi
i ). If this equation holds, output

accept; otherwise output reject.

Theorem 5.5 The algorithm above is a batch verifier for Π-Sig signatures.

Proof. First we show that Verify(IDt1 ,M1, S1) = · · · = Verify(IDtn ,Mn, Sn) = 1 implies that
Batch((IDt1 ,M1, S1), . . . , (IDtn ,Mn, Sn)) = 1. This follows from the verification equation for the
Π-Sig scheme if we keep in mind that

n∏
i=1

e(σi, g)δi =
n∏
i=1

(e(a,Xi) · e(b,Xi)wi)δi =
n∏
i=1

e(a,Xi)δi ·
n∏
i=1

e(b,Xi)wiδi (12)

⇔ e(
n∏
i=1

σδii , g) = e(a,
n∏
i=1

Xδi
i ) · e(b,

n∏
i=1

Xwiδi
i )

We must now show the other direction. This proof is again an application of the technique for
proving the small exponents test in [4]. Batch verification accepts so we know that σi ∈ G and
hence we can write σi = gci for some ci ∈ Zq. We also know that a and b are in G so we write them
as a = gr and b = gs. Since equation 12 is just an (inefficient) variant of the batch verification, we
know that it holds, and we can rewrite it as:

n∏
i=1

e(σi, g)δi =
n∏
i=1

(e(a,Xi) · e(b,Xi)wi)δi =
n∏
i=1

e(g, g)δi(rxi+sxiwi)

⇒ e(g, g)
∑n

i=1 δici = e(g, g)
∑n

i=1 δi(rxi+sxiwi)

⇒
n∑
i=1

δici −
n∑
i=1

δi (rxi + sxiwi) ≡ 0 (mod q)

Setting βi = ci − (rxi + sxiwi) this is equivalent to:

n∑
i=1

δiβi ≡ 0 (mod q)

The rest of the proof follows from the last part of the proof of Theorem 4.1. 2

Π-Sig Without Batch Verification. So far we have described Π-Sig only as an efficient signa-
ture scheme to batch verify, but for completeness we note that if we are not interested in batch
verification, Π-Sig is still a fairly efficient regular signature scheme without any restrictions.

KeyGen: Choose a random x ∈ Zq and set X = gx. Set sk = x and pk = X.
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Sign: Generate a value φ ∈ Φ that has never been used by the signer before. Then on input
message m ∈ M, set w = H3(m||φ), a = H1(φ), b = H2(φ), σ = axbxw and output the
signature (σ, φ).

Verify: On input message m and purported signature (σ, φ), compute w = H3(m||φ), a = H1(φ)
and b = H2(φ), and check that e(σ, g) = e(abw, X). If true, output accept; otherwise output
reject.

This is very similar to the original scheme. Note that the only change is that φ is now generated
independently from all other signers and included as part of the signature, which makes the scheme
unsuitable for batch verification (since the probability that many signers will share the same value
of φ is small). However, now that we are only interested in individual verification, we can rewrite
the original verification equation e(σ, g) = e(a,X) · e(b,X)w as e(σ, g) = e(abw, X) which requires
only two pairings to verify. Finally note that this variant of the verification equation does not
depend on how φ was generated, and can always be used for individual verification if needed.

Efficiency Note. First, we observe that the Π-Sig signatures are very short, requiring only one
element in G. Since the BLS signatures also require only one element in G, and since a public key
for the Π-Sig scheme is also only one group element, the entire signature plus certificate could be
transmitted in three G elements. In order to get the shortest representation for these elements,
we need to use asymmetric bilinear maps e : G1 × G2 → GT , where G1 6= G2, which will allow
elements in G1 to be 160 bits and elements of G2 to be 1024 bits for a security level comparable
to RSA-1024 [34, 23]. However, as noted before, if the embedding degree k is even and k ≥ 2 one
only needs to represent the x coordinate and hence elements of G2 can be represented using 512
bits. For both BLS and Π-Sig this means that the public key will be around 512 bits. For Π-Sig
signatures we need to hash into G1 which according to Galbraith, Paterson and Smart [23] can be
done efficiently. To summarize; using BLS and Π-Sig we can represent the signature plus certificate
using approximately 832 bits with security comparable to RSA-1024, compared to around 3072 bits
for actually using RSA-1024. We note that this is based on current state of the art for pairings,
and might improve in the future.

Second, suppose one uses the universal one-way hash functions described by Canetti, Halevi, and
Katz [13] to remove the random oracles from Π-Sig. These hash functions require one exponentiation
per constraint. In our case, we may require as many as |Φ| · |M| constraints. Thus, the cost to
compute the hashes may dampen the efficiency gains of batch verification. However, our scheme will
benefit from improvements in the construction of universal one-way hash functions with constraints.

If Π-Sig is used as a signatures scheme without an efficient batch verifier, the signature require
one group element in G and one element in Φ where the size of Φ only needs to be large enough to
represent the number of times a user might want to sign with the same private key. Verification of
a single Π-Sig signature requires two pairings.

6 Conclusions and Open Problems

In this paper we focused on batch verification of signatures. We overviewed the large body of
existing work, almost exclusively dealing with single signers (Boneh, Lynn and Shacham [8] provide
a batch verification scheme for multiple signers on the same message). We extended the general
batch verification definition of Bellare, Garay and Rabin [4] to the case of multiple signers. We
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then presented, to our knowledge, the first efficient and practical batch verification scheme for
signatures without random oracles. We focused on solutions that comprehended the time to verify
the signature and the corresponding certificate for the verification key. First, we presented a
batch verifier for the Π-IBS that can verify n signatures using only z + 3 pairings (the dominant
operation), where identities are k bits divided into z elements, each of k/z bits. This is a significant
improvement over the 3n pairings required by individual verification. Second, we presented a
solution in the random oracle model that batch verifies n BLS certificates and n Π-Sig signatures
using only 5 pairings. Here, Π-Sig is a variant of the Camenisch-Lysyanskaya signatures that is
much shorter, allows for efficient batch verification from many signers, but where only one signature
can be safely issued per period.

It is an open problem to find a fast batch verification scheme for short signatures without the
period restrictions from Section 5. Another exciting open problem is to develop fast batch verifiers
for various forms of anonymous authentication such as group signatures, e-cash, and anonymous
credentials.
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