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Abstract. Consider the Jacobian of a genus two curve defined over a finite
field and with complex multiplication. In this paper we show that if the `-Sylow
subgroup of the Jacobian is not cyclic, then the embedding degree of the
Jacobian with respect to ` is one.

1. Introduction

In elliptic curve cryptography it is essential to know the number of points on
the curve. Cryptographically we are interested in elliptic curves with large cyclic
subgroups. Such elliptic curves can be constructed. The construction is based on
the theory of complex multiplication, studied in detail by Atkin and Morain (1993).
It is referred to as the CM method.

Koblitz (1989) suggested the use of hyperelliptic curves to provide larger group
orders. Therefore constructions of hyperelliptic curves are interesting. The CM
method for elliptic curves has been generalized to hyperelliptic curves of genus two
by Spallek (1994), and efficient algorithms have been proposed by Weng (2003) and
Gaudry et al (2005).

Both algorithms take as input a primitive, quartic CM field K (see section 3 for
the definition of a CM field), and give as output a hyperelliptic genus two curve C
defined over a prime field Fp. A prime number p is chosen such that p = xx for a
number x ∈ OK , where OK is the ring of integers of K. We have K = Q(η) and
K ∩ R = Q(

√
D), where η = i

√
a+ bξ and

ξ =

{
1+
√

D
2 , if D ≡ 1 mod 4,√
D, if D ≡ 2, 3 mod 4.

In this paper, the following theorem is established.

Theorem 1. Let C be a hyperelliptic curve of genus two defined over Fp with
End(C) ' OK , where K is a primitive, quartic CM field as defined in definition 6.
Assume that the p-power Frobenius under this isomorphism is given by the number
ω = c1 + c2ξ + (c3 + c4ξ)η, where ξ and η are given as above and ci ∈ Z. Consider
a prime number ` | |JC(Fp)| with ` 6= p, ` - D and ` - c2. Assume that the `-Sylow
subgroup of JC(Fp) is not cyclic. Then p ≡ 1 mod `, i.e. the embedding degree of
JC(Fp) with respect to ` is one.
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2. Hyperelliptic curves

A hyperelliptic curve is a smooth, projective curve C ⊆ Pn of genus at least
two with a separable, degree two morphism φ : C → P1. Let C be a hyperelliptic
curve of genus two defined over a prime field Fp of characteristic p > 2. By the
Riemann-Roch theorem there exists an embedding ψ : C → P2, mapping C to a
curve given by an equation of the form

y2 = f(x),

where f ∈ Fp[x] is of degree six and have no multiple roots (see Cassels and Flynn,
1996, chapter 1).

The set of principal divisors P(C) on C constitutes a subgroup of the degree 0
divisors Div0(C). The Jacobian JC of C is defined as the quotient

JC = Div0(C)/P(C).

Let ` 6= p be a prime number. The `n-torsion subgroup JC [`n] < JC of elements of
order dividing `n is then (Lang, 1959, theorem 6, p. 109)

(1) JC [`n] ' Z/`nZ× Z/`nZ× Z/`nZ× Z/`nZ,
i.e. JC [`n] is a Z/`nZ-module of rank four.

The order of p modulo ` plays an important role in cryptography.

Definition 2 (Embedding degree). Consider a prime number ` dividing the order
of JC(Fp), where ` is different from p. The embedding degree of JC(Fp) with respect
to ` is the least number k, such that pk ≡ 1 mod `.

An endomorphism ϕ : JC → JC induces a Z`-linear map

ϕ` : T`(JC)→ T`(JC)

on the `-adic Tate-module T`(JC) of JC (Lang, 1959, chapter VII, §1). The map
ϕ` is given by ϕ as described in the following diagram:

. . .
[`] // JC [`n+1]

[`] //

ϕ

��

JC [`n]
[`] //

ϕ

��

. . .

. . .
[`] // JC [`n+1]

[`] // JC [`n]
[`] // . . .

Here, the horizontal maps [`] are the multiplication-by-` map. Hence, ϕ is repre-
sented by a matrix M ∈ Mat4×4(Z/`Z) on JC [`]. Let P (X) ∈ Z[X] be the charac-
teristic polynomial of ϕ (see Lang, 1959, pp. 109–110), and let PM (X) ∈ (Z/`Z)[X]
be the characteristic polynomial of the restriction of ϕ to JC [`]. Then (Lang, 1959,
theorem 3, p. 186)

(2) P (X) ≡ PM (X) mod `.

Since C is defined over Fp, the mapping (x, y) 7→ (xp, yp) is an isogeny on C.
This isogeny induces the p-power Frobenius endomorphism ϕ on the Jacobian JC .
The characteristic polynomial P (X) of ϕ is of degree four (Tate, 1966, theorem 2,
p. 140), and by the definition of P (X) (see Lang, 1959, pp. 109–110),

|JC(Fp)| = P (1),

i.e. the number of Fp-rational elements of the Jacobian is determined by P (X).
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3. CM fields

An elliptic curve E with Z 6= End(E) is said to have complex multiplication. Let
K be an imaginary, quadratic number field with ring of integers OK . K is a CM
field, and if End(E) ' OK , then E is said to have CM by OK . More generally a
CM field is defined as follows.

Definition 3 (CM field). A number fieldK is a CM field, ifK is a totally imaginary,
quadratic extension of a totally real number field K0.

In this paper only CM fields of degree [K : Q] = 4 are considered. Such a field
is called a quartic CM field.

Remark 4. Consider a quartic CM field K. Let K0 = K ∩ R be the real subfield
of K. Then K0 is a real, quadratic number field, K0 = Q(

√
D). By a basic result

on quadratic number fields, the ring of integers of K0 is given by OK0 = Z + ξZ,
where

ξ =

{
1+
√

D
2 , if D ≡ 1 mod 4,√
D, if D ≡ 2, 3 mod 4.

Since K is a totally imaginary, quadratic extension of K0, a number η ∈ K exists,
such that K = K0(η), η2 ∈ K0. The number η is totally imaginary, and we may
assume that η = iη0, η0 ∈ R. Furthermore we may assume that −η2 ∈ OK0 ; so
η = i

√
a+ bξ, where a, b ∈ Z.

Let C be a hyperelliptic curve of genus two. Then C is said to have CM by OK ,
if End(C) ' OK . The structure of K determines whether C is irreducible. More
precisely, the following theorem holds.

Theorem 5. Let C be a hyperelliptic curve of genus two with End(C) ' OK , where
K is a quartic CM field. Then C is reducible if, and only if, K/Q is Galois with
Galois group Gal(K/Q) ' Z/2Z× Z/2Z.

Proof. (Shimura, 1998, proposition 26, p. 61). �

Theorem 5 motivates the following definition.

Definition 6 (Primitive, quartic CM field). A quartic CM field K is called primi-
tive if either K/Q is not Galois, or K/Q is Galois with cyclic Galois group.

The CM method for constructing curves of genus two with prescribed endomor-
phism ring is described in detail by Weng (2003) and Gaudry et al (2005). In short,
the CM method is based on the construction of the class polynomials of a primitive,
quartic CM field K with real subfield K0 of class number h(K0) = 1. The prime
number p has to be chosen such that p = xx for a number x ∈ OK . By Weng
(2003) we may assume that x ∈ OK0 + ηOK0 .

4. Properties of JC(Fp)

Consider a primitive, quartic CM field K with real subfield K0 of class number
h(K0) = 1, and let p be an uneven prime number such that p = xx for a number
x ∈ OK0 + ηOK0 . The main result of this paper, given by the following theorem,
concerns a curve of genus two with OK as endomorphism ring.
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Theorem 7. With the notation as in remark 4, let C be a hyperelliptic curve of
genus two defined over Fp with End(C) ' OK . Assume that the p-power Frobenius
under this isomorphism is given by the number ω = c1 + c2ξ + (c3 + c4ξ)η, where
ci ∈ Z. Consider a prime number ` | |JC(Fp)| with ` 6= p, ` - D and ` - c2. Assume
that the `-Sylow subgroup of JC(Fp) is not cyclic. Then p ≡ 1 mod `, i.e. the
embedding degree of JC(Fp) with respect to ` is one.

Proof. Consider a prime number ` | |JC(Fp)| with ` - pc2D. If ` = 2, then obviously
p ≡ 1 mod `. Hence we may assume that ` 6= 2. Assume that the `-Sylow subgroup
S of JC(Fp) is not cyclic. Then S contains a subgroup U ' (Z/`Z)2. So

(Z/`Z)2 < JC(Fp)[`] < JC [`].

Let {e1, e2} ⊆ JC(Fp) be a basis of (Z/`Z)2. Expand by the isomorphism (1) this
set to a basis {e1, e2, f1, f2} of JC [`]. It then follows that 1 is an eigenvalue of the
Frobenius with eigenvectors e1 and e2, i.e. 1 is an eigenvalue of multiplicity at least
two.

First we assume that D ≡ 2, 3 mod `. Let P (X) be the characteristic polyno-
mial of the Frobenius. Since the conjugates of ω are given by ω1 = ω, ω2 = ω1, ω3

and ω4 = ω3, where

ω3 = c1 − c2
√
D + i(c3 − c4

√
D)
√
a− b

√
D,

it follows that

P (X) =
4∏

i=1

(X − ωi) = X4 − 4c1X3 + (2p+ 4(c21 − c22D))X2 − 4c1pX + p2.

Since 1 is an eigenvalue of the Frobenius of multiplicity at least two, the characte-
ristic polynomial P (X) is divisible by (X − 1)2 modulo `. Now,

P (X) = Q(X) · (X − 1)2 +R(X),

where

R(X) = 4(1− 3c1 − (c1 − 1)p+ 2(c21 − c22D))X

+ p2 − 2p− 4(c21 − c22D) + 8c1 − 3.

Since R(X) ≡ 0 mod `, it follows that

(3) 1− 3c1 − (c1 − 1)p+ 2(c21 − c22D) ≡ 0 mod `.

Since |JC(Fp)| = P (1), we know that

(4) (p+ 1)2 − 4c1(p+ 1) + 4(c21 − c22D) ≡ 0 mod `.

By equation (3) we see that 4(c21−c22D) ≡ 2(c1−1)p−2+6c1 mod `. Substituting
this into equation (4) we get

(p+ 1)2 − 4c1(p+ 1) + 2(c1 − 1)p− 2 + 6c1 ≡ 0 mod `;

so either p ≡ 1 mod ` or p ≡ 2c1 − 1 mod `. Assume p ≡ 2c1 − 1 mod `. Then

R(X) ≡ 4c22D(−2X + 1) ≡ 0 mod `.

Since ` - 2c2D, this is a contradiction. So if D ≡ 2, 3 mod 4, then p ≡ 1 mod `.
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Now consider the case D ≡ 1 mod 4. We now have

ω3 = c1 + c2
1−
√
D

2
+ i

(
c3 + c4

1−
√
D

2

)√
a+ b

1−
√
D

2
,

and it follows that the characteristic polynomial of the Frobenius is given by

P (X) = X4 − 2cX3 + (2p+ c2 − c22d)X2 − 2pcX + p2,

where c = 2c1 + c2. We see that P (X) = Q(X)(X − 1)2 +R(X), where

R(X) = ((4− 2c)p+ 2c2 − 6c− 2c22D + 4)X

+ p2 − 2p− 3 + 4c− c2 + c22D.

Since R(X) ≡ 0 mod `, it follows that

(5) p2 − 2p− 3 + 4c− c2 + c22D ≡ 0 mod `,

and since |JC(Fp)| = P (1), we know that

(6) (p+ 1)2 − 2c(p+ 1) + c2 − c22D ≡ 0 mod `.

From equation (5) and (6) it follows that

p2 − cp+ c− 1 ≡ 0 mod `,

i.e. p ≡ 1 mod ` or p ≡ c− 1 mod `. Assume p ≡ c− 1 mod `. Then

R(X) ≡ c22D(−2X + 1) ≡ 0 mod `,

again a contradiction. So if D ≡ 1 mod 4, then p ≡ 1 mod `. �

Consider the case ` | c2. Then the characteristic polynomial of the Frobenius
modulo ` is given by

P (X) ≡ (X2 − 2c1X + p)2 mod `,

independently of the remainder of D modulo 4. Observe that

X2 − 2c1X + p = (X + 1− 2c1)(X − 1) + p− 2c1 + 1.

Hence, p ≡ 2c1 − 1 mod `, i.e.

P (X) ≡ (X − 1)2(X − p)2 mod `.

So the following theorem holds.

Theorem 8. With the notation as in remark 4, let C be a hyperelliptic curve of
genus two defined over Fp with End(C) ' OK . Assume that the p-power Frobenius
under this isomorphism is given by the number ω = c1 + c2ξ + (c3 + c4ξ)η, where
ci ∈ Z. Consider a prime number ` | |JC(Fp)| with ` 6= p, ` | c2. Assume that the
`-Sylow subgroup of JC(Fp) is not cyclic. Then either

(1) JC(Fp)[`] ' (Z/`Z)2, or
(2) p ≡ 1 mod ` and JC(Fp)[`] = JC [`].

Proof. If p 6≡ 1 mod `, then 1 is not an eigenvalue of the Frobenius of multiplicity
three, i.e. JC(Fp)[`] ' (Z/`Z)2. If p ≡ 1 mod `, then 1 is an eigenvalue of the
Frobenius of multiplicity four, i.e. JC(Fp)[`] = JC [`]. �
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5. Applications

Let C be a hyperelliptic curve of genus two defined over Fp with End(C) ' OK .
Write

(7) JC(Fp) ' Z/n1Z× Z/n2Z× Z/n3Z× Z/n4Z,
where ni | ni+1 and n2 | p− 1 (see Frey and Lange, 2006, proposition 5.78, p. 111).
We recall the following result on the prime divisors of the number n2.

Theorem 9. With the notion as above, let ` | n2 be an odd prime number. Then
` ≤ Q, where

Q = max{a,D, a2 − b2D},

if D ≡ 2, 3 mod 4, and

Q = max{a,D, 4a(a+ b)− b2(D − 1), aD + 2b(D − 1)},
if D ≡ 1 mod 4. If ` > D, then c1 ≡ 1 mod ` and c2 ≡ 0 mod `.

Proof. Ravnshøj (2007a). �

Let the Frobenius be given by the number ω = c1 + c2ξ + (c3 + c4ξ)η, ci ∈ Z,
and consider a prime number ` | |JC(Fp)|, ` 6= p.

Corollary 1. If ` - c2 and ` > Q, then the `-Sylow subgroup S of JC(Fp) is either
of rank two and p ≡ 1 mod `, or S is cyclic.

By Ravnshøj (2007b), if p ≡ 1 mod `, then there exists an efficient, probabilistic
algorithm to determine generators of the `-Sylow subgroup of JC(Fp). Hence the
following corollary holds.

Corollary 2. If ` - D and ` - c2, then there exists an efficient, probabilistic algo-
rithm to determine generators of the `-Sylow subgroup S of JC(Fp).

Proof. If p ≡ 1 mod `, then the corollary is given by Ravnshøj (2007b). If p 6≡ 1
mod `, then S is cyclic by theorem 7. Assume |S| = `n. Then S has `n − `n−1

elements of order `n. Hence the probability that a random element σ ∈ S generates
S is 1 − `−1, and choosing random elements σ ∈ S until an element of order `n is
found will be an efficient, probabilistic algorithm to determine generators of S. �
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