Group Signatures from Certisignatures

Jens Groth
UCLA Computer Science Department
3531A Boelter Hall, Los Angeles, CA 90095, USA
E-mail: jg@cs.ucla.edu

May 18, 2007

Abstract

We construct a new group signature scheme using bilinear groups. The group signature scheme is
practical; both keys and signatures consist of a constant number of group elements, and it permits dynamic
enrollment of new members. The scheme satisfies strong security requirements, in particular providing
protection against key exposures, and does not rely on random oracles in the security proof.

From a technical point of view the main novelty in our group signature scheme is a way of certifying
a public verification key for the Boneh-Boyen signature scheme using only standard group operations.
The fact that we do not use any non-group operation, for instance the computation of a hash-function,
makes it possible to use recently developed tools such as non-interactive proofs for bilinear groups. The
certificate is not a signature on the verification key, but it does have the property that it is hard to create
a signature using a key with a forged certificate. We formally define certisighatures that capture the joint
unforgeability of certificates and signatures, without requiring the certificate itself to be unforgeable.

Keywords: Group signatures, certisignatures, bilinear groups.

1 Introduction

Group signatures make it possible for a member of a group to sign messages anonymously so that outsiders
and other group members cannot see which member signed the message. The group is controlled by a group
manager that handles enroliment of members and also has the ability to identify the signer of a message.
Group signatures are useful for instance in contexts where it is desirable to preserve the signer’s privacy, yet
in case of abuse we want some authorities to have the means of identifying her.

Group signatures were introduced by Chaum and van Heyst [CvH91] and have been the subject of much
research. Most of the proposed group signatures have been proven secure in the random oracle model [BR93]
and now quite efficient schemes exist in the random oracle model [ACJT00, BBS04, CL04, CG04, FIO05,
KYO05]. The random oracle model has been the subject of criticism though. Canetti, Goldreich and Halevi
[CGH98] demonstrated the existence of an insecure signature scheme that has a security proof in the random
oracle model. Other works showing weaknesses of the random oracle model are [Nie02, GK03, BBP04,
CGHO04].

There are a few group signature schemes that avoid the random oracle model. Bellare, Micciancio and
Warinschi [BMWO03] suggested security definitions for group signatures and offered a construction based
on trapdoor permutations. Their security model assumed the group was static and all members were given
their honestly generated keys right away. Bellare, Shi and Zhang [BSZ05] strengthened the security model

*Supported by NSF ITR/Cybertrust grant No. 0456717.

to include dynamic enrollment of members. This security model also separated the group manager’s role
into two parts: issuer and opener. The issuer is responsible for enrolling members, but cannot trace who
has signed a group signature. The opener on the other hand cannot enroll members, but can open a group
signature to see who signed it. Moreover, it was required that this opener should be able to prove that
said member made the group signature to avoid false accusations of members. [BSZ05] demonstrated that
trapdoor permutations suffice also for constructing group signatures in this model. Both of these schemes use
general and complicated primitives and are very inefficient. Groth [Gro06] used bilinear groups to construct

a group signature scheme in the BSZ-model, with nice asymptotic performance, where each group signature
consists of a constant number of group elements. Still the constant is enormous and a group signature consists
of thousands or perhaps even millions of group elements.

A few practical group signature schemes exist, which have security proofs in the standard model. Ate-
niese, Camenisch, Hohenberger and de Medeiros [ACHdMO5] give a highly efficient group signature scheme,
where each group signature consists of 8 group elements in prime order bilinear groups. This scheme is se-
cure against a non-adaptive adversary that never gets to see private keys of honest members. If a member’s
key is exposed, however, it is easy to identify all group signatures she has made, so their scheme is not secure
in the BMW/BSZ-models.

Boyen and Waters [BW06, BW07] suggest group signatures that are secure against key exposure attacks.
Their constructions are secure in a restricted version of the BMW-model where the anonymity of the members
relies on the adversary not being able to see any openings of group signatures. In the latter scheme [BWO07],
the group signatures consist of 6 group elements in a composite order bilinear group. The public key in
[BWO7] grows linearly in the size of the message space though and will for practical purposes typically
contain a couple of hundred group elements.

OUR CONTRIBUTION. We propose a new group signature scheme based on prime order bilinear groups. All
parts of the group signature scheme, including the group public key and the group signatures, consist of a
constant number of group elements. The constants are reasonable for practical purposes; for instance using
256-bit prime order bilinear groups, a group public key would be less than 1kB and a group signature less
than 2kB.

We prove under some well-established assumptions, the strong Diffie-Hellman assumption [BB04] and
the decisional linear assumption [BBS04], as well as a new assumption that the scheme is secure in the
BSZ-model. This means the scheme permits dynamic enroliment of members, preserves anonymity of a
group signature even if the adversary can see arbitrary key exposures or arbitrary openings of other group
signatures, and separates the role of the issuer and opener such that they can operate independently.

CERTISIGNATURES One of the tools we use in our group signature scheme is what we will call a certisigna-
ture scheme. A certisignature scheme allows a user to pick keys for a signature scheme and use them to sign
messages. The user can ask a certification authority to certify her public verification key for the signature
scheme. The verification algorithm checks both the certificate and the signature and accepts if both of them
are acceptable. A trivial way to build certisignature schemes is just to let the CA output a standard signature
on the user’s public verification key. Certisignature schemes may be more efficient than that though since
the certificate does not have to be unforgeable. In a certisignature scheme, the requirement is just that it is
infeasible to forge a certificate together with a valid signature. We refer to Section 3 for a formal definition.

In our group signature scheme, enrolling members will create a key for a signature scheme and ask the
issuer to issue a certificate on their verification key. To make a group signature, the member will make
a certisignature. To be anonymous she will encrypt the certisighature and use non-interactive witness-
indistinguishable and non-interactive zero-knowledge proofs to demonstrate that the ciphertext contains a
valid certisignature.

In order to have efficient non-interactive proofs, it is essential to preserve as much of the bilinear group
structure of the encrypted certisignature as possible. In particular, using cryptographic hash-functions or
using group elements from one part of the certisignature as exponents in other parts of the certisignature

2

would not work. The technical challenge in constructing a suitable certisignature scheme therefore lies in
both being very efficient and at the same time to only rely on generic group operations.

The member’s signature scheme will be the Boneh-Boyen signature scheme [BB04]. The public verifi-
cation key for this scheme consists of group elements, however, the message to be signed is in the exponent.
Therefore, the issuer cannot use the Boneh-Boyen sighature scheme to certify the member’s verification key,
since this would involve using non-group operations such as using group elements as exponent. Other signa-
ture schemes based on bilinear groups suffer from similar deficiencies, the only signature scheme that works
directly for group elements is the inefficient scheme from [Gro06]. A part of our contribution is a very ef-
ficient method to certify a verification key of the Boneh-Boyen signature scheme that relies only on generic
group operations.

2 Setup
Let G be a probabilistic polynomial time algorithm that generdies?, Gr, e, g) < G(1*) such that:
e pis ak-bit prime.

e GG, G are groups of ordey.

g is a randomly chosen generator@®f

e is a non-degenerate bilinear map, i€y, g) is a generator of/r and for alla,b € Z, we have
e(g”,9") = e(g,9)™.

Group operations, evaluation of the bilinear map, and membershif Gfr are all efficiently com-
putable.

We will now present some of the security assumptions that will be used in the paper.

DLIN assumption. The decisional linear assumption was introduced by Boneh, Boyen and Shacham
[BBS04]. The DLIN assumption holds f@y, when it is hard to distinguish for randomly chosen group
elements and exponentg, g, h, f", g%, h') whethert = r + s or t is random.

g-SDH assumption. The strong Diffie-Hellman assumption was introduced by Boneh and Boyen [BB04].
1
The ¢-SDH assumption holds fog, when it is hard to find a paifm,g™+) € Z, x G when given

2 q(k)
9:9%,9% ,...,9" .

g-U assumption. The unfakeability assumption, which we will now define, has not appeared before in the
literature. They-U assumption holds fag if for any non-uniform polynomial time adversa@ we have:
Pr [(p, G,Gr,e,q) — G(1%):xy,r, ..., Tq(k)> Tq(k) < Lp;
fohyz — G, T :=e(f,2);a; = fb;:=h"g""z
(V,A,B,m,S) « Alp,G,Gr,e,g, f,h, T, x1,a1,b1, . . ., Tg(), Ag(i)» by(k))
Vg {g™, . g7} A e(A BV)e(f, B) =T A e(S,Vg™) = e(g,g)| ~0.

Lemma 1 Theg-U assumption holds in the generic group model whéna polynomial.

Proof. We will show that an unbounded adversary cannot breakjtbleassumption when restricted to

using only a polynomial number of generic group operations. In the generic group model, we do not give
the adversary access to the group elements themselves. Instead we pick random bjjectips— G

and[[-]] : Z, — Gr and give the adversary access to the representation of the group elements as random
encodings of their discrete logarithms. Picking random group elements and computing group operations can
be handled by calling an oracfe that works as follows:

e On(exp, z) return|x].

e On (multiply, [], [y]) return]z + y].

e On (multiply, [[2]], [y]]) return{[z + y]].
e On (bilinear, [z], [y]) return[[zy]].

We can reformulate the lemma in the generic group model as follows.

Pr |:(p7 G7 GT) 679) — g(lk);xhrla s 7xq(k)rq(k) — Zp7
Vs @515 C — Lp; [-] = Zp < G [[']] « Zp < Gr;
([], [al, [b], m, [s]) «— A°(p, G, G, [4], [¢], [n], [[¢<]],
x1, [pr], [nr1 + 1y + ¢l Ty, (97 gk)s [17ak) + Ta) YTa(k) + €1

[v] & {vaal, .- bywg] Allan +v) + @0]] = [[oc]] A [[s(v +ym)]] = [[72]]} ~ 0.

To prove the lemma, observe first that the elemefitsan generate i and G encode low degree
polynomials inZy[vy, ,n,¢, 71, . - ., T4)]- The resulting condition for succega(n +v) + ¢b — ¢¢]] = [[0]]
and([[s(v + my) — ~?]] = [[0]] corresponds to having low-degree polynomial&jsiry, ¢, 7, ¢, 1, - . ., 74(k)]
evaluate to O for randomly chosen o, n, ¢, 71, ...,74k). The Schwarz-Zippel theorem says that a low-
degree polynomial has negligible probability of evaluating to 0 in randomly chesemn, ¢, r1,. .., rqm)
unless it is identical zero. What remains in the proof if to rule out that generic group oracle edafoles
actually construc], [a], [b], m, [s] such that(n+v)+@b—¢¢ ands(v+m~y) —~? are the zero-polynomials,
and at the same time¢ {yx1,..., 72 }-

Let us start with the requirement thdtoutputs[v], m, [s] so[[s(v + ym) — v?]] = 0. We will show this
can only be done by picking, € Z, and using the oracle to computgy,]. For this part of the proof, assume
we even givep, 7, ¢, 1, . . ., Tq(x) t0.A as extra input. We can now write= v, + v,y ands = s4 + sy, for
knownuy, vy, 54, 84 € Zyp. \We have the equation

(84 + 8g7)(va + (vg +m)y) — ’72 =0.

Assume for contradiction that; # 0. Looking at the constant of the polynomial we haye; = 0 so we
haves; = 0. Looking at the coefficient foy we haves, vy = 0, which impliess, = 0. This means = 0 and
s(v + my) = 42 gives us a contradiction. We conclude thlitan only be successful by picking= v,.
We will now use the equation
a(n +vgy) + ¢b — ¢¢ = 0.
Sincea andb are constructed with calls 8 we can write them as

q(k) q(k)
a=aq+ard+agy+apn+ Zaaiﬁbri + Zabi(nn + ziyri + ¢)
=1 i=1
q(k) q(k)
and b= bq+ b+ bgy +bpn+ > ba;dri + > by, (nri + ziyri + €),

i=1 =1

4

for known aq, ar, ag, ap, aq;, ap,, ba, bs, by, by, ba;, by, € 7Z,. Looking at the coefficient for(we have
Zfik'l) by, = 1 so there exists somig, # 0. The coefficient forgnr; gives usa,, + by, = 0 S0 ay,
—by,. The coefficient forpyr; tell us aq,vg + by, x; = by, (x;i — vy) = 0 SOv, = x;. This implies[v]
{[7"731]7 SRR h/xq(k)]}

Om

3 Defining Certisignatures

Typically, using a signature in a public key infrastructure works like this: A user that wants to set up a
signature scheme, generates a public verificationikegnd a secret signing keyk. She takes the public

key to a certification authority that signg and possibly some auxiliary information such as name, e-mail
address, etc. We call this the certificate. Whenever the user wants to sign a message, she sends both the
certificate and the signature to the verifier. The verifier checks that the CA has certified that the user has the
public keyvk and also checks the user’s signature on the message.

In the standard way of certifying verification keys described above, the process of issuing certificates
and verifying certificates is separate from the process of signing messages and verifying signatures. We
suggest combining the two processes into one in order to improve efficiency. We do not need to worry about
forgeries of the certificate itself, we only need to prevent the joint forgenyoti the certificateand the
signature. Informally, a certisignature scheme consists of algorithms for certifying verification keys, signing
messages and verifying the combined certificates and signatures.

A certisignature scheme, is a combined scheme for signing messages and producing certificates for the
verification keys. Formally, a certisignature scheme consists of 6 probabilistic polynomial time algorithms.

Group key: G takes a security parameter as input and outputs a descrigtioha group.

Certification key: CertKey on inputgk outputs a paifak, ck), respectively a public authority key and a
secret certification key.

User key: UserKey on inputgk outputs a paifvk, sk), respectively a public verification key and a secret
signing key.

Certificate: Cert on inputck, vk outputs a certificateert on the verification key.
Signature: Sign gets a signing key and a messages input. It outputs a signatuse

Verification: Ver takes as inpuik, ak, vk, cert, m, o and outputs 1 if accepting the certificate and the sig-
nature onn. Otherwise it outputs 0.

The certisignature scheme must be correct, unfakeable and unforgeable as defined below.

Perfect correctness: For all messages: we have
Pr [gk — G(1%); (ak, ck) «— CertKey(gk); (vk, sk) «— UserKey(gk); cert «— Cert,(vk);

o « Signg,(m) : Ver(gk, ak, vk, cert,m,o) = 1| = 1.

Unfakeable: We want it to be hard to create a signature with a faked certificate. Only if the verification key
has been generated correctly and been certified by the CA should it be possible to certisign a message.
For all non-uniform polynomial time adversaridswe require:

Pr |gk — G(1%); (ak, ck) — CertKey(gk); (vk, cert,m, o) — ACtUserKey (gp)

vk ¢ @ andVer(gk, ak, vk, cert,m,o) = 1] ~ 0,

5

where CertUserKey is an oracle that on query runs (vk;, sk;) «— UserKey(gk);Q = Q U
{vk;}; cert; « Certer(vk;) and returngvk;, sk;, cert;).

Natural and stronger definitions exist. We could for instanc&tet UserKey take randomness for
UserKey as input. This corresponds to a registered key model, where the adversary can get a certificate
for any correctly generated verification key. Even stronger we could let itd&kas input. This
corresponds to a model, where the adversary can pick any malicious pubti¢kayd get it certified.

In this paper, we only need the weaker definition of unfakeability presented above.

Existential M -unforgeability: Let M be a stateful non-uniform polynomial time algorithm. We say the cer-
tisignature scheme is existentially -unforgeable if for all non-uniform polynomial time adversaries
A we have:

Pr [gk — g(lk); (vk, sk) — UserKey(gk); (ak, cert,m,o) « AMessageSign(')(gk, vk) :
m ¢ @ andVer(gk, ak, vk, cert,m,o) = 1| = 0,

where MessageSign(-) is an oracle that on input; runs (m;, h;) «— M(gk,a;) ; o5 <~
Signg,(m;) ; @ :== QU {m;} and returngm;, h;, 0;).

Adaptive chosen message attack corresponds to lettidge an algorithm that on input; outputs
(m;,e). On the other hand, letting/ be an algorithm that ignored’s inputs corresponds to a weak
chosen message attack, where messages to be signed by the oracle are chosen without knawledge of
In a weak chosen message attack, /ifie may contain a history of how the messages were selected.
In this paper, we only need security against weak chosen message attack.

4 A Certisignature Scheme

We will construct a certisignature scheme from bilinear groups that is existentially unforgeable under weak
chosen message attack. There are two parts of the scheme: certification and signing. For signing, we will
use the Boneh-Boyen signature scheme that is secure under weak chosen message attack. In their scheme the
public key isv := ¢* and the secret signing key:is A signature on message € Z, \ {z} iso = gﬁ. It

can be verified by checking o, vg™) = e(g, g). Boneh and Boyen [BB04] proved that this signature scheme

is secure against weak chosen message attack undgt3bBél assumption. The existential unforgeability

of our certisignature scheme under weak chosen message attack will follow directly from the security of the
Boneh-Boyen signature scheme under weak chosen message attack.

What remains is to certify the verification key As we discussed in the introduction, in order for this
certisignature scheme to be useful in constructing group signatures it is important that we can issue the
certificate using group operations only. To set up the certification scheme, the certification authority picks
random group elemenfs h, z € G. The authority key i$ f, h, T') and the secret certification keyis07T =
e(g, z). To certify a Boneh-Boyen key the authority picks: < Z, and setga,b) := (f~", (hv)"z). The
certificate is verified by checkinga, hv)e(f,b) = T. We remark that this is not a good signature scheme,
since giverw, a, b it is easy to create a certificate fof := v2h as(d’,b') := (a%, b). For certisignatures it
works fine though since we cannot use the faked verification keys to actually sign any messages. The nice part
about the certification scheme we have suggested here is that a certificate consists of only two group elements
and is created through the use of generic group operations. These two properties of the certisighature scheme
are what enable us to construct a practical group signature scheme on top of it.

Theorem 2 The scheme in Figure 1 is a certisighature scheme with perfect correctness for messages in
Zy \ {z}. Itis unfakeable under the-U assumption and is existentially unforgeable under weak chosen
message attack under theSDH assumption.

GroupKey(1") UserKey (gk)
Return gk’ = (p7 Ga GT767g) — g(lk) T <— Zp ;U= gw
Return (vk, sk) := (v, (gk, x))

CertKey(gk)
fohz—G Sign,(m)
T :=e(f,2) If t = —mreturnL

Return (ak, ck) := ((gk, f,h,T), (ak, z)) Else returrp := gﬁ

Cert;(vk) Ver(gk, ak, vk, cert,m, o)
T Ly Return 1 if

a:=f" e(a,vh)e(f,b) =T
b:= (vh)"z e(o,vg™) = e(g,9)
Return cert := (a,b) Else returrd

Figure 1: The certisignature scheme.

Proof. Perfect correctness follows by inspection. Unfakeability follows in a straightforward manner from
the ¢-U assumption withy(k) being an upper bound on the number of keygets certified, for instance
with ¢(k) being the running time afl. The signature scheme is existentially unforgeable under weak chosen
message attack if the SDH assumption holds [BB04], and therefore so is our certisignhature scheme.

5 Defining Group Signatures

In a group signature scheme there is a group manager that decides who can join the group. Once in the
group, members can sign messages on behalf of the group. Members’ signatures are anonymous, except to
the group manager who can open a signature and see who signed the message. In some scenarios it is of
interest to separate the group manager into two entities, an issuer who enrolls members and an opener who
traces signers.

We imagine that enrolled member’s when joining have some identifying information added to a registry
reg. This registry may or may not be publicly accessible. The specifics of how the registry works are not
important, we just require thatg[i] only contains content both the issuer and usagrees on. One option
could be that the issuer maintains the registry, but the user has to sign the contepfijpfor it to be
considered a valid entry. Useistores her corresponding secret keyik[i]. The number we associate
with the user is simply a way to distinguish the users, it does not carry any further significance. Without loss
of generality, we will assume users are numbelred. , n according to the time they joined or attempted to
join.

Key generation: GKg generate$gpk, ik, ok). Heregpk is a group public key, whilék andok are respec-

tively the issuer’s and the opener’s secret key.

Join/Issue: This is an interactive protocol between a user and the issuer. If successful, the user and issuer
register a public keyk; in reg[i] and the user stores some corresponding secret signing key informa-
tion in gskli].

[BSZ05] specify that communication between the user and the issuer in this protocol should be secret.
The Join/Issue protocol in our scheme works when all messages are sentin clear though. In our scheme,

7

we will assume the issuer joins users in a sequential manner, but depending on the setup assumptions
one is willing to make, it is easy to substitute then/Issue protocol for a concurrent protocol.

Sign: Group membeti can sign a message as> «— Gsig(gpk, gsk[i],m).

Verify: To verify a signaturé: on message: we runGVf(gpk, m, 3). The signature is valid if and only if
this verification algorithm outputs 1.

Open: The opener has read-access to the registrationtabléVe have(i, 7) « Open(gpk, ok, reg, m,)
gives an opening of a valid signhatureon message: pointing to uset. In case the signature points
to no member, the opener will assume the issuer forged the signature @ne-$etThe role ofr is to
accompany # 0 with a proof that user did indeed sign the message.

Judge: This algorithm is used to verify that openings are correct. We say the opening is correct if
Judge(gpk, i, reg[i],m, X, 7) = 1.

[BSZ05] define four properties that the group signature must satisfy: correctness, anonymity, traceability
and non-frameability. We refer to [BSZ05] for a discussion how this security definition covers and strength-
ens other security issues that have appeared in the literature.

PERFECT CORRECTNESS On any adversarially chosen message, the verification should accept a group
signature created with a correctly generated group signingskkfi] for memberi. Running the opening
algorithm on this should identify and make thdudge algorithm accept the opening. For all (unbounded)
adversariesA we have:

Pr |F := 0; (gpk, ik, ok) — GKg(1%); (i,m) — AT/ (gpk ik, ok); 53 — GSig(gpk, gsk[i], m);
F=0 Ai=j A Judge(gpk,i,regli],m,X,7)=1| =1,

whereA outputsi € Members and the oracle works as follows:

Join/Issue: On the:'th query to Join/Issue add: to the list of member&embers. Run the Join/Issue
protocol for an honest user and issuer. If the user or issuer does not accépt=sdtand return 1.
Else update and returreg|i], gsk|[i].

ANONYMITY. It should be infeasible for an adversary to identify the signer of a message if she does not
know the opener’s keyk. We require a strong version of anonymity, which holds even when the adversary
controls the issuer and all the members’ secret signing keys are exposed. We require for all non-uniform
polynomial timeA that:

Pr [(gpk ik Ok’) - GKg(lk) : ACho,Open,JoinCorrupt,JoinExposedHonest (gpk Zk) — 1}
~ Pr [(gpk:,z'k:,ok:) - GKg(lk) : AChl,Open,JoinCorrupt,JoinExposedHonest(gpk’ ’Lk‘) — 1}

where the oracles work as follows:

JoinExposedHonest: On input(, start) start up an honest uséthat tries to join the group. This user acts
honestly, however, the entire internal state is exposed to the adversary. Ofiimmg) send message
msg to the user on behalf of the issuer and return the new internal state of the user. On successful
completion of theJoin/Issue protocol update-eg[:] and add to HonestUserKeys. Since the internal
state is exposed, the adversary knows the corresponding secrgtieéyand will be able to make
group signatures on behalf of the user.

JoinCorrupt: On input(i, vk;) setreg|i] := vk;. This allows the adversary to enroll a corrupt member and
register any public key of its own choosing.

Chy: Oninput(ig, i1, m) whereig, i; € HonestUserKeys returnyX < GSig(gpk, gsklip], m).

Open: On input a valid message and group signature pairX) that has not been produced 6, return
Open(gpk, ok, reg, m,).

Some papers have considered a weaker variant of anonymity, called CPA-anonymity. In CPA-anonymity, the
adversary does not have access to(pen oracle.

TRACEABILITY. We want to avoid forged group signatures. The issuer can always make a dummy registra-
tion and create group signatures, so we cannot rule out the creation of group signatures. What we want to
capture here is that if the issuer is honest, then it is infeasible to create a signature that does not belong to
some member with a registered keyrity[:]. For all non-uniform polynomial time adversaridswe have:

Pr | (gpk, ik, ok) — GKg(1*); (m, %) — A" (gpk, ok); (i, 7) < Open(gpk, ok, reg,m, %) :
GVi(gpk,m,¥) =1 A (Judge(gpk,i,regli],m,X,7) =0 VvV i =0)| =0,

where the oracle is:

Join: On input(i, start) accept only(i, msg) queries until thisJoin /Issue protocol finishes successfully or
not. Run the issuer’s protocol usingk, ik with the adversary being able to subrfitmsg) as the
possibly malicious user's messages to the issuer. If the join protocol is successful update the registry
reg[i] correspondingly.

NON-FRAMEABILITY. We want to avoid that an honest member is falsely attributed a signature that it did not
sign, even if both the issuer and opener are controlled by the adversary. We require that for all non-uniform
polynomial time adversaried we have:

Pr (gpk,ik, Ok‘) - GKg(lk); (m’ 3, i,T) - AIssueToHonest,ReadGsk,GSig(gphik’ Ok‘) .

GVi(gpk,m,¥) =1 A Judge(gpk,i,regli],m,X,7) =1
A i € HonestUsers A i ¢ ExposedKeys A (m,X) ¢ UserSignatures} ~ 0,

where the oracles are:

IssueToHonest: On input (7, start) start up a new honest usgjoining the group usingypk as the group
key and add to HonestUsers. On input(i, msg) send this message to the user on behalf of the corrupt
issuer. If the protocol is successful updatg|i] andgsk|i] correspondingly.

ReadGsk: On inputi returngsk[i]. Addi to ExposedKeys.

GSig: On input(i, m) check whethegsk[i] is non-empty. In that case retukh «— GSig(gpk, gskli],m)
and addm, X) to UserSignatures.

The definition above addresses a partially dynamic setting where members can be enrolled along the
way. It also separates the roles of granting membership from opening signatures. In [BMWO03] a simpler
situation is considered. Only a single group manager that acts as opener is considered. All members’ keys
are set up from the start, there is no enroliment. This relaxation permits the definitions of traceability and
non-frameability to be combined into one requirement called full-traceability. In this paper we concentrate
on the stronger and more flexible [BSZ05] model.

9

6 Tools

To construct our group signature scheme, we will use the certisignature scheme from Section 4. We will also
use several other tools in our construction, namely key establishment protocols, collision-free hash functions,
non-interactive proofs for bilinear groups, strong one-time signatures and selective-tag weak CCA-secure
cryptosystems.

6.1 Key Establishment Protocol

In the certisignature scheme, we require that the user generates her signing key honestly. We will therefore
give an interactive protocol between the user and the issuer that gives the user a uniformly random secret key
x € Zy, While the issuer learns:= ¢”. In case either party does not follow the protocol or halts prematurely,
the other party will outputi.. For notational convenience, defipé := L. We will now give a more precise
definition of the properties the protocol should have.

Write (z,v) < (User(gk), Issuer(gk)) for running the key establishment protocol between two proba-
bilistic polynomial time interactive Turing machin&ser, Issuer on common inpuyk giving User outputz
andIssuer outputv. We require that the protocol is correct in the following sense:

Pr |gk — G(1%); (z,v) — (User(gk),Issuer(gk)) : v = ¢°| = 1.

We require that the view of the issuer, even if malicious, can be simulated. More precisely, for any
o > 0 and polynomial timdssuer* there exists a polynomial time (inand the size of the input Bsuer™)
black-box simulatosS;, such that for all non-uniform polynomial time adversatiesve have:

Pr [gk — g(lk); y — A(gk);x — Zp;v := g%; (¢“,1) «— S}SSUGY*(y)(gk, v) : Au, i) = 1}

— Pr [gk’ — G(1%);y — A(gk); (z,1) « (User(gk), Issuer*(y)) : A(z,i) = 1} < k79,

whereS; outputsg” sou € { L, x}.

We also require that the view of the user, even if malicious, can be simulated. Fér-aryand any
polynomial timeUser* there exists a polynomial time (i and the size of the input tbser™) black-box
simulatorSy;, such that for all non-uniform polynomial time adversatiesie have:

Pr [gh — G(1M)y — Algh)i o — Zyiv = g7 (u, 1) — S (gh, 2) : Au,) = 1]
— Pr {gk — G(1%);y — A(gk); (u,i) «— (User*(s), Issuer(gk)) : A(u,i) = 1} < k79,

whereSy; outputsi € {L,v}.

We will offer a 5-move key establishment protocol where the parties hav@s common input. The
protocol lets the user pici’. The user and issuer use a coin-flipping protocol to generate a random modifier
b+cand outpub := ¢g®T0*¢. At the same timé+c is used as a challenge to the user in a proof of knowledge
of a.

User — Issuer : Picka,r « Zp,n < Z; and sendd := g%, R := g", h := g" to issuer.
User « Issuer : Pickb, s « Z, and sendB := ¢°h* to user.
User — Issuer : Sendc « Z, to issuer.

User «+ Issuer : Sendb, s to user.

10

User — Issuer : CheckB = ¢°h?. If check passes, sent= (b4 c)a+r mod p andy to issuer and output
r:=a+b+c.

Issuer : Checkn € Z7, h = g" andA"*“R = g7 and outputy := Ag"*¢ if checks pass.

Lemma 3 The Join/Issue protocol has perfect correctness and assuming the discrete logarithm problem is
hard it is possible to black-box simulate both the user and the issuer.

Proof. Perfect correctness follows by direct verification.

We will now prove that for any > 0 there exists a black-box simulator for a malicious issuer. We start
by describing the simulatoS}SS“er*(y) (gk,v) pickse, z,n < Z, and sets4d := vg~¢ andR := g°A~¢ and
h := g". Itruns thelssuer*(y) oninputA, R, h to geta commitmenB. It then runs the malicious issuer up to
k°+1 times on randomly chosen— Zy, until Issuer™ opensB to b, s. There are now two possibilities: either
Issuer® provides a satisfactory opening &f or it never opens the commitment. In case no such opening
is given, the simulator runksuer® once again with random If Issuer™ does not operB in this run, the
simulator outputg L, 7), wherei is the output oflssuer®. If Issuer* opensB, we abort the simulation. The
other possibility is that we did extract an opening of B. In this case, we sentl:= e —b mod p to Issuer®.

If Issuer® stops the protocol, we outp(t , i), wherei is Issuer®’s output. IfIssuer* opens the commitment
to b’ # b we abort the simulation. Finally, itsuer* opens the commitment #9 we send, z to Issuer* and
output(v, i), where; is Issuer*’s output.

We will now prove that the simulator satisfies the definition. It is clear thatuns in polynomial time,
sincelssuer* is a polynomial time algorithm with polynomial size outputs and we only rugf it times.

Let us modify the real protocol between an honest user and an adversarial issuer. After the user’s first
messagel, R, h and the adversary’s first messageve store the state @suer*. We runlssuer® up toko+!

times with randomly choseato get an opening, s of B. After this, we make a real run désuer™ and
produce the output of the protocol, with two exceptions. If we extracted an opgniraf B but in the real

run Issuer® opens the commitment tid # b we abort. This only gives a negligible change in probability,
since otherwise we could break the binding property of the commitment scheme and thus break the discrete
logarithm assumption. The other change is thdsdfier* did not openB in the k°+! runs, but does so in

the real run, we abort. Observe the following, if at the stored §tater™ has at Ieastz% probability of
openingB after seeing randomly chosenthen by using Chernoff-bounds we know there is overwhelming
probability that an opening a8 will be extracted in thé&®+! runs, so this event only gives negligible change

in the probability. On the other hand, adding up all cases with probability Iessz—klgam‘ Issuer™ finishing

the protocol on randomadd up to less tha@i—g probability of aborting.

What remains is to see that the simulation and the modified version of the real protocol described above
yield the same probabilities. In both the simulation and the modified real protocol, we have uniform random
A, R, h and get a respons@ from Issuer®. ForIssuer* having probability less tha@i—é of openingB on
randomc, the two experiments are the same. FEsner* having at Ieasg% chance of openin@ on random
c observe first that the experiment is perfectly indistinguishable from one, where we: pickt random
and setd := ¢* ¢ in the beginning of the protocol and use= e — b, since in both cases everything is
still chosen uniformly at random. Now we have a proof of knowledge with a fixed challeagd we can
simulate it by pickingz first and setting? := g* A—¢, which again does not change the distribution at all.

We will now show that for any) > 0 there is a black-box simulator for an adversarial user. We first
describe the simulator. The simulator gétg, x) as input and rundJser*(y) on gk to get A, R, h. It
now makes up td:%t! runs of User* with randomly choserb, s to get two successful transcriptsn, z
andc,n, 2. If itis unsuccessful in getting two transcripts it makes yet another run with randomly chosen
b, s and if User* produces satisfactony, , z, then it aborts the simulation. If it is successful, it aborts if
b+ c =V + ¢. Otherwise, we havg® = A" R andg® = AY+Y R giving A = ¢(*~%)/(atb—a’~t') g e
canset := (2 — 2')/(a+b—a' — V') mod p. We also have) € Z; soh = g". We now make a real run,

11

with B := ¢!, wheret is chosen at random. If getting an incorrect or lacking response in either step of the
real run, we outputu, L), whereu is the output ofUser*. Else, we receive and open the commitment as

B = ge—o—cplt=rtata/ngand send := = —a — ¢, s := (t — x + a+ ¢)/n mod p to User*. On a successful
response frontJser*, we output(u, g*).

We will now argue that this is a good simulation. It is clear that the simulator runs in polynomial time.
Consider modifying a real protocol between the adversary and an honest issuer. We modify the behavior of
the issuer such that it rewinds the proto&ét! times after the initial message and makes a complete run
with randomly chosen, s to get two successful answers, z andc’, 7, 2’. If it does not succeed, it makes
yet another run with randorh, s and aborts ifUser* produces a satisfactory answer, z. If User* has
probabilityﬁ of succeeding on random s, then there is overwhelming probability that we do extract two
answers:, n, z andd’, n, z’. So the only case where we would get an abort for the reason mentioned above
is whenUser* has less tha% chance of succeeding. So this abort only changes the success probability
with less thanﬁ. The commitment is perfectly hiding, so there is negligible probability ¢fc = v/ + ¢/
in the simulation, so we can from now on ignore that possibility. Supfpese* has probability at Iea%
of completing the protocol successfully after sendihgr, , then we will successfully extraatso A = g*
with overwhelming probability and we also leajrso h = ¢". Modifying the protocol further to piclk: at
random and opening to x — a — c therefore does not change the probability distribution further. This latter
modification brings us to an experiment that is equivalent to the simulation running on a randomly.chosen
O

6.2 Collision-Free Hash-Functions

H is a generator of collision free hash-functidiissh : {0, 1}* — {0, 1}*(®) if for all non-uniform polyno-
mial time adversaries! we have:

Pr |Hash «— H(1%); 2,y «— A(Hash) : Hash(z) = Hash(y)| ~ 0.

We will use a collision-free hash-function to compress messages before signing them. For this purpose
we will require that we can hash down %,, so we want to have!*) < p. We remark that collision-

free hash-functions can be constructed assuming the discrete logarithm problem is hard, so the existence of
collision-free hash-functions follows from our assumptions on the bilinear group.

6.3 Strong One-Time Signature Schemes

A one-time signature scheme is secure against an adversary that has access to a single chosen message attac
We say the one-time signature scheme is strong, if the adversary can neither forge a signature on a different
message nor create a different signature on the chosen message she already got signed. There are many way:
to construct strong one-time signatures. One option is given in the full paper of [Gro06] based on the discrete
logarithm assumption. This scheme requires 3 group elements to specify the public verification key and three
elements ir¥Z, to specify a strong one-time signature.

6.4 Non-interactive Proofs for Bilinear Groups

Groth and Sahai [GS07] suggest non-interactive proofs that capture relations for bilinear groups. They look
at sets of equations in our bilinear grogp G, G, e, g) over variables irG' andZ,, such as pairing product
equations, e.ge(z1, z2)e(xs, z4) = 1, or multi-exponentiation equations, e.g‘ilx? = 1. They suggest
non-interactive proofs for demonstrating that a set of equations of the form described above has a solution
z1,...,xr € G,61,...,0;5 € Z, so all equations are simultaneously satisfied. Their proofs are in the
common reference string model. There are two types of common reference strings that yield respectively

12

perfect soundness and perfect witness indistinguishability/perfect zero-knowledge. The two types of common
reference strings are computationally indistinguishable, and on both types we have perfect completeness. We
now give some further details.

[GS07] show that there exists four probabilistic polynomial time algoritigisP, V, X'), which we
call respectively the key generator, the prover, the verifier and the extractor. The key generator takes
(p,G,Gr,e,g) as input and outputs a common reference sting = (F,H,U,V,W, U, V' W') €
G® as well as an extraction keyk. Given a set of equations, the prover takes and a witness

z1,...,27,01,...,07 a@s input and outputs a proaf. The verifier givencrs, a set of equations and
outputs 1 if the proof is valid and else it outputs 0. Finally, the extractor on a valid pregfl extract
x1,...,x; € G, in other words it will extract part of the witness.

The proofs of [GS07] have perfect completeness: on a correctly generated CRS and a correct witness,
the prover always outputs a valid proof. They have perfect soundness: on a correctly generated CRS it is
impossible to create a valid proof unless the equations are simultaneously satisfiable. Further, they have
perfect partial knowledge: giverk the algorithmX can extractcy, ...,z from the proof, such that there
exists a solution for the equations that use these. ., z;.

There exists a simulatdf, that outputs a simulated common reference stringand a simulation trap-
door keytk. These simulated common reference strings are computationally indistinguishable from the
common reference strings produced Ryassuming the DLIN problem is hard. On a simulated common
reference string, the proofs created by the prover are perfectly withess-indistinguishable: if there are many
possible witnesses for the equations being satisfiable, the prdoés not reveal anything about which wit-
ness was used by the prover when creating the proof. Further, let us call a set of equations tractable, if it is
possible to find a solution, wherg, . . ., x; are the same in all equations, bByt. . ., J; are allowed to vary
from equation to equation. Tractable equations have perfect zero-knowledge proofs on simulated reference
strings: there exists a simulatSg that on a simulated reference strings and a simulation trapdoor key
tk produces a simulated proaffor the tractable equations being satisfiable. If the equations are satisfiable,
then simulated proofs are perfectly indistinguishable from the proofs a real prover with a withess would form
on a simulated reference string.

It will be useful later in the paper to know some technical details of the construction. The values
F,H,U,V,W will be used to commit to the variablesas (ci, co,c3) := (F'U', HSV!, g" sWtx) for
randomly chosem, s,t € Z,. On a real common reference string, they are set up/se FE V =
HS W = ¢gf*5 so the commitment can be rewritten(@& +1, gs+5t grts+(E+5)ty) The extraction key
isxk := (k,\) SOF = ¢g*, H = g, This permits decryption of the commitmentas- 0361_”ch. On the
other hand, on a simulation reference string, weliise F® V = HS W = ¢7 with T # R + S, which
makes the commitment perfectly hiding. To commit to a variabte Z,, using randomness s we use the
commitment(dy, do, d3) := (F"(U")%, H*(V")%, g"+*(W’)?). On a normal common reference string, we
pick ' = FE V' = HS W' = ¢T for T # R+ S. This makes the commitment perfectly binding. On
a simulated common reference string, on the other hand, welflick F&, V' = HS W' = gf*+5. The
simulation trapdoor key isk := (R, .S), which permits us to trapdoor open a commitment to 0 to any value
§ since(F", H®, g"t%) = (Fr—RU")® Hs=90 (V") grts=(B+5)9(117/)9) The DLIN assumption makes it
hard to distinguish between these two ways of setting up the commitment schemes, and thus makes it hard to
distinguish real common reference strings from simulated common reference strings.

6.5 Selective-tag Weakly CCA-secure Encryption

We will use a tag-based cryptosystem [MRY04] due to Kiltz [Kil06]. The public key consists of random
non-trivial elements(F, H, K, L), (k,\)) «— K(p,G,Gr,e,g), whereF = g° H = ¢g*. We encrypt

m € G using tagt € Z, and randomness s € Z, as(yi,...,ys) := (F",H®,g" *m, (¢'K)", (¢"L)*).

The validity of the ciphertext is publicly verifiable, since valid ciphertexts hdve y,) = e(y1, g'K) and

13

e(H,ys) = e(y2,g'L). Decryption can be done by computing = ysy; "y, *. In the group signature
scheme, we will set up the cryptosystem with the sa@m#& as in the common reference string of the NIWI
and NIZK proofs.

[Kil06] shows that under the DLIN assumption this cryptosystem is selective-tag weakly CCA-secure.
By this we mean that it is indistinguishable which message we encrypted undet, @@y when we have
access to a decryption oracle that decrypts ciphertexts under any other tag. Formally, for all non-uniform
polynomial time adversaried we have:

Pr|gh — G(1F)it — A(gh); (ph, sk) < K (gk): (mo,ma) « AP+ (ph);y o Epy(t,m) -
~ b [gk — G(1F);t — A(gh); (pk, sk) — K(gk); (mo,m1) — AP0 (ph);y — Ey(t,ma) -

AP (y) =1,

where the oracle returnS, (¢;, y;) if t; # t.

7 The Group Signature Scheme

The core of our group signature scheme is the certisignature scheme from Section 4. The issuer acts as a
certification authority and whenever a new membaants to enroll, she needs to create a verificationkey

for the Boneh-Boyen signature scheme and get a certificate from the issuer. In the group signature scheme, the
verification key and the corresponding secret key is generated with an interactive key establishment protocol
as defined in Section 6.1. This way both user and issuer know theselected with the correct distribution

and that the user holds the corresponding secretkey

When making a group signature, the member will generate a key pair for a strong one-time signature
(vksots, Sksots).- She will sign the message usiB@s.ts and usex; to Sign vkgs. The combination of
certisignatures and strong one-time signatures is what makes it hard to forge group signatures.

Group signatures have to be anonymous and therefore we cannot reveal the certisignature. Instead, a
group signature will include a NIWI proof of knowledge that there exists a certisignaturke,gn. Witness-
indistinguishability implies that a group signature does not reveal which group member has signed the mes-
sage. The opener will hold the extraction key for the NIWI proof of knowledge and will be able to extract the
certisignature. Whenever an opening is called for, she extracts the signatuke,@nwhich points to the
member who signed the message. In case no member has certisignedthe opener points to the issuer
since the certisignature has a valid certificate.

The ideas above suffice to construct a CPA-anonymous group signature scheme. To get anonymity even
when the adversary has access tdaren oracle, we will encrypt the signature oit.s with Kiltz’ cryp-
tosystem usin@ks.ts as a tag. We will also give a NIZK proof that the encrypted signature is the same as the
one used in the NIWI proof of knowledge.

We present the full group signature scheme in Figure 2. Let us explain the non-interactive proofs further.
The NIWI proof of knowledge, will demonstrate that there exists a certisignédubev, o) onvksos SO

e(a, hv)e(f,b) = T A e(o, vgtesh(vhon)y — ¢ (g g).

In the terminology of [GS07], these are two pairing product equations over three vaihables The last
elementz will be public, since we can rerandomize the certificate suchdliktes not identify the member.
[GSO07] give us a NIWI proof of knowledge for these two equations being simultaneously satisfiable that
consists of 27 group elements. This proof consists of three commitments to respéctivelywhich consist

14

of 3 group elements each, and two proofs for the committed values satisfying the two equations consisting of
9 group elements each.

In the NIZK proof we have a ciphertext under taguks..s and a commitment to o from the NIWI
proof of knowledge. We wish to prove that the plaintexy@&nd the committed value inare the same. The
ciphertext is of the fornty,, ..., ys) = (F"v, H%, g"vt5vg, (gVFsos K)Tv, (g¥ksots)*v) and the commitment
is of the form(cy, co,c3) = (F"<U', H% V!, gtscW'o). Settingr := r. — ry,s := s. — s, We have
(cryy heoyy tesys) = (FTUY, HoVE g™ W), On the other hand, if the plaintext and the committed
value are different, then no suchs, ¢t exist. Proving that the plaintext and the committed value are the same,
therefore corresponds to proving the simultaneous satisfiability of the following equations oyert € Z,,:

Qb =1A (Cfly1)¢FTUt =1A (C;lyQ)(z)HSVt —1A (651y3)¢gr+swt.

This set is tractable, i.e., if we alloyto take different values in the equations, then there is a trivial solution

¢ = 1in the first equation ang = » = s = t = 0 in the other three equations. Since the set of equations

is tractable, there is an NIZK proof for the 4 equations being simultaneously satisfiable. The proof consists

of commitments ta, r, s, ¢, but since the first equation is straightforward we can simply(i8eV’, W') as

the commitment t@, which makes it easy to verify that the first equation holds. The three commitments to

r, s, t each consist of 3 group elements. The three last equations are multi-exponentiations of constants and
using the proof of [GS07] each equation costs 2 group elements to prove. The NIZK proof therefore costs a

total of 15 group elements.

Theorem 4 The scheme in Figure 2 is a group signature scheme with perfect correctness. Under the DLIN,
¢g-SDH andg¢-U assumption and assuming the strong one-time signature scheme is secure and the hash-
function is collision resistant, the group signature has anonymity, traceability and non-frameability.

Proof. Perfect correctness follows from the perfect correctness of the join/issue secure function evaluation,
the certisignature, the NIWI proof of knowledge, the tag-based cryptosystem, the NIZK proof and the strong
one-time signature. Anonymity, traceability and non-frameability follows from Lemmas 5, 7 and 6.

Lemma 5 The group sighature scheme is anonymous.
Proof. Consider the probability
Pr (gpk‘, ik, Ok‘) - GKg(lk) . AChb,Open,JoinCorrupt,JoinExposedHonest(gpk’ Zk‘) =1

from the definition of anonymity. We want to prove that the two probabilities for respectively0 and
b = 1 only have negligible difference.

First, let us modify the underlying game by aborting if the strong one-time signature in the challenge
group signature is ever forged in an opening query. The existential unforgebaility of the one-time signature
scheme implies that there is negligible probability that we will abort for this reason. From now on we can
therefore assumek,.:s is not used in valid group signature queriextpen.

We also abort, if any group signature queriedXpen collides with Hash(vkgts) from the challenge
group signature. Collision-freeness of the hash-function implies that there is negligible probability that this
will ever happen, so from now on we can assume that no such collision will happen.

Let us now modify the way we generate the public key for the tag-based cryptosystem. We: set
g", L = g* and storex, \. WheneverOpen receives a valid group signature, we use\ to decrypt the
tag-based cryptosystem. By the validity check of the tag-based ciphertext and the perfect soundness of the
NIZK proof v this gives the same signatuseas we get when running the extractor on the NIWI proof of
knowledge. We now go througkeg checking whether there exisisso e(a, v;glesh (Vo)) = ¢(g, g). In

15

GKg(1")

gk «— G(1%); Hash « H(1¥)

((f,h,T),z) « CertKey(gk)

(crs,zk) — Kni(gk) ; K, L — G

(F, H,the rest «— Parse(crs); pk := (F,H, K, L)
(gpk,ik,ok) := ((gk,Hash, f, h, T, crs, pk), z, xk)

Join/Issue(User i : gpk , Issuer : gpk,ik)
User and Issuef(z;, v;) <« (User(gk), Issuer(gk))
Issuer:r; « Zp;a; == f~";b; := (hv;)"iz
Issuer sends to uset;, b;
User: Ife(a;, hv;)e(f,b;) = T set
regli] == v; ; gskli] == (x4, ai, b;)

GVf(gpk,m,)

Return 1 if the following holds:

1= Vervksots ((Uksot57 m,a, Ty, w)a Usots)
1 = Varwi(ers, (gpk, a, Hash(vksots)), 7)
1 = Vaizk (crs, (gpk, 7, y), 1))

1 = ValidCiphertext(pk, Hash(vksots), y)
Else return O

GSig(gpk, gskli],m)
(Vksots, Sksots) — KeyGeng,(1%)
(Repeat untiHash(vkgots) # —xi)
p—Lp;a:=a;fP;b:= bi(hvi)p
B)
7 «— Paxiwi(crs, (gpk, a, Hash(vkgots)), (b, vi, 0))
y — Ep(Hash(vksots), v3)
7!) — PNIZK(CTS7 (gpk:, Y, 77)’ (Ta S, t))
Tsots — Signgy, (VEsots, m, a, 7,9, 1)
Return ¥ := (vksots, @, T, Y, 1, Osots)

Open(gpk, ok,m,¥)

(b,v,0) «— Xyi(crs, (gpk, a, Hash(vksots)), 7)
Return(i, o) if there isi sov = v;

Else return0, o)

Judge(gpk,i,regli], m, %, o)

Return 1 if

i ?é 0 A 6(0’, UigHash(vksots)) — 6(979)
Else return O

Figure 2: The group signature scheme.

that case, we returfi, o). The equation defines uniquely so this points to the samgas when extracting
the NIWI proof of knowledge. If no such; can be found, we retur(0, o). The perfect soundness of the
NIWI proof of knowledge and the NIZK proof implies that this does not change the probabilities with

andb = 1 at all.

What we have accomplished in the last step is to modifyQlpen oracle such that it does not use the
extraction keyck for the NIWI proof. We can therefore now switch to using a simulated common reference
string crs that gives us perfect withess-indistinguishability and perfect zero-knowledge. Since real common
reference strings and simulated common reference strings are computationally indistinguishable, this change
only negligibly alters the probability ofl outputtingl. Perfect witness indistinguishability implies that the
proof = does not reveal any information abaytk[ig] or gsk[i1] having been used to create the challenge

group signature.

The only information that is left in the challenge about the signer is inside the ciphgrtakie will
now use the selective-tag weak CCA-security of the cryptosystem to show that the two modified probabilities
for respectivelyb = 0 andb = 1 only differ negligibly. Let us therefore use the group signature adversary
to construct a selective-tag adversary that attacks the cryptosystem. The cryptosystem has a public key
F,H, K, L. Itis possible to build a common reference string using the s@nig ¢ that has perfect witness-
indistinguishability and perfect zero-knowledge, since the zero-knowledge trapdoor consists of the discrete
logarithms ofU’, V', W’ with respect taF, H, g. We can therefore on top of a public keyH, K, L generate
a correctly formed public keypk for the group signature scheme and emulate the ordole€ orrupt and

16

JoinHonestExposed. Whenever we have a valid group signature quer@ten it contains a ciphertexj.

This ciphertext never uses the tHgsh(vksots) from the challenge ciphertext, so we can use the decryption
oracle in the selective-tag weak CCA-security game defining the security of the cryptosystem to decrypt the
ciphertext and get out.

We will now describe how to generate the challenge group signature on top of a challenge tag-based
ciphertext. We start by picking a key for the strong one-time signature sch&mgs, sksots). We will use
Hash(vksots) as the target tag, which we observe is chosen independently of the public key for the cryp-
tosystem. We now get the public kéy H, K, L and run the group signature game on top of it as described
above. At some point the adversary produggs,, m on which it wants a challenge group signature. We
construct signatures;,, o;, on Hash(vksets) for respectively usei, andi;. We then get an encryption
usingHash(vksots) as the tag of eithes;, or o;, and our goal is to distinguish which one is the plaintext
of y. We build a group signature on top of this ciphertext, which can be done since we have perfect NIWI
proofs of knowledge and perfect NIZK proofs on simulated common reference strings. If the group signature
anonymity probabilities fob = 0 andb = 1 are different, we can therefore distinguish whethe&ncrypts
oi, Or 04,. The selective-tag weak CCA-security of the cryptosystem therefore gives us that the modified
probabilities withb = 0 andb = 1 are indistinguishable. O

Lemma 6 The group sighature scheme has non-frameability.
Proof. We want to prove that for all non-uniform polynomial time adversadese have:

Pr [(gpk:,z'k, Ok) - GKg(lk); <m7 E,i, 0) - AIssueToHonest,ReadGsk,GSig<gpk’ ik, Ok) .
GVi(gpk,m,X) =1 A Judge(gpk,i,reglil,m,X,0) =1
A i € HonestUsers A i ¢ ExposedKeys A (m,X) ¢ UserSignatures] ~ 0.

Assume for contradiction that there exists & 0 such that for an infinite number &f € N the adversary
A has probability at Ieas,cig of winning the game. Let (%) be a polynomial upper bound of the number of
IssueToHonest queries thayd makes. We have at Iea% chance of guessing the ugathat.4 will attempt

to frame before running the game.

Let F' be the event thatl producesm, >) S0 vksts from one of the group signatures made from the
GSig oracle is reused dflash(vksots) collides with one of the k. . used by thesSig oracle. By the strong
existential unforgeability of the one-time signhature scheme and the collision-freeness of the hash-function,
there is negligible probability that occurs. Our assumptions so far then lead to the existen&ée>00 so
for an infinite number ok € N we have:

Pr |(gpk, ik, ok) — GKg(lk);j —{1,...,n(k)};(m,X,i,0) — .AIssueTOHoneSt’ReadGSk’GSig(gpk, ik, ok) :

-F ANi=j A GVf(gpk,m,X) =1 A Judge(gpk,i,regli],m,%,0) =1
A i € HonestUsers A i ¢ ExposedKeys A (m,X) ¢ UserSignatures] > 2k51n(k)'
We will use the properties of the key establishment protocol to simulatgtthkey establishment pro-

tocol. Consider the following game running with non-uniform polynomial time adversBraasd [ssuer*.
AdversaryB on inputgk simulates the entire game above, including simulating the behavidr @n the
j'th call to IssueToHonest it gives the entire state of the protocollteuer™ including the state of the simu-
lated.A. Issuer™ acts as4 would in the protocol sending messages$stme ToHonest. We run this adversary
Issuer® with an honest user in the key establishment protocol. In case the protocol is successful, the user
outputsz;, else she outputs. In either caselssuer™ outputs the internal state of the oracles and all keys as
well as the internal state o4. Now B takes over and continues the run.fon the state output bigsuer™.

17

In case the output of the user was e Z, and the adversary gives the user a valid certifieaté;, the user
setsgsk[j] := (zj,a;,b;). B now continues the protocol run to get, ,4,0) from A. If ¢ = j and all
the other success criteria specified in the probability above are satiSfieatputs 1. Running this game,
corresponds exactly to the probability above, so we have:

1

ky. . cqy — T * . —
Pr [gk — G(1%);y «— B(gk); x < Zp;v := ¢g; (z4,b) < (User(gk), Issuer*(y)) : B(z;,b) = 1| > k)’

Since the key establishment protocol has black-box simulation of the issuer, there exists a black-box simulator
St such that:

Pr [gk — G(1%);y « B(gk);x — Zp;v = ¢%; (vj,b) S}ss“er*(y)(gk,v); if v; = L sete =_1:B(z,b)=1| > yyx

The only wayz is used by is in creating Boneh-Boyen signatures on randomly chosen strong one-time
verification keys when th&Sig oracle is queried. Furthe only outputs 1 if a successful forgery of such a
signature is made. The latter probability is therefore negligible. This leads us to a contradiction, so we must
instead conclude that the probability of non-frameability eventually is smaller%th&w allé > 0. 0

Lemma 7 The group signature scheme is traceable.
Proof. We have to prove that valid signatures lead to the provable identification of a signer. In other words,
Pr [(gpk,ik,ok) — GKg(1%); (m, %) — AT (gpk, ok); (i, o) — Open(gpk, ok, reg,m,) :
GVf(gpk,m,X) =1 A (Judge(gpk,i,regli],m,X,0) =0 V i = 0)] ~ 0.

Let n(k) be an upper bound on the number of usdrins. Since the running time o4 is polynomial in
k we can assume(k) is polynomial. Further, assume for contradiction that there exists-a0 so for an
infinite number oft € N the probability is more thah—?.

We will consider a sequence of gan@s, . . . , G,,(1)- DefineG to be the game in the probability above,
ie,

Go = {(gpk, ik, ok) — GKg(1¥); (m,X) «— A" (gpk, ok); (i,0) < Open(gpk, ok, reg,m,¥)}.

GameG; will be gameG;_; except the cath(k) — j to Join is simulated. We will now explain this further.

We will first give an alternative description of the first part@f_,. We have an adversatyandUser™.

B on inputgk runs the game simulating the generation of all keys and the internal stdte/ghen reaching
then(k) — j'th call to Join, it gives the entire state of the protocol, including the statd &b User*. User*
continues running the protocol antland forwardsA’s messages to the key establishment protocol. We run
this key establishment protocol with an honest issuer thatgess input. At the end of the protocblser*
outputs all parameters of the scheme as well as the state [d6ing this internal state, we then continue the
protocol as inG;_;.

Now we will describe;. AsinG_; we let3 be an adversary that generates keys for the group signature
scheme and simulates the actions of all parties includirand gives the entire internal state of protocol and
adversary tdJser*. On then(k) — j'th call to Join we runxz; «— Z,;v; = ¢%; (u,i) «— Sgser* (gk,vj).
After that we continue the protocol as@;_;. By the properties of the key-establishment protocol we can
choose a simulato$;; such that the probability difference betwe@n_; andG/; resulting in the conditions
being satisfied is at mom. Therefore(,, ;) has at least probabilitgi—a of resulting in success.

In gameG,,(;;) a valid signaturer implies the existence of a valid certisignatureldash (vksors). We
can use the extraction keyk to extract this certisignature. 16,y we have only given certificates on

18

correctly generated verification keys. By the unfakeability of the certisignature scheme, the certisignature
therefore points to one of these certifigts. The perfect soundness of the NIWI proof of knowledge implies
that the extracted is indeed a signature dilash(vkg.ts) under the verification key; in the NIWI proof of
knowledge.Judge will therefore output 1. So the success probability when running gamg is negligible,

giving us the desired contradiction. O

EFFICIENCY. If we instantiate the strong one-time signature using the scheme from [Gro06] a verification
key has a size of 3 group elements and a one-time signature consists of 3 elemerig.f\dd@ make the
elementa public. The NIWI proof of knowledge consists of 27 group elements. The ciphertext consists
of 5 group elements. The NIZK proof consists of 15 group elements. The total size of a group signature is
therefore 51 group elements@hand 3 elements ifi,,. This is of course much better than the many thousand
elements required for a group signature in [Gro06].

In case CPA-anonymity is sufficient, we can consider a lighter version of our group signature, where we
omit the ciphertexty and the NIZK proofy). This CPA-anonymous group signature scheme would consist of
31 group elements ifY and 3 elements fror#,,. We observe that regular anonymity implies that the group
signature is strong, i.e., even when seeing a messaged a group signaturg on it, it is not possible to
create a different group signatur® on m such that it still points to the same member. In CPA-anonymity,
however, we do not give the adversary access to an opening oracle and thus mauling signatures is no longer
a problem. If we do not care about the group signature being strong, we do not need the strong one-time
signature key and we can simply siffiash(m) instead ofHash(vksets. This reduces the size of the group
signatures further t@8 group elements. In comparison, the CPA-anonymous group signature scheme of
[BWO7] consists of 6 group elements in a composite order group. Since composite order groups rely on the
hardness of factoring, these groups are very large and our CPA-anonymous group signatures are therefore
comparable in size for practical parameters, perhaps even a bit smaller. However, our CPA-anonymous group
signature scheme still supports dynamic enroliment of members and has a group pulgli& kensisting
of a constant number of group elements.

KEY GENERATION. Since the [BSZ05]-model assumes a trusted key generator it is worth considering how
the key generation should be carried out in practice. The trust in our scheme relies on the bilinear group
(p,G,Gr,e,g) being generated so the cryptographic assumptions hold and it relies on the hash-function
being collision-free. We remark that an advantage of our scheme is that we works over prime order bilinear
groups, so it may be possible to use a uniform random string to st G G, e, g). Also, since the trust
is based on very elementary assumption, a bilinear group and a hash-function, it is quite possible that we can
plug public standards into our scheme. One could for instance use SHA-256 as the hash-function.

The non-frameability of the user relies only on the collision-freeness of the hash-function and the cryp-
tographic assumptions ifp, G, G, e, g). The rest of the group public keypk can be generated jointly by
the issuer and the opener. The issuer generates the authority key for the certisignature scheme. The opener
generatesrs andpk, anonymity follows from the opener generating these keys correctly. Since the opener
can break anonymity anyway, it is quite reasonable to trust the opener with protecting anonymity. The opener
will have to make a zero-knowledge proof of knowledge of the corresponding extraction key to the issuer,
since the security proof for traceability relies on the opener being able to actually extract a signature from the
NIWI proof of knowledge.

References
[ACHAMO5] Giuseppe Ateniese, Jan Camenisch, Susan Hohenberger, and Breno de Medeiros. Practical

group signatures without random oracles. Cryptology ePrint Archive, Report 2005/385, 2005.
http://eprint.iacr.org/2005/385

19

[ACJTO0]

[BBO4]

[BBPO4]

[BBS04]

[BMWO3]

[BRI3]

[BSZ05]

[BWOB]

[BWO7]

[CGO4]

[CGHO8]

[CGHO4]

[CLOA4]

[CvHO1]

[FI05]

Guiseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical and provably
secure group signature scheme.pceedings of CRYPTO '00, LNCS series, volume ;1880
pages 255-270, 2000.

Dan Boneh and Xavier Boyen. Short signatures without random oraclesto¢eedings of
EUROCRYPT '04, LNCS series, volume 302xges 56—73, 2004.

Mihir Bellare, Alexandra Boldyreva, and Adriana Palacio. An uninstantiable random-
oracle-model scheme for a hybrid encryption problem. proceedings of EURO-
CRYPT '04, LNCS series, volume 302%¥ages 171-188, 2004. Full paper available at
http://eprint.iacr.org/2003/077

Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signaturgsockedings of
CRYPTO '04, LNCS series, volume 31pages 41-55, 2004.

Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group signatures:
Formal definitions, simplified requirements, and a construction based on general assumptions.
In proceedings of EUROCRYPT '03, LNCS series, volume, &fes 614—-629, 2003.

Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. IACM CCS '93 pages 62-73, 1993.

Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signatures: The case of
dynamic groups. Iiproceedings of CT-RSA '05, LNCS series, volume 3f8d@ges 136—153,
2005.

Xavier Boyen and Brent Waters. Compact group signatures without random oracle®- In
ceedings of EUROCRYPT '06, LNCS series, volume At¥ges 427-444, 2006.

Xavier Boyen and Brent Waters. Full-domain subgroup hiding and constant-size group signa-
tures. Inproceedings of PKC 200¥olume 4450 of_ecture Notes in Computer Scienpages
1-15, 2007. Available dittp://www.cs.stanford.edu/ ~xb/pkcO7/

Jan Camenisch and Jens Groth. Group signatures: Better efficiency and new theoretical aspects.
In proceedings of SCN '04, LNCS series, volume 33&8es 120-133, 2004. Full paper
available ahttp://www.brics.dk/ ~jg/GroupSignFull.pdf

Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited. In
proceedings of STOC '9¢ages 209-218, 1998.

Ran Canetti, Oded Goldreich, and Shai Halevi. On the random-oracle methodology as applied
to length-restricted signature schemespiloceedings of TCC '04, LNCS series, volume 2951
pages 40-57, 2004.

Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from
bilinear maps. Iproceedings of CRYPTO '04, LNCS series, volume 3iages 56—72, 2004.

David Chaum and Eugne van Heyst. Group signatures.pitoceedings of EUROCRYPT '91,
LNCS series, volume 54ffages 257-265, 1991.

Jun Furukawa and Hideki Imai. An efficient group signature scheme from bilinear maps. In
proceedings of ACISP '05, LNCS series, volume 3pages 455-467, 2005.

20

[GKO3]

[Gro06]

[GS07]

[Kil06]

[KYO5]

[MRY04]

[Nie02]

Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the fiat-shamir
paradigm. Inproceedings of FOCS 'Q3pages 102—, 2003. Full paper available at
http://eprint.iacr.org/2003/034

Jens Groth. Simulation-sound nizk proofs for a practical language and constant size group
signatures. Irproceedings of ASIACRYPT '06, LNCS seri2306. Full paper available at
http://mww.brics.dk/ ~Jjg/NIZKGroupSignFull.pdf

Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilin-
ear groups. Cryptology ePrint Archive, Report 2007/155, 2007. Available at
http://eprint.iacr.org/2007/155

Eike Kiltz. Chosen-ciphertext security from tag-based encryptiorprbteedings of TCC '06,
LNCS series, volume 38/Bages 581-600, 2006.

Aggelos Kiayias and Moti Yung. Group signatures with efficient concurrent join.pron
ceedings of EUROCRYPT '05, LNCS series, volume 3d8&des 198-214, 2005. Full paper
available atttp://eprint.iacr.org/345

Philip D. MacKenzie, Michael K. Reiter, and Ke Yang. Alternatives to non-malleability: Def-
initions, constructions, and applications. proceedings of TCC '04, LNCS series, volume
2951, pages 171-190, 2004.

Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic proofs: The
non-committing encryption case. proceedings of CRYPTO '02, LNCS series, volume 2442
pages 111-126, 2002.

21

