
Group Signatures from Certisignatures

Jens Groth∗

UCLA Computer Science Department
3531A Boelter Hall, Los Angeles, CA 90095, USA

E-mail: jg@cs.ucla.edu

May 18, 2007

Abstract

We construct a new group signature scheme using bilinear groups. The group signature scheme is
practical; both keys and signatures consist of a constant number of group elements, and it permits dynamic
enrollment of new members. The scheme satisfies strong security requirements, in particular providing
protection against key exposures, and does not rely on random oracles in the security proof.

From a technical point of view the main novelty in our group signature scheme is a way of certifying
a public verification key for the Boneh-Boyen signature scheme using only standard group operations.
The fact that we do not use any non-group operation, for instance the computation of a hash-function,
makes it possible to use recently developed tools such as non-interactive proofs for bilinear groups. The
certificate is not a signature on the verification key, but it does have the property that it is hard to create
a signature using a key with a forged certificate. We formally define certisignatures that capture the joint
unforgeability of certificates and signatures, without requiring the certificate itself to be unforgeable.

Keywords: Group signatures, certisignatures, bilinear groups.

1 Introduction

Group signatures make it possible for a member of a group to sign messages anonymously so that outsiders
and other group members cannot see which member signed the message. The group is controlled by a group
manager that handles enrollment of members and also has the ability to identify the signer of a message.
Group signatures are useful for instance in contexts where it is desirable to preserve the signer’s privacy, yet
in case of abuse we want some authorities to have the means of identifying her.

Group signatures were introduced by Chaum and van Heyst [CvH91] and have been the subject of much
research. Most of the proposed group signatures have been proven secure in the random oracle model [BR93]
and now quite efficient schemes exist in the random oracle model [ACJT00, BBS04, CL04, CG04, FI05,
KY05]. The random oracle model has been the subject of criticism though. Canetti, Goldreich and Halevi
[CGH98] demonstrated the existence of an insecure signature scheme that has a security proof in the random
oracle model. Other works showing weaknesses of the random oracle model are [Nie02, GK03, BBP04,
CGH04].

There are a few group signature schemes that avoid the random oracle model. Bellare, Micciancio and
Warinschi [BMW03] suggested security definitions for group signatures and offered a construction based
on trapdoor permutations. Their security model assumed the group was static and all members were given
their honestly generated keys right away. Bellare, Shi and Zhang [BSZ05] strengthened the security model

∗Supported by NSF ITR/Cybertrust grant No. 0456717.

1



to include dynamic enrollment of members. This security model also separated the group manager’s role
into two parts: issuer and opener. The issuer is responsible for enrolling members, but cannot trace who
has signed a group signature. The opener on the other hand cannot enroll members, but can open a group
signature to see who signed it. Moreover, it was required that this opener should be able to prove that
said member made the group signature to avoid false accusations of members. [BSZ05] demonstrated that
trapdoor permutations suffice also for constructing group signatures in this model. Both of these schemes use
general and complicated primitives and are very inefficient. Groth [Gro06] used bilinear groups to construct
a group signature scheme in the BSZ-model, with nice asymptotic performance, where each group signature
consists of a constant number of group elements. Still the constant is enormous and a group signature consists
of thousands or perhaps even millions of group elements.

A few practical group signature schemes exist, which have security proofs in the standard model. Ate-
niese, Camenisch, Hohenberger and de Medeiros [ACHdM05] give a highly efficient group signature scheme,
where each group signature consists of 8 group elements in prime order bilinear groups. This scheme is se-
cure against a non-adaptive adversary that never gets to see private keys of honest members. If a member’s
key is exposed, however, it is easy to identify all group signatures she has made, so their scheme is not secure
in the BMW/BSZ-models.

Boyen and Waters [BW06, BW07] suggest group signatures that are secure against key exposure attacks.
Their constructions are secure in a restricted version of the BMW-model where the anonymity of the members
relies on the adversary not being able to see any openings of group signatures. In the latter scheme [BW07],
the group signatures consist of 6 group elements in a composite order bilinear group. The public key in
[BW07] grows linearly in the size of the message space though and will for practical purposes typically
contain a couple of hundred group elements.

OUR CONTRIBUTION. We propose a new group signature scheme based on prime order bilinear groups. All
parts of the group signature scheme, including the group public key and the group signatures, consist of a
constant number of group elements. The constants are reasonable for practical purposes; for instance using
256-bit prime order bilinear groups, a group public key would be less than 1kB and a group signature less
than 2kB.

We prove under some well-established assumptions, the strong Diffie-Hellman assumption [BB04] and
the decisional linear assumption [BBS04], as well as a new assumption that the scheme is secure in the
BSZ-model. This means the scheme permits dynamic enrollment of members, preserves anonymity of a
group signature even if the adversary can see arbitrary key exposures or arbitrary openings of other group
signatures, and separates the role of the issuer and opener such that they can operate independently.

CERTISIGNATURES. One of the tools we use in our group signature scheme is what we will call a certisigna-
ture scheme. A certisignature scheme allows a user to pick keys for a signature scheme and use them to sign
messages. The user can ask a certification authority to certify her public verification key for the signature
scheme. The verification algorithm checks both the certificate and the signature and accepts if both of them
are acceptable. A trivial way to build certisignature schemes is just to let the CA output a standard signature
on the user’s public verification key. Certisignature schemes may be more efficient than that though since
the certificate does not have to be unforgeable. In a certisignature scheme, the requirement is just that it is
infeasible to forge a certificate together with a valid signature. We refer to Section 3 for a formal definition.

In our group signature scheme, enrolling members will create a key for a signature scheme and ask the
issuer to issue a certificate on their verification key. To make a group signature, the member will make
a certisignature. To be anonymous she will encrypt the certisignature and use non-interactive witness-
indistinguishable and non-interactive zero-knowledge proofs to demonstrate that the ciphertext contains a
valid certisignature.

In order to have efficient non-interactive proofs, it is essential to preserve as much of the bilinear group
structure of the encrypted certisignature as possible. In particular, using cryptographic hash-functions or
using group elements from one part of the certisignature as exponents in other parts of the certisignature

2



would not work. The technical challenge in constructing a suitable certisignature scheme therefore lies in
both being very efficient and at the same time to only rely on generic group operations.

The member’s signature scheme will be the Boneh-Boyen signature scheme [BB04]. The public verifi-
cation key for this scheme consists of group elements, however, the message to be signed is in the exponent.
Therefore, the issuer cannot use the Boneh-Boyen signature scheme to certify the member’s verification key,
since this would involve using non-group operations such as using group elements as exponent. Other signa-
ture schemes based on bilinear groups suffer from similar deficiencies, the only signature scheme that works
directly for group elements is the inefficient scheme from [Gro06]. A part of our contribution is a very ef-
ficient method to certify a verification key of the Boneh-Boyen signature scheme that relies only on generic
group operations.

2 Setup

Let G be a probabilistic polynomial time algorithm that generates(p,G,GT , e, g)← G(1k) such that:

• p is ak-bit prime.

• G,GT are groups of orderp.

• g is a randomly chosen generator ofG.

• e is a non-degenerate bilinear map, i.e.,e(g, g) is a generator ofGT and for alla, b ∈ Zp we have
e(ga, gb) = e(g, g)ab.

• Group operations, evaluation of the bilinear map, and membership ofG,GT are all efficiently com-
putable.

We will now present some of the security assumptions that will be used in the paper.

DLIN assumption. The decisional linear assumption was introduced by Boneh, Boyen and Shacham
[BBS04]. The DLIN assumption holds forG, when it is hard to distinguish for randomly chosen group
elements and exponents(f, g, h, f r, gs, ht) whethert = r + s or t is random.

q-SDH assumption. The strong Diffie-Hellman assumption was introduced by Boneh and Boyen [BB04].

The q-SDH assumption holds forG, when it is hard to find a pair(m, g
1

1+x ) ∈ Zp × G when given

g, gx, gx2
, . . . , gxq(k)

.

q-U assumption. The unfakeability assumption, which we will now define, has not appeared before in the
literature. Theq-U assumption holds forG if for any non-uniform polynomial time adversaryA we have:

Pr
[
(p,G,GT , e, g)← G(1k);x1, r1, . . . , xq(k), rq(k) ← Zp;

f, h, z ← G;T := e(f, z); ai := f ri ; bi := hrigxiriz;
(V,A,B,m, S)← A(p,G,GT , e, g, f, h, T, x1, a1, b1, . . . , xq(k), aq(k), bq(k)) :

V /∈ {gx1 , . . . , gxq(k)} ∧ e(A, hV )e(f,B) = T ∧ e(S, V gm) = e(g, g)
]
≈ 0.

Lemma 1 Theq-U assumption holds in the generic group model whenq is a polynomial.

3



Proof. We will show that an unbounded adversary cannot break theq-U assumption when restricted to
using only a polynomial number of generic group operations. In the generic group model, we do not give
the adversary access to the group elements themselves. Instead we pick random bijections[·] : Zp → G
and [[·]] : Zp → GT and give the adversary access to the representation of the group elements as random
encodings of their discrete logarithms. Picking random group elements and computing group operations can
be handled by calling an oracleO that works as follows:

• On (exp, x) return[x].

• On (multiply, [x], [y]) return[x+ y].

• On (multiply, [[x]], [[y]]) return[[x+ y]].

• On (bilinear, [x], [y]) return[[xy]].

We can reformulate the lemma in the generic group model as follows.

Pr
[
(p,G,GT , e, g)← G(1k);x1, r1, . . . , xq(k)rq(k) ← Zp;

γ, φ, η, ζ ← Zp; [·]← Zp ↔ G; [[·]]← Zp ↔ GT ;
([v], [a], [b],m, [s])← AO(p,G,GT , [γ], [φ], [η], [[φζ]],
x1, [φr1], [ηr1 + x1γr1 + ζ], . . . , xq(k), [φrq(k)], [ηrq(k) + xq(k)γrq(k) + ζ]) :

[v] /∈ {[γx1], . . . , [γxq(k)]} ∧ [[a(η + v) + φb]] = [[φζ]] ∧ [[s(v + γm)]] = [[γ2]]
]
≈ 0.

To prove the lemma, observe first that the elementsA can generate inG andGT encode low degree
polynomials inZp[γ, φ, η, ζ, r1, . . . , rq(k)]. The resulting condition for success[[a(η+v)+φb−φζ]] = [[0]]
and[[s(v +mγ)− γ2]] = [[0]] corresponds to having low-degree polynomials inZp[γ, φ, η, ζ, r1, . . . , rq(k)]
evaluate to 0 for randomly chosenγ, φ, η, ζ, r1, . . . , rq(k). The Schwarz-Zippel theorem says that a low-
degree polynomial has negligible probability of evaluating to 0 in randomly chosenγ, φ, η, ζ, r1, . . . , rq(k)

unless it is identical zero. What remains in the proof if to rule out that generic group oracle enablesA to
actually construct[v], [a], [b],m, [s] such thata(η+v)+φb−φζ ands(v+mγ)−γ2 are the zero-polynomials,
and at the same timev /∈ {γx1, . . . , γxq(k)}.

Let us start with the requirement thatA outputs[v],m, [s] so[[s(v + γm)− γ2]] = 0. We will show this
can only be done by pickingvg ∈ Zp and using the oracle to compute[γvg]. For this part of the proof, assume
we even giveφ, η, ζ, r1, . . . , rq(k) toA as extra input. We can now writev = vd + vgγ ands = sd + sgγ, for
knownvd, vg, sd, sg ∈ Zp. We have the equation

(sd + sgγ)(vd + (vg +m)γ)− γ2 = 0.

Assume for contradiction thatvd 6= 0. Looking at the constant of the polynomial we havesdvd = 0 so we
havesd = 0. Looking at the coefficient forγ we havesgvd = 0, which impliessg = 0. This meanss = 0 and
s(v +mγ) = γ2 gives us a contradiction. We conclude thatA can only be successful by pickingv = vgγ.

We will now use the equation
a(η + vgγ) + φb− φζ = 0.

Sincea andb are constructed with calls toO we can write them as

a = ad + afφ+ agγ + ahη +
q(k)∑
i=1

aaiφri +
q(k)∑
i=1

abi
(ηri + xiγri + ζ)

and b = bd + bfφ+ bgγ + bhη +
q(k)∑
i=1

baiφri +
q(k)∑
i=1

bbi
(ηri + xiγri + ζ),

4



for known ad, af , ag, ah, aai , abi
, bd, bf , bg, bh, bai , bbi

∈ Zp. Looking at the coefficient forφζ we have∑q(k)
i=1 bbi

= 1 so there exists somebbi
6= 0. The coefficient forφηri gives usaai + bbi

= 0 so aai =
−bbi

. The coefficient forφγri tell us aaivg + bbi
xi = bbi

(xi − vg) = 0 so vg = xi. This implies[v] ∈
{[γx1], . . . , [γxq(k)]}. �

3 Defining Certisignatures

Typically, using a signature in a public key infrastructure works like this: A user that wants to set up a
signature scheme, generates a public verification keyvk and a secret signing keysk. She takes the public
key to a certification authority that signsvk and possibly some auxiliary information such as name, e-mail
address, etc. We call this the certificate. Whenever the user wants to sign a message, she sends both the
certificate and the signature to the verifier. The verifier checks that the CA has certified that the user has the
public keyvk and also checks the user’s signature on the message.

In the standard way of certifying verification keys described above, the process of issuing certificates
and verifying certificates is separate from the process of signing messages and verifying signatures. We
suggest combining the two processes into one in order to improve efficiency. We do not need to worry about
forgeries of the certificate itself, we only need to prevent the joint forgery ofboth the certificateand the
signature. Informally, a certisignature scheme consists of algorithms for certifying verification keys, signing
messages and verifying the combined certificates and signatures.

A certisignature scheme, is a combined scheme for signing messages and producing certificates for the
verification keys. Formally, a certisignature scheme consists of 6 probabilistic polynomial time algorithms.

Group key: G takes a security parameter as input and outputs a descriptiongk of a group.

Certification key: CertKey on inputgk outputs a pair(ak, ck), respectively a public authority key and a
secret certification key.

User key: UserKey on inputgk outputs a pair(vk, sk), respectively a public verification key and a secret
signing key.

Certificate: Cert on inputck, vk outputs a certificatecert on the verification key.

Signature: Sign gets a signing key and a messagem as input. It outputs a signatureσ.

Verification: Ver takes as inputgk, ak, vk, cert,m, σ and outputs 1 if accepting the certificate and the sig-
nature onm. Otherwise it outputs 0.

The certisignature scheme must be correct, unfakeable and unforgeable as defined below.

Perfect correctness:For all messagesm we have

Pr
[
gk ← G(1k); (ak, ck)← CertKey(gk); (vk, sk)← UserKey(gk); cert← Certck(vk);

σ ← Signsk(m) : Ver(gk, ak, vk, cert,m, σ) = 1
]

= 1.

Unfakeable: We want it to be hard to create a signature with a faked certificate. Only if the verification key
has been generated correctly and been certified by the CA should it be possible to certisign a message.
For all non-uniform polynomial time adversariesA we require:

Pr
[
gk ← G(1k); (ak, ck)← CertKey(gk); (vk, cert,m, σ)← ACertUserKey(gk, ak) :

vk /∈ Q andVer(gk, ak, vk, cert,m, σ) = 1
]
≈ 0,

5



where CertUserKey is an oracle that on queryi runs (vki, ski) ← UserKey(gk);Q := Q ∪
{vki}; certi ← Certck(vki) and returns(vki, ski, certi).

Natural and stronger definitions exist. We could for instance letCertUserKey take randomness for
UserKey as input. This corresponds to a registered key model, where the adversary can get a certificate
for any correctly generated verification key. Even stronger we could let it takevki as input. This
corresponds to a model, where the adversary can pick any malicious public keyvki and get it certified.
In this paper, we only need the weaker definition of unfakeability presented above.

Existential M -unforgeability: LetM be a stateful non-uniform polynomial time algorithm. We say the cer-
tisignature scheme is existentiallyM -unforgeable if for all non-uniform polynomial time adversaries
A we have:

Pr
[
gk ← G(1k); (vk, sk)← UserKey(gk); (ak, cert,m, σ)← AMessageSign(·)(gk, vk) :

m /∈ Q andVer(gk, ak, vk, cert,m, σ) = 1
]
≈ 0,

where MessageSign(·) is an oracle that on inputai runs (mi, hi) ← M(gk, ai) ; σi ←
Signsk(mi) ; Q := Q ∪ {mi} and returns(mi, hi, σi).

Adaptive chosen message attack corresponds to lettingM be an algorithm that on inputmi outputs
(mi, ε). On the other hand, lettingM be an algorithm that ignoresA’s inputs corresponds to a weak
chosen message attack, where messages to be signed by the oracle are chosen without knowledge ofvk.
In a weak chosen message attack, thehi’s may contain a history of how the messages were selected.
In this paper, we only need security against weak chosen message attack.

4 A Certisignature Scheme

We will construct a certisignature scheme from bilinear groups that is existentially unforgeable under weak
chosen message attack. There are two parts of the scheme: certification and signing. For signing, we will
use the Boneh-Boyen signature scheme that is secure under weak chosen message attack. In their scheme the

public key isv := gx and the secret signing key isx. A signature on messagem ∈ Zp \ {x} is σ = g
1

x+m . It
can be verified by checkinge(σ, vgm) = e(g, g). Boneh and Boyen [BB04] proved that this signature scheme
is secure against weak chosen message attack under theq-SDH assumption. The existential unforgeability
of our certisignature scheme under weak chosen message attack will follow directly from the security of the
Boneh-Boyen signature scheme under weak chosen message attack.

What remains is to certify the verification keyv. As we discussed in the introduction, in order for this
certisignature scheme to be useful in constructing group signatures it is important that we can issue the
certificate using group operations only. To set up the certification scheme, the certification authority picks
random group elementsf, h, z ∈ G. The authority key is(f, h, T ) and the secret certification key isz soT =
e(g, z). To certify a Boneh-Boyen keyv the authority picksr ← Zp and sets(a, b) := (f−r, (hv)rz). The
certificate is verified by checkinge(a, hv)e(f, b) = T . We remark that this is not a good signature scheme,
since givenv, a, b it is easy to create a certificate forv′ := v2h as(a′, b′) := (a

1
2 , b). For certisignatures it

works fine though since we cannot use the faked verification keys to actually sign any messages. The nice part
about the certification scheme we have suggested here is that a certificate consists of only two group elements
and is created through the use of generic group operations. These two properties of the certisignature scheme
are what enable us to construct a practical group signature scheme on top of it.

Theorem 2 The scheme in Figure 1 is a certisignature scheme with perfect correctness for messages in
Zp \ {x}. It is unfakeable under theq-U assumption and is existentially unforgeable under weak chosen
message attack under theq-SDH assumption.

6



GroupKey(1k)
Return gk := (p,G,GT , e, g)← G(1k)

CertKey(gk)
f, h, z ← G
T := e(f, z)
Return (ak, ck) := ((gk, f, h, T ), (ak, z))

Certck(vk)
r ← Zp

a := f−r

b := (vh)rz
Return cert := (a, b)

UserKey(gk)
x← Zp ; v := gx

Return (vk, sk) := (v, (gk, x))

Signsk(m)
If x = −m return⊥
Else returnσ := g

1
x+m

Ver(gk, ak, vk, cert,m, σ)
Return 1 if
e(a, vh)e(f, b) = T
e(σ, vgm) = e(g, g)

Else return0

Figure 1: The certisignature scheme.

Proof. Perfect correctness follows by inspection. Unfakeability follows in a straightforward manner from
the q-U assumption withq(k) being an upper bound on the number of keysA gets certified, for instance
with q(k) being the running time ofA. The signature scheme is existentially unforgeable under weak chosen
message attack if theq-SDH assumption holds [BB04], and therefore so is our certisignature scheme.�

5 Defining Group Signatures

In a group signature scheme there is a group manager that decides who can join the group. Once in the
group, members can sign messages on behalf of the group. Members’ signatures are anonymous, except to
the group manager who can open a signature and see who signed the message. In some scenarios it is of
interest to separate the group manager into two entities, an issuer who enrolls members and an opener who
traces signers.

We imagine that enrolled member’s when joining have some identifying information added to a registry
reg. This registry may or may not be publicly accessible. The specifics of how the registry works are not
important, we just require thatreg[i] only contains content both the issuer and useri agrees on. One option
could be that the issuer maintains the registry, but the user has to sign the content ofreg[i] for it to be
considered a valid entry. Useri stores her corresponding secret key ingsk[i]. The numberi we associate
with the user is simply a way to distinguish the users, it does not carry any further significance. Without loss
of generality, we will assume users are numbered1, . . . , n according to the time they joined or attempted to
join.

Key generation: GKg generates(gpk, ik, ok). Heregpk is a group public key, whileik andok are respec-
tively the issuer’s and the opener’s secret key.

Join/Issue: This is an interactive protocol between a user and the issuer. If successful, the user and issuer
register a public keyvki in reg[i] and the user stores some corresponding secret signing key informa-
tion in gsk[i].

[BSZ05] specify that communication between the user and the issuer in this protocol should be secret.
The Join/Issue protocol in our scheme works when all messages are sent in clear though. In our scheme,

7



we will assume the issuer joins users in a sequential manner, but depending on the setup assumptions
one is willing to make, it is easy to substitute theJoin/Issue protocol for a concurrent protocol.

Sign: Group memberi can sign a messagem asΣ← Gsig(gpk, gsk[i],m).

Verify: To verify a signatureΣ on messagem we runGVf(gpk,m,Σ). The signature is valid if and only if
this verification algorithm outputs 1.

Open: The opener has read-access to the registration tablereg. We have(i, τ)← Open(gpk, ok, reg,m,Σ)
gives an opening of a valid signatureΣ on messagem pointing to useri. In case the signature points
to no member, the opener will assume the issuer forged the signature and seti := 0. The role ofτ is to
accompanyi 6= 0 with a proof that useri did indeed sign the message.

Judge: This algorithm is used to verify that openings are correct. We say the opening is correct if
Judge(gpk, i, reg[i],m,Σ, τ) = 1.

[BSZ05] define four properties that the group signature must satisfy: correctness, anonymity, traceability
and non-frameability. We refer to [BSZ05] for a discussion how this security definition covers and strength-
ens other security issues that have appeared in the literature.

PERFECT CORRECTNESS. On any adversarially chosen message, the verification should accept a group
signature created with a correctly generated group signing keygsk[i] for memberi. Running the opening
algorithm on this should identifyi and make theJudge algorithm accept the opening. For all (unbounded)
adversariesA we have:

Pr
[
F := 0; (gpk, ik, ok)← GKg(1k); (i,m)← AJoin/Issue(gpk, ik, ok); Σ← GSig(gpk, gsk[i],m);

(j, τ)← Open(gpk, ok, reg,m,Σ) :

F = 0 ∧ i = j ∧ Judge(gpk, i, reg[i],m,Σ, τ) = 1
]

= 1,

whereA outputsi ∈ Members and the oracle works as follows:

Join/Issue: On thei’th query toJoin/Issue add i to the list of membersMembers. Run the Join/Issue
protocol for an honest user and issuer. If the user or issuer does not accept, setF := 1 and return 1.
Else update and returnreg[i], gsk[i].

ANONYMITY. It should be infeasible for an adversary to identify the signer of a message if she does not
know the opener’s keyok. We require a strong version of anonymity, which holds even when the adversary
controls the issuer and all the members’ secret signing keys are exposed. We require for all non-uniform
polynomial timeA that:

Pr
[
(gpk, ik, ok)← GKg(1k) : ACh0,Open,JoinCorrupt,JoinExposedHonest(gpk, ik) = 1

]
≈ Pr

[
(gpk, ik, ok)← GKg(1k) : ACh1,Open,JoinCorrupt,JoinExposedHonest(gpk, ik) = 1

]
where the oracles work as follows:

JoinExposedHonest:On input(i, start) start up an honest useri that tries to join the group. This user acts
honestly, however, the entire internal state is exposed to the adversary. On input(i,msg) send message
msg to the user on behalf of the issuer and return the new internal state of the user. On successful
completion of theJoin/Issue protocol updatereg[i] and addi to HonestUserKeys. Since the internal
state is exposed, the adversary knows the corresponding secret keygsk[i] and will be able to make
group signatures on behalf of the user.

8



JoinCorrupt: On input(i, vki) setreg[i] := vki. This allows the adversary to enroll a corrupt member and
register any public key of its own choosing.

Chb: On input(i0, i1,m) wherei0, i1 ∈ HonestUserKeys returnΣ← GSig(gpk, gsk[ib],m).

Open: On input a valid message and group signature pair(m,Σ) that has not been produced byChb return
Open(gpk, ok, reg,m,Σ).

Some papers have considered a weaker variant of anonymity, called CPA-anonymity. In CPA-anonymity, the
adversary does not have access to theOpen oracle.

TRACEABILITY. We want to avoid forged group signatures. The issuer can always make a dummy registra-
tion and create group signatures, so we cannot rule out the creation of group signatures. What we want to
capture here is that if the issuer is honest, then it is infeasible to create a signature that does not belong to
some member with a registered key inreg[i]. For all non-uniform polynomial time adversariesA we have:

Pr
[
(gpk, ik, ok)← GKg(1k); (m,Σ)← AJoin(gpk, ok); (i, τ)← Open(gpk, ok, reg,m,Σ) :

GVf(gpk,m,Σ) = 1 ∧ (Judge(gpk, i, reg[i],m,Σ, τ) = 0 ∨ i = 0)
]
≈ 0,

where the oracle is:

Join: On input(i, start) accept only(i,msg) queries until thisJoin/Issue protocol finishes successfully or
not. Run the issuer’s protocol usinggpk, ik with the adversary being able to submit(i,msg) as the
possibly malicious user’s messages to the issuer. If the join protocol is successful update the registry
reg[i] correspondingly.

NON-FRAMEABILITY . We want to avoid that an honest member is falsely attributed a signature that it did not
sign, even if both the issuer and opener are controlled by the adversary. We require that for all non-uniform
polynomial time adversariesA we have:

Pr
[
(gpk, ik, ok)← GKg(1k); (m,Σ, i, τ)← AIssueToHonest,ReadGsk,GSig(gpk, ik, ok) :

GVf(gpk,m,Σ) = 1 ∧ Judge(gpk, i, reg[i],m,Σ, τ) = 1

∧ i ∈ HonestUsers ∧ i /∈ ExposedKeys ∧ (m,Σ) /∈ UserSignatures
]
≈ 0,

where the oracles are:

IssueToHonest: On input(i, start) start up a new honest useri joining the group usinggpk as the group
key and addi to HonestUsers. On input(i,msg) send this message to the user on behalf of the corrupt
issuer. If the protocol is successful updatereg[i] andgsk[i] correspondingly.

ReadGsk: On inputi returngsk[i]. Add i to ExposedKeys.

GSig: On input(i,m) check whethergsk[i] is non-empty. In that case returnΣ ← GSig(gpk, gsk[i],m)
and add(m,Σ) to UserSignatures.

The definition above addresses a partially dynamic setting where members can be enrolled along the
way. It also separates the roles of granting membership from opening signatures. In [BMW03] a simpler
situation is considered. Only a single group manager that acts as opener is considered. All members’ keys
are set up from the start, there is no enrollment. This relaxation permits the definitions of traceability and
non-frameability to be combined into one requirement called full-traceability. In this paper we concentrate
on the stronger and more flexible [BSZ05] model.

9



6 Tools

To construct our group signature scheme, we will use the certisignature scheme from Section 4. We will also
use several other tools in our construction, namely key establishment protocols, collision-free hash functions,
non-interactive proofs for bilinear groups, strong one-time signatures and selective-tag weak CCA-secure
cryptosystems.

6.1 Key Establishment Protocol

In the certisignature scheme, we require that the user generates her signing key honestly. We will therefore
give an interactive protocol between the user and the issuer that gives the user a uniformly random secret key
x ∈ Zp, while the issuer learnsv := gx. In case either party does not follow the protocol or halts prematurely,
the other party will output⊥. For notational convenience, defineg⊥ := ⊥. We will now give a more precise
definition of the properties the protocol should have.

Write (x, v) ← 〈User(gk), Issuer(gk)〉 for running the key establishment protocol between two proba-
bilistic polynomial time interactive Turing machinesUser, Issuer on common inputgk giving User outputx
andIssuer outputv. We require that the protocol is correct in the following sense:

Pr
[
gk ← G(1k); (x, v)← 〈User(gk), Issuer(gk)〉 : v = gx

]
= 1.

We require that the view of the issuer, even if malicious, can be simulated. More precisely, for any
δ > 0 and polynomial timeIssuer∗ there exists a polynomial time (ink and the size of the input toIssuer∗)
black-box simulatorSI , such that for all non-uniform polynomial time adversariesA we have:

Pr
[
gk ← G(1k); y ← A(gk);x← Zp; v := gx; (gu, i)← S

Issuer∗(y)
I (gk, v) : A(u, i) = 1

]
− Pr

[
gk ← G(1k); y ← A(gk); (x, i)← 〈User(gk), Issuer∗(y)〉 : A(x, i) = 1

]
< k−δ,

whereSI outputsgu sou ∈ {⊥, x}.
We also require that the view of the user, even if malicious, can be simulated. For anyδ > 0 and any

polynomial timeUser∗ there exists a polynomial time (ink and the size of the input toUser∗) black-box
simulatorSU , such that for all non-uniform polynomial time adversariesA we have:

Pr
[
gk ← G(1k); y ← A(gk);x← Zp; v := gx; (u, i)← SUser∗

U (gk, x) : A(u, i) = 1
]

− Pr
[
gk ← G(1k); y ← A(gk); (u, i)← 〈User∗(s), Issuer(gk)〉 : A(u, i) = 1

]
< k−δ,

whereSU outputsi ∈ {⊥, v}.
We will offer a 5-move key establishment protocol where the parties havegk as common input. The

protocol lets the user pickga. The user and issuer use a coin-flipping protocol to generate a random modifier
b+c and outputv := ga+b+c. At the same timeb+c is used as a challenge to the user in a proof of knowledge
of a.

User→ Issuer : Picka, r ← Zp, η ← Z∗
p and sendA := ga, R := gr, h := gη to issuer.

User← Issuer : Pick b, s← Zp and sendB := gbhs to user.

User→ Issuer : Sendc← Zp to issuer.

User← Issuer : Sendb, s to user.

10



User→ Issuer : CheckB = gbhs. If check passes, sendz := (b+c)a+r mod p andη to issuer and output
x := a+ b+ c.

Issuer : Checkη ∈ Z∗
p, h = gη andAb+cR = gz and outputv := Agb+c if checks pass.

Lemma 3 The Join/Issue protocol has perfect correctness and assuming the discrete logarithm problem is
hard it is possible to black-box simulate both the user and the issuer.

Proof. Perfect correctness follows by direct verification.
We will now prove that for anyδ > 0 there exists a black-box simulator for a malicious issuer. We start

by describing the simulator.SIssuer∗(y)
I (gk, v) pickse, z, η ← Zp and setsA := vg−e andR := gzA−e and

h := gη. It runs theIssuer∗(y) on inputA,R, h to get a commitmentB. It then runs the malicious issuer up to
kδ+1 times on randomly chosenc← Zp until Issuer∗ opensB to b, s. There are now two possibilities: either
Issuer∗ provides a satisfactory opening ofB or it never opens the commitment. In case no such opening
is given, the simulator runsIssuer∗ once again with randomc. If Issuer∗ does not openB in this run, the
simulator outputs(⊥, i), wherei is the output ofIssuer∗. If Issuer∗ opensB, we abort the simulation. The
other possibility is that we did extract an openingb, s ofB. In this case, we sendd := e−b mod p to Issuer∗.
If Issuer∗ stops the protocol, we output(⊥, i), wherei is Issuer∗’s output. IfIssuer∗ opens the commitment
to b′ 6= b we abort the simulation. Finally, ifIssuer∗ opens the commitment tob, we sendη, z to Issuer∗ and
output(v, i), wherei is Issuer∗’s output.

We will now prove that the simulator satisfies the definition. It is clear thatSI runs in polynomial time,
sinceIssuer∗ is a polynomial time algorithm with polynomial size outputs and we only run itkδ+1 times.
Let us modify the real protocol between an honest user and an adversarial issuer. After the user’s first
messageA,R, h and the adversary’s first messageB we store the state ofIssuer∗. We runIssuer∗ up tokδ+1

times with randomly chosenc to get an openingb, s of B. After this, we make a real run ofIssuer∗ and
produce the output of the protocol, with two exceptions. If we extracted an openingb, s of B but in the real
run Issuer∗ opens the commitment tob′ 6= b we abort. This only gives a negligible change in probability,
since otherwise we could break the binding property of the commitment scheme and thus break the discrete
logarithm assumption. The other change is that ifIssuer∗ did not openB in thekδ+1 runs, but does so in
the real run, we abort. Observe the following, if at the stored stateIssuer∗ has at least 1

2kδ probability of
openingB after seeing randomly chosenc, then by using Chernoff-bounds we know there is overwhelming
probability that an opening ofB will be extracted in thekδ+1 runs, so this event only gives negligible change
in the probability. On the other hand, adding up all cases with probability less than1

2kδ of Issuer∗ finishing
the protocol on randomc add up to less than1

2kδ probability of aborting.
What remains is to see that the simulation and the modified version of the real protocol described above

yield the same probabilities. In both the simulation and the modified real protocol, we have uniform random
A,R, h and get a responseB from Issuer∗. For Issuer∗ having probability less than1

2kδ of openingB on
randomc, the two experiments are the same. ForIssuer∗ having at least 1

2kδ chance of openingB on random
c observe first that the experiment is perfectly indistinguishable from one, where we pickx, e at random
and setA := gx−e in the beginning of the protocol and usec := e − b, since in both cases everything is
still chosen uniformly at random. Now we have a proof of knowledge with a fixed challengee and we can
simulate it by pickingz first and settingR := gzA−e, which again does not change the distribution at all.

We will now show that for anyδ > 0 there is a black-box simulator for an adversarial user. We first
describe the simulator. The simulator gets(gk, x) as input and runsUser∗(y) on gk to getA,R, h. It
now makes up tokδ+1 runs of User∗ with randomly chosenb, s to get two successful transcriptsc, η, z
andc′, η, z′. If it is unsuccessful in getting two transcripts it makes yet another run with randomly chosen
b, s and if User∗ produces satisfactoryc, η, z, then it aborts the simulation. If it is successful, it aborts if
b+ c = b′ + c′. Otherwise, we havegz = Ab+cR andgz′ = Aa′+b′R givingA = g(z−z′)/(a+b−a′−b′) so we
can seta := (z − z′)/(a + b − a′ − b′) mod p. We also haveη ∈ Z∗

p soh = gη. We now make a real run,

11



with B := gt, wheret is chosen at random. If getting an incorrect or lacking response in either step of the
real run, we output(u,⊥), whereu is the output ofUser∗. Else, we receivec and open the commitment as
B = gx−a−ch(t−x+a+c)/η and sendb := x− a− c, s := (t− x+ a+ c)/η mod p to User∗. On a successful
response fromUser∗, we output(u, gx).

We will now argue that this is a good simulation. It is clear that the simulator runs in polynomial time.
Consider modifying a real protocol between the adversary and an honest issuer. We modify the behavior of
the issuer such that it rewinds the protocolkδ+1 times after the initial message and makes a complete run
with randomly chosenb, s to get two successful answersc, η, z andc′, η, z′. If it does not succeed, it makes
yet another run with randomb, s and aborts ifUser∗ produces a satisfactory answerc, η, z. If User∗ has
probability 1

2kδ of succeeding on randomb, s, then there is overwhelming probability that we do extract two
answersc, η, z andc′, η, z′. So the only case where we would get an abort for the reason mentioned above
is whenUser∗ has less than1

2kδ chance of succeeding. So this abort only changes the success probability
with less than 1

2kδ . The commitment is perfectly hiding, so there is negligible probability ofb + c = b′ + c′

in the simulation, so we can from now on ignore that possibility. SupposeUser∗ has probability at least1
2kδ

of completing the protocol successfully after sendingA,R, h, then we will successfully extracta soA = ga

with overwhelming probability and we also learnη soh = gη. Modifying the protocol further to pickx at
random and openingB to x− a− c therefore does not change the probability distribution further. This latter
modification brings us to an experiment that is equivalent to the simulation running on a randomly chosenx.
�

6.2 Collision-Free Hash-Functions

H is a generator of collision free hash-functionsHash : {0, 1}∗ → {0, 1}`(k) if for all non-uniform polyno-
mial time adversariesA we have:

Pr
[
Hash← H(1k);x, y ← A(Hash) : Hash(x) = Hash(y)

]
≈ 0.

We will use a collision-free hash-function to compress messages before signing them. For this purpose
we will require that we can hash down toZp, so we want to have2`(k) < p. We remark that collision-
free hash-functions can be constructed assuming the discrete logarithm problem is hard, so the existence of
collision-free hash-functions follows from our assumptions on the bilinear group.

6.3 Strong One-Time Signature Schemes

A one-time signature scheme is secure against an adversary that has access to a single chosen message attack.
We say the one-time signature scheme is strong, if the adversary can neither forge a signature on a different
message nor create a different signature on the chosen message she already got signed. There are many ways
to construct strong one-time signatures. One option is given in the full paper of [Gro06] based on the discrete
logarithm assumption. This scheme requires 3 group elements to specify the public verification key and three
elements inZp to specify a strong one-time signature.

6.4 Non-interactive Proofs for Bilinear Groups

Groth and Sahai [GS07] suggest non-interactive proofs that capture relations for bilinear groups. They look
at sets of equations in our bilinear group(p,G,GT , e, g) over variables inG andZp such as pairing product
equations, e.g.e(x1, x2)e(x3, x4) = 1, or multi-exponentiation equations, e.g.xδ1

1 x
δ2
2 = 1. They suggest

non-interactive proofs for demonstrating that a set of equations of the form described above has a solution
x1, . . . , xI ∈ G, δ1, . . . , δJ ∈ Zp so all equations are simultaneously satisfied. Their proofs are in the
common reference string model. There are two types of common reference strings that yield respectively

12



perfect soundness and perfect witness indistinguishability/perfect zero-knowledge. The two types of common
reference strings are computationally indistinguishable, and on both types we have perfect completeness. We
now give some further details.

[GS07] show that there exists four probabilistic polynomial time algorithms(K,P, V,X), which we
call respectively the key generator, the prover, the verifier and the extractor. The key generator takes
(p,G,GT , e, g) as input and outputs a common reference stringcrs = (F,H,U, V,W,U ′, V ′,W ′) ∈
G8 as well as an extraction keyxk. Given a set of equations, the prover takescrs and a witness
x1, . . . , xI , δ1, . . . , δJ as input and outputs a proofπ. The verifier givencrs, a set of equations andπ
outputs 1 if the proof is valid and else it outputs 0. Finally, the extractor on a valid proofπ will extract
x1, . . . , xI ∈ G, in other words it will extract part of the witness.

The proofs of [GS07] have perfect completeness: on a correctly generated CRS and a correct witness,
the prover always outputs a valid proof. They have perfect soundness: on a correctly generated CRS it is
impossible to create a valid proof unless the equations are simultaneously satisfiable. Further, they have
perfect partial knowledge: givenxk the algorithmX can extractx1, . . . , xI from the proof, such that there
exists a solution for the equations that use thesex1, . . . , xI .

There exists a simulatorS1 that outputs a simulated common reference stringcrs and a simulation trap-
door keytk. These simulated common reference strings are computationally indistinguishable from the
common reference strings produced byK assuming the DLIN problem is hard. On a simulated common
reference string, the proofs created by the prover are perfectly witness-indistinguishable: if there are many
possible witnesses for the equations being satisfiable, the proofπ does not reveal anything about which wit-
ness was used by the prover when creating the proof. Further, let us call a set of equations tractable, if it is
possible to find a solution, wherex1, . . . , xI are the same in all equations, butδ1, . . . , δJ are allowed to vary
from equation to equation. Tractable equations have perfect zero-knowledge proofs on simulated reference
strings: there exists a simulatorS2 that on a simulated reference stringcrs and a simulation trapdoor key
tk produces a simulated proofπ for the tractable equations being satisfiable. If the equations are satisfiable,
then simulated proofs are perfectly indistinguishable from the proofs a real prover with a witness would form
on a simulated reference string.

It will be useful later in the paper to know some technical details of the construction. The values
F,H,U, V,W will be used to commit to the variablesx as (c1, c2, c3) := (F rU t,HsV t, gr+sW tx) for
randomly chosenr, s, t ∈ Zp. On a real common reference string, they are set up soU = FR, V =
HS ,W = gR+S so the commitment can be rewritten as(F r+Rt,Hs+St, gr+s+(R+S)tx). The extraction key
is xk := (κ, λ) soF = gκ,H = gλ. This permits decryption of the commitment asx = c3c

−κ
1 c−λ

2 . On the
other hand, on a simulation reference string, we useU = FR, V = HS ,W = gT with T 6= R + S, which
makes the commitment perfectly hiding. To commit to a variableδ ∈ Zp using randomnessr, s we use the
commitment(d1, d2, d3) := (F r(U ′)δ,Hs(V ′)δ, gr+s(W ′)δ). On a normal common reference string, we
pick U ′ = FR, V ′ = HS ,W ′ = gT for T 6= R + S. This makes the commitment perfectly binding. On
a simulated common reference string, on the other hand, we pickU ′ = FR, V ′ = HS ,W ′ = gR+S . The
simulation trapdoor key istk := (R,S), which permits us to trapdoor open a commitment to 0 to any value
δ since(F r,Hs, gr+s) = (F r−Rδ(U ′)δ,Hs−Sδ(V ′)δ, gr+s−(R+S)δ(W ′)δ). The DLIN assumption makes it
hard to distinguish between these two ways of setting up the commitment schemes, and thus makes it hard to
distinguish real common reference strings from simulated common reference strings.

6.5 Selective-tag Weakly CCA-secure Encryption

We will use a tag-based cryptosystem [MRY04] due to Kiltz [Kil06]. The public key consists of random
non-trivial elements((F,H,K,L), (κ, λ)) ← K(p,G,GT , e, g), whereF = gκ,H = gλ. We encrypt
m ∈ G using tagt ∈ Zp and randomnessr, s ∈ Zp as(y1, . . . , y5) := (F r,Hs, gr+sm, (gtK)r, (gtL)s).
The validity of the ciphertext is publicly verifiable, since valid ciphertexts havee(F, y4) = e(y1, g

tK) and

13



e(H, y5) = e(y2, g
tL). Decryption can be done by computingm = y3y

−κ
1 y−λ

2 . In the group signature
scheme, we will set up the cryptosystem with the sameF,H as in the common reference string of the NIWI
and NIZK proofs.

[Kil06] shows that under the DLIN assumption this cryptosystem is selective-tag weakly CCA-secure.
By this we mean that it is indistinguishable which message we encrypted under a tagt, even when we have
access to a decryption oracle that decrypts ciphertexts under any other tag. Formally, for all non-uniform
polynomial time adversariesA we have:

Pr
[
gk ← G(1k); t← A(gk); (pk, sk)← K(gk); (m0,m1)← ADsk(·,·)(pk); y ← Epk(t,m0) :

ADsk(·,·)(y) = 1
]

≈ Pr
[
gk ← G(1k); t← A(gk); (pk, sk)← K(gk); (m0,m1)← ADsk(·,·)(pk); y ← Epk(t,m1) :

ADsk(·,·)(y) = 1
]
,

where the oracle returnsDsk(ti, yi) if ti 6= t.

7 The Group Signature Scheme

The core of our group signature scheme is the certisignature scheme from Section 4. The issuer acts as a
certification authority and whenever a new memberi wants to enroll, she needs to create a verification keyvi

for the Boneh-Boyen signature scheme and get a certificate from the issuer. In the group signature scheme, the
verification key and the corresponding secret key is generated with an interactive key establishment protocol
as defined in Section 6.1. This way both user and issuer know thatvi is selected with the correct distribution
and that the user holds the corresponding secret keyxi.

When making a group signature, the member will generate a key pair for a strong one-time signature
(vksots, sksots). She will sign the message usingsksots and usexi to sign vksots. The combination of
certisignatures and strong one-time signatures is what makes it hard to forge group signatures.

Group signatures have to be anonymous and therefore we cannot reveal the certisignature. Instead, a
group signature will include a NIWI proof of knowledge that there exists a certisignature onvksots. Witness-
indistinguishability implies that a group signature does not reveal which group member has signed the mes-
sage. The opener will hold the extraction key for the NIWI proof of knowledge and will be able to extract the
certisignature. Whenever an opening is called for, she extracts the signature onvksots, which points to the
member who signed the message. In case no member has certisignedvksots, the opener points to the issuer
since the certisignature has a valid certificate.

The ideas above suffice to construct a CPA-anonymous group signature scheme. To get anonymity even
when the adversary has access to anOpen oracle, we will encrypt the signature onvksots with Kiltz’ cryp-
tosystem usingvksots as a tag. We will also give a NIZK proof that the encrypted signature is the same as the
one used in the NIWI proof of knowledge.

We present the full group signature scheme in Figure 2. Let us explain the non-interactive proofs further.
The NIWI proof of knowledge, will demonstrate that there exists a certisignature(a, b, v, σ) onvksots so

e(a, hv)e(f, b) = T ∧ e(σ, vgHash(vksots)) = e(g, g).

In the terminology of [GS07], these are two pairing product equations over three variablesb, v, σ. The last
elementa will be public, since we can rerandomize the certificate such thata does not identify the member.
[GS07] give us a NIWI proof of knowledge for these two equations being simultaneously satisfiable that
consists of 27 group elements. This proof consists of three commitments to respectivelyb, v, σ, which consist

14



of 3 group elements each, and two proofs for the committed values satisfying the two equations consisting of
9 group elements each.

In the NIZK proof we have a ciphertexty under tagvksots and a commitmentc to σ from the NIWI
proof of knowledge. We wish to prove that the plaintext ofy and the committed value inc are the same. The
ciphertext is of the form(y1, . . . , y5) = (F ry ,Hsy , gry+syσ, (gvksotsK)ry , (gvksotsL)sy) and the commitment
is of the form(c1, c2, c3) = (F rcU t,HscV t, grc+sCW tσ). Settingr := rc − ry, s := sc − sy we have
(c1y−1

1 , c2y
−1
2 , c3y

−1
3 ) = (F rU t,HsV t, gr+sW t). On the other hand, if the plaintext and the committed

value are different, then no suchr, s, t exist. Proving that the plaintext and the committed value are the same,
therefore corresponds to proving the simultaneous satisfiability of the following equations overφ, r, s, t ∈ Zp:

φ = 1 ∧ (c−1
1 y1)φF rU t = 1 ∧ (c−1

2 y2)φHsV t = 1 ∧ (c−1
3 y3)φgr+sW t.

This set is tractable, i.e., if we allowφ to take different values in the equations, then there is a trivial solution
φ = 1 in the first equation andφ = r = s = t = 0 in the other three equations. Since the set of equations
is tractable, there is an NIZK proof for the 4 equations being simultaneously satisfiable. The proof consists
of commitments toφ, r, s, t, but since the first equation is straightforward we can simply use(U ′, V ′,W ′) as
the commitment toφ, which makes it easy to verify that the first equation holds. The three commitments to
r, s, t each consist of 3 group elements. The three last equations are multi-exponentiations of constants and
using the proof of [GS07] each equation costs 2 group elements to prove. The NIZK proof therefore costs a
total of 15 group elements.

Theorem 4 The scheme in Figure 2 is a group signature scheme with perfect correctness. Under the DLIN,
q-SDH andq-U assumption and assuming the strong one-time signature scheme is secure and the hash-
function is collision resistant, the group signature has anonymity, traceability and non-frameability.

Proof. Perfect correctness follows from the perfect correctness of the join/issue secure function evaluation,
the certisignature, the NIWI proof of knowledge, the tag-based cryptosystem, the NIZK proof and the strong
one-time signature. Anonymity, traceability and non-frameability follows from Lemmas 5, 7 and 6.�

Lemma 5 The group signature scheme is anonymous.

Proof. Consider the probability

Pr
[
(gpk, ik, ok)← GKg(1k) : AChb,Open,JoinCorrupt,JoinExposedHonest(gpk, ik) = 1

]
from the definition of anonymity. We want to prove that the two probabilities for respectivelyb = 0 and
b = 1 only have negligible difference.

First, let us modify the underlying game by aborting if the strong one-time signature in the challenge
group signature is ever forged in an opening query. The existential unforgebaility of the one-time signature
scheme implies that there is negligible probability that we will abort for this reason. From now on we can
therefore assumevksots is not used in valid group signature queries toOpen.

We also abort, if any group signature queried toOpen collides withHash(vksots) from the challenge
group signature. Collision-freeness of the hash-function implies that there is negligible probability that this
will ever happen, so from now on we can assume that no such collision will happen.

Let us now modify the way we generate the public key for the tag-based cryptosystem. We setK :=
gκ, L = gλ and storeκ, λ. WheneverOpen receives a valid group signature, we useκ, λ to decrypt the
tag-based cryptosystem. By the validity check of the tag-based ciphertext and the perfect soundness of the
NIZK proof ψ this gives the same signatureσ as we get when running the extractor on the NIWI proof of
knowledge. We now go throughreg checking whether there existsi so e(σ, vig

Hash(vksots)) = e(g, g). In

15



GKg(1k)
gk ← G(1k); Hash← H(1k)
((f, h, T ), z)← CertKey(gk)
(crs, xk)← KNI(gk) ; K,L← G
(F,H, the rest)← Parse(crs); pk := (F,H,K,L)
(gpk, ik, ok) := ((gk,Hash, f, h, T, crs, pk), z, xk)

Join/Issue(User i : gpk , Issuer : gpk, ik)
User and Issuer:(xi, vi)← 〈User(gk), Issuer(gk)〉
Issuer:ri ← Zp; ai := f−ri ; bi := (hvi)riz
Issuer sends to user:ai, bi
User: Ife(ai, hvi)e(f, bi) = T set

reg[i] := vi ; gsk[i] := (xi, ai, bi)

GSig(gpk, gsk[i],m)
(vksots, sksots)← KeyGensots(1k)

(Repeat untilHash(vksots) 6= −xi)
ρ← Zn ; a := aif

−ρ ; b := bi(hvi)ρ

σ := g
1

xi+Hash(vksots)

π ← PNIWI(crs, (gpk, a,Hash(vksots)), (b, vi, σ))
y ← Epk(Hash(vksots), vi)
ψ ← PNIZK(crs, (gpk, y, π), (r, s, t))
σsots ← Signsksots

(vksots,m, a, π, y, ψ)
Return Σ := (vksots, a, π, y, ψ, σsots)

GVf(gpk,m,Σ)
Return 1 if the following holds:
1 = Vervksots((vksots,m, a, π, y, ψ), σsots)
1 = VNIWI(crs, (gpk, a,Hash(vksots)), π)
1 = VNIZK(crs, (gpk, π, y), ψ)
1 = ValidCiphertext(pk,Hash(vksots), y)
Else return 0

Open(gpk, ok,m,Σ)
(b, v, σ)← Xxk(crs, (gpk, a,Hash(vksots)), π)
Return(i, σ) if there isi sov = vi

Else return(0, σ)

Judge(gpk, i, reg[i],m,Σ, σ)
Return 1 if
i 6= 0 ∧ e(σ, vig

Hash(vksots)) = e(g, g)
Else return 0

Figure 2: The group signature scheme.

that case, we return(i, σ). The equation definesvi uniquely so this points to the samevi as when extracting
the NIWI proof of knowledge. If no suchvi can be found, we return(0, σ). The perfect soundness of the
NIWI proof of knowledge and the NIZK proof implies that this does not change the probabilities withb = 0
andb = 1 at all.

What we have accomplished in the last step is to modify theOpen oracle such that it does not use the
extraction keyxk for the NIWI proof. We can therefore now switch to using a simulated common reference
stringcrs that gives us perfect witness-indistinguishability and perfect zero-knowledge. Since real common
reference strings and simulated common reference strings are computationally indistinguishable, this change
only negligibly alters the probability ofA outputting1. Perfect witness indistinguishability implies that the
proof π does not reveal any information aboutgsk[i0] or gsk[i1] having been used to create the challenge
group signature.

The only information that is left in the challenge about the signer is inside the ciphertexty. We will
now use the selective-tag weak CCA-security of the cryptosystem to show that the two modified probabilities
for respectivelyb = 0 andb = 1 only differ negligibly. Let us therefore use the group signature adversary
to construct a selective-tag adversary that attacks the cryptosystem. The cryptosystem has a public key
F,H,K,L. It is possible to build a common reference string using the sameF,H, g that has perfect witness-
indistinguishability and perfect zero-knowledge, since the zero-knowledge trapdoor consists of the discrete
logarithms ofU ′, V ′,W ′ with respect toF,H, g. We can therefore on top of a public keyF,H,K,L generate
a correctly formed public keygpk for the group signature scheme and emulate the oraclesJoinCorrupt and

16



JoinHonestExposed. Whenever we have a valid group signature query toOpen it contains a ciphertexty.
This ciphertext never uses the tagHash(vksots) from the challenge ciphertext, so we can use the decryption
oracle in the selective-tag weak CCA-security game defining the security of the cryptosystem to decrypt the
ciphertext and get outσ.

We will now describe how to generate the challenge group signature on top of a challenge tag-based
ciphertext. We start by picking a key for the strong one-time signature scheme(vksots, sksots). We will use
Hash(vksots) as the target tag, which we observe is chosen independently of the public key for the cryp-
tosystem. We now get the public keyF,H,K,L and run the group signature game on top of it as described
above. At some point the adversary producesi0, i1,m on which it wants a challenge group signature. We
construct signaturesσi0 , σi1 on Hash(vksots) for respectively useri0 andi1. We then get an encryptiony
usingHash(vksots) as the tag of eitherσi0 or σi1 and our goal is to distinguish which one is the plaintext
of y. We build a group signature on top of this ciphertext, which can be done since we have perfect NIWI
proofs of knowledge and perfect NIZK proofs on simulated common reference strings. If the group signature
anonymity probabilities forb = 0 andb = 1 are different, we can therefore distinguish whethery encrypts
σi0 or σi1 . The selective-tag weak CCA-security of the cryptosystem therefore gives us that the modified
probabilities withb = 0 andb = 1 are indistinguishable. �

Lemma 6 The group signature scheme has non-frameability.

Proof. We want to prove that for all non-uniform polynomial time adversariesA we have:

Pr
[
(gpk, ik, ok)← GKg(1k); (m,Σ, i, σ)← AIssueToHonest,ReadGsk,GSig(gpk, ik, ok) :

GVf(gpk,m,Σ) = 1 ∧ Judge(gpk, i, reg[i],m,Σ, σ) = 1

∧ i ∈ HonestUsers ∧ i /∈ ExposedKeys ∧ (m,Σ) /∈ UserSignatures
]
≈ 0.

Assume for contradiction that there exists aδ > 0 such that for an infinite number ofk ∈ N the adversary
A has probability at least1

kδ of winning the game. Letn(k) be a polynomial upper bound of the number of
IssueToHonest queries thatAmakes. We have at least1n(k) chance of guessing the userj thatA will attempt
to frame before running the game.

Let F be the event thatA produces(m,Σ) so vksots from one of the group signatures made from the
GSig oracle is reused orHash(vksots) collides with one of thevk′sots used by theGSig oracle. By the strong
existential unforgeability of the one-time signature scheme and the collision-freeness of the hash-function,
there is negligible probability thatF occurs. Our assumptions so far then lead to the existence ofδ > 0 so
for an infinite number ofk ∈ N we have:

Pr
[
(gpk, ik, ok)← GKg(1k); j ← {1, . . . , n(k)}; (m,Σ, i, σ)← AIssueToHonest,ReadGsk,GSig(gpk, ik, ok) :

¬F ∧ i = j ∧ GVf(gpk,m,Σ) = 1 ∧ Judge(gpk, i, reg[i],m,Σ, σ) = 1

∧ i ∈ HonestUsers ∧ i /∈ ExposedKeys ∧ (m,Σ) /∈ UserSignatures
]
>

1
2kδn(k)

.

We will use the properties of the key establishment protocol to simulate thej’th key establishment pro-
tocol. Consider the following game running with non-uniform polynomial time adversariesB andIssuer∗.
AdversaryB on inputgk simulates the entire game above, including simulating the behavior ofA. On the
j’th call to IssueToHonest it gives the entire state of the protocol toIssuer∗ including the state of the simu-
latedA. Issuer∗ acts asA would in the protocol sending messages toIssueToHonest. We run this adversary
Issuer∗ with an honest user in the key establishment protocol. In case the protocol is successful, the user
outputsxj , else she outputs⊥. In either case,Issuer∗ outputs the internal state of the oracles and all keys as
well as the internal state ofA. NowB takes over and continues the run ofA on the state output byIssuer∗.

17



In case the output of the user wasxj ∈ Zp and the adversary gives the user a valid certificateaj , bj , the user
setsgsk[j] := (xj , aj , bj). B now continues the protocol run to get(m,Σ, i, σ) from A. If i = j and all
the other success criteria specified in the probability above are satisfied,B outputs 1. Running this game,
corresponds exactly to the probability above, so we have:

Pr
[
gk ← G(1k); y ← B(gk);x← Zp; v := gx; (xj , b)← 〈User(gk), Issuer∗(y)〉 : B(xj , b) = 1

]
>

1
2kδn(k)

.

Since the key establishment protocol has black-box simulation of the issuer, there exists a black-box simulator
SI such that:

Pr
[
gk ← G(1k); y ← B(gk);x← Zp; v := gx; (vj , b)← S

Issuer∗(y)
I (gk, v); if vj = ⊥ setx = ⊥ : B(x, b) = 1

]
>

1
4kδn(k)

.

The only wayx is used byB is in creating Boneh-Boyen signatures on randomly chosen strong one-time
verification keys when theGSig oracle is queried. Further,B only outputs 1 if a successful forgery of such a
signature is made. The latter probability is therefore negligible. This leads us to a contradiction, so we must
instead conclude that the probability of non-frameability eventually is smaller than1

kδ for all δ > 0. �

Lemma 7 The group signature scheme is traceable.

Proof. We have to prove that valid signatures lead to the provable identification of a signer. In other words,

Pr
[
(gpk, ik, ok)← GKg(1k); (m,Σ)← AJoin(gpk, ok); (i, σ)← Open(gpk, ok, reg,m,Σ) :

GVf(gpk,m,Σ) = 1 ∧ (Judge(gpk, i, reg[i],m,Σ, σ) = 0 ∨ i = 0)
]
≈ 0.

Let n(k) be an upper bound on the number of usersA joins. Since the running time ofA is polynomial in
k we can assumen(k) is polynomial. Further, assume for contradiction that there exists aδ > 0 so for an
infinite number ofk ∈ N the probability is more thank−δ.

We will consider a sequence of gamesG0, . . . , Gn(k). DefineG0 to be the game in the probability above,
i.e,

G0 = {(gpk, ik, ok)← GKg(1k); (m,Σ)← AJoin(gpk, ok); (i, σ)← Open(gpk, ok, reg,m,Σ)}.

GameGj will be gameGj−1 except the calln(k)− j to Join is simulated. We will now explain this further.
We will first give an alternative description of the first part ofGj−1. We have an adversaryB andUser∗.

B on inputgk runs the game simulating the generation of all keys and the internal state ofA. When reaching
then(k)− j’th call to Join, it gives the entire state of the protocol, including the state ofA to User∗. User∗

continues running the protocol andA and forwardsA’s messages to the key establishment protocol. We run
this key establishment protocol with an honest issuer that getsgk as input. At the end of the protocolUser∗

outputs all parameters of the scheme as well as the state ofA. Using this internal state, we then continue the
protocol as inGj−1.

Now we will describeGj . As inGj−1 we letB be an adversary that generates keys for the group signature
scheme and simulates the actions of all parties includingA and gives the entire internal state of protocol and
adversary toUser∗. On then(k) − j’th call to Join we runxj ← Zp; vj := gxj ; (u, i) ← SUser∗

U (gk, vj).
After that we continue the protocol as inGj−1. By the properties of the key-establishment protocol we can
choose a simulatorSU such that the probability difference betweenGj−1 andGj resulting in the conditions
being satisfied is at most 1

2kδn(k)
. Therefore,Gn(k) has at least probability1

2kδ of resulting in success.

In gameGn(k) a valid signatureΣ implies the existence of a valid certisignature onHash(vksots). We
can use the extraction keyxk to extract this certisignature. InGn(k) we have only given certificates on

18



correctly generated verification keys. By the unfakeability of the certisignature scheme, the certisignature
therefore points to one of these certifiedvi’s. The perfect soundness of the NIWI proof of knowledge implies
that the extractedσ is indeed a signature onHash(vksots) under the verification keyvi in the NIWI proof of
knowledge.Judge will therefore output 1. So the success probability when running gameGn(k) is negligible,
giving us the desired contradiction. �

EFFICIENCY. If we instantiate the strong one-time signature using the scheme from [Gro06] a verification
key has a size of 3 group elements and a one-time signature consists of 3 elements fromZp. We make the
elementa public. The NIWI proof of knowledge consists of 27 group elements. The ciphertext consists
of 5 group elements. The NIZK proof consists of 15 group elements. The total size of a group signature is
therefore 51 group elements inG and 3 elements inZp. This is of course much better than the many thousand
elements required for a group signature in [Gro06].

In case CPA-anonymity is sufficient, we can consider a lighter version of our group signature, where we
omit the ciphertexty and the NIZK proofψ. This CPA-anonymous group signature scheme would consist of
31 group elements inG and 3 elements fromZp. We observe that regular anonymity implies that the group
signature is strong, i.e., even when seeing a messagem and a group signatureΣ on it, it is not possible to
create a different group signatureΣ′ onm such that it still points to the same member. In CPA-anonymity,
however, we do not give the adversary access to an opening oracle and thus mauling signatures is no longer
a problem. If we do not care about the group signature being strong, we do not need the strong one-time
signature key and we can simply signHash(m) instead ofHash(vksots. This reduces the size of the group
signatures further to28 group elements. In comparison, the CPA-anonymous group signature scheme of
[BW07] consists of 6 group elements in a composite order group. Since composite order groups rely on the
hardness of factoring, these groups are very large and our CPA-anonymous group signatures are therefore
comparable in size for practical parameters, perhaps even a bit smaller. However, our CPA-anonymous group
signature scheme still supports dynamic enrollment of members and has a group public keygpk consisting
of a constant number of group elements.

KEY GENERATION. Since the [BSZ05]-model assumes a trusted key generator it is worth considering how
the key generation should be carried out in practice. The trust in our scheme relies on the bilinear group
(p,G,GT , e, g) being generated so the cryptographic assumptions hold and it relies on the hash-function
being collision-free. We remark that an advantage of our scheme is that we works over prime order bilinear
groups, so it may be possible to use a uniform random string to set up(p,G,GT , e, g). Also, since the trust
is based on very elementary assumption, a bilinear group and a hash-function, it is quite possible that we can
plug public standards into our scheme. One could for instance use SHA-256 as the hash-function.

The non-frameability of the user relies only on the collision-freeness of the hash-function and the cryp-
tographic assumptions in(p,G,GT , e, g). The rest of the group public keygpk can be generated jointly by
the issuer and the opener. The issuer generates the authority key for the certisignature scheme. The opener
generatescrs andpk, anonymity follows from the opener generating these keys correctly. Since the opener
can break anonymity anyway, it is quite reasonable to trust the opener with protecting anonymity. The opener
will have to make a zero-knowledge proof of knowledge of the corresponding extraction key to the issuer,
since the security proof for traceability relies on the opener being able to actually extract a signature from the
NIWI proof of knowledge.

References

[ACHdM05] Giuseppe Ateniese, Jan Camenisch, Susan Hohenberger, and Breno de Medeiros. Practical
group signatures without random oracles. Cryptology ePrint Archive, Report 2005/385, 2005.
http://eprint.iacr.org/2005/385 .

19



[ACJT00] Guiseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical and provably
secure group signature scheme. Inproceedings of CRYPTO ’00, LNCS series, volume 1880,
pages 255–270, 2000.

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random oracles. Inproceedings of
EUROCRYPT ’04, LNCS series, volume 3027, pages 56–73, 2004.

[BBP04] Mihir Bellare, Alexandra Boldyreva, and Adriana Palacio. An uninstantiable random-
oracle-model scheme for a hybrid encryption problem. Inproceedings of EURO-
CRYPT ’04, LNCS series, volume 3027, pages 171–188, 2004. Full paper available at
http://eprint.iacr.org/2003/077 .

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. Inproceedings of
CRYPTO ’04, LNCS series, volume 3152, pages 41–55, 2004.

[BMW03] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group signatures:
Formal definitions, simplified requirements, and a construction based on general assumptions.
In proceedings of EUROCRYPT ’03, LNCS series, volume 2656, pages 614–629, 2003.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. InACM CCS ’93, pages 62–73, 1993.

[BSZ05] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signatures: The case of
dynamic groups. Inproceedings of CT-RSA ’05, LNCS series, volume 3376, pages 136–153,
2005.

[BW06] Xavier Boyen and Brent Waters. Compact group signatures without random oracles. Inpro-
ceedings of EUROCRYPT ’06, LNCS series, volume 4004, pages 427–444, 2006.

[BW07] Xavier Boyen and Brent Waters. Full-domain subgroup hiding and constant-size group signa-
tures. Inproceedings of PKC 2007, volume 4450 ofLecture Notes in Computer Science, pages
1–15, 2007. Available athttp://www.cs.stanford.edu/ ∼xb/pkc07/ .

[CG04] Jan Camenisch and Jens Groth. Group signatures: Better efficiency and new theoretical aspects.
In proceedings of SCN ’04, LNCS series, volume 3352, pages 120–133, 2004. Full paper
available athttp://www.brics.dk/ ∼jg/GroupSignFull.pdf .

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited. In
proceedings of STOC ’98, pages 209–218, 1998.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. On the random-oracle methodology as applied
to length-restricted signature schemes. Inproceedings of TCC ’04, LNCS series, volume 2951,
pages 40–57, 2004.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from
bilinear maps. Inproceedings of CRYPTO ’04, LNCS series, volume 3152, pages 56–72, 2004.

[CvH91] David Chaum and Eugène van Heyst. Group signatures. Inproceedings of EUROCRYPT ’91,
LNCS series, volume 547, pages 257–265, 1991.

[FI05] Jun Furukawa and Hideki Imai. An efficient group signature scheme from bilinear maps. In
proceedings of ACISP ’05, LNCS series, volume 3574, pages 455–467, 2005.

20



[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the fiat-shamir
paradigm. Inproceedings of FOCS ’03, pages 102–, 2003. Full paper available at
http://eprint.iacr.org/2003/034 .

[Gro06] Jens Groth. Simulation-sound nizk proofs for a practical language and constant size group
signatures. Inproceedings of ASIACRYPT ’06, LNCS series, 2006. Full paper available at
http://www.brics.dk/ ∼jg/NIZKGroupSignFull.pdf .

[GS07] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilin-
ear groups. Cryptology ePrint Archive, Report 2007/155, 2007. Available at
http://eprint.iacr.org/2007/155 .

[Kil06] Eike Kiltz. Chosen-ciphertext security from tag-based encryption. Inproceedings of TCC ’06,
LNCS series, volume 3876, pages 581–600, 2006.

[KY05] Aggelos Kiayias and Moti Yung. Group signatures with efficient concurrent join. Inpro-
ceedings of EUROCRYPT ’05, LNCS series, volume 3494, pages 198–214, 2005. Full paper
available athttp://eprint.iacr.org/345 .

[MRY04] Philip D. MacKenzie, Michael K. Reiter, and Ke Yang. Alternatives to non-malleability: Def-
initions, constructions, and applications. Inproceedings of TCC ’04, LNCS series, volume
2951, pages 171–190, 2004.

[Nie02] Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic proofs: The
non-committing encryption case. Inproceedings of CRYPTO ’02, LNCS series, volume 2442,
pages 111–126, 2002.

21


