
Fully Anonymous Group Signatures without Random Oracles

Jens Groth∗

University College London
E-mail: j.groth@ucl.ac.uk

September 7, 2007

Abstract

We construct a new group signature scheme using bilinear groups. The group signature scheme is
practical, both keys and group signatures consist of a constant number of group elements, and the scheme
permits dynamic enrollment of new members. The scheme satisfies strong security requirements, in partic-
ular providing protection against key exposures and not relying on random oracles in the security proof.

Keywords: Group signatures, certified signatures, bilinear groups.

1 Introduction

Group signatures make it possible for a member of a group to sign messages anonymously so that outsiders
and other group members cannot see which member signed the message. The group is controlled by a group
manager that handles enrollment of members and also has the ability to identify the signer of a message. Group
signatures are useful in contexts where it is desirable to preserve the signer’s privacy, yet in case of abuse we
want some authorities to have the means of identifying her.

Group signatures were introduced by Chaum and van Heyst [CvH91] and have been the subject of much
research. Most of the proposed group signatures have been proven secure in the random oracle model [BR93]
and now quite efficient schemes exist in the random oracle model [ACJT00, BBS04, CL04, CG04, FI05,
KY05]. The random oracle model has been the subject of criticism though. Canetti, Goldreich and Halevi
[CGH98] demonstrated the existence of an insecure signature scheme that has a security proof in the random
oracle model. Other works showing weaknesses of the random oracle model are [Nie02, GK03, BBP04,
CGH04].

There are a few group signature schemes that avoid the random oracle model. Bellare, Micciancio and
Warinschi [BMW03] suggested security definitions for group signatures and offered a construction based on
trapdoor permutations. Their security model assumed the group was static and all members were given their
honestly generated keys right away. Bellare, Shi and Zhang [BSZ05] strengthened the security model to
include dynamic enrollment of members. This security model also separated the group manager’s role into
two parts: issuer and opener. The issuer is responsible for enrolling members, but cannot trace who has signed
a group signature. The opener on the other hand cannot enroll members, but can open a group signature to
see who signed it. Moreover, it was required that this opener should be able to prove that said member made
the group signature to avoid false accusations of members. [BSZ05] demonstrated that trapdoor permutations
suffice also for constructing group signatures in this model. Both of these schemes use general and complicated
primitives and are very inefficient. Groth [Gro06] used bilinear groups to construct a group signature scheme in
the BSZ-model, with nice asymptotic performance, where each group signature consists of a constant number

∗Work done while at UCLA supported by NSF ITR/Cybertrust grant No. 0456717.

1



of group elements. Still the constant is enormous and a group signature consists of thousands or perhaps even
millions of group elements.

There are also a few practical group signature schemes with security proofs in the standard model. Ate-
niese, Camenisch, Hohenberger and de Medeiros [ACHdM05] give a highly efficient group signature scheme,
where each group signature consists of 8 group elements in prime order bilinear groups. This scheme is secure
against a non-adaptive adversary that never gets to see private keys of honest members. If a member’s key is
exposed, however, it is easy to identify all group signatures she has made, so their scheme is not secure in the
BMW/BSZ-models.

Boyen and Waters [BW06, BW07] suggest group signatures that are secure against key exposure attacks.
Their constructions are secure in a restricted version of the BMW-model where the anonymity of the members
relies on the adversary not being able to see any openings of group signatures. In the latter scheme [BW07], the
group signatures consist of 6 group elements in a composite order bilinear group. The public key in [BW07]
grows logarithmically in the size of the message space though and will for practical purposes typically contain
a couple of hundred group elements.

OUR CONTRIBUTION. We propose a new group signature scheme based on prime order bilinear groups. All
parts of the group signature scheme, including the group public key and the group signatures, consist of a
constant number of group elements. The constants are reasonable for practical purposes; for instance using
256-bit prime order bilinear groups, a group public key would be less than 1kB and a group signature less than
2kB.

We prove under some well-known assumptions, the strong Diffie-Hellman assumption [BB04] and the
decisional linear assumption [BBS04], as well as a new assumption that the scheme is secure in the BSZ-
model. This means the scheme permits dynamic enrollment of members, preserves anonymity of a group
signature even if the adversary can see arbitrary key exposures or arbitrary openings of other group signatures,
and separates the role of the issuer and opener such that they can operate independently.

TECHNIQUE. We use in our group signature scheme a certified signature scheme. Certified signatures, the
notion stemming from Boldyreva, Fischlin, Palacio and Warinschi, allow a user to pick keys for a signature
scheme and use them to sign messages. The user can ask a certification authority to certify her public verifi-
cation key for the signature scheme. The verification algorithm checks both the certificate and the signature
and accepts if both of them are acceptable. A trivial way to build a certified signature schemes is just to let the
certification authority output a standard signature on the user’s public verification key. Non-trivial solutions
such as for instance using an aggregate signature scheme [BGLS03] also exist. Certified signature schemes
may be more efficient though since the certificate does not have to be unforgeable. In a certified signature
scheme, the requirement is just that it is infeasible to forge a certificate together with a valid signature. We
refer to Section 3 for a formal definition.

In our group signature scheme, enrolling members will create a key for a signature scheme and ask the
issuer to issue a certificate on their verification key. To make a group signature, the member will make a
certified signature. To be anonymous she will encrypt the certified signature and use non-interactive witness-
indistinguishable and non-interactive zero-knowledge proofs to demonstrate that the ciphertext contains a valid
certified signature.

In order to have efficient non-interactive proofs, it is essential to preserve as much of the bilinear group
structure of the encrypted certified signature as possible. In particular, using cryptographic hash-functions
or using group elements from one part of the certified signature as exponents in other parts of the certified
signature does not work. We will combine the signature scheme of Boneh and Boyen [BB04] with the signature
scheme of Zhou and Lin [ZL06] to get a certified signature scheme that is both efficient and relies only on
generic group operations.

2



2 Setup

Let G be a probabilistic polynomial time algorithm that generates(p,G,GT , e, g)← G(1k) such that:

• p is ak-bit prime.

• G,GT are groups of orderp.

• g is a randomly chosen generator ofG.

• e is a non-degenerate bilinear map, i.e.,e(g, g) is a generator ofGT and for alla, b ∈ Zp we have
e(ga, gb) = e(g, g)ab.

• Group operations, evaluation of the bilinear map, and membership ofG,GT are all efficiently com-
putable.

We will now present some of the security assumptions that will be used in the paper.

DLIN assumption. The decisional linear assumption was introduced by Boneh, Boyen and Shacham
[BBS04]. The DLIN assumption holds forG, when it is hard to distinguish for randomly chosen group ele-
ments and exponents(f, g, h, f r, gs, ht) whethert = r + s or t is random.

q-SDH assumption. The strong Diffie-Hellman assumption was introduced by Boneh and Boyen [BB04].

The q-SDH assumption holds forG, when it is hard to find a pair(m, g
1

1+x ) ∈ Zp × G when given

g, gx, gx2
, . . . , gxq(k)

as input. In the paper, it suffices to haveq being a polynomial.

q-U assumption. We will now define the unfakeability assumption. Theq-U assumption holds forG if for
any non-uniform polynomial time adversaryA we have:

Pr
[
(p,G,GT , e, g)← G(1k) ; x1, r1, . . . , xq(k), rq(k) ← Zp ;

f, h, z ← G ; T := e(f, z) ; ai := f ri ; bi := hrigxiriz ;
(V,A,B,m, S)← A(p,G,GT , e, g, f, h, T, x1, a1, b1, . . . , xq(k), aq(k), bq(k)) :

V /∈ {gx1 , . . . , gxq(k)} ∧ e(A, hV )e(f,B) = T ∧ e(S, V gm) = e(g, g)
]
≈ 0.

Theorem 1 Theq-U assumption holds in the generic group model whenq is a polynomial.

Proof. We will show that an unbounded adversary cannot break theq-U assumption when restricted to using
only a polynomial number of generic group operations. In the generic group model, we do not give the
adversary access to the group elements themselves. Instead we pick random bijections[·] : Zp → G and
[[·]] : Zp → GT and give the adversary access to the representation of the group elements as random encodings
of their discrete logarithms. Picking random group elements and computing group operations can be handled
by calling an oracleO that works as follows:

• On (exp, x) return[x].

• On (multiply, [x], [y]) return[x+ y].

• On (multiply, [[x]], [[y]]) return[[x+ y]].

• On (bilinear, [x], [y]) return[[xy]].

3



Given elements[ξ1], . . . , [ξn] the oracle for instance enablesA to pick a0, . . . , an ∈ Zp and compute linear
combinations[a0 +

∑n
i=1 aiξi] = a0[1] +

∑n
i=1 ai[ξi].

We can reformulate the theorem in the generic group model as follows:

Pr
[
(p,G,GT , e, g)← G(1k) ; x1, r1, . . . , xq(k)rq(k) ← Zp ;

γ, φ, η, ζ ← Zp ; [·]← Zp ↔ G ; [[·]]← Zp ↔ GT ;
([v], [a], [b],m, [s])← AO(p,G,GT , [γ], [φ], [η], [[φζ]],
x1, [φr1], [ηr1 + x1γr1 + ζ], . . . , xq(k), [φrq(k)], [ηrq(k) + xq(k)γrq(k) + ζ]) :

[v] /∈ {[γx1], . . . , [γxq(k)]} ∧ [[a(η + v) + φb]] = [[φζ]] ∧ [[s(v + γm)]] = [[γ2]]
]
≈ 0.

To prove the theorem, observe first that the elementsA can generate inG and GT using the or-
acle encode low degree polynomials inZp[γ, φ, η, ζ, r1, . . . , rq(k)]. The resulting condition for success
[[a(η + v) + φb− φζ]] = [[0]] and[[s(v +mγ)− γ2]] = [[0]] corresponds to having low-degree polynomials
in Zp[γ, φ, η, ζ, r1, . . . , rq(k)] evaluate to 0 for randomly chosenγ, φ, η, ζ, r1, . . . , rq(k). The Schwarz-Zippel
theorem says that a low-degree polynomial has negligible probability of evaluating to 0 in randomly chosen
γ, φ, η, ζ, r1, . . . , rq(k) unless it is identical zero. What remains in the proof if to rule out that generic group
oracle enablesA to actually construct[v], [a], [b],m, [s] such thata(η+ v) +φb−φζ ands(v+mγ)− γ2 are
the zero-polynomials, and at the same timev /∈ {γx1, . . . , γxq(k)}.

Let us start with the requirement thatA outputs[v],m, [s] sos(v + γm)− γ2 = 0. We will show this can
only be done by pickingvg ∈ Zp and using the oracle to compute[vgγ]. For this part of the proof, assume we
even giveφ, η, ζ, r1, . . . , rq(k) to A as extra input. We can now writev = vd + vgγ ands = sd + sgγ, for
knownvd, vg, sd, sg ∈ Zp. We have the equation

(sd + sgγ)(vd + (vg +m)γ)− γ2 = 0.

Assume for contradiction thatvd 6= 0. Looking at the constant of the polynomial we havesdvd = 0 so we
havesd = 0. Looking at the coefficient forγ we havesgvd = 0, which impliessg = 0. This meanss = 0 and
s(v +mγ) = γ2 gives us a contradiction. We conclude thatA can only be successful by pickingv = vgγ.

We will now use the equation
a(η + vgγ) + φb− φζ = 0.

Sincea andb are constructed with calls toO we can write them as

a = ad + afφ+ agγ + ahη +
q(k)∑
i=1

aaiφri +
q(k)∑
i=1

abi
(ηri + xiγri + ζ)

and b = bd + bfφ+ bgγ + bhη +
q(k)∑
i=1

baiφri +
q(k)∑
i=1

bbi
(ηri + xiγri + ζ),

for known ad, af , ag, ah, aai , abi
, bd, bf , bg, bh, bai , bbi

∈ Zp. Looking at the coefficient forφζ we have∑q(k)
i=1 bbi

= 1 so there exists somebbi
6= 0. The coefficient forφηri gives usaai + bbi

= 0 soaai = −bbi
. The

coefficient forφγri tells usaaivg + bbi
xi = bbi

(xi− vg) = 0 sovg = xi. This impliesv ∈ {γx1, . . . , γxq(k)}.
�

3 Certified Signatures

Typically, using a signature in a public key infrastructure works like this: A user that wants to set up a signature
scheme, generates a public verification keyvk and a secret signing keysk. She takes the public key to a

4



certification authority that signsvk and possibly some auxiliary information such as name, e-mail address,
etc. We call this the certificate. Whenever the user wants to sign a message, she sends both the certificate and
the signature to the verifier. The verifier checks that the certification authority has certified that the user has
the public keyvk and also checks the user’s signature on the message.

In the standard way of certifying verification keys described above, the process of issuing certificates and
verifying certificates is separate from the process of signing messages and verifying signatures. Boldyreva,
Fischlin, Palacio and Warinschi [BFPW07] show that combining the two processes into one can improve
efficiency. As they observe, we do not need to worry about forgeries of the certificate itself, we only need to
prevent thejoint forgery of both the certificate and the signature.

A certified signature scheme [BFPW07], is a combined scheme for signing messages and producing cer-
tificates for the verification keys. We will give a formal definition that is tailored to our purposes and slightly
simpler than the more general definition given by Boldyreva, Fischlin, Palacio and Warinschi. Formally, a
certified signature scheme consists of the following probabilistic polynomial time algorithms.

Setup: G takes a security parameter as input and outputs a descriptiongk of our setup.

Certification key: CertKey on inputgk outputs a pair(ak, ck), respectively a public authority key and a
secret certification key.

Key registration: This is an interactive protocol〈User, Issuer〉 that generates keys for the user together with
a certificate.User takesgk, ak as input, whereasIssuer takesgk, ck as input. If successfulUser out-
puts a triple(vk, sk, cert), whereasIssuer outputs(vk, cert). We write((vk, sk, cert), (vk, cert)) ←
〈User(gk, ak), Issuer(gk, ck)〉 for this process. We callvk the verification key,sk the signing key and
cert the certificate. Either party outputs⊥ if the other party deviates from the key registration protocol.

Signature: Sign gets a signing key and a messagem as input. It outputs a signatureσ.

Verification: Ver takes as inputgk, ak, vk, cert,m, σ and outputs 1 if accepting the certificate and the signa-
ture onm. Otherwise it outputs 0.

The certified signature scheme must be correct, unfakeable and unforgeable as defined below.

Perfect correctness:For all messagesm we have

Pr
[
gk ← G(1k) ; (ak, ck)← CertKey(gk) ;

((vk, sk, cert), (vk, cert))← 〈User(gk, ak), Issuer(gk, ck)〉 ;

σ ← Signsk(m) : Ver(gk, ak, vk, cert,m, σ) = 1
]

= 1.

Unfakeability: We want it to be hard to create a signature with a faked certificate. Only if the verification
key has been generated correctly and been certified by the certification authority should it be possible to
make a certified signature on a message. For all non-uniform polynomial time adversariesA we require:

Pr
[
gk ← G(1k) ; (ak, ck)← CertKey(gk) ; (vk, cert,m, σ)← AKeyReg(gk, ak) :

vk /∈ Q andVer(gk, ak, vk, cert,m, σ) = 1
]
≈ 0,

whereKeyReg is an oracle that allowsA to sequentially start up new key registration sessions and lets
A act as the user. That is in sessioni we run(∗, (vki, certi))← 〈A, Issuer(gk, ck)〉 ; Q := Q ∪ {vki}
forwarding all messages to and fromA through the oracle.

5



Existential M -unforgeability: LetM be a stateful non-uniform polynomial time algorithm. We say the certi-
fied signature scheme is existentiallyM -unforgeable if for all non-uniform polynomial time adversaries
A we have:

Pr
[
gk ← G(1k) ; (St1, ak)← A(gk) ; ((vk, sk, cert),St2)← 〈User(gk, ak),A(St1)〉 ;

(cert′,m, σ)← AMessageSign(·)(St2) :

m /∈ Q andVer(gk, ak, vk, cert′,m, σ) = 1
]
≈ 0,

where MessageSign(·) is an oracle that on inputai runs (mi, hi) ← M(gk, ai) ; σi ←
Signsk(mi) ; Q := Q ∪ {mi} and returns(mi, hi, σi).

Adaptive chosen message attack corresponds to lettingM be an algorithm that on inputmi outputs
(mi, ε). On the other hand, lettingM be an algorithm that ignoresA’s inputs corresponds to a weak
chosen message attack, where messages to be signed by the oracle are chosen without knowledge ofvk.
In a weak chosen message attack, thehi’s may contain a history of how the messages were selected. In
this paper, we only need security against weak chosen message attack.

4 A Certified Signature Scheme

We will construct a certified signature scheme from bilinear groups that is existentially unforgeable under
weak chosen message attack. There are two parts of the scheme: certification and signing. For signing, we
will use the Boneh-Boyen signature scheme that is secure under weak chosen message attack. In their scheme

the public key isv := gx and the secret signing key isx. A signature on messagem ∈ Zp\{x} isσ = g
1

x+m . It
can be verified by checkinge(σ, vgm) = e(g, g). Boneh and Boyen [BB04] proved that this signature scheme
is secure against weak chosen message attack under theq-SDH assumption. The existential unforgeability of
our certified signature scheme under weak chosen message attack will follow directly from the security of the
Boneh-Boyen signature scheme under weak chosen message attack.

What remains is to specify how to generate the verification keyv and how to certify it. This is a 2-step
process, where we first generate a randomv = gx such that the issuer learnsv but only the user learnsx. In
Section 4.1 we describe in detail the properties we need this key generation protocol to have. In the second
step, we use a variation of the signature scheme of Zhou and Lin [ZL06] to certifyv.1

To set up the certified signature scheme, the certification authority picks random group elementsf, h, z ∈
G. The authority key is(f, h, T ) and the secret certification key isz soT = e(g, z). To certify a Boneh-
Boyen keyv the authority picksr ← Zp and sets(a, b) := (f−r, (hv)rz). The certificate is verified by
checkinge(a, hv)e(f, b) = T . We remark that this is not a good signature scheme, since givenv, a, b it is easy
to create a certificate forv′ := v2h as(a′, b′) := (a

1
2 , b). For certified signatures it works fine though since we

cannot use the faked verification keys to actually sign any messages. The nice part about the certified signature
scheme we have suggested here is that a certificate consists of only two group elements and is created through
the use of generic group operations. These two properties of the certified signature scheme are what enable us
to construct a practical group signature scheme on top of it.

Theorem 2 The scheme in Figure 1 is a certified signature scheme with perfect correctness for messages in
Zp \ {x}. It is unfakeable under theq-U assumption and is existentially unforgeable under weak chosen
message attack under theq-SDH assumption.

1The signature scheme of Zhou and Lin [ZL06] can be used to sign exponents. As they observe, however, it is sufficient to know
v = gx to signx. In our notation, their scheme computes a signature onx by settingv = gx and computing the signature(a, b) as
a := fr, b := (hv)rz, wherez = hlogf g soT = e(g, h).

6



Setup(1k)
Return gk := (p,G,GT , e, g)← G(1k)

CertKey(gk)
f, h, z ← G
T := e(f, z)
Return (ak, ck) := ((gk, f, h, T ), (ak, z))

Signsk(m)
If x = −m return⊥
Else returnσ := g

1
x+m

〈User(gk, ak), Issuer(gk, ck)〉
(x, v)← 〈User(gk), Issuer(gk)〉
r ← Zp

a := f−r

b := (vh)rz
vk := v ; sk := x ; cert := (a, b)
User output:(vk, sk, cert)
Issuer output:(vk, cert)

Ver(gk, ak, vk, cert,m, σ)
Return 1 if
e(a, vh)e(f, b) = T
e(σ, vgm) = e(g, g)

Else return0

Figure 1: The certified signature scheme.

Proof. Perfect correctness follows from the perfect correctness of the key generation protocol.
We will now show that the certified signature scheme is unfakeable. Assume for contradiction that there

exists aδ > 0 such that for an infinite number ofk ∈ N the adversaryA has probability at least2
kδ of making

a valid signature for a public key that has not been certified. In other words,

Pr
[
gk ← G(1k) ; (ak, ck)← CertKey(gk) ; (vk, cert,m, σ)← AKeyReg(gk, ak) :

vk /∈ Q andVer(gk, ak, vk, cert,m, σ) = 1
]
> 2k−δ,

Let q(k) be a polynomial upper bound of the number ofKeyReg queries thatA makes. Part of the key
registration protocol is the interactive key generation protocol. We can black-box simulate the view of the
adversarial user in each of these key generation protocols, up to an error of1

q(k)kδ . We can therefore pick
x1, . . . , xq(k) in advance and simulate the key generation such that the adversarial useri get the signing key
xi or alternatively deviates from the protocol in which case the issuer outputs⊥. Call the modified oracle that
simulates the key generation queriesSimKeyReg and we have:

Pr
[
gk ← G(1k) ; (ak, ck)← CertKey(gk) ; x1, . . . , xq(k) ← Zp ;

(vk, cert,m, σ)← ASimKeyReg(x1,...,xq(k))(gk, ak) :

vk /∈ Q andVer(gk, ak, vk, cert,m, σ) = 1
]
> k−δ.

With this modified key registration oracle,A only sees certificates onv1 := gx1 , . . . , vq(k) := gxq(k) . These
certificates are of the formai := f−ri andbi := hrigxiriz. It therefore follows directly from theq-U assump-
tion that the probability is negligible, which gives us a contradiction. We conclude that the certified signature
scheme is unfakeable.

We will now show that the certified signature scheme is existentially unforgeable under weak chosen
message attack. Assume for contradiction that there exists aδ > 0 such that for an infinite number ofk ∈ N
we have:

Pr
[
gk ← G(1k) ; (St1, ak)← A(gk) ; ((v, x, a, b),St2)← 〈User(gk, ak),A(St1)〉 ;

(a′, b′,m, σ)← AMessageSign(·)(St2) :

m /∈ Q andVer(gk, ak, v, a′, b′,m, σ) = 1
]
> 2k−δ,

7



under a weak chosen message attack. Part of the key registration protocol is a key generation protocol. By
our construction, this key generation protocol has the property that it is possible to choosev := gx in advance
and black-box simulate the malicious issuer’s view. After the key generation protocol, only the adversary acts,
so we can consider the certification part of the protocol to be simulated. The error in the simulation can be
chosen such that it does not exceedk−δ. We therefore have:

Pr
[
gk ← G(1k) ; (St1, ak)← A(gk) ; x← Zp ; v := gx ;

(gu,St2)← S
A(St1)
I (gk, v) ; (a′, b′,m, σ)← AMessageSign(·)(St2) :

m /∈ Q andVer(gk, ak, gu, a′, b′,m, σ) = 1
]
> k−δ,

whereu ∈ {⊥, x}. However, now we are in a situation, wherev is an honestly chosen Boneh-Boyen verifi-
cation key andA only has access to a weak chosen message attack. For the certified signature output byA
to be valid we must havegu 6= ⊥ sov = gu, and also we must have a valid Boneh-Boyen signature on the
message as part of the certified signature. Theq-SDH assumption implies that the Boneh-Boyen signature is
secure against weak chosen message attack [BB04] and the probability given above must therefore be negli-
gible. This gives us our contradiction and we must therefore conclude that the certified signature scheme is
existentially unforgeable under weak chosen message attack. �

4.1 Key Generation

In the certified signature scheme, we require that the user generates her signing key honestly. We will use an
interactive protocol between the user and the issuer that gives the user a uniformly random secret keyx ∈ Zp,
while the issuer learnsv := gx. In case either party does not follow the protocol or halts prematurely, the other
party will output⊥. We will now give a more precise definition of the properties the protocol should have. For
notational convenience, defineg⊥ = ⊥.

Write (x, v)← 〈User(gk), Issuer(gk)〉 for running the key generation protocol between two probabilistic
polynomial time interactive Turing machinesUser, Issuer on common inputgk giving User outputx and
Issuer outputv. We require that the protocol is correct in the following sense:

Pr
[
gk ← G(1k) ; (x, v)← 〈User(gk), Issuer(gk)〉 : v = gx

]
= 1.

We require that the view of the issuer, even if malicious, can be simulated. More precisely, for anyδ > 0
and polynomial timeIssuer∗ there exists a polynomial time (ink and the size of the input toIssuer∗) black-box
simulatorSI , such that for all non-uniform polynomial time adversariesA we have:

Pr
[
gk ← G(1k) ; y ← A(gk) ; x← Zp ; v := gx ; (gu, i)← S

Issuer∗(y)
I (gk, v) : A(u, i) = 1

]
− Pr

[
gk ← G(1k) ; y ← A(gk) ; (x, i)← 〈User(gk), Issuer∗(y)〉 : A(u, i) = 1

]
< k−δ,

whereSI outputsgu sou ∈ {⊥, x}.
We also require that the view of the user, even if malicious, can be simulated. For anyδ > 0 and any

polynomial timeUser∗ there exists a polynomial time (ink and the size of the input toUser∗) black-box
simulatorSU , such that for all non-uniform polynomial time adversariesA we have:

Pr
[
gk ← G(1k) ; y ← A(gk) ; x← Zp ; v := gx ; (u, i)← S

User∗(y)
U (gk, x) : A(u, i) = 1

]
− Pr

[
gk ← G(1k) ; y ← A(gk) ; (u, i)← 〈User∗(y), Issuer(gk)〉 : A(u, i) = 1

]
< k−δ,

whereSU outputsi ∈ {⊥, v}.

8



There are many ways in which one can construct a key generation protocol with the abovementioned
properties. We will offer an example of a 5-move key generation protocol where the parties havegk as
common input. The protocol lets the user pickga. The user and issuer use a coin-flipping protocol to generate
a random modifierb+ c and outputv := ga+b+c. At the same timeb+ c is used as a challenge to the user in a
proof of knowledge ofa.

User→ Issuer : Picka, r ← Zp, η ← Z∗
p and sendA := ga, R := gr, h := gη to issuer.

User← Issuer : Pick b, s← Zp and sendB := gbhs to user.

User→ Issuer : Sendc← Zp to issuer.

User← Issuer : Sendb, s to user.

User→ Issuer : CheckB = gbhs. If check passes, sendz := (b+ c)a+ r mod p andη to issuer and output
x := a+ b+ c mod p.

Issuer : Checkη ∈ Z∗
p, h = gη andAb+cR = gz and outputv := Agb+c if checks pass.

Theorem 3 The Join/Issue protocol has perfect correctness and assuming the discrete logarithm problem is
hard it is possible to black-box simulate both the user and the issuer.

Proof. Perfect correctness follows by direct verification.
We will now prove that for anyδ > 0 there exists a black-box simulator for a malicious issuer. We start

by describing the simulator.SIssuer∗(y)
I (gk, v) pickse, z, η ← Zp and setsA := vg−e andR := gzA−e and

h := gη. It runs theIssuer∗(y) on inputA,R, h to get a commitmentB. It then runs the malicious issuer
up tokδ+1 times on randomly chosenc ← Zp until Issuer∗ opensB to b, s. There are now two possibilities:
eitherIssuer∗ provides a satisfactory opening ofB or it never opens the commitment. In case no such opening
is given, the simulator runsIssuer∗ once again with randomc. If Issuer∗ does not openB in this run, the
simulator outputs(⊥, i), wherei is the output ofIssuer∗. If Issuer∗ opensB, we abort the simulation. The
other possibility is that we did extract an openingb, s of B. In this case, we sendd := e− b mod p to Issuer∗.
If Issuer∗ stops the protocol, we output(⊥, i), wherei is Issuer∗’s output. If Issuer∗ opens the commitment
to b′ 6= b we abort the simulation. Finally, ifIssuer∗ opens the commitment tob, we sendη, z to Issuer∗ and
output(v, i), wherei is Issuer∗’s output.

We will now prove that the simulator satisfies the definition. It is clear thatSI runs in polynomial time,
sinceIssuer∗ is a polynomial time algorithm with polynomial size outputs and we only run itkδ+1 times. Let
us modify the real protocol between an honest user and an adversarial issuer. After the user’s first message
A,R, h and the adversary’s first messageB we store the state ofIssuer∗. We runIssuer∗ up tokδ+1 times with
randomly chosenc to get an openingb, s ofB. After this, we make a real run ofIssuer∗ and produce the output
of the protocol, with two exceptions. If we extracted an openingb, s of B but in the real runIssuer∗ opens the
commitment tob′ 6= b we abort. This only gives a negligible change in probability, since otherwise we could
break the binding property of the commitment scheme and thus break the discrete logarithm assumption. The
other change is that ifIssuer∗ did not openB in thekδ+1 runs, but does so in the real run, we abort. Observe
the following, if at the stored stateIssuer∗ has at least 1

2kδ probability of openingB after seeing randomly

chosenc, then there is(1 − 1
2kδ )kδ+1

< e−
k
2 probability that no opening ofB will be extracted in thekδ+1

runs. On the other hand, adding up all cases with probability less than1
2kδ of Issuer∗ finishing the protocol on

randomc add up to less than1
2kδ probability of aborting.

What remains is to see that the simulation and the modified version of the real protocol described above
yield the same probabilities. In both the simulation and the modified real protocol, we have uniform random
A,R, h and get a responseB from Issuer∗. For Issuer∗ having probability less than1

2kδ of openingB on

9



randomc, the two experiments are the same. ForIssuer∗ having at least 1
2kδ chance of openingB on random

c observe first that the experiment is perfectly indistinguishable from one, where we pickx, e at random and
setA := gx−e in the beginning of the protocol and usec := e− b, since in both cases everything is still chosen
uniformly at random. Now we have a proof of knowledge with a fixed challengee and we can simulate it by
pickingz first and settingR := gzA−e, which again does not change the distribution at all.

We will now show that for anyδ > 0 there is a black-box simulator for an adversarial user. We first
describe the simulator. The simulator gets(gk, x) as input and runsUser∗(y) on gk to getA,R, h. It now
makes up tokδ+1 runs ofUser∗ with randomly chosenb, s to get two successful transcriptsc, η, z andc′, η, z′.
If it is unsuccessful in getting two transcripts it makes yet another run with randomly chosenb, s and ifUser∗

produces satisfactoryc, η, z, then it aborts the simulation. If it is successful, it aborts ifb + c = b′ + c′.
Otherwise, we havegz = Ab+cR andgz′ = Aa′+b′R giving A = g(z−z′)/(a+b−a′−b′) so we can seta :=
(z−z′)/(a+b−a′−b′) mod p. We also haveη ∈ Z∗

p soh = gη. We now make a real run, withB := gt, where
t is chosen at random. If getting an incorrect or lacking response in either step of the real run, we output(u,⊥),
whereu is the output ofUser∗. Else, we receivec and open the commitment asB = gx−a−ch(t−x+a+c)/η and
sendb := x− a− c, s := (t−x+ a+ c)/η mod p to User∗. On a successful response fromUser∗, we output
(u, gx).

We will now argue that this is a good simulation. It is clear that the simulator runs in polynomial time.
Consider modifying a real protocol between the adversary and an honest issuer. We modify the behavior of
the issuer such that it rewinds the protocolkδ+1 times after the initial message and makes a complete run
with randomly chosenb, s to get two successful answersc, η, z andc′, η, z′. If it does not succeed, it makes
yet another run with randomb, s and aborts ifUser∗ produces a satisfactory answerc, η, z. If User∗ has
probability 1

2kδ of succeeding on randomb, s, then there is overwhelming probability that we do extract two
answersc, η, z andc′, η, z′. So the only case where we would get an abort for the reason mentioned above
is whenUser∗ has less than1

2kδ chance of succeeding. So this abort only changes the success probability
with less than 1

2kδ . The commitment is perfectly hiding, so there is negligible probability ofb + c = b′ + c′

in the simulation, so we can from now on ignore that possibility. SupposeUser∗ has probability at least1
2kδ

of completing the protocol successfully after sendingA,R, h, then we will successfully extracta soA = ga

with overwhelming probability and we also learnη soh = gη. Modifying the protocol further to pickx at
random and openingB to x− a− c therefore does not change the probability distribution further. This latter
modification brings us to an experiment that is equivalent to the simulation running on a randomly chosenx.
�

5 Defining Group Signatures

In a group signature scheme there is a group manager that decides who can join the group. Once in the
group, members can sign messages on behalf of the group. Members’ signatures are anonymous, except to the
group manager who can open a signature and see who signed the message. In some scenarios it is of interest to
separate the group manager into two entities, an issuer who enrolls members and an opener who traces signers.

We imagine that enrolled member’s when joining have some identifying information added to a registry
reg. This registry may or may not be publicly accessible. The specifics of how the registry works are not im-
portant, we just require thatreg[i] only contains content both the issuer and useri agrees on. One option could
be that the issuer maintains the registry, but the user has to sign the content ofreg[i] for it to be considered a
valid entry. Useri stores her corresponding secret key ingsk[i]. The numberi we associate with the user is
simply a way to distinguish the users. Without loss of generality, we will assume users are numbered1, . . . , n
according to the time they joined or attempted to join.

Key generation: GKg generates(gpk, ik, ok). Heregpk is a group public key, whileik andok are respec-
tively the issuer’s and the opener’s secret key.

10



Join/Issue: This is an interactive protocol between a user and the issuer. If successful, the user and issuer
register a public keyvki in reg[i] and the user stores some corresponding secret signing key information
in gsk[i].

[BSZ05] specify that communication between the user and the issuer in this protocol should be secret.
The Join/Issue protocol in our scheme works when all messages are sent in clear though. In our scheme,
we will assume the issuer joins users in a sequential manner, but depending on the setup assumptions
one is willing to make, it is easy to substitute theJoin/Issue protocol for a concurrent protocol.

Sign: Group memberi can sign a messagem asΣ← Gsig(gpk, gsk[i],m).

Verify: To verify a signatureΣ on messagem we runGVf(gpk,m,Σ). The signature is valid if and only if
the verification algorithm outputs 1.

Open: The opener has read-access to the registration tablereg. We have(i, τ)← Open(gpk, ok, reg,m,Σ)
gives an opening of a valid signatureΣ on messagem pointing to useri. In case the signature points to
no member, the opener will assume the issuer forged the signature and seti := 0. The role ofτ is to
accompanyi 6= 0 with a proof that useri did indeed sign the message.

Judge: This algorithm is used to verify that openings are correct. We say the opening is correct if
Judge(gpk, i, reg[i],m,Σ, τ) = 1.

[BSZ05] define four properties that the group signature must satisfy: correctness, anonymity, traceabil-
ity and non-frameability. We refer to [BSZ05] for a discussion of how these security definition covers and
strengthens other security issues that have appeared in the literature. Informally, non-frameability protects
the user against being falsely accused of making a group signature, even if both the issuer and the opener are
corrupt. When the issuer is honest and the opening algorithm is applied correctly, albeit the opener’s key may
be exposed, traceability guarantees that a group signature always can be traced back to a member who made it.
An opener knows who made a particular group signature, but provided the opener is honest and the opener’s
key is kept secret, nobody else should be able to identify the member. Anonymity guarantees that even in an
environment where all users’ keys are exposed and the issuer is corrupt. In the definition, the adversary is also
permitted to ask the opener to open group signatures, except the group signature where it is trying to guess
who signed it. A weaker variant of anonymity called CPA-anonymity does not permit the adversary to see
openings of other group signatures. The difference between full anonymity and CPA-anonymity is analogous
to the difference between security under chosen ciphertext attack and chosen plaintext attack for public-key
encryption.

PERFECT CORRECTNESS. On any adversarially chosen message, the verification should accept a group signa-
ture created with a correctly generated group signing keygsk[i] for memberi. Running the opening algorithm
on this should identifyi and make theJudge algorithm accept the opening. For all (unbounded) adversaries
A we have:

Pr
[
F := 0 ; (gpk, ik, ok)← GKg(1k) ; (i,m)← AJoin/Issue(gpk, ik, ok) ; Σ← GSig(gpk, gsk[i],m) ;

(j, τ)← Open(gpk, ok, reg,m,Σ) : F = 0 ∧ i = j ∧ Judge(gpk, i, reg[i],m,Σ, τ) = 1
]

= 1,

whereA outputsi ∈ Members and the oracle works as follows:

Join/Issue: On thei’th query toJoin/Issue addi to the listMembers. Run the Join/Issue protocol for an
honest user and issuer. If the user or issuer does not accept, setF := 1 and return 1. Else update and
returnreg[i], gsk[i].

11



ANONYMITY. It should be infeasible for an adversary to identify the signer of a message if she does not know
the opener’s keyok. We require a strong version of anonymity, which holds even when the adversary controls
the issuer and all the members’ secret signing keys are exposed. We require for all non-uniform polynomial
timeA that:

Pr
[
(gpk, ik, ok)← GKg(1k) : ACh0,Open,JoinCorrupt,JoinExposedHonest(gpk, ik) = 1

]
≈ Pr

[
(gpk, ik, ok)← GKg(1k) : ACh1,Open,JoinCorrupt,JoinExposedHonest(gpk, ik) = 1

]
where the oracles work as follows:

JoinExposedHonest:On input(i, start) start up an honest useri that tries to join the group. This user acts
honestly, however, the entire internal state is exposed to the adversary. On input(i,msg) send message
msg to the user on behalf of the issuer and return the new internal state of the user. On successful
completion of theJoin/Issue protocol updatereg[i] and addi to HonestUserKeys. Since the internal
state is exposed, the adversary knows the corresponding secret keygsk[i] and will be able to make group
signatures on behalf of the user.

JoinCorrupt: On input(i, vki) setreg[i] := vki. This allows the adversary to enroll a corrupt member and
register any public key of its own choosing.

Chb: On input(i0, i1,m) wherei0, i1 ∈ HonestUserKeys returnΣ← GSig(gpk, gsk[ib],m).

Open: On input a valid message and group signature pair(m,Σ) that has not been produced byChb return
Open(gpk, ok, reg,m,Σ).

Some papers have considered a weaker variant of anonymity, called CPA-anonymity. In CPA-anonymity, the
adversary does not have access to theOpen oracle.

TRACEABILITY. We want to avoid forged group signatures. The issuer can always make a dummy registration
and create group signatures, so we cannot rule out the creation of group signatures. What we want to capture
here is that if the issuer is honest, then it is infeasible to create a signature that does not belong to some member
with a registered key inreg[i]. For all non-uniform polynomial time adversariesA we have:

Pr
[
(gpk, ik, ok)← GKg(1k) ; (m,Σ)← AJoin(gpk, ok) ; (i, τ)← Open(gpk, ok, reg,m,Σ) :

GVf(gpk,m,Σ) = 1 ∧ (Judge(gpk, i, reg[i],m,Σ, τ) = 0 ∨ i = 0)
]
≈ 0,

where the oracle is:

Join: On input(i, start) accept only(i,msg) queries until thisJoin/Issue protocol finishes successfully or
not. Run the issuer’s protocol usinggpk, ik with the adversary being able to submit(i,msg) as the
possibly malicious user’s messages to the issuer. If the join protocol is successful update the registry
reg[i] correspondingly.

NON-FRAMEABILITY . We want to avoid that an honest member is falsely attributed a signature that it did not
sign, even if both the issuer and opener are controlled by the adversary. We require that for all non-uniform
polynomial time adversariesA we have:

Pr
[
(gpk, ik, ok)← GKg(1k) ; (m,Σ, i, τ)← AIssueToHonest,ReadGsk,GSig(gpk, ik, ok) :

GVf(gpk,m,Σ) = 1 ∧ Judge(gpk, i, reg[i],m,Σ, τ) = 1

∧ i ∈ HonestUsers ∧ i /∈ ExposedKeys ∧ (m,Σ) /∈ UserSignatures
]
≈ 0,

where the oracles are:

12



IssueToHonest: On input (i, start) start up a new honest useri joining the group usinggpk as the group
public key and addi to HonestUsers. On input(i,msg) send this message to the user on behalf of the
corrupt issuer. If the protocol is successful updatereg[i] andgsk[i] correspondingly.

ReadGsk: On inputi returngsk[i]. Add i to ExposedKeys.

GSig: On input(i,m) check whethergsk[i] is non-empty. In that case returnΣ← GSig(gpk, gsk[i],m) and
add(m,Σ) to UserSignatures.

The definition above addresses a partially dynamic setting where members can be enrolled along the way.
It also separates the roles of granting membership from opening signatures. In [BMW03] a simpler situation is
considered. Only a single group manager that acts as opener is considered. All members’ keys are set up from
the start, there is no enrollment. This relaxation permits the definitions of traceability and non-frameability
to be combined into one requirement called full-traceability. In this paper we concentrate on the stronger and
more flexible [BSZ05] model.

6 Tools

To construct our group signature scheme, we will use the certified signature scheme from Section 4. We will
also use several other tools in our construction, namely collision-free hash functions, non-interactive proofs
for bilinear groups, strong one-time signatures secure against weak chosen message attack and selective-tag
weak CCA-secure cryptosystems.

6.1 Collision-Free Hash-Functions

H is a generator of collision free hash-functionsHash : {0, 1}∗ → {0, 1}`(k) if for all non-uniform polynomial
time adversariesA we have:

Pr
[
Hash← H(1k) ; x, y ← A(Hash) : Hash(x) = Hash(y)

]
≈ 0.

We will use a collision-free hash-function to compress messages before signing them. For this purpose we
will require that we can hash down toZp, so we want to have2`(k) < p. We remark that collision-free hash-
functions can be constructed assuming the discrete logarithm problem is hard, so the existence of collision-free
hash-functions follows from our assumptions on the bilinear group.

6.2 Strong One-Time Signatures

We will use a one-time signature scheme that is secure against an adversary that has access to a single weak
chosen message attack. We say the one-time signature scheme is strong, if the adversary can neither forge a
signature on a different message nor create a different signature on the chosen message she already got signed.
An obvious candidate for such a scheme is the Boneh-Boyen signature scheme [BB04], since this signature
scheme is deterministic and hence automatically has the strongness property.

6.3 Non-interactive Proofs for Bilinear Groups

Groth and Sahai [GS07] suggest non-interactive proofs that capture relations for bilinear groups. They look
at sets of equations in our bilinear group(p,G,GT , e, g) over variables inG andZp such as pairing product
equations, e.g.e(x1, x2)e(x3, x4) = 1, or multi-exponentiation equations, e.g.xδ1

1 x
δ2
2 = 1. They suggest

non-interactive proofs for demonstrating that a set of equations of the form described above has a solution

13



x1, . . . , xI ∈ G, δ1, . . . , δJ ∈ Zp so all equations are simultaneously satisfied. Their proofs are in the common
reference string model. There are two types of common reference strings that yield respectively perfect sound-
ness and perfect witness indistinguishability/perfect zero-knowledge. The two types of common reference
strings are computationally indistinguishable and they both give perfect completeness. We now give some
further details.

[GS07] show that there exists four probabilistic polynomial time algorithms(K,P, V,X), which we
call respectively the key generator, the prover, the verifier and the extractor. The key generator takes
(p,G,GT , e, g) as input and outputs a common reference stringcrs = (F,H,U, V,W,U ′, V ′,W ′) ∈ G8 as
well as an extraction keyxk. Given a set of equations, the prover takescrs and a witnessx1, . . . , xI , δ1, . . . , δJ
as input and outputs a proofπ. The verifier givencrs, a set of equations andπ outputs 1 if the proof is valid
and else it outputs 0. Finally, the extractor on a valid proofπ will extract x1, . . . , xI ∈ G, in other words it
will extract part of the witness.

The proofs of [GS07] have perfect completeness: on a correctly generated CRS and a correct witness,
the prover always outputs a valid proof. They have perfect soundness: on a correctly generated CRS it is
impossible to create a valid proof unless the equations are simultaneously satisfiable. Further, they have
perfect partial knowledge: givenxk the algorithmX can extractx1, . . . , xI from the proof, such that there
exists a solution for the equations that use thesex1, . . . , xI .

There exists a simulatorS1 that outputs a simulated common reference stringcrs and a simulation trapdoor
key tk. These simulated common reference strings are computationally indistinguishable from the common
reference strings produced byK assuming the DLIN problem is hard. On a simulated common reference
string, the proofs created by the prover are perfectly witness-indistinguishable: if there are many possible
witnesses for the equations being satisfiable, the proofπ does not reveal anything about which witness was
used by the prover when creating the proof. Further, let us call a set of equations tractable, if it is possible
to find a solution, wherex1, . . . , xI are the same in all equations, butδ1, . . . , δJ are allowed to vary from
equation to equation. Tractable equations have perfect zero-knowledge proofs on simulated reference strings:
there exists a simulatorS2 that on a simulated reference stringcrs and a simulation trapdoor keytk produces
a simulated proofπ for the tractable equations being satisfiable. If the equations are satisfiable, then simulated
proofs are perfectly indistinguishable from the proofs a real prover with a witness would form on a simulated
reference string.

It will be useful later in the paper to know some technical details of the construction. The values
F,H,U, V,W will be used to commit to the variablesx as (c1, c2, c3) := (F rU t,HsV t, gr+sW tx) for
randomly chosenr, s, t ∈ Zp. On a real common reference string, they are set up soU = FR, V =
HS ,W = gR+S so the commitment can be rewritten as(F r+Rt,Hs+St, gr+s+(R+S)tx). The extraction
key isxk := (φ, η) soF = gφ,H = gη. This permits decryption of the commitment asx = c3c

−φ
1 c−η

2 . On
the other hand, on a simulation reference string, we useU = FR, V = HS ,W = gT with T 6= R+ S, which
makes the commitment perfectly hiding.

To commit to a variableδ ∈ Zp using randomnessr, s we use the commitment(d1, d2, d3) :=
(F r(U ′)δ,Hs(V ′)δ, gr+s(W ′)δ). On a normal common reference string, we pickU ′ = FR, V ′ = HS ,W ′ =
gT for T 6= R + S. This makes the commitment perfectly binding. On a simulated common reference
string, on the other hand, we pickU ′ = FR, V ′ = HS ,W ′ = gR+S . The simulation trapdoor key is
tk := (R,S), which permits us to trapdoor open a commitment to 0 to any valueδ since(F r,Hs, gr+s) =
(F r−Rδ(U ′)δ,Hs−Sδ(V ′)δ, gr+s−(R+S)δ(W ′)δ).

6.4 Selective-tag Weakly CCA-secure Encryption

We will use a tag-based cryptosystem [MRY04] due to Kiltz [Kil06]. The public key consists of random non-
trivial elementspk = (F,H,K,L) ∈ G4 and the secret key issk = (φ, η) soF = gφ,H = gη. We encrypt
m ∈ G using tagt ∈ Zp and randomnessr, s ∈ Zp as(y1, . . . , y5) := (F r,Hs, gr+sm, (gtK)r, (gtL)s).
The validity of the ciphertext is publicly verifiable, since valid ciphertexts havee(F, y4) = e(y1, g

tK) and

14



e(H, y5) = e(y2, g
tL). Decryption can be done by computingm = y3y

−φ
1 y−η

2 . In the group signature scheme,
we will set up the cryptosystem with the sameF,H as in the common reference string of the non-interactive
proofs.

[Kil06] shows that under the DLIN assumption this cryptosystem is selective-tag weakly CCA-secure. By
this we mean that it is indistinguishable which message we encrypted under a tagt, even when we have access
to a decryption oracle that decrypts ciphertexts under any other tag. Formally, for all non-uniform polynomial
time adversariesA we have:

Pr
[
gk ← G(1k) ; t← A(gk) ; (pk, sk)← K(gk) ; (m0,m1)← ADsk(·,·)(pk) ; y ← Epk(t,m0) :

ADsk(·,·)(y) = 1
]

≈ Pr
[
gk ← G(1k) ; t← A(gk) ; (pk, sk)← K(gk) ; (m0,m1)← ADsk(·,·)(pk) ; y ← Epk(t,m1) :

ADsk(·,·)(y) = 1
]
,

where the oracle returnsDsk(ti, yi) if ti 6= t.

7 The Group Signature Scheme

The core of our group signature scheme is the certified signature scheme from Section 4. The issuer acts as
a certification authority and whenever a new memberi wants to enroll, she needs to create a verification key
vi for the Boneh-Boyen signature scheme and get a certificate from the issuer. In the group signature scheme,
the verification key and the corresponding secret key is generated with an interactive key generation protocol
as defined in Section 4.1. This way both user and issuer know thatvi is selected with the correct distribution
and that the user holds the corresponding secret keyxi.

When making a group signature, the member will generate a key pair(vksots, sksots) for a strong one-time
signature that is secure under weak chosen message attack. She will sign the message usingsksots and usexi

to signvksots. The combination of certified signatures and strong one-time signatures is what makes it hard to
forge group signatures.

Group signatures have to be anonymous and therefore we cannot reveal the certified signature. Instead,
a group signature will include a non-interactive witness-indistinguishable (NIWI) proof of knowledge of a
certified signature onvksots. Witness-indistinguishability implies that a group signature does not reveal which
group member has signed the message. The opener will hold the extraction key for the NIWI proof of knowl-
edge and will be able to extract the certified signature. Whenever an opening is called for, she extracts the
signature onvksots, which points to the member who signed the message. In case no member has certified
signedvksots, the opener points to the issuer since the certified signature has a valid certificate.

The ideas above suffice to construct a CPA-anonymous group signature scheme. To get anonymity even
when the adversary has access to theOpen oracle, we will encrypt the signature onvksots with Kiltz’ cryp-
tosystem usingvksots as a tag. We will also give an NIZK proof that the encrypted signature is the same as the
one used in the NIWI proof of knowledge.

We present the full group signature scheme in Figure 2. Let us explain the non-interactive proofs further.
The NIWI proof of knowledge, will demonstrate that there exists a certified signature(a, b, v, σ) onvksots so

e(a, hv)e(f, b) = T ∧ e(σ, vgHash(vksots)) = e(g, g).

In the terminology of [GS07], these are two pairing product equations over three variablesb, v, σ. The last
elementa will be public, since we can rerandomize the certificate such thata does not identify the member.
[GS07] gives us an NIWI proof of knowledge for these two equations being simultaneously satisfiable that
consists of 27 group elements. This proof consists of three commitments to respectivelyb, v, σ, which consist

15



of 3 group elements each, and two proofs for the committed values satisfying the two equations consisting of
9 group elements each.

In the NIZK proof we have a ciphertexty under tagHash(vksots) and a commitmentc toσ from the NIWI
proof of knowledge. We wish to prove that the plaintext ofy and the committed value inc are the same. The
ciphertext is of the form(y1, . . . , y5) = (F ry ,Hsy , gry+syσ, (gHash(vksots)K)ry , (gHash(vksots)L)sy) and the
commitment is of the form(c1, c2, c3) = (F rcU t,HscV t, grc+scW tσ). Settingr := rc − ry, s := sc − sy we
have(c1y−1

1 , c2y
−1
2 , c3y

−1
3 ) = (F rU t,HsV t, gr+sW t). On the other hand, if the plaintext and the committed

value are different, then no suchr, s, t exist. Proving that the plaintext and the committed value are the same,
therefore corresponds to proving the simultaneous satisfiability of the following equations overφ, r, s, t ∈ Zp:

φ = 1 ∧ (c−1
1 y1)φF rU t = 1 ∧ (c−1

2 y2)φHsV t = 1 ∧ (c−1
3 y3)φgr+sW t.

This set is tractable, i.e., if we allowφ to take different values in the equations, then there is a trivial solution
φ = 1 in the first equation andφ = r = s = t = 0 in the other three equations. Since the set of equations
is tractable, there is an NIZK proof for the 4 equations being simultaneously satisfiable. The proof consists of
commitments toφ, r, s, t, but since the first equation is straightforward we can simply use(U ′, V ′,W ′) as the
commitment toφ, which makes it easy to verify that the first equation holds. The three commitments tor, s, t
each consist of 3 group elements. The three last equations are multi-exponentiations of constants and using
the proof of [GS07] each equation costs 2 group elements to prove. The NIZK proof therefore costs a total of
15 group elements.

GKg(1k)
gk ← G(1k) ; Hash← H(1k)
((f, h, T ), z)← CertKey(gk)
(crs, xk)← KNI(gk) ; K,L← G
(F,H, the rest)← Parse(crs) ; pk := (F,H,K,L)
(gpk, ik, ok) := ((gk,Hash, f, h, T, crs, pk), z, xk)

Join/Issue(User i : gpk , Issuer : gpk, ik)
((vi, xi, ai, bi), (vi, ai, bi))← 〈User, Issuer〉
User: Ife(ai, hvi)e(f, bi) = T set

reg[i] := vi ; gsk[i] := (xi, ai, bi)

GSig(gpk, gsk[i],m)
(vksots, sksots)← KeyGensots(1k)

(Repeat untilHash(vksots) 6= −xi)
ρ← Zn ; a := aif

−ρ ; b := bi(hvi)ρ

σ := g
1

xi+Hash(vksots)

π ← PNIWI(crs, (gpk, a,Hash(vksots)), (b, vi, σ))
y ← Epk(Hash(vksots), vi)
ψ ← PNIZK(crs, (gpk, y, π), (r, s, t))
σsots ← Signsksots

(vksots,m, a, π, y, ψ)
Return Σ := (vksots, a, π, y, ψ, σsots)

GVf(gpk,m,Σ)
Return 1 if the following holds:
1 = Vervksots((vksots,m, a, π, y, ψ), σsots)
1 = VNIWI(crs, (gpk, a,Hash(vksots)), π)
1 = VNIZK(crs, (gpk, π, y), ψ)
1 = ValidCiphertext(pk,Hash(vksots), y)
Else return 0

Open(gpk, ok,m,Σ)
(b, v, σ)← Xxk(crs, (gpk, a,Hash(vksots)), π)
Return(i, σ) if there isi sov = vi

Else return(0, σ)

Judge(gpk, i, reg[i],m,Σ, σ)
Return 1 if
i 6= 0 ∧ e(σ, vig

Hash(vksots)) = e(g, g)
Else return 0

Figure 2: The group signature scheme.

Theorem 4 The scheme in Figure 2 is a group signature scheme with perfect correctness. Under the DLIN,q-
SDH andq-U assumption and assuming the strong one-time signature scheme is secure against weak chosen

16



message attack and the hash-function is collision resistant, the group signature has anonymity, traceability
and non-frameability.

Proof. Perfect correctness follows from the perfect correctness of the join/issue secure function evaluation, the
certified signature, the NIWI proof of knowledge, the tag-based cryptosystem, the NIZK proof and the strong
one-time signature. Anonymity, traceability and non-frameability follows from Lemmas 5, 7 and 6. �

Lemma 5 The group signature scheme is anonymous under the DLIN assumption and assuming the one-time
signature scheme is secure against weak chosen message attack and the hash-function is collision-free.

Proof. Consider the probability

Pr
[
(gpk, ik, ok)← GKg(1k) : AChb,Open,JoinCorrupt,JoinExposedHonest(gpk, ik) = 1

]
from the definition of anonymity. We want to prove that the two probabilities for respectivelyb = 0 andb = 1
only have negligible difference.

First, let us modify the underlying game by aborting if the strong one-time signature in the challenge group
signature is ever forged in an opening query. The existential unforgeability of the one-time signature scheme
under weak chosen message attack implies that there is negligible probability that we will abort for this reason.
From now on we can therefore assumevksots is not used in valid group signature queries toOpen.

We also abort, if any group signature queried toOpen collides withHash(vksots) from the challenge group
signature. Collision-freeness of the hash-function implies that there is negligible probability that this will ever
happen, so from now on we can assume that no such collision will happen.

Let us now modify the way we generate the public key for the tag-based cryptosystem. We setK :=
gκ, L = gλ and storeκ, λ. WheneverOpen receives a valid group signature, we useκ, λ to decrypt the tag-
based cryptosystem. By the validity check of the tag-based ciphertext and the perfect soundness of the NIZK
proofψ this gives the same signatureσ as we get when running the extractor on the NIWI proof of knowledge.
We now go throughreg checking whether there existsi so e(σ, vig

Hash(vksots)) = e(g, g). In that case, we
return(i, σ). The equation definesvi uniquely so this points to the samevi as when extracting the NIWI proof
of knowledge. If no suchvi can be found, we return(0, σ). The perfect soundness of the NIWI proof of
knowledge and the NIZK proof implies that this does not change the probabilities withb = 0 andb = 1 at all.

What we have accomplished in the last step is to modify theOpen oracle such that it does not use the
extraction keyxk for the NIWI proof. We can therefore now switch to using a simulated common reference
string crs that gives us perfect witness-indistinguishability and perfect zero-knowledge. Since real common
reference strings and simulated common reference strings are computationally indistinguishable, this change
only negligibly alters the probability ofA outputting1. Perfect witness indistinguishability implies that the
proof π does not reveal any information aboutgsk[i0] or gsk[i1] having been used to create the challenge
group signature.

The only information that is left in the challenge about the signer is inside the ciphertexty. We will
now use the selective-tag weak CCA-security of the cryptosystem to show that the two modified probabilities
for respectivelyb = 0 and b = 1 only differ negligibly. Let us therefore use the group signature adver-
sary to construct a selective-tag adversary that attacks the cryptosystem. The cryptosystem has a public key
F,H,K,L. It is possible to build a common reference string using the sameF,H, g that has perfect witness-
indistinguishability and perfect zero-knowledge, since the zero-knowledge trapdoor consists of the discrete
logarithms ofU ′, V ′,W ′ with respect toF,H, g. We can therefore on top of a public keyF,H,K,L generate
a correctly formed public keygpk for the group signature scheme and emulate the oraclesJoinCorrupt and
JoinHonestExposed. Whenever we have a valid group signature query toOpen it contains a ciphertexty.
This ciphertext never uses the tagHash(vksots) from the challenge ciphertext, so we can use the decryption
oracle in the selective-tag weak CCA-security game defining the security of the cryptosystem to decrypt the
ciphertext and get outσ.

17



We will now describe how to generate the challenge group signature on top of a challenge tag-based ci-
phertext. We start by picking a key for the strong one-time signature scheme(vksots, sksots). We will use
Hash(vksots) as the target tag, which we observe is chosen independently of the public key for the cryp-
tosystem. We now get the public keyF,H,K,L and run the group signature game on top of it as described
above. At some point the adversary producesi0, i1,m on which it wants a challenge group signature. We
construct signaturesσi0 , σi1 on Hash(vksots) for respectively useri0 and i1. We then get an encryptiony
usingHash(vksots) as the tag of eitherσi0 or σi1 and our goal is to distinguish which one is the plaintext
of y. We build a group signature on top of this ciphertext, which can be done since we have perfect NIWI
proofs of knowledge and perfect NIZK proofs on simulated common reference strings. If the group signature
anonymity probabilities forb = 0 andb = 1 are different, we can distinguish whethery encryptsσi0 or σi1 .
The selective-tag weak CCA-security of the cryptosystem therefore gives us that the modified probabilities
with b = 0 andb = 1 are indistinguishable. �

Lemma 6 The group signature scheme has non-frameability under theq-SDH assumption and assuming
the one-time signature scheme is existentially unforgeable under weak chosen message attack and the hash-
function is collision-free.

Proof. We want to prove that for all non-uniform polynomial time adversariesA we have:

Pr
[
(gpk, ik, ok)← GKg(1k) ; (m,Σ, i, σ)← AIssueToHonest,ReadGsk,GSig(gpk, ik, ok) :

GVf(gpk,m,Σ) = 1 ∧ Judge(gpk, i, reg[i],m,Σ, σ) = 1

∧ i ∈ HonestUsers ∧ i /∈ ExposedKeys ∧ (m,Σ) /∈ UserSignatures
]
≈ 0.

By the strong unforgeability of the one-time signature scheme under weak chosen message attack, there is
negligible probability thatA produces(m,Σ) sovksots from one of the group signatures made from theGSig
oracle is reused. The collision-freeness of the hash-function implies that there is negligible probability that
Hash(vksots) collides with one of thevk′sots used by theGSig oracle. We can therefore assume that an attempt
to frame a user requires a signatureσ on a valueHash(vksots) that the user has not made a certified signature
on.

Let n(k) be a polynomial upper bound of the number ofIssueToHonest queries thatA makes. We have
at least 1

n(k) chance of guessing the userj thatA will attempt to frame before running the game. However, the
proof of the existential unforgeability of the certified signature scheme against weak chosen message attack
tells us that for each honest user there is negligible probability of producingσ that is a satisfactory Boneh-
Boyen signature onHash(vksots). �

Lemma 7 The group signature scheme is traceable if theq-U assumption holds.

Proof. We have to prove that valid signatures lead to the provable identification of a signer. In other words,

Pr
[
(gpk, ik, ok)← GKg(1k) ; (m,Σ)← AJoin(gpk, ok) ; (i, σ)← Open(gpk, ok, reg,m,Σ) :

GVf(gpk,m,Σ) = 1 ∧ (Judge(gpk, i, reg[i],m,Σ, σ) = 0 ∨ i = 0)
]
≈ 0.

By the soundness of the NIWI proof a valid signatureΣ implies the existence of a valid certified signature on
Hash(vksots). We can use the extraction keyxk to extract this certified signature. By the unfakeability of the
certified signature scheme, the certified signature points to one of thevi’s generated in a join/issue session.
The perfect soundness of the NIWI proof of knowledge implies that the extractedσ is indeed a signature on
Hash(vksots) under the verification keyvi in the NIWI proof of knowledge.Judge will therefore output 1.�

18



EFFICIENCY. If we instantiate the strong one-time signature with the Boneh-Boyen signature scheme a veri-
fication key is one group element and a one-time signature is also one group element. We make the element
a public. The NIWI proof of knowledge consists of 27 group elements. The ciphertext consists of 5 group
elements. The NIZK proof consists of 15 group elements. The total size of a group signature is therefore 50
group elements inG. This is of course much better than the many thousand elements required for a group
signature in [Gro06].

In case CPA-anonymity is sufficient, we can consider a lighter version of our group signature, where we
omit the ciphertexty and the NIZK proofψ. This CPA-anonymous group signature scheme would consist
of 30 group elements. We observe that regular anonymity implies that the group signature is strong, i.e.,
even when seeing a messagem and a group signatureΣ on it, it is not possible to create a different group
signatureΣ′ onm such that it still points to the same member. In CPA-anonymity, however, we do not give
the adversary access to an opening oracle and thus mauling signatures is no longer a problem. If we do not
care about the group signature being strong, we do not need the strong one-time signature key and we can
simply signHash(m) instead ofHash(vksots). This reduces the size of the group signatures further to28
group elements. In comparison, the CPA-anonymous group signature scheme of [BW07] consists of 6 group
elements in a composite order group. Since composite order groups rely on the hardness of factoring, these
groups are very large and our CPA-anonymous group signatures are therefore comparable in size for practical
parameters, perhaps even a bit smaller. However, our CPA-anonymous group signature scheme still supports
dynamic enrollment of members and has a group public keygpk consisting of a constant number of group
elements.

KEY GENERATION. Since the [BSZ05]-model assumes a trusted key generator it is worth considering how
the key generation should be carried out in practice. The trust in our scheme relies on the bilinear group
(p,G,GT , e, g) being generated so the cryptographic assumptions hold and it relies on the hash-function being
collision-free. We remark that an advantage of our scheme is that we work over prime order bilinear groups,
so it may be possible to use a uniform random string to set up(p,G,GT , e, g). Also, since the trust is based
on a very elementary setup, a bilinear group and a hash-function, it is possible that suitable public standards
can be found. One could for instance use SHA-256 as the hash-function.

The non-frameability of the user relies only on the collision-freeness of the hash-function and the crypto-
graphic assumptions in(p,G,GT , e, g). The rest of the group public keygpk can be generated jointly by the
issuer and the opener. The issuer generates the authority key for the certified signature scheme. The opener
generatescrs andpk, anonymity follows from the opener generating these keys correctly. Since the opener
can break anonymity anyway, it is quite reasonable to trust the opener with protecting anonymity. The opener
will have to make a zero-knowledge proof of knowledge of the corresponding extraction key to the issuer,
since the security proof for traceability relies on the opener being able to actually extract a signature from the
NIWI proof of knowledge.

References

[ACHdM05] Giuseppe Ateniese, Jan Camenisch, Susan Hohenberger, and Breno de Medeiros. Practical
group signatures without random oracles. Cryptology ePrint Archive, Report 2005/385, 2005.
http://eprint.iacr.org/2005/385 .

[ACJT00] Guiseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical and provably
secure group signature scheme. Inproceedings of CRYPTO ’00, LNCS series, volume 1880,
pages 255–270, 2000.

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random oracles. Inproceedings of
EUROCRYPT ’04, LNCS series, volume 3027, pages 56–73, 2004.

19



[BBP04] Mihir Bellare, Alexandra Boldyreva, and Adriana Palacio. An uninstantiable random-
oracle-model scheme for a hybrid encryption problem. Inproceedings of EURO-
CRYPT ’04, LNCS series, volume 3027, pages 171–188, 2004. Full paper available at
http://eprint.iacr.org/2003/077 .

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. Inproceedings of
CRYPTO ’04, LNCS series, volume 3152, pages 41–55, 2004.

[BFPW07] Alexandra Boldyreva, Marc Fischlin, Adriana Palacio, and Bogdan Warinschi. A closer look
at pki: Security and efficiency. Inproceedings of PKC ’07, LNCS series, volume 4450, pages
458–475, 2007.

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. Inproceedings of EUROCRYPT ’03, LNCS series, volume 2656,
pages 416–432, 2003.

[BMW03] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group signatures:
Formal definitions, simplified requirements, and a construction based on general assumptions.
In proceedings of EUROCRYPT ’03, LNCS series, volume 2656, pages 614–629, 2003.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. InACM CCS ’93, pages 62–73, 1993.

[BSZ05] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signatures: The case of
dynamic groups. Inproceedings of CT-RSA ’05, LNCS series, volume 3376, pages 136–153,
2005.

[BW06] Xavier Boyen and Brent Waters. Compact group signatures without random oracles. Inpro-
ceedings of EUROCRYPT ’06, LNCS series, volume 4004, pages 427–444, 2006.

[BW07] Xavier Boyen and Brent Waters. Full-domain subgroup hiding and constant-size group signa-
tures. Inproceedings of PKC 2007, volume 4450 ofLecture Notes in Computer Science, pages
1–15, 2007. Available athttp://www.cs.stanford.edu/ ∼xb/pkc07/ .

[CG04] Jan Camenisch and Jens Groth. Group signatures: Better efficiency and new theoretical as-
pects. Inproceedings of SCN ’04, LNCS series, volume 3352, pages 120–133, 2004. Full paper
available athttp://www.brics.dk/ ∼jg/GroupSignFull.pdf .

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited. In
proceedings of STOC ’98, pages 209–218, 1998.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. On the random-oracle methodology as applied
to length-restricted signature schemes. Inproceedings of TCC ’04, LNCS series, volume 2951,
pages 40–57, 2004.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from
bilinear maps. Inproceedings of CRYPTO ’04, LNCS series, volume 3152, pages 56–72, 2004.

[CvH91] David Chaum and Eugène van Heyst. Group signatures. Inproceedings of EUROCRYPT ’91,
LNCS series, volume 547, pages 257–265, 1991.

[FI05] Jun Furukawa and Hideki Imai. An efficient group signature scheme from bilinear maps. In
proceedings of ACISP ’05, LNCS series, volume 3574, pages 455–467, 2005.

20



[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-Shamir
paradigm. Inproceedings of FOCS ’03, pages 102–113, 2003. Full paper available at
http://eprint.iacr.org/2003/034 .

[Gro06] Jens Groth. Simulation-sound nizk proofs for a practical language and constant size group
signatures. Inproceedings of ASIACRYPT ’06, LNCS series, 2006. Full paper available at
http://www.brics.dk/ ∼jg/NIZKGroupSignFull.pdf .

[GS07] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilin-
ear groups. Cryptology ePrint Archive, Report 2007/155, 2007. Available at
http://eprint.iacr.org/2007/155 .

[Kil06] Eike Kiltz. Chosen-ciphertext security from tag-based encryption. Inproceedings of TCC ’06,
LNCS series, volume 3876, pages 581–600, 2006.

[KY05] Aggelos Kiayias and Moti Yung. Group signatures with efficient concurrent join. Inproceedings
of EUROCRYPT ’05, LNCS series, volume 3494, pages 198–214, 2005. Full paper available at
http://eprint.iacr.org/345 .

[MRY04] Philip D. MacKenzie, Michael K. Reiter, and Ke Yang. Alternatives to non-malleability: Defi-
nitions, constructions, and applications. Inproceedings of TCC ’04, LNCS series, volume 2951,
pages 171–190, 2004.

[Nie02] Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic proofs: The
non-committing encryption case. Inproceedings of CRYPTO ’02, LNCS series, volume 2442,
pages 111–126, 2002.

[ZL06] Sujing Zhou and Dongdai Lin. Shorter verifier-local revocation group signatures from bilinear
maps. Inproceedings of CANS ’06, LNCS series, volume 4301, pages 126–143, 2006.

21


