
Executing Modular Exponentiation on a
Graphics Accelerator

A. Moss, D. Page, and N. Smart

Department of Computer Science,
Merchant Venturers Building,

Woodland Road,
Bristol, BS8 1UB,
United Kingdom.

{moss|page|nigel}@cs.bris.ac.uk
Abstract. Demand in the consumer market for graphics hardware that
accelerates rendering of 3D images has resulted in commodity devices ca-
pable of astonishing levels of performance. These results were achieved
by specifically tailoring the hardware for the target domain. As graphics
accelerators become increasingly programmable this performance makes
them an attractive target for other domains. Specifically, they have mo-
tivated the transformation of costly algorithms from a general purpose
computational model into a form that executes on said graphics hard-
ware. We investigate the implementation and performance of modular
exponentiation using a graphics accelerator, with the view of using it to
execute operations required in the RSA public key cryptosystem.

1 Introduction

Efficient arithmetic operations modulo a large prime (or composite) number
are core to the performance of public key cryptosystems. RSA [19] is based
on arithmetic in the ring ZN , where N = pq for large prime p and q, while
Elliptic Curve Cryptography (ECC) [11] can be parameterised over the finite
field Fp for large prime p. On processors with a w-bit word size, one commonly
represents 0 ≤ x < N using a vector of n radix-2w digits. Unless specialist co-
processor hardware is used, modular operations on such numbers are performed
in software using well known techniques [13, 2] that operate using native integer
machine operations. Given the significant computational load, it is desirable to
accelerate said operations using instruction sets that harness Single Instruction
Multiple Data (SIMD) parallelism; in the context of ECC, a good overview is
given by Hankerson et al. [11, Chapter 5]. Although dedicated vector processors
have been proposed for cryptography [9] these are far from being commodity
items.

In an alternative approach, researchers have investigated cryptosystems based
on arithmetic in fields modulo a small prime q or extension thereof. Since ideally
we have q < 2w, the representation of 0 ≤ x < q is simply one word; the use of
low-weight primes [7] offers an efficient method for modular reduction. Example
systems that use such arithmetic include Optimal Extension Fields (OEF) [1]
which can provide an efficient underpinning for ECC; torus based constructions

such as T30 [8]; and the use of Residue Number Systems (RNS) [14, Chapter 3]
to implement RSA. Issues of security aside, the use of such systems is attrac-
tive as operations modulo q may be more efficiently realised in integer based
machine operations. This fact is reinforced by the aforementioned potential for
parallelism; for example, addition operations in an OEF can be computed in a
component-wise manner which directly maps onto SIMD instruction sets [11,
Chapter 5].

However, the focus on use of integer operations in implementation of opera-
tions modulo large and small numbers ignores the capability for efficient floating
point computation within commodity desktop class processors. This feature is
often ignored and the related resources are left idle: from the perspective of effi-
ciency we would like to utilise the potential for floating point arithmetic to ac-
celerate our implementations. Examples of this approach are provided in ground
breaking work by Bernstein who has produced high-performance floating point
based implementations of primitives such as Poly1305 [3] and Curve25519 [4]. Be-
yond algorithmic optimisation, use of floating point hardware in general purpose
processors such as the Intel Pentium 4 offered Bernstein some significant advan-
tages. Specifically, floating point operations can often be executed in parallel
with integer operations; there is often a larger and more orthogonally accessible
floating point register file available; good scheduling of floating point operations
can often yield a throughput close to one operation per-cycle.

Further motivation for use of this type of approach is provided by the recent
availability of programmable, highly SIMD-parallel floating point co-processors
in the form of Graphics Processing Units (GPU). Driven by market forces these
devices have developed at a rate that has outpaced Moore’s Law: for example,
the Nvidia 7800-GTX uses 300 million transistors to deliver roughly 185 Gflop/s
in contrast with the 55 million transistor Intel Pentium 4 which delivers roughly
7 Gflop/s. Although general purpose use of the GPU is an emerging research
area [10], the only published prior usage for cryptography is by Cook et al. [5]
who implemented block and stream ciphers using the OpenGL command-set; we
are aware of no previous work accelerating computationally expensive public key
primitives. Further, quoted performance results in previous work are somewhat
underwhelming, with the GPU executing AES at only 75% the speed of a general
purpose processor.

This paper seeks to gather together all three strands of work described above.
Our overall aim is arithmetic modulo a large number so we can execute opera-
tions required in the RSA public key cryptosystem; we implement this arithmetic
with an RNS based approach which performs arithmetic modulo small floating
point values. The end result is an implementation of RSA which firstly fits the
GPU programming model, and secondly makes effective use of SIMD-parallel
floating point operations on which GPU performance relies. We demonstrate
that with some caveats, this implementation makes it possible to improve RSA
performance using the GPU versus that achieved using a general purpose pro-
cessor. An alternative approach is recent work implementing RSA on the IBM
Cell [6], another media-biased vector processor. However, the radically different

special purpose architecture of the GPU makes the task much more difficult than
on the IBM Cell (a general purpose processor), hence our differing approach.

We organise the paper as follows. In Section 2 we give an overview of GPU
architecture and capabilities. We use Section 3 to describe the algorithms used
to implement modular exponentiation in RNS before describing the GPU imple-
mentation in Section 4. The experimental results in Section 5 compare the GPU
implementation with one on a standard processor, with conclusions in Section 6.

2 An Overview of GPU Architecture

Original graphics accelerator cards were special purpose hardware accelerators
for the OpenGL and DirectX Application Programming Interfaces (APIs). Pro-
grams used the API to describe a 3D scene using polygons. The polygons have
surfaces filled with a 2D pattern called a texture. The API produced an image
for display to the user. Images are arrays of Picture Elements, or pixels, formed
by the perspective-correct projection of the primitives onto a 2D plane. Each
pixel describes the colour and intensity of a point on the display.

Graphics cards developed to allow the fixed functionality to be reprogrammed.
Vector shaders are programs that transform 3D vectors within the graphics
pipeline by custom projections and calculations. Pixel shaders allow the value
of pixels to be specified by the programmer, as part of this specification a set
of textures can be indexed by the program. Results can be directed into tex-
tures held in memory rather than to the display. We ignore 3D functionality and
render a single scaled 2D rectangle parallel to the display plane, enforcing a 1:1
relation between input and output pixels, thereby turning the GPU into a vector
processor. Each pixel is a 4-vector of single-precision floating-point values.

In the GPU programming model a single pixel shader is executed over a 2D
rectangle of pixels. Each output pixel is computed by a separate instance of the
shader, with no communication between program instances. Control-flow pro-
ceeds in lockstep between the instances to implement a SIMD vector processor.
The program instance can use its 2D position within the array to parameterise
computations, furthermore we can provide uniform variables which are constant
over a single rendering step; each program instance has read-only access to such
variables which are used to communicate parameters from the host to the shader
programs. The output of a value parametrised only by the coordinates of the
pixel characterises the GPU programming model as stream-processing.

In this paper we specifically consider the Nvidia 7800-GTX as an archetype
of the GPU. From here on, references to the GPU can be read as meaning the
GPU within the Nvidia 7800-GTX accelerator. The pixel shading step within the
GPU happens when the 3D geometry is rasterised onto the 2D image array. This
process is shown in Figure 3, each rendered group of 2×2 pixels is termed a quad.
The GPU contains 24 pipelines, arranged as six groups of quad-processors; each
quad-processor operates on 4 pixels containing 16 values. Each pixel pipeline
contains two execution units that can dispatch two independent 4-vector oper-
ations per clock cycle. If there are enough independent operations within the

pixel-shader then each pipeline can dispatch a total of four vector operations
per clock cycle. This gives a theoretical peak performance of 24× 4 = 96 vector
operations, or 384 single-precision floating point operations, per clock cycle.

The GPU contains a number of ports that are connected to textures stored
in local memory. Each port is uni-directional and allows either pixels to be read
from a texture, or results to be written to a texture. The location of the pixels
within output textures is fixed by the rendering operation and cannot be altered
within a pixel shader instance. In stream processing terminology gather opera-
tions, e.g. accumulation, are possible but scatter operations are not. The same
texture cannot be attached to multiple ports and so read and write operations
cannot be mixed on a texture within a single rendering step.

The lack of concurrent read and write operations, and communication be-
tween execution units, limits the class of programs that can be executed in a
shader program, in particular modifying intermediate results is not directly pos-
sible. A solution to this problem called ping-ponging has been developed by the
general purpose community [10]. The technique shown in Figure 2 uses multiple
shader programs executing in sequence, with the textures holding intermediate
results being written in one pass, and then read in a subsequent pass. We have
identified the RNS version of RSA encryption as possible using this technique.
There is a constant overhead associated with the setup of each pixel shader pro-
gram, split between the OpenGL API, the graphics card driver and the latency
filling the GPU pipelines. To achieve high-performance, this constant cost must
amortised over a large enough texture. Increasing the number of ping-ponging
steps increases the size of data-set required to break-even on the overhead.

Texture lookup within a pixel shader allows any pixel in a texture bound
to an input port to be read. Texture lookups are not free operations; at a core
frequency of 430 MHz, latency is in the order of 100 clock cycles. Exposing this
latency is not feasible so it is hidden by multi-threading the quads processed
on each quad-processor. Quads are issued in large batches, and all reads from
instances within those batches are issued to a cache. This produces the two
dimensional cache locality that is observed in GPU execution. Once a pixel has
passed through the pipeline it is retired into the texture buffer. Recombination of
the output stream is performed by 16 Raster Operators (ROP) which introduce a
bottleneck of 25.6GB/s bandwidth shared between all shader instances in every
pass. This hard limit creates a lower bound of six cycles on the execution of each
shader instance; lacking the operations to fill these “free” cycles is a bottleneck.

3 RNS Implementation of RSA

The RSA [19] public key cryptosystem uses a public key pair (N, e) where N
is chosen to be the product of two large primes p and q that are kept secret. A
private key d is selected such that e · d ≡ 1 (mod φ(N)). To encrypt a plaintext
message m, the ciphertext c is computed as c = me (mod N) while to reverse
the operation and decrypt the ciphertext one computes m = cd (mod N). As
such, the core computational requirement is efficient arithmetic modulo N , in

particular modular exponentiation. Efficient realisation of this primitive relies
heavily on efficient modular multiplication as a building block.

We focus on implementing modular multiplication using a Residue Number
System (RNS) with standard values of N ; that is N is a 1024-bit number. The
advantage of using RNS is that operations such as addition and multiplication
can be computed independently for the digits that represent a given value. As
such, RNS operations can be highly efficient on a vector processor, such as
the GPU, since one can operate component-wise in parallel across a vector of
digits. Beyond this, selection of the exponentiation algorithm itself requires some
analysis of the trade-off between time and space; see Menezes et al. [12, Chapter
14] for an overview.

In the specific case of RSA, the cost of a single modular exponentiation can
be reduced by employing small encryption exponent variants and the Chinese
Remainder Theorem (CRT) [17] to accelerate the public and private key oper-
ations respectively. We do not consider these techniques, instead concentrating
on implementation of vanilla modular exponentiation on the GPU. Even so,
performance improvements can still be achieved over multiple invocations of the
modular exponentiation primitive. Consider an application where one is required
to decrypt k ciphertexts ci with the same decryption exponent, i.e.

mi = cd
i (mod Ni), i ∈ {1, 2, . . . k}. (1)

These separate computations can be viewed as a single SIMD-parallel program;
control flow is uniform over the k operations, while the data values differ. As
justification consider a server communicating with k clients: each client encrypts
and communicates information using a single public key pair; batches of cipher-
texts are decrypted with a common exponent. Considering this form of operation
is important since it enables us to capitalised on both fine-grained parallelism at
the RNS arithmetic level, and course-grained parallelism in the exponentiation
level.

3.1 Standard Arithmetic in an RNS

Numbers are stored in a conventional radix number representation by selecting
coefficients of the various powers of the radix that sum to the number. On
processors with a w-bit word size, one typically selects the radix b = 2w so that
each coefficient can be stored in a separate word. An RNS operates by selecting
a basis, a set of co-prime integers that are fixed for all of the numbers being
operated upon. An example basis B might be defined as

B = 〈 B[1], B[2], . . . , B[n] 〉 s.t. i 6= j ⇐⇒ gcd(B[i], B[j]) = 1

For efficiency, each of the moduli B[i] should fit within a word. The size of a
basis is defined as the product of the moduli, that is

|B| =
n∏

i=1

B[i]

such that the largest uniquely representable number is less than |B|. Arithmetic
operations performed in B implicitly produce results modulo |B|.

When the integer x is encoded into an RNS representation in the basis B, it
is stored as a vector of words; there are n words, one for each B[i] ∈ B. Each
component of the vector holds the residue of x modulo the respective B[i]. Thus,
using standard notation, the encoding of x under basis B is the vector

xB =< x mod B[1], x mod B[2], . . . , x mod B[n] >

such that xB [i] denotes the i-th component of the vector. The Chinese Remainder
Theorem (CRT) defines a bijection between the integers modulo |B| and the set
of representations stored in the basis B. To decode xB , the CRT is applied

x =
n∑

i=1

(
B̂[i] · xB [i]

B̂[i]
mod B[i]

)
mod |B|

where B̂[i] = |B|
B[i] . It is useful to rewrite the CRT as shown in Equation 2. In

this form the reduction factor k is directly expressed, which is used by the base
extension algorithms in Section 3.3. Note that unless the RSA values are initially
stored or transmitted in RNS representation, the conversion process represents
an overhead.

x =
n∑

i=1

B̂[i] · xB [i]

B̂[i]
− k|B| (2)

Multiplication and addition of two integers xB and yB , encoded using an RNS
representation under the basis B, is performed component-wise on the vectors.
For example, multiplication is given by the vector

xB ·yB = 〈 x[1]·y[1] mod B[1], x[2] ·y[2] mod B[2], . . . , x[n] ·y[n] mod B[n] 〉

Each component is independent, and so on a vector architecture individual terms
in the computation can be evaluated in parallel. Assuming m execution units on
the GPU, and n moduli in the RNS basis, then a single operation will only take⌈

n
m

⌉
clock cycles. Eliminating the communication, and hence synchronisation,

between the execution units makes this speed possible. It is imperative to em-
phasise this advantage of RNS; propagation of carries between words within the
GPU is very difficult to achieve and thus SIMD-parallel methods for realising
arithmetic modulo N on general purpose processors are not viable.

3.2 Modular Arithmetic in an RNS

Although we have described standard multiplication using RNS, implementation
of RSA requires modular multiplication. In a positional number system this
operation is commonly performed using Montgomery representation [13]. To
define the Montgomery representation of x, denoted xM , one selects an R = bt >
N for some integer t; the representation then specifies that xM ≡ xR (mod N).

Algorithm 1: Cox-Rower Algorithm [18] for Montgomery multiplication in RNS.

Input : x and y, both encoded into A and B.
Output: x · y ·A−1, encoded into both A and B.

In Base A In Base B

sA ← xA · yA sB ← xB · yB

tB ← sB ·
`
−N−1 mod |B|

´
base extend tA ← tB

uA ← tA ·NA

vA ← sA + uA

wA ← vA ·
`
|B|−1 mod A

´
base extend wA → wB

return wA, wB

To compute the product of xM and yM , termed Montgomery multiplication, one
interleaves a standard integer multiplication with an efficient reduction by R

xM ? yM = xMyMR−1

The same basic approach can be applied to integers represented in an RNS [15,
18]. As the suitable input range of the Posch algorithm [15] is tighter than
the output produced, a conditional subtraction may be required. To avoid this
conditional control flow we have used the Cox-Rower algorithm of Kawamura et
al. [18]. Roughly, a basis |A| is chosen as the R by which intermediate reductions
are performed. Operations performed within the basis A are implicitly reduced
by |A| for free. Montgomery multiplication requires the use of integers up to RN ,
or |A|N in size. In order to represent numbers larger than |A| a second basis B
is chosen.

The combination of the values from A and B allow representation of integers
less than |A| · |B|. Consideration of the residues of the integer stored in either
basis allows a free reduction by |A| or by |B|. To take advantage of this free
reduction, we require a base extension operation. When a number represented
in RNS basis A, say xA, is extended to basis B to form xB = xA mod B, the
residue of x mod |A| is computed modulo each of the moduli in B.

Algorithm 1 details the Cox-Rower algorithm for Montgomery multiplica-
tion in an RNS. The algorithm computes the product in both bases, using the
product modulo the first basis to compute the reduction. Each of the basic arith-
metic operations on encoded numbers is highly efficient on a vector architecture
as are computed component-wise in parallel. Efficient implementation of the
Montgomery Multiplication requires both the reduction of xA modulo |A|, and
the base extension to be inexpensive. Note that in the RNS representation A,
reduction by |A| is free, as it is a side-effect of representation in that basis.

3.3 Base Extension

There are several well-known algorithms for RNS base extension in the literature
[21, 16, 18]. In each case the convention is to measure time complexity (or circuit
depth) by the number of operations to produce a residue modulo a single prime.
For use in Montgomery multiplication as described above, each algorithm must
be executed n times to produce residues for each target moduli.

The earliest result is the Szabo-Tanaka algorithm [21] with O(n) time com-
plexity. The RNS number is first converted into a Mixed Residue System (MRS).
The MRS is a positional format where the coefficients of the digits are products
of the primes in the RNS system, rather than powers of a radix. So the RNS
value xA would be represented in MRS as an n-vector m(xA) such that

xA =
n∑

i=1

m(xA)[i] ·
i−1∏
j=0

A[j]

 where A[0] = 1

This conversion is achieved in an n-step process. In each step the residue of
the smallest remaining prime is used as the next MRS digit. This MRS digit
is subtracted from the remaining residues, and the resultant number is an ex-
act product of the prime; the number can be divided efficiently by the prime
through multiplication by the inverse. Each step consume a single digit of the
RNS representation and produces a single digit in the MRS representation. The
Szabo-Tanaka algorithm then proceeds to accumulate the product of each MRS
digit and its digit coefficient modulo each of the target moduli to construct
the RNS representation. To allow single word operations the residues of the
coefficients can be precomputed. The algorithm is highly suitable for a vector
architecture as it uses uniform control flow over each vector component.

Posch et al. [16] and Kawamura et al. [18] both achieve O(log n). The ap-
proaches are similar and use the CRT as formulated in Equation 2, computing a
partial approximation of k. The computation is iterated until the result has con-
verged to within a suitable error bound. The iterative process requires complex
control-flow creating inefficiency in the GPU programming model.

Shenoy and Kumaresan [20] claim that an extra redundant residue can be car-
ried through arithmetic operations, and used to speed up the conversion process.
Unfortunately their approach does not appear to work for modulo arithmetic.
Assuming that our system operates in basis B, all arithmetic operations are
implicitly modulo |B|. The redundant channel r is co-prime to |B| and thus re-
sults mod r cannot be “carried through”. Whenever the result of an operation is
greater than |B|, the result in the redundant channel would need to be reduced
by |B| before the reduction by r. This approach is not suited to applications
involving modulo arithmetic unless r is precomputed before each operation.

4 RSA Implementation on GPU

Algorithm 2 is an overview of our GPU implementation of Montgomery mul-
tiplication. In the array-language syntax each variable refers to a vector, and

Algorithm 2: Cox-Rower Montgomery multiplier with Szabo-Tanaka Extension.

Input : xA, xB and yA, yB .
Output: x · y ·A−1, encoded into wA, wB .

Stage1 sA ← xA · yB ; sB ← xB · yB ; tB ← sB · −N−1 (mod |B|)

Stage2 for i = 1 upto n do
m[i]← tB [i] ; tB ← tB − tB [i] ; tB ← tB ·B−1[i, n]

Stage3 for i = 1 upto n do
tA[i]←

Pn
j m[j] · CA[i, j] (mod |A|)

Stage4 uA = tA ·N ; vA = sA + uA ; wA = vA · |B|−1 (mod |A|)

Stage5 for i = 0 upto n do
m[i]← wA[i] ; wA ← wA − wA[i] ; wA ← wA ·A−1[i, n]

Stage6 for i = 1 upto n do
wB [i]←

Pn
j m[j] · CB [i, j] (mod |B|)

return wA, wB

an indexed variable refers to a single component. This representation shows the
problem clearly by abstracting away important implementation details. Where
operations are performed over vectors they refer to the component-wise appli-
cation of the operation. A mapping is required between these arbitrary vectors
and 4-vectors organised in two dimensional textures. Each shader instance on
the GPU outputs a specific 4-vector within the texture. The coordinates of the
target pixel must be used to parameterise the execution of each shader instance.

The horizontal bars that separate each stage represent parallel barriers in
the algorithm; either a communication between independent processors or a
change in the shape of the control-flow that executes. As the control-flow of each
shader is lock-stepped this requires a new rendering operation. Executing single
instances of the program over the different components of a vector provides a
single implicit loop; the explicit loops must either be unfolded within the shader
or implemented in multiple rendering steps.

Stages one and four constitute the Cox-Rower algorithm [18] for Montgomery
multiplication in RNS. Variable names are retained from Algorithm 1 for clarity.
Stages two and three together form a single base extension; converting the RNS
value in tB into MRS form in the vector m, then reducing these digits by the
moduli of basis B. The matrix B−1 stores the inverse of each prime in B under
every other prime. The MRS coefficients reduced by each prime in A are stored
in the matrix CA. The operation is repeated in stages five and six, extending wA

into wB to provide the result in both bases.
Stage two requires a single output into m[i] and modification of the tB vector

within a single rendering step. Each loop iteration is a single shader execution,
the iteration counter i is passed as a uniform variable to all shader instances.

Algorithm 3: Pseudo-code implementation of stage two of Algorithm 2.

Input : i, x, y
Output: o

v ← T [x, y]
v′ ← T [i, y]
B−1 ← P [x, i]
A← P [n + x, 0]
t← (v − v′) ·B−1

t2 ← t mod A
c← (x ≤ i)
o← v · c + t2 · (1− c)
return o

When the current pixel column x ≤ i the input value is output, otherwise the
operations on tB are performed. To execute this logic as a uniform control-flow
the switch is encoded into floating-point arithmetic. The encoding of stage two
into a shader with uniform control-flow is shown in Algorithm 3. T and P are
2D textures that are read from GPU memory during execution. The 4-vector v
is the current state of the digit this instance executes upon. v′ holds component
m[i] that each digit is being reduced by. The P texture holds precomputed values
such as B−1 and the primes in basis A. The computed value t2 is the potential
output if x > i. The logical condition is computed as a 0 or 1 in c, and then the
product is used to decide the output in the final step.

The direct implementation in Algorithm 3 is quite inefficient as many unnec-
essary computations are performed to preserve uniform control-flow. Program
specialisation offers a solution to this problem; by restricting the (i, x, y) context
that the shader executes in we can generate specialised versions of the program
that only contain the necessary operations. When these contexts correspond to
rectangular 2D regions in the target texture this leads to an efficient implemen-
tation. The specialisation system that we have developed is beyond the scope of
this paper, and will be covered in future work. Our description of the implemen-
tation is still valid; the generated programs preserve the semantics the original
and only the execution speed is affected.

The implementation of Algorithm 3 is given in Appendix 6 to demonstrate
the GLSL syntax and show the additional complexities in reality. Mainly, the
differences are concerned with the formatting of texture coordinates and hence
the two dimensional layout of the data in the texture. As a rough measure of
complexity, the entire implementation uses 10 separate pixel shaders, which are
specialised at runtime into 52 separate programs.

The representation of each RNS value requires several values to be precom-
puted and stored in a texture; two vectors of moduli to describe the bases,
two matrices holding the inverse of each prime in a basis under every prime in
the other basis, and two matrices holding the coefficients of each MRS modulo
the primes in the other basis. At runtime the working textures hold vectors of

 0

 50

 100

 150

 200

 250

 300

 350

 0 1000 2000 3000 4000 5000

A
ve

ra
ge

 e
xp

 ti
m

e
(m

s)

Parallel exponentiations

GPU
CPU

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 1000 2000 3000 4000 5000

T
ot

al
 e

xp
 ti

m
e

(s
ec

)

Parallel exponentiations

GPU
CPU

Fig. 1. Comparison of latency and throughput on the GPU vs an AMD-64.

residues to describe each of the variables in the algorithm. Each component of
these vectors will be stored in a 24-bit mantissa of a floating-point value.

5 Experimental Results

Our goal in evaluating the performance of our GPU based implementation is
comparison with a roughly equivalent implementation on a general purpose pro-
cessor (CPU), namely an 2.2 GHz AMD-64 3200+. This processor was mounted
in a computer that also acted as the host for the graphics accelerator; all exper-
iments were conducted on this common platform.

The implementations described in Section 4 were developed for the Nvidia
7800-GTX graphics accelerator. The direct version executes the algorithm ex-
actly as described. The optimised version features both low-level and high-level
optimisations; although detailed description of these optimisations are beyond
the scope of this paper, computation is functionally as previously described.
Briefly, the low-level optimisations included changes to the internal texture for-
mat used by OpenGL, while the high-level optimisations included code trans-
formations and specialisation of the pixel-shader programs. In both cases, the
GPU based Montgomery multiplication was used within a binary exponentiation
method [12, Chapter 14] in order to compute 1024-bit modular exponentiations.
We additionally wrote a standard C implementation of Montgomery multipli-
cation for our CPU; this included small assembly language inserts to expose
critical features in the processor. The CPU based Montgomery multiplication

was used within a 4-bit sliding window method [12, Chapter 14] to compute the
same 1024-bit modular exponentiations.

Figure 1 shows a comparison of the optimised implementation against the
general purpose processor in terms of latency and throughput. The disappointing
feature is that the CPU evaluates a single exponentiation an order or magnitude
faster than the GPU. The reason for this is obvious: there are significant over-
heads in initialising the OpenGL API, the (many) shader programs and transfer
of data to and from the accelerator. More positively, if one considers evaluation
of parallel exponentiations, as rationalised in Equation 1, the GPU is eventually
able to amortise this overhead as the total workload grows; the break-even point
is around 700 parallel exponentiations. The graph of throughput shows some
unusual behaviour with respect to GPU performance; the vertical steps are an
increase in program cost that could either be due to the memory cache or the
thread scheduling on the accelerator. Further work will determine which is the
case and how to mitigate the cost.

6 Conclusion

We have presented an investigation into the implementation and performance
of modular exponentiation, the core computational operation in cryptosystems
such as RSA, on a commodity GPU graphics accelerator. In a sense, this work
represents an interesting aside from implementation on devices normally con-
strained by a lack of computational or memory resources: here the constraint is
architecture targeted at a different application domain.

In an attempt to mitigate this difference and fit the algorithm into the GPU
programming model, we employed vector arithmetic in an RNS which allowed
us to capitalise on fine-grained SIMD-parallel floating point computation. Our
experimental results show that there is a significant latency associated with in-
voking operations on the GPU, due to overhead imposed by OpenGL and transfer
of data to and from the accelerator. Even so, if a large number of similar mod-
ular exponentiations are required, the GPU can capitalise on course-grained
parallelism at the exponentiation level and out-perform a CPU. Although this
comparison is unfair in a number of respects (the CPU uses windowed expo-
nentiation while the GPU does not, the number of parallel exponentiations is
unreasonably large) it is crucial to see that even small improvements in per-
formance are important: the use of the GPU essentially enables utilisation of a
“free” co-processor that would otherwise sit idle.

The advantages and disadvantages highlighted by our approach detail a num-
ber of issues worthy of further research; we expect that this will significantly
improve GPU performance beyond the presented proof of concept. Two clear
examples are the use of windowed exponentiation on the GPU to improve basic
performance, and improvements in driver software to reduce fixed overheads.
Future work should also highlight the role of program transformation techniques
in generating code for these exotic and quickly evolving architectures. Finally,
a newer GPU architecture, the 8800-GTX, is already available. The use of a

higher core clock speed, faster memory and features such as a more general pro-
gramming model, a lockable cache, and true scatter operations will all provide
massive improvements in performance over the 7800-GTX used in this paper.

References

1. D.V. Bailey and C. Paar. Efficient Arithmetic in Finite Field Extensions with
Application in Elliptic Curve Cryptography. In Journal of Cryptology 14 (3),
153–176, 2001.

2. P.D. Barrett. Implementing the Rivest, Shamir and Adleman Public Key Encryp-
tion Algorithm on a Standard Digital Signal Processor. In Advances in Cryptology
(CRYPTO), Springer-Verlag LNCS 263, 311–323, 1986.

3. D.J. Bernstein. The Poly1305-AES Message-Authentication Code. In Fast Software
Encryption (FSE), Springer-Verlag LNCS 3557, 32–49, 2005.

4. D.J. Bernstein. Curve25519: New Diffie-Hellman Speed Records. In Public Key
Cryptography (PKC), Springer-Verlag LNCS 3958, 207–228, 2006.

5. D.L. Cook, A.D. Keromytis, J. Ioannidis and J. Luck. CryptoGraphics: Secret Key
Cryptography Using Graphics Cards In RSA Conference, Cryptographer’s Track
(CT-RSA), Springer-Verlag LNCS 3376, 334–350, 2005.

6. N. Costigan and M. Scott. Accelerating SSL using the Vector processors in IBM’s
Cell Broadband Engine for Sony’s Playstation 3. In Cryptology ePrint Archive,
Report 2007/061, 2007.

7. R.E. Crandall. Method and Apparatus for Public Key Exchange in a Cryptographic
System. U.S. Patent Number 5, 159, 632, 1992.

8. M. van Dijk, R. Granger, D. Page, K. Rubin, A. Silverberg, M. Stam and D.
Woodruff. Practical Cryptography in High Dimensional Tori. In Advances in
Cryptology (EUROCRYPT), Springer-Verlag LNCS 3494, 234–250, 2005.

9. J. Fournier and S. Moore. A Vectorial Approach to Cryptographic Implementation.
In International Conference on Digital Rights Management, 2005.

10. GPGPU: General-Purpose Computation Using Graphics Hardware. Available at:
http://www.gpgpu.org/

11. D. Hankerson, A. Menezes and S. Vanstone. Guide to Elliptic Curve Cryptography,
Springer-Verlag, 2004.

12. A.J. Menezes, P.C. van Oorschot and S.A. Vanstone. Handbook of Applied Cryp-
tography, CRC Press, 1997.

13. P.L. Montgomery. Modular Multiplication Without Trial Division. In Mathematics
of Computation, 44, 519–521, 1985.

14. B. Parhami. Computer Arithmetic: Algorithms and Hardware Designs. Oxford
University Press, 2000.

15. K.C. Posch and R. Posch. Modulo Reduction in Residue Number Systems. In
IEEE Transactions on Parallel and Distributed Systems, 6 (5), 449–454, 1995.

16. K.C. Posch and R. Posch. Base Extension Using a Convolution Sum in Residue
Number Systems. In Computing 50, 93–104, 1993.

17. J-J. Quisquater and C. Couvreur. Fast Decipherment Algorithm for RSA Public-
key Cryptosystem. In IEE Electronics Letters, 18 (21), 905–907, 1982.

18. S. Kawamura, M. Koike, F. Sano and A. Shimbo Cox-Rower Architecture for Fast
Parallel Montgomery Multiplication In Advances in Cryptology (EUROCRYPT),
Springer-Verlag LNCS 1807, 523–538, 2000.

19. R. Rivest, A. Shamir and L. M. Adleman A Method for Obtaining Digital Sig-
natures and Public-key Cryptosystems. In Communications of the ACM, 21 (2),
120–126, 1978.

20. P.P. Shenoy and R. Kumaresan. Fast Base Extension Using a Redundant Modulus
in RNS. In IEEE Transactions on Computers 38(2), 292–297, 1989.

21. N.S. Szabo and R.I. Tanaka. Residue Arithmetic and its Applications to Computer
Technology, McGraw-Hill, 1967.

Appendix: Program Listing

This source code is a program template. At run-time our implementation sub-
stitutes a constant value for the template parameters indicated by <0> and
<1>. These values are determined by the batch size and control the number
of exponentiation instances encoded into each row, and the size of the texture
respectively.

Listing 1.1. A GLSL pixel-shader program that implements Algorithm 3.

1 uniform sampler2D T; // The matrix with intermediate results

2 // from the previous stage of ping -pong

3 uniform sampler2D P; // The matrix with auxillery precomputed data

4 // such as A,B,B^-1 etc

5 uniform float i; // The loop index - shader executes onces per iteration

6 void main(void)

7 {

8 vec2 where = gl_TexCoord [0].xy; // Retrieve the xy parameters for

9 // this instance.

10 // Which of the moduli covers this target pixel

11 float base = floor(where.x / <0>);

12

13 // Which exponentiation instance we are within the row

14 float inst = mod(where.x, <0>);

15

16 // The location within P of the inverse , the scaling accounts for

17 // coordinate normalisation

18 vec2 invWhere = vec2(i, base) / <1>;

19 vec4 bInvs = texture2D (P, invWhere);

20

21 // The moduli in base A for this pixel (4 components of tB)

22 vec4 primes = texture2D (P, vec2 (88+base ,0) / <1 >);

23

24 // Retrieve the " current " values from the ping -pong texture

25 vec4 v = texture2D (T, where / <1 >);

26 // Retreive the values of the current subtraction digit from P (v’)

27 vec4 v2 = texture2D (T, vec2(i * <0> +inst ,where.y) / <1 >);

28 vec4 t2 = mod((v-v2) * bInvs , primes);

29

30 // Switch between passing through v or t2. This guarded form is

31 // recognised by the compiler and produces straight -line code

32 float c = (where.x<=i) ? 1 : 0;

33 gl_FragColor = v*vec4(c) + t2*(1-(vec4)c);

34 }

Appendix : Ping-pong operation

Fig. 2. Ping-pong operation in the GPU to produce intermediate results

Fig. 3. Rasterisation of a graphics primitive into pixels.

