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Abstract 
 

In applications of public-key encryption schemes, anonymity(key-privacy) as well as 

security(data-privacy) is useful and widely desired. In this paper some new and general concepts in 

public-key encryption, i.e., “master-key anonymity”, “relevant master-key anonymity” and “key-integrity”, 

are introduced(the former two are defined for IBE schemes and the latter one is for any public-key 

encryption scheme). By the concept of master-key anonymity, we prove that chosen-plaintext master-key 

anonymity is a sufficient condition for chosen-ciphertext anonymity in the recent elegant 

Canetti-Halevi-Katz and Boneh-Katz construction. By the concept of key-integrity, we prove it is(together 

with chosen-plaintext anonymity)a sufficient/necessary condition for chosen-ciphertext anonymity. In 

addition to these general consequences, some practical examples are also investigated to show such 

concepts’ easy-to-use in practice..   

Key words:  Computational Cryptography; Provable Security;  Anonymity; Master-key Anonymity; 

Key-Integrity 
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1 Introduction 
 
As one of the most important cryptographic primitives, public-key encryption schemes are 
widely used in modern security-sensitive applications. In various requirements not only 
security but also some additional features of the public-key encryption scheme are desired, 
among which anonymity(key-privacy) has been surfacing increasingly uptodate. Intuitively, 
anonymity guarantees that ciphertext can effectively hide its public-key under which the 
ciphertext is produced, in contrast data security guarantees that ciphertext can effectively hide 
the plaintext from which it is crafted. Therefore anonymity and security are quite different 
features from each other. It’s no surprising that in high-level applications public-key 
encryption schemes with both such provable features will be more and more desired. 
   A precise theoretical treatment on public-key encryption scheme’s anonymity 
(key-privacy) was established for the first time by Bellare et al in [2]. In that paper public-key 
encryption scheme’s anonymity against adaptive chosen-plaintext and chosen-ciphertext 
attacks are established and some widely-used public-key schemes’ anonymity(against specific 
types of attacks) are concretely proven. Furthermore, a new RSA-based public-key scheme 
RAEP-RSA is constructed to get around the well-known scheme OAEP-RSA’s inanonymity. 
In some more recent work Abdalla et al [1] established the concept of anonymity in 
identity-based encryption(IBE) and hierarchical IBE(HIBE) schemes and proved that IBE’s 
anonymity is critical to guarantee the security of the public-key encryption scheme with 
keyword search(PEKS) in BDOP construction [1,4]. In these work and some others, e.g., [10], 
public-key encryption scheme’s anonymity is a helpful utility in constructing high-level 
cryptographic schemes or protocols and is fundamental to reach those cryptographic 
objectives. 

According to [2] there are two types of anonymity properties: anonymity against adaptive 
chosen-plaintext attacks and that against adaptive chosen-ciphertext attacks, the former is 
strictly weaker than the latter. Just like security, the strongest anonymity(chosen-ciphertext 
anonymity) is widely desired in high-level cryptographic protocols and security-sensitive 
applications to resist capable active adversaries. On the other hand, constructing public-key 
encryption schemes with the strongest anonymity as well as the strongest security is 
comparatively more difficult than constructing those only with weak anonymity and security. 
Therefore, we can ask such questions that, in which additional condition(s) can a public-key 
encryption scheme which is known to be chosen-plaintext anonymous be chosen-ciphertext 
anonymous? What’s the gap between the weak and strong anonymity? How to enhance a 
public-key encryption scheme only with weak anonymity to one with the strongest 
anonymity(just like successfully done by many hybrid encryption schemes for 
security[10-11,14])? Furthermore, for the elegant chosen-ciphertext secure public-key 
encryption scheme proposed by Canetti-Halevi-Katz[9] and Boneh-Katz[8] based-on IBE 
schemes, in which condition(s) can such constructions be also chosen-ciphertext anonymous? 
Obviously, answers to these questions should be very valuable in practice.   

 
Our Contributions  In this paper we introduce some new and generic concepts, “master-key 
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anonymity”, “relevant master-key anonymity” and “key-integrity”, to make a step towards 
answering the above questions. Intuitively, master-key anonymity guarantees an IBE 
scheme’s ciphertext can effectively hide its master public-key, and key-integrity violation 
models the capability for the adversary to craft new public key(s) and ciphertext(s) from 
existing ones so that decryptions on new and old cyphertext(s) with new and old secret key(s) 
respectively would have some adversary-desired relationships. Via these new concepts we 
prove two general consequences: firstly, Canetti-Halevi-Katz construction(CHK-construction 
hereafter) is chosen-ciphertext anonymous if the constituent IBE scheme is chosen-plaintext 
master-key anonymous(together with some other technical conditions, and a similar 
consequence is proven for BK-construction); secondly, a public-key encryption scheme is 
chosen-ciphertext anonymous if and only if it is both chosen-plaintext anonymous and 
chosen-ciphertext key-integral. Not only these consequences provide a different perspective 
to the strongest anonymity but also they can be used to investigate specific scheme’s 
anonymity in practice. Some concrete examples are analyzed in this paper to give a deeper 
understanding about these new concepts. 

In section 2 we briefly recall some basic concepts and notations. Section 3 introduces the 
concept of master-key anonymity and proves its sufficiency to CHK-construction’s strongest 
anonymity. Its counterpart consequence for BK-construction is proven in section 4. In section 
5 we first analyze a well-known public-key encryption scheme, ElGamal scheme, to see why 
it is only chosen-plaintext but not chosen-ciphertext anonymous, then we formalize the 
heuristics from example into the concept of key-integrity and prove its 
sufficiency/necessity(together with chosen-plaintext anonymity) to chosen-ciphertext 
anonymity.   

 

2  Preliminaries  

This section simply recalls some concepts fundamental to our work, together with some 
common notations. Let X be a set, we commonly use a←$X to denote that a is randomly 
selected(with uniform distribution) from X. Regarding other notations, || is a concatenating 
operator;⊥ denotes a distinguished error signal which is neither in plaintext nor in ciphertext 
space; P.P.T. means “probabilistic polynomial time”. 
 

Definition 2.1(Public-Key Encryption Scheme) A public-key encryption scheme П=(KG,E,D) 
is composed of three P.P.T. algorithms KG, E and D. Let k be complexity parameter, KG is the 
key generator which takes k as input and outputs public-key/secret-key pair (pk, sk); E is the 
encryption algorithm which takes public-key pk and plaintext M as input and outputs 
ciphertext; D is the decryption algorithm which takes secret-key sk and ciphertext y as input 
and outputs a message M. Additionally, P[(pk, sk)←KG(k); y←E(pk, M): D(sk, y)=M]=1 for 
any k and M. 
 

Definition 2.2(Anonymity[2])Let П=(KG,E,D) be a public-key encryption scheme, 
A=(A1,A2) be an P.P.T. adversary, ATK∈{CPA, CCA} and Oracle be oracle determined by 
ATK. Consider the following game: 
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:)(_
, kExp ATKANO
Aπ                 

    (pk0, sk0), (pk1, sk1)←KG(k); /*run KG(k) two times independently*/   
    (M*, St)←A1

Oracle(pk0, pk1);                
    b←${0,1};                             
    y*←E(pkb, M);                         
   d←A2

 Oracle(y*, St);                            
   if d=b then output 1 else output 0.  
          

In case of ATK=CPA, Oracle is empty; in case of ATK=CCA, Oracle=(D(sk0, .), D(sk1, .)) and 

A is disallowed to query its Oracle on y*. The adversary’s advantage  is defined 

as or equivalently |P[d=0|b=0]-P[d=0|b=1]|. П is called 

anonymous against adaptive chosen-plaintext(respectively, adaptive chosen-ciphertext) 

attacks if  (respectively, ) is a negligible function in k. Hereafter 

we simply omit “adaptive” and denote as . Whenever 

the adversary’s advantage is regarded as a function of computational time t and number of 

oracle queries q, we use the notation  instead of . For 

shorthand, we also use the term ANO_CPA and ANO_CCA anonymity respectively.   

ATKANO
AAdv _

,π

|1]1)([2| _
, −=kExpP ATKANO
Aπ

CPAANO
AAdv _

,π
CCAANO

AAdv _
,π

)(max _
,...

kAdv ATKANO
ATPPA π∈

)(_ kAdv ATKANO
π

),(_ qtAdv ATKANO
π )(_ kAdv ATKANO

π

 
Definition 2.3(Relevant Anonymity[15]) Let П=(KG, E, D) be a public-key encryption 
scheme, A=(A1,A2) be a P.P.T. adversary, ATK∈{CPA, CCA} and Oracle be oracle 
determined by ATK. Consider the following game: 

:)(__
, kExp ATKANORE
Aπ                  

    (pk0, sk0), (pk1, sk1)←KG(k); /*run KG(k) two times independently*/  
    (M*, St)←A1

Oracle(pk0, pk1);                
    M←${0,1}|M*|; /*randomly generate a valid message M in the same size as M*.*/  
    b←${0,1};                             
    y*←E(pkb, M);                         
    d←A2

 Oracle(y*, St);                            
    if d=b then output 1 else output 0.  
          

In case of ATK=CPA, Oracle is empty; in case of ATK=CCA, Oracle=(D(sk0, .), D(sk1, .)). In 
contrast to the concept of (non-relevant) anonymity, A is allowed to query its oracles D(sk0, .) 

and D(sk1, .) on the challenge ciphertext y*. The adversary’s advantage  is 

defined as or equivalently |P[d=0|b=0]-P[d=0|b=1]|. We say 

that П is relevantly anonymous against chosen-plaintext(respectively, chosen-ciphertext) 

ATKANORE
AAdv __

,π

|1]1)([2| __
, −=kExpP ATKANORE
Aπ
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attacks if  (respectively, ) is a negligible function in k for 

any P.P.T. adversary A. We denote  as . Whenever 

the advantage is regarded as a function of computational time t and number of oracle queries 

q, we use the notation  instead of , and we simply 

omit the adjective “adaptive” for brevity. 

CPAANORE
AAdv __

,π
CCAANORE

AAdv __
,π

ATKANORE
ATPPA

Adv __
,...

max π∈

ATKANOREAdv __
π

),(__ qtAdv ATKANORE
π )(__ kAdv ATKANORE

π

Its easy to prove that П’s anonymity implies its corresponding relevant anonymity, i.e., 
relevant anonymity is weaker than anonymity. On the other hand, as the following theorem 
states, relevant anonymity in combination with security can imply (strong) anonymity, which 
is a very powerful tool for anonymity proof( for self-containment, theorem 2.1’s proof is 
presented in appendix A). 

 
Theorem 2.1[15] Let П=(KG, E, D) be a public-key encryption scheme which is secure 
against chosen-plaintext (respectively, chosen-ciphertext) attacks. If П is also relevant 
anonymous against chosen-plaintext(respectively, chosen-ciphertext) attacks, then П is 
anonymous against chosen-plaintext(respectively, chosen-ciphertext) attacks. Concretely, we 
have 

               )(2)()( ____ tAdvtAdvtAdv CPAINDCPAANORECPAANO
πππ +≤

)),((2),(),( ____ qqTOtAdvqtAdvqtAdv d
CCAINDCCAANORECCAANO ++≤ πππ  

where Td is computational time of decryption algorithm D.   □ 
 
Definition 2.4(Identity-based Encryption Scheme: IBE[7]) An IBE scheme П=(Setup, UKG, 
E, D) is composed of P.P.T. algorithms Setup, UKG, E and D. Let k be complexity parameter. 
Setup() is the master-key generator producing master public-key and master secret-key pair 
(mpk, msk) on input k; UKG() is the user’s secret-key generator which takes msk and user 
identity a as input and outputs user’s secret-key usk(a); E is the encryption algorithm which 
takes master public-key mpk, user ID a and plaintext M as inputs and outputs ciphertext y; D 
is the decryption algorithm which takes mpk, user’s secret-key usk(a) and ciphertext y as 
inputs and outputs a message M. Additionally, P[(mpk,msk)←Setup(k); 
usk(a)←UKG(msk,a); y←E(mpk, a, M): D(mpk, usk(a), y)=M]=1 for any k, a and M. 
 
Definition 2.5(Encapsulation Scheme[8]) Encapsulation scheme EC=(P,S,R) is composed of 
three P.P.T. algorithms, where P takes complexity parameter k as input and outputs a string 
pub; S takes pub as input and outputs a string r||cmt||dec where |r|=k, cmt is called public 
commitment string and dec is called de-commitment string; R takes pub, cmt, dec as inputs 
and outputs(recoveries) r, i.e., P[pub←P(k); r||cmt||dec←S(pub); r*←R(pub, cmt, dec): 
r*=r]=1 for any value of k.  
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3  Anonymity in Canetti-Halevi-Katz Construction 
 
3.1 construction    
 
Canetti, Halevi and Katz proposed an elegant and very general public-key encryption 
scheme(CHK-construction hereafter) constructed from an IBE scheme and a one-time 
signature scheme[9]. Let П=(Setup, UKG, E, D) be a IBE scheme where constituent 
algorithms are described in definition 2.3, Sign=(G, Sig, Vf) be a one-time signature scheme 
where G, Sig, Vf are verification/signature key-pair generating algorithm, signing algorithm 
and verification algorithm respectively. Furthermore, suppose all scheme Sign’s verification 
keys fall within the set of IBE scheme П’s identifiers1. Let k be the complexity parameter. A 

public-key encryption scheme  is constructed as follows:  )ˆ,ˆ,ˆ(ˆ DEGK=Π

  (k): (mpk, msk)←Setup(k); set mpk to be public-key and msk to be secret-key; GK ˆ
  Ê (mpk, M): (svk, ssk)←G(k); y←E(mpk, svk, M); σ←Sig(ssk, y); output(svk||y||σ);  
  (msk, y): parse y as svk||y||σ;  D̂

if  Vf(svk, y, σ)=0  then output(⊥);   
else  usk←UKG(msk, vsk);   
     M←D(mpk, usk, y);   
     output(M)      
 

   Compared with all previous chosen-ciphertext secure public-key encryption scheme 
constructions, CHK-construction is simple, efficient and chosen-ciphertext secure in 
standard model. In addition, the underlying IBE scheme is only required to be 
chosen-plaintext secure which is weak and easily to achieve in practice, avoiding any 
non-interactive proofs of well-formedness which underlies all previously-known 
constructions. Such security property can be precisely presented in the following:   
 
Proposition 3.1[9]  is a public-key encryption scheme constructed as 
above from the IBE scheme П and one-time signature scheme Sign. If П is secure against 
selective-id, chosen-plaintext attacks and Sign is strongly unforgeable, then  is secure 
against adaptive chosen-ciphertext attacks. Concretely, we have 

)ˆ,ˆ,ˆ(ˆ DEGK=Π

Π̂

     ≤ +2 (k).    □ ),(_
ˆ qtAdv CCAIND
π )),((__ qTTqtAdv DVf

CPAINSID ++π
1_SUF

SignAdv

 
3.2 Chosen-Plaintext Master-key Anonymity in IBE scheme and its Relationship with 
Chosen-Ciphertext Anonymity in CHK-construction   
 
In order to investigate ’s anonymity, we introduce a new and general concept for IBE Π̂

                                                                 
1 More generally, we can assume the existence of a collision-free hash function H mapping the set of Sign’s 

verification keys to the set of IBE scheme П’s identifiers. All results on security and anonymity in 
CHK-construction remain true in this case, which proofs are almost verbatim of those proofs in CHK’s original 
paper and here.  
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scheme, named master-key anonymity(or master-key privacy), which is formalized as 
follows. 
Definition 3.1(Master-key Anonymity against Adaptive Chosen-Plaintext Attacks)Let 
П=(Setup, UKG, E, D) be a IBE scheme, A=(A1,A2) be an P.P.T. adversary, k be complexity 
parameter. Consider the following game: 

:)(__
, kExp CPAANOMPK
Aπ                 

    (mpk0, msk0), (mpk1, msk1)←Setup(k); /*run Setup(k) two times independently*/   

    (a*, M*, St)← (mpk,.)(,.),(
1

10 mskUKGmskUKGA 0, mpk1);  

    b←${0,1};            

    y*←E(mpkb, a*, M*);                         

   d← (y*, St);       ,.)(,.),(
2

10 mskUKGmskUKGA
   if d=b then output 1 else output 0.  

 
In the above game A is disallowed to query a* of either oracle-UKG(msk0,.) or 

oracle-UKG(msk1,.). The adversary’s advantage  is defined as 

or equivalently |P[d=0|b=0]- P[d=0|b=1]|. П is called 

master-key anonymous against adaptive chosen-plaintext attacks (MPK_ANO_CPA 

anonymous for shorthand) if  is a negligible function in k. Hereafter we 

simply omit “adaptive” and denote as . 

Whenever the adversary’s advantage is regarded as a function of computational time t and 

number of oracle queries q, we use the notation  instead of 

. 

CPAANOMPK
AAdv __

,π

|1]1)([2| __
, −=kExpP CPAANOMPK
Aπ

CPAANOMPK
AAdv __

,π

)(max __
,...

kAdv CPAANOMPK
ATPPA π∈

)(__ kAdv CPAANOMPK
π

),(__ qtAdv CPAANOMPK
π

)(__ kAdv CPAANOMPK
π

   Via the concept of chosen-plaintext master-key anonymity, we can prove a sufficient 
condition for CHK-construction’s strong anonymity. 
 

Theorem 3.1  is a CHK public-key encryption scheme constructed from 

the IBE scheme П and one-time signature scheme Sign. If П is MPK_ANO_CPA anonymous 

and Sign is strongly unforgeable, then 

)ˆ,ˆ,ˆ(ˆ DEGK=Π

Π̂  is ANO_CCA anonymous. Concretely, 

     ≤ +2 (k). ),(_
ˆ qtAdv CCAANO
π )),((__ qTTqtAdv DVf

CPAANOMPK ++π
1_SUF

SignAdv

where Tvf  and TD are computational time of Sign’s algorithm Vf and П’s decryption 

algorithm D.   

Proof Let k be complexity parameter, A=(A1,A2) be an P.P.T. adversary to break Π ’s 

ANO_CCA anonymity. We construct a P.P.T. adversary B=(B

ˆ

1,B2) to break П’s 

MPK_ANO_CPA  anonymity. Consider the following game: 
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:)(__
, kExp CPAANOMPK
Bπ            

    (mpk0, msk0), (mpk1, msk1)←Setup(k); /*run Setup(k) two times independently*/   
    (a*, M*, St)← (mpk,.)(,.),(

1
10 mskUKGmskUKGB 0, mpk1), where B1 is implemented as: 

                   (svk*, ssk*)←G(k); 
                   a*←svk*; 
                   (M*, StA)← (mpk,.)(ˆ,.),(ˆ

1
10 mskDmskDA 0, mpk1);   

                   St←StA||a*||M*||ssk*; 
                   return(a*, M*, St); 
    b←${0,1};                             
    y*←E(mpkb, a*, M*);                         
    d← (y*, St), where B,.)(,.),(

2
10 mskUKGmskUKGB 2 is implemented as:   

                   parse St as StA||a*||M*||ssk*; 
                   σ*←Sig(ssk*, y*); 
                   d← (a*||y*||σ*, St,.)(ˆ,.),(ˆ

2
10 mskDmskDA A); 

                   return(d); 
    if d=b then output 1 else output 0. 

 
    B simulates A’s oracle- (mskD̂ i,.)’s (i=0,1) computation on =a||y||σ as follows:   ŷ
        if Vf(a, y, σ)=0  

then return(⊥) 
        else if a≠a* 
            then usk←UKG(mski, a); /*query a of B’s own oracle-UKG(mski,.)*/ 
                return(D(mpki, usk, y)) 
            else /* y =a*||y||σ and Vf(a*, y, σ)=1*/ ˆ
                halt 
 

   It’s very clear that on valid outputs(i.e., non-⊥) the simulation is perfect, while in the 

event of halt A just produces a ciphertext =a*||y||σ where Vf(a*, y, σ)=1. Because (by 

definition) A doesn’t query a*||y*||σ* on its oracle ( msk

ŷ

D̂ i,.) for any i∈{0,1}, we have 

y||σ≠y*||σ*, which means（y, σ）is a strongly forged message-signature pair for the one-time 

signature scheme Sign(with verification/signing key instance (a*,ssk*)). As a result, 

P[halt]≤ (k). 1_
,

SUF
ASignAdv

   Furthermore, it’s quite straightforward to see that in case of ～halt 

is exactly equivalent to (since in event of ～halt all simulations on A’s 

queries which are valid cyphertexts are perfect), so 

)(__
, kExp CPAANOMPK
Bπ

)(_
,ˆ kExp CCAANO
Aπ

      P[ =1]≥P[ =1|～halt]P[～halt] )(__
, kExp CPAANOMPK
Bπ )(__

, kExp CPAANOMPK
Bπ
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    = P[ =1]P[～halt]   )(_
,ˆ kExp CCAANO
Aπ

    = P[ =1](1-P[halt])   )(_
,ˆ kExp CCAANO
Aπ

    ≥ P[ =1]-P[halt]   )(_
,ˆ kExp CCAANO
Aπ

    ≥ P[ =1]- (k) )(_
,ˆ kExp CCAANO
Aπ

1_
,

SUF
ASignAdv

Namely ≤ +2 (k). The computational 

complexity can be directly verified and the theorem’s inequality is immediately derived from 

the above. □   

)(_
,ˆ kAdv CCAANO
Aπ )(__

, kAdv CPAANOMPK
Bπ

1_
,

SUF
ASignAdv

 
3.3 A More Practical Consequence   
 
In last subsection we have proven the concept of MPK_ANO_CPA’s sufficiency to 
CHK-construction’s strongest anonymity(ANO_CCA). However, MPK_ANO_CPA property 
is not always easy to prove for IBE schemes. Fortunately, by means of the ideals of relevant 
anonymity and its relationship with security and (strong) anonymity[1,12] the sufficient 
condition for CHK-construction’s anonymity can be significantly weakened to a very 
easy-to-check property which is named relevant chosen-plaintext master-key 
anonymity(RE_MPK_ANO_CPA for shorthand). 
 
Definition 3.2(Relevant Master-key Anonymity against Chosen-Plaintext Attacks)Let 
П=(Setup, UKG, E, D) be a IBE scheme, A=(A1,A2) be an P.P.T. adversary, k be complexity 
parameter. Consider the following game: 

:)(___
, kExp CPAANOMPKRE
Aπ                 

    (mpk0, msk0), (mpk1, msk1)←Setup(k); /*run Setup(k) two times independently*/   
    (a*, M*, St)← (mpk,.)(,.),(

1
10 mskUKGmskUKGA 0, mpk1); 

    M←${0,1}|M*|; /*randomly generate a valid message M in the same size as M*.*/  
    b←${0,1};                             
    y*←E(mpkb, a*, M);            
   d← (y*, St);       ,.)(,.),(

2
10 mskUKGmskUKGA

   if d=b then output 1 else output 0.  
 
In contrast to the concept of (non-relevant) master-key anonymity, in the above game A is 
allowed to query a* of both oracle-UKG(msk0,.) and oracle-UKG(msk1,.). The adversary’s 

advantage  is defined as or 

equivalently |P[d=0|b=0]-P[d=0|b=1]|. П is called relevant master-key anonymous against 
adaptive chosen-plaintext attacks (RE_MPK_ANO_CPA anonymous for shorthand) if 

 is a negligible function in k. Hereafter we simply omit “adaptive” and 

denote as . Whenever the 

adversary’s advantage is regarded as a function of computational time t and number of oracle 

CPAANOMPKRE
AAdv ___

,π |1]1)([2| ___
, −=kExpP CPAANOMPKRE
Aπ

CPAANOMPKRE
AAdv ___

,π

)(max ___
,...

kAdv CPAANOMPKRE
ATPPA π∈

)(___ kAdv CPAANOMPKRE
π
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queries q, we use the notation  instead of 

. 

),(___ qtAdv CPAANOMPKRE
π

)(___ kAdv CPAANOMPKRE
π

It’s easy to see that relevant master-key anonymity is weaker than its non-relevant 
counterpart(definition 3.1). To show RE_MPK_ANO_CPA is easy-to-check in practice, we 
show in the following example that the well-known Boneh-Franklin IBE scheme is 
RE_MPK_ANO_CPA. 
 
Example 3.1(Boneh-Franklin IBE scheme[7]) Let (q, P, G, GT, e:G×G→GT) be a bilinear 
pairing configuration on which the BCDH(bilinear computational Diffie-Hellman) problem 
is computationally hard. Furthermore, H1: {0,1}*→G1, H2: G2→{0,1}n are random oracles 
where n is the size of plaintext and k is the complexity parameter. Boneh-Franklin scheme 
works as follows: 
 
   Setup(k):  s←$Z*q; mpk←sP; msk←s; return(mpk, msk) 
   UKG(msk, a), where a∈{0,1}+ is the user’s ID and msk=s:  
            usk←sH1(a); return(usk);   
   E(mpk, a, M): 
            r←$Z*q; T←M H⊕ 2(e(H1(a), mpk)r); y←rP||T; return(y)  
   D(mpk, usk, y): 
            Parse y as y0||T; M←T⊕H2(e(usk, y0)) 
 

It’s quite straightforward to see that in when M is selected at 

random by the challenger, in particular independent of the adversary’s choice M*, the challenge 

ciphertext y=rP||(M

)(___
, kExp CPAANOMPKRE
AFB−

⊕H2(e(H1(a), mpk0)r)) has exactly the same (uniform) distribution in 

both cases of b=0 and b=1 from the adversary’s perspective(because H1 is random oracle, 

even accesses to oracle-UKG’s doesn’t help to distinguish these cases). As a result, 

=0 unconditionally holds.  □  CPAANOMPKRE
AFBAdv ___

,−

 
The strength of RE_MPK_ANO_CPA is manifested in the following theorem.  
 

Theorem 3.2  is a CHK public-key encryption scheme constructed from 

the IBE scheme П and one-time signature scheme Sign. If П is RE_MPK_ANO_CPA 

anonymous, then  is relevant anonymous against chosen-ciphertext attacks 

(RE_ANO_CCA). Concretely, 

)ˆ,ˆ,ˆ(ˆ DEGK=Π

Π̂

          ≤  ),(__
ˆ qtAdv CCAANORE
π )),((___ qTTqtAdv DVf

CPAANOMPKRE ++π

where Tvf  and TD are computational time of Sign’s algorithm Vf and П’s decryption 
algorithm D. 
 

Proof  The proof is almost verbatim from the proof of theorem 3.1, except that (1)A and B 
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are adversaries respectively to break Π̂  and П’s RE_ANO_CPA and RE_MPK_ANO_CPA 
anonymity; (2)games  and  are replaced 
with  and  respectively; (3) the challenge ciphertext to 
B is the encryption of a randomly generated plaintext M independent of B

CPAANOMPK
BExp __

,π
CPAANO

AExp _
,π̂

CPAANOMPKRE
BExp ___

,π
CPAANORE

AExp __
,π̂

1’s choice M*; 
(4)because both  and  respectively allow their 
adversaries querying the challenge identity a* and challenge ciphertext y* of their oracles, 
scheme-Sign’s strongly unforgeability is not required in this proof.   □ 

CPAANOMPKRE
BExp ___

,π
CPAANORE

AExp __
,π̂

 
   In combination with theorem 3.2(constituent IBE scheme’s RE_MPK_ANO_CPA 
anonymity implies CHK-construction’s RE_ANO_CCA anonymity), Proposition 3.1 
(CHK-construction is IND_CCA under some conditions) and theorem 2.1(IND_CCA security 
plus RE_ANO_CCA anonymity implies ANO_CCA anonymity), it’s easy to get the following 
consequence: 
 
Corollary 3.1 is a CHK public-key encryption scheme constructed from the 
IBE scheme П and one-time signature scheme Sign. If П is SID_IND_CPA secure, 
RE_MPK_ANO_CPA anonymous and Sign is strongly unforgeable, then  is both secure 
and anonymous against chosen-ciphertext attacks (i.e., both IND_CCA and ANO_CCA).   
□ 

)ˆ,ˆ,ˆ(ˆ DEGK=Π

Π̂

Remark A noticeable fact is that although corollary 3.1 seems stronger than theorem 
3.1, the latter’s consequence does not depend on the constituent IBE’s security 
property, i.e., even the constituent IBE scheme is not SID_IND_CPA the 
CHK-construction can be still ANO_CCA. Therefore, theorem 3.1 may be of its own 
values. 
   
3.4  More Examples on Master-Key Anonymity 
 
Theorem 3.2(and theorem 4.1 in next section) reduces anonymous CHK-constructions(or 
BK-construction in next section) to RE_MPK_ANO_CPA anonymous IBE schemes. To get 
more understanding about this new concept, we investigate more typical IBE schemes’ 
RE_MPK_ANO_CPA anonymity in this section. 
 
Example 3.2(Boyen-Waters scheme [4]) Let k be complexity parameters. Boyen-Waters IBE 
scheme’s constituent algorithms are defined respectively as follows. 
 

Setup(k): 
      randomly select a bilinear pairing configuration (G1,G2,p,e) where 

|G1|=|G1|=p and p is prime in size of k-bits; 
      g, g0, g1←G1;  ω, t1, t2, t3, t4←

$Zp;  Ω←e(g, g)t1t2ω; 
v1←gt1; v2←gt2; v3←gt3; v4←gt4; 

      mpk←(G1,G2,p,e, Ω, g, g0, g1, v1, v2, v3, v4); 
      msk←(mpk, ω, t1, t2, t3, t4); 
      return(mpk, msk); 
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UKG(msk, a) where a∈Zp

      r1, r2←
$Zp;   

      usk(a)←( , , ); ,)(, 212432211
10

tratttrttr gggg −−+ ϖ 111 )( 10
trat ggg −−ϖ 42)( 10

tragg − 32)( 10
tragg −

      return(usk(a)); 
E(mpk, a, M) where M∈G2  
      s, s1, s2←

$Zp;        
      y←(ΩsM, , vsagg )( 10 1

s-s1, v2
s1, v3

s-s2, v4
s2);   

         return(y); 
   D(mpk, usk(a), y)   

     Parse y as (y00, y0, y1, y2, y3, y4) and usk(a) as (d0, d1, d2, d3, d4); 
         T←e(d0, y0)e(d1, y1)e(d2, y2)e(d3, y3)e(d4, y4);  
         return(y00/T); 
 

In [4](refer to its section 4, lemma 2 and 3) it is proven under the assumption of decisional 

linear problem’s hardness that (ΩsM, , vsagg )( 10 1
s-s1, v2

s1, v3
s-s2, v4

s2) is computationally 

distinguishable from (R, , Rsagg )( 10 1, v2
s1, R3, v4

s2) where R, R1 and R3 are selected 

randomly and independently. Since s, s1 and s2 are selected randomly and independently each 

other and so are g0, g1, v2 and v4, all components of (R, , Rsagg )( 10 1, v2
s1, R3, v4

s2) are at 

random and probabilistically independent each other. As a result, for the MPK_ANO_CPA 

adversary the challenge ciphertext’s distributions in both cases of b=0 and b=1 are 

computationally indistinguishable from a purely random ciphertext (R, R0, R1, R2, R3, R4). 

therefore, Boyen-Waters scheme is MPK_ANO_CPA anonymous(in fact also 

IBE_ANO_CCA anonymous, refer the concept of IBE_ANO_CPA anonymity to appendix B) 

under the assumption of decisional linear problem’s hardness.   □ 
 
Example 3.3(Waters scheme [16]) Let k be complexity parameters and n be a polynomial of 
k. Waters IBE scheme’s constituent algorithms are defined respectively as follows. 
 

Setup(k): 
      randomly select a bilinear pairing configuration (G1,G2,p,e) where 

|G1|=|G1|=p and p is prime in size of k-bits; 
      P, Q←$G1;  α←$Zp;  P1←αP;  Q1←αQ; 
      U[0..n]←$Gn+1;  E←e(P, Q); 
      mpk←(G1,G2,p,e,P, P1,U,E); 
      msk←(mpk,Q1); 
      return(mpk, msk); 

UKG(msk, a) where a=a(1)…a(n)∈{0,1}n

      Parse msk as ((G1,G2,p,e,P, P1,U,E), Q1);   
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r←$Zp;  V←U[0]+ ; ∑
=

n

i
iUia

1
][)(

      usk(a)←(Q1+rV, rP); 

      return(usk(a)); 

E(mpk, a, M) where M∈G2  
      Parse msk as ((G1,G2,p,e,P, P1,U,E), Q1); 

      V←U[0]+ ; ∑
=

n

i
iUia

1
][)(

      t←$Zp;  T←Et;   

      y←(TM, tP, tV);   
         return(y); 
   D(mpk, usk(a), y) 

     Parse y as (y1, y2, y3) and usk(a) as (s1, s2); 
         T←e(s1, y2)/e(s2, y3);  
         return(y1/T); 
 

The critical point is that e(P, y3)=e(y2, V(a)) holds for any valid ciphertext y=(y1, y2, y3) 
with master public key mpk=(G1,G2,p,e,P, P1,U,E). Because pairing e is non-degenerate, such 
equation can easily derive a RE_MPK_ANO_CPA attack on this scheme(in fact the same 
equation can also derive an IBE_ANO_CPA attack. Refer the concept of IBE_ANO_CPA 
anonymity to appendix B). As a result, Waters scheme is neither RE_MPK_ANO_CPA 
anonymous(so of course neither MPK_ANO_CPA anonymous) nor IBE_ANO_CPA 
anonymous.    □ 
 

4  Anonymity in Boneh-Katz Construction 
 
Boneh and Katz[8] proposed another public-key encryption scheme construction 
based-on IBE which is not only provably chosen-ciphertext secure but also more 
computationally efficient than CHK-construction. In this section we prove a 
consequence on Boneh-Katz construction’s ANO_CCA anonymity which is very 
similar as that on CHK-construction. As a result, both CHK-construction and 
BK-construction have very fine features in practice. 
   Let П=(Setup, UKG, E, D) be a IBE scheme where constituent algorithms are described 
in definition 2.3, EC=(P, S, R) be an encapsulation scheme as described in definition 2.5 
where P, S, R are key-generating, secret commitment and recovery algorithms respectively, 
and MAC=(G, Mac, Vf) be a message authentication scheme where G, Mac, Vf are key  
generating, message authenticating and verifying algorithms respectively. Furthermore, 
suppose all scheme EC’s commitment strings fall within the set of П’s identifiers and MAC’s 
authentication keys. Let k be the complexity parameter. A public-key encryption scheme 

 is constructed as follows:  )ˆ,ˆ,ˆ(ˆ DEGK=Π
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     (k):  GK ˆ
(mpk, msk)←Setup(k); pub←P(k);  
set mpk||pub to be public-key and msk||pub to be secret-key; 

     Ê (mpk||pub, M):  
            r||cmt||dec←S(pub); 

y←E(mpk, cmt, M||dec); /* use cmd as ID. */ 
σ←Mac(r, y);  
output(cmt||y||σ);  

     (msk||pub, ): parse as cmt||y||σ;  D̂ ŷ ŷ
usk←UKG(msk, cmt);   
M||dec←D(mpk, usk, y);  
r←R(pub, cmt, dec);  
if  Vf(r, y, σ)=0 then output(⊥) else output(M)      
 

   BK-construction’s security is proved in the following theorem:   

 

Proposition 4.1[8]  is a public-key encryption scheme constructed as 

above from the IBE scheme П, encapsulation scheme EC and message authentication scheme 

MAC. If П is secure against selective-id, chosen-plaintext attacks, EC is secure encapsulated 

and MAC is strongly unforgeable against one-time chosen-message attacks

)ˆ,ˆ,ˆ(ˆ DEGK=Π

2, then  is 

secure against adaptive chosen-ciphertext attacks.     □ 

Π̂

 
Similar as in the case of CHK-construction, RE_MPK_ANO_CPA anonymity is critical 

for BK-construction’s chosen-ciphertext anonymity.  
 

Theorem 4.1  is a BK public-key encryption scheme constructed from the 
IBE scheme П, encapsulation scheme EC and message authentication scheme MAC as above. 
If П is RE_MPK_ANO_CPA anonymous, then 

)ˆ,ˆ,ˆ(ˆ DEGK=Π

Π̂  is relevant anonymous against chosen- 
ciphertext attacks (RE_ANO_CCA). Concretely, 
       ≤2  ),(__

ˆ qtAdv CCAANORE
π )),((___ qTTTqtAdv DVfR

CPAANOMPKRE +++π

where TR , TVf  and TD are computational time of EC’s algorithm R, MAC’s verifying 
algorithm Vf and П’s decryption algorithm D respectively. 
 
Proof  Let k be complexity parameter, A=(A1,A2) be an P.P.T. adversary to break ’s 

RE_ANO_CCA anonymity. We construct a P.P.T. adversary B

Π̂
A=(B1,B2) to break П’s 

RE_MPK_ANO_CPA anonymity. Consider the following game: 

 

:)(___
, kExp CPAANOMPKRE
Bπ            

    (mpk0, msk0), (mpk1, msk1)←Setup(k); /*run Setup(k) two times independently*/   
                                                                 

2 The concepts of secure encapsulation and unforgeability against one-time chosen-message attacks are omitted 
since they are not used in this paper. 
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    (a*, M*, St)← (k, mpk,.)(,.),(
1

10 mskUKGmskUKGB 0, mpk1), where B1 is implemented as: 

                   pub0, pub1←P(k); /*run two times independently.*/ 

                   pk0←mpk0||pub0; pk1←mpk1||pub1; /* ski=mski||pubi for i=0,1*/ 

                   r0||cmt0||dec0←S(pub0); r1||cmt1||dec1←S(pub1); 

a*←cmt0; 

(m*, StA)← (pk,.)(ˆ,.),(ˆ
1

10 skDskDA 0, pk1); 

M*←m*||dec0; 

                   St←StA||m*||r0||cmt0||dec0|| r1||cmt1||dec1; 

                   return(a*, M*, St); 
   M←${0,1}|M*|; /*randomly generate a valid message M in the same size as M*.*/  

    b←${0,1};   

    y*←E(mpkb, a*, M);                         

    d← (y*, St), where B,.)(,.),(
2

10 mskUKGmskUKGB 2 is implemented as:   

                   parse St as StA||m*||r0||cmt0||dec0|| r1||cmt1||dec1;  

                   σ*←Mac(r0, y*);   

                   d← (cmt,.)(ˆ,.),(ˆ
2

10 skDskDA 0||y*||σ*, StA);  

                   return(d); 

    if d=b then output 1 else output 0. 

 

B simulates A’s oracle- (mskD̂ i||pubi,.)’s (i=0,1) computation on =a||y||σ as follows:   ŷ
usk←UKG(mski, a); /* call B’s own oracle-U(mski, .) */  
M||dec←D(mpki, usk, y);  
r←R(pubi, a, dec);  

if  Vf(r, y, σ)=0 then output(⊥) else output(M)  

 

   It’s very clear that on valid queires the simulation is perfect, because both 

 and  allow their adversaries querying the challenge 

identity a* and challenge ciphertext y* of their oracles respectively. Furthermore, note that 

 in case of b=0 is exactly equivalent to  in cased of 

b=0, so (k) 

CPAANOMPKRE
BExp ___

,π
CPAANORE

AExp __
,π̂

CPAANOMPKRE
BExp ___

,π
CPAANORE

AExp __
,π̂

CPAANOMPKRE
BAdv ___

,π

= |P[ (k)=1|b=0]-P[ (k)=1|b=1]| CPAANOMPKRE
BExp ___

,π
CPAANOMPKRE

BExp ___
,π

= |P[ (k)=1|b=0]-P[ (k)=1|b=1]| CPAANORE
AExp __

,π̂
CPAANOMPKRE

BExp ___
,π

On the other hand, we can construct another P.P.T. adversary CA=(C1,C2) to break П’s 

RE_MPK_ANO_CPA anonymity, which specification is almost the same as BA with the only 

differences that (1) in C1 the statements a*←cmt0 and M*←m*||dec0 are replaced with 

a*←cmt1 and M*←m*||dec1 respectively; (2) in C2 statements σ*←Mac(r0, y*) and                

d← (cmt,.)(ˆ,.),(ˆ
2

10 skDskDA 0||y*||σ*, StA) are replaced with σ*←Mac(r1, y*) and                 
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d← (cmt,.)(ˆ,.),(ˆ
2

10 skDskDA 1||y*||σ*, StA) respectively. By the same observation we have 
CPAANOMPKRE

CAdv ___
,π (k) 

= |P[ (k)=1|b=0]-P[ (k)=1|b=1]|  CPAANOMPKRE
CExp ___

,π
CPAANOMPKRE

CExp ___
,π

= | P[ (k)=1|b=0]-P[ (k)=1|b=1]|  CPAANOMPKRE
CExp ___

,π
CPAANORE

AExp __
,π̂

A further observation tells that  in case of b=1 is exactly 

equivalent to  in case of b=0 from A’s perspective in terms of 

probabilistic distribution, therefore 

CPAANOMPKRE
BExp ___

,π
CPAANOMPKRE

CExp ___
,π

  (k) +   CPAANOMPKRE
BAdv ___

,π
CPAANOMPKRE

CAdv ___
,π

 = |P[ (k)=1|b=0]-P[ (k)=1|b=1]|+  CPAANORE
AExp __

,π̂
CPAANOMPKRE

BExp ___
,π

   | P[ (k)=1|b=0]-P[ (k)=1|b=1]|  CPAANOMPKRE
CExp ___

,π
CPAANORE

AExp __
,π̂

 ≥ |P[ (k)=1|b=0]-P[ (k)=1|b=1]| CPAANORE
AExp __

,π̂
CPAANORE

AExp __
,π̂

 =  )(__
,ˆ kAdv CCAANORE
Aπ

The computational complexity can be directly verified and the theorem’s inequality is 

immediately derived from the above. □   

 
In combination with theorem 4.1(constituent IBE scheme’s RE_MPK_ANO_CPA anonymity 
implies BK-construction’s RE_ANO_CCA anonymity), Proposition 4.1 (BK-construction is 
IND_CCA secure under some conditions) and theorem 2.1(IND_CCA security plus 
RE_ANO_CCA anonymity implies ANO_CCA anonymity in general), it’s easy to get the 
following consequence:  
 
Corollary 4.1 is a BK public-key encryption scheme constructed from 
constituent IBE scheme П, encapsulation scheme EC and message authentication scheme 
MAC as above. If П is both SID_IND_CPA secure and RE_MPK_ANO_CPA anonymous, EC 
is secure encapsulated and MAC is strongly unforgeable against one-time chosen-message 
attacks, then  is both secure and anonymous against chosen-ciphertext attacks (i.e., both 
IND_CCA and ANO_CCA).   □ 

)ˆ,ˆ,ˆ(ˆ DEGK=Π

Π̂

 

5  Key-Integrity: The Gap between Weak and Strong Anonymity  
 

In this section we introduce another new and general concept, “key-integrity”, to connect the 
concept of chosen-plaintext anonymity and that of chosen-ciphertext anonymity. Firstly a 
heuristic example is investigated to get some observations on why a chosen-plaintext 
anonymous scheme is not chosen-ciphertext anonymous; secondly the observation is 
formalized and a sufficient/necessary condition to fill the gap between ANO_CPA and 
ANO_CCA anonymity is proved; thirdly one more complicated example is investigated to 
show the concept of key-integrity is actually orthogonal with the well-known concept of 
anonymity(key-privacy). 
 

 

 16



5.1  A Heuristic Example: ElGamal Scheme     
 
In [2] ElGamal scheme is proven anonymous against chosen-plaintext attacks under the 
assumption of decisional Diffie-Hellman problem’s hardness. This scheme is presented in 
figure 1. However, ElGamal scheme is not anonymous against chosen-ciphertext attacks. 
Firstly we observe that if (Y,W) is a valid ElGamal ciphertext produced by public-key X, 
then for arbitary z in Zq, (Y,YzW) is also a valid ciphertext produced by public-key Xgz. 
Furthermore, let x be X’s secret-key then D(x, (Y,YzW))=YzD(x,(Y,W)). Based-on this fact, a 
chosen-ciphertext adversary A=(A1,A2) can work in this way to break its anonymity:  
A1(X0,X1) randomly generate a message M from group G; then A2(taking challenge 
ciphertext (Y,W) as its input) randomly selects a non-zero element z in Zq, gets M0←D(x0, 
(Y,YzW)) and M1←D(x1, (Y,YzW)) via its decryption oracle D(x0,.) and D(x1,.), and makes 
decision on b=0 or 1 respectively according to M0=YzM or M1=YzM. It’s easy to verify that 

the adversary’s advantage (t,q)=1 where q=2 and t is obviously a polynomial in 

k.    

CCAANO
AAdv _

,π
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Key generator KG(q,g): 

x ←$Zq; 

X←gx;  

pk←(q,g,X);  

sk←(q,g,x);  

return(pk,sk) 
 

Figure 1: El
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=(U1,U2) be an P.P.T. 
Encryption algorithm E(pk, M), M∈G: 

     r←$Zq;  

Y←g r;  

T←X r;  

W←TM;  

return(Y, W)
Gamal Scheme. G is a prime-order(q) grou

r the above attacker’s success is th
)(but the corresponding secret ke

y pk1=gzX0, a function h and new v
nd y respectively with secret keys s
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n we’ll carefully generalize this ob
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grity) Let П=(KG, E, D) be a 
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Decryption algorithm D(sk, (Y,W)):  

T←Y x; 

M←W/T;  

return(M) 

 

p with generator g. 

at given a public key pk0=X0 and 
y sk0 is unknown), there can be 
alid ciphertext y*=(Y,YzW) such 
k1 and sk0 have some relationship: 
 attack: D(x1, (Y,YzW))=Y-zD(x0, 
servation to find a sufficient and 

cheme to be anonymous against 

ondition for Chosen-ciphertext 

e attack to ElGamal scheme’s 
y-integrity”, and then prove its 

public-key encryption scheme, 
 Oracle be oracle determined by 



ATK. Consider the following game: 

:)(_
, kExp ATKKINT
Aπ                  

    (pk0, sk0)←KG(k);  
    (M, St)←U1

Oracle(pk0);  
    y←E(pk0, M); 
    (pk1, h, ψ)←U2

 Oracle(y, St), such that pk0≠pk1 and  
h, ψ are P.P.T. algorithms and ψ≠E;           

    y*←ψ(pk1, y) such that y* is not independent of y.  
(i.e., ψ is really a function on y);  

    if D(sk1, y*)=h(D(sk0,y*),y)   
    then output 1;  
    else output 0.                            
              

In case of ATK=CPA, Oracle is empty; in case of ATK=CCA, Oracle=D(sk0, .) and A is 

disallowed to query its Oracle on y*. The adversary’s advantage  is defined as 

. Whenever it is considered as a function of computation time t and 

number of oracle queries q, we also use the notation  instead of 

. We say that П is of key-integrity against adaptive 

chosen-plaintext(respectively, chosen-ciphertext) attacks if (respectively, 

) is a negligible function in k for any P.P.T. adversary A. Hereafter we 

notate as and usually omit the adjective “adaptive” .  

ATKKINT
AAdv _

,π

]1)([ _
, =kExpP ATKKINT
Aπ

),(_
, qtAdv ATKKINT
Aπ

)(_
, kAdv ATKKINT
Aπ

)(_
, kAdv CPAKINT
Aπ

)(_
, kAdv CCAKINT
Aπ

ATKKINT
ATPPA

Adv _
,...

max π∈

ATKKINTAdv _
π

Some remarks about the notion: 
(1) ψ is disallowed to be П’s encryption algorithm E, otherwise the adversary can trivially 
win the game via simply generating (pk1, sk1)←KG(k) and setting h(x,y)=y. In this case 
y*=ψ(pk1, y)=E(pk1, y) so D(sk1, y*)=y=h(D(sk0,y*),y), i.e., the adverrsary always wins. 
(2) y* must depend on y, otherwise the adversary can trivially win the game by simply 
generating (pk1, sk1)←KG(k) , setting ψ(x,y) to be a constant a0 which is selected at random 
and setting h(x,y)=D(sk1, a0).  
(3) If there exists a function φ such that y*=ψ(pk1, y)=E(pk1, φ(M)), i.e., ψ(pk1, 
E(pk0,M))=E(pk1, φ(M)) for any pk0, pk1 and M, then D(sk1, y*)=h(D(sk0,y*),y) implies 
φ(M)= h(D(sk0,y*),y), as a result П is not key-integral. Some schemes, e.g., ElGamal 
scheme, have this feature and that’s why( according to theorem 4.1) they are not anonymous 
against chosen-ciphertext attacks. 

(4) In  the functional equation D(sk)(_
, kExp ATKKINT
Aπ 1, y*)=h(D(sk0,y*),y) can be replaced 

with a more generic relationship such as H(D(sk1, y*), D(sk0,y*),y))=1 where H is a P.P.T 
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predicate associated with a P.P.T. algorithm F such that P[F(v,w)=u: H(u,v,w)=1] is 
non-negligible. All the following theorems can be proven in this more generic cases, 
however, for simplicity we only consider the functional forms in definition 5.1. 
 
Theorem 5.1  A public-key encryption scheme П is anonymous against 
chosen-ciphertext attacks iff П is both anonymous against chosen-plaintext attacks 
and key-integral against chosen-ciphertext attacks.  □ 
 
Because anonymity against chosen-ciphertext attacks strictly implies anonymity against 
chosen-plaintext attacks(as ElGamal scheme shows), key-integrity against chosen-ciphertext 
attacks exactly specifies the gap between the two types of anonymity properties. From this 
viewpoint, theorem 4.1 can be equivalently stated as: 
 
Theorem 5.2  Let П be a public-key encryption scheme which is anonymous 
against chosen-plaintext attacks. Then П is anonymous against chosen-ciphertext 
attacks iff it is key-integral against chosen-ciphertext attacks.  □ 
 
The proof of theorem 5.1 comes from next two lemmas.  
 

Lemma 5.1  Let П be a public-key encryption scheme which is anonymous against 
chosen-ciphertext attacks. Then П is key-integral against chosen-ciphertext attacks. 
Concretely, 

    (t,q)≤ (t+O(TCCAKINTAdv _
π

CCAANOAdv _
π d+Te),q+2)  

where Td, Te are respectively computational time of П’s decryption and encryption 

algorithms.   
 

Proof Suppose U=(U1,U2) is an P.P.T. chosen-ciphertext adversary cracking П’s 
key-integrity, we construct a P.P.T chosen-ciphertext adversary AU=(A1,A2) cracking П’s 
anonymity. Consider the following game: 
 

:)(_
, kExp CCAANO
Aπ                           

    (pk0, sk0), (pk1, sk1)←KG(k);              

    (M, St)←  where A),( 10
,.)(,.),(

1
10 pkpkA skDskD

1 is implemented as: 

                 (M0, St0)← ; (M)( 0
,.)(

1
0 pkU skD

1, St1)← ; )( 1
,.)(

1
1 pkU skD

                 t←${0,1}; M←Mt; St← t ||pk0||pk1||M0||M1||St0||St1; 

                 return(M, St). 

        b←${0,1}; 

        y←E(pkb, M); 

        d←  where A),(,.)(,.),(
2

10 StyA skDskD
2 is implemented as 

                 parse St as t ||pk0||pk1||M0||M1||St0||St1;    

                 ( , h*
0

pk 0, ψ0)← ; ( , h),( 0
,.)(

2
0 StyU skD *

1
pk 1, ψ1)← ; ),( 1

,.)(
2

1 StyU skD

 19



                 ←ψ*
0

y 0( , y); ←ψ*
0

pk *
1

y 1( , y); *
1

pk

                 ←h*
0

M 0( ( ),y ); ←h
0skD *

0
y *

1
M 1( ( ),y );  

1skD *
1

y

/*This is done via A’s decryption oracle. */ 

                 If  E( , )= ∧t=0  Then  d←0; *
0

pk *
0

M *
0

y

                 Else  if  E( , )= ∧t=1  *
1

pk *
1

M *
1

y

                       Then  d←1;  

Else   d←${0,1}; 

                 Return(d); 

         If d=b the output 1 else output 0. 

 

A simulates U’s decryption oracle via its own corresponding decryption oracle, which is 

obviously a perfect simulation. 

 
For j=0,1, set event Zj: ( , h*

j
pk j, ψj) output by satisfies the constraints and 

D( , )=h

),(,.)(
2 j

skjD StyU
*
j

sk *
j

y j(D( , ),y), or equivalently E( , )= . Denote the probability of 

an event occurring in as P
jsk *

j
y *

j
pk *

jM *
jy

)(_
, kExp CCAANO
Aπ A[] and that occurring in  as 

P

)(_
, kExp CCAKINT
Uπ

U[]. According to A’s specification, we have PA[d=0|b=t=0 Z∧ 0]=1. Observe that Zj, b are 

independent, so  

PA[d=0|b=t=0] 

= PA[d=0|b=t=0 Z∧ 0]PA[Z0]+PA[d=0|b=t=0∧～Z0]PA[～Z0] 

  = PA[Z0] + PA[d=0|b=t=0∧～Z0]PA[～Z0]   

  = PA[Z0] + PA[d=0|b=t=0∧～Z0](1-PA[Z0]) 

Note that PA[Z0]=PU[ =1]=  and  )(_
, kExp CCAKINT
Uπ )(_

, kAdv CCAKINT
Uπ

PC[d=0|b=t=0∧～Z0]=PA[E( , )= ∧t=0|y=E(pk*
0pk *

0M *
0y 0, M)∧E( , )≠ ] *

0pk *
0M *

0y

+PA[d=0 | y=E(pk0, M0)∧t=0∧E( , )≠ ] = 0+1/2 = 1/2. *
0pk *

0M *
0y

We have PA[d=0|b=t=0]=(1/2)(1+ ). The same analysis also derives 

P

)(_
, kAdv CCAKINT
Uπ

A[d=1|b=t=1]=(1/2)(1+ ). )(_
, kAdv CCAKINT
Uπ

   On the other hand, when b≠t, i.e., b=1-t, we have y=E(pkb, M1-b) for any b {0,1}. ∈

According to A2’s specification, obviously PA[d=0|b=0 t=1]∧  =PA[d=1|b=1 t=0]=1/2. ∧

Combining all the results, finally we have: 

 =|2P)(_
, kAdv CCAANO
Aπ A[d=b]-1|  

=| P∑
=

1

0i
A[d=b| b=i]-1|=|∑∑

= =

1

0

1

0 2
1

i j

PA[d=b|b=i t∧ =j]-1| = . )(_
, kAdv CCAKINT
Uπ

As a result, the lemma’s inequality can be directly derived from this equation and time/query 
complexity can be directly verified.  □  
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Lemma 5.2  Let П be a public-key encryption scheme which is anonymous against 
chosen-plaintext attacks. If П is key-integral against chosen -ciphertext attacks then 
П is anonymous against chosen-ciphertext attacks. Concretely,  

CCAANOAdv _
π ( t,q)≤ (t)+2q ( t+O(qTCPAANOAdv _

π
CCAKINTAdv _

π d), q) 
where q is the number of queries to decryption oracle and Td is computation time of 
П’s decryption algorithm.   
 
Proof  Suppose A=(A1,A2) is an P.P.T. chosen-ciphertext adversary cracking П’s 

anonymity, we construct a P.P.T chosen-ciphertext adversary UA=(U1,U2) cracking П’s 

key-integrity. Consider the following game: 

:)(_
, kExp CCAKINT
Uπ                           

    (pk0, sk0)←KG(k);               

    (M, St)←U1
D(sk0,.)(pk0) where U1 is implemented as:  

(pk1, sk1)←KG(k);    

                 (M, StA)← ;  ),( 10
,.)(,.),(

1
10 pkpkA skDskD

                 St←pk0||pk1||sk1||StA; 

                 return(M, St). 

     y←E(pk0, M); 

     (pk1, h, ψ)←U2
 D(sk0,.)(y, St), where U2 is implemented as: 

             Parse St as pk0||pk1||sk1||StA; 

             d← ; ),(,.)(,.),(
2

10
A

skDskD StyA

             QA←{ : ’s are queried by A to its decryption  *
iy *

iy

oracle and their replies are distinct each other, i.e.  

Dsk( )≠ D*
iy sk( ) for i≠j and sk∈{sk*

jy 0,sk1}.}   

             ΨA(pk1, y)←{ : Q∈*
iy *

iy A};  

             HA(y) ←{( ,u*
iy i,vi): Q∈*

iy A∧ui=Dsk0( )∧v*
iy i=Dsk1( )}; *

iy

             Specify algorithm ψ(pk1, y) as:  

i←${1,…, |QA|}; return( ); *
iy

             Specify algorithm h(u,y) as:  

                 if there exists ( ,u*
iy i, vi): in HA(y) such that u=ui  

then return(vi) 

                 else return(⊥ ) 

             return(pk1, h, ψ); 

    y*←ψ(pk1, y); 
    if D(sk1, y*)=h(D(sk0,y*),y) then output 1; else output 0. 

 

U Simulates A’s oracle Dsk0(.) and Dsk1(.) respectively via its own oracle Dsk0(,.) and the its 

 21



completely known secret key sk1. Obviously this simulation is perfect.  

Since i≠j implies ≠  and then u*
iy *

jy i=D(sk0, )≠ D(sk*
iy 0, )=u*

jy j, so for any u there is at 

most one ( ,u*
iy i, vi) H∈ A(y) such that u=ui. As a result, h(u,y) is a well-defined function. 

According to ψ’s and h’s specification, it is trivially true that D(sk1, y*)=h(D(sk0,y*),y) for 

any y*=ψ(pk1, y). 

  Set the event Z: all ’s are probabilistically independent of y. Observe that 

 is equivalent to  with b=0. Denote the probability of an 

event occurring in as P

*
iy

)(_
, kExp CCAKINT
Uπ )(_

, kExp CCAANO
Aπ

)(_
, kExp CCAANO
Aπ A[], that of event occurring in as 

P

)(_
, kExp CCAKINT
Uπ

U[] and denote |QA| as q, we have 

    PA[d=0|b=0]=PU[d=0∧Z|b=0]+PU[d=0∧～Z|b=0]   
  = PU[d=0∧Z|b=0]+PU[d=0|～Z∧b=0]PU[～Z]   (b, Z are independent)     
  ≦PU[d=0∧Z|b=0]+PU[～Z]     
  ≦PU[d=0∧Z|b=0]+qP[ =1]   )(_

, kExp CCAKINT
Uπ

  = PU[d=0∧Z|b=0]+q   )(_
, kAdv CCAKINT
Uπ

On the other hand we can construct another chosen-ciphertext adversary VA=(V1,V2) 

cracking П’s key-integrity which is almost the same as U, with the only difference that V1 

calls A1 by (M, StA)← , i.e., exchanging roles of pk),( 01
,.)(,.),(

1
01 pkpkA skDskD

0 and pk1. As a 

result,  is equivalent to  with b=1 and we have 

P

)(_
, kExp CCAKINT
Vπ )(_

, kExp CCAANO
Aπ

A[d=1|b=1]≦PV[d=1∧Z|b=1]+q  by the almost the same analysis as 

above. Hence 

)(_
, kAdv CCAKINT
Vπ

  =|2P)(_
, kAdv CCAANO
Aπ A[d=b]-1|=|PA[d=0|b=0]+PA[d=1|b=1]-1| 

  ≦|PU[d=0∧Z|b=0]+PV[d=1∧Z|b=1]-1| + q( + )  )(_
, kAdv CCAKINT
Uπ )(_

, kAdv CCAKINT
Vπ

In event of Z, i.e., if all ’s are independent of y,  is actually 

equivalent to with b=0: recall that ’s are ciphertexts issued by A to guess 

the public-key in challenge ciphertext y. If ’s are all independent of y, we can simply 

craft a adversary A* which behaves exactly as A does, however, A* doesn’t need to resort 

decryption oracle. At any time when A needs to query its decipher oracle on some ciphertext, 

say , A* randomly(particularly independent of y) generates some plaintext , makes an 

encryption on , keeps the ciphertext E(pk

*
j

y )(_
, kExp CCAKINT
Uπ

)(_
, kExp CPAANO
Aπ

*
j

y
*
j

y

*
j

y
j

x

j
x 0, ) and simply uses  as the answer from 

the oracle( since  ’s are independent of y, these E(pk
j

x
j

x
*
j

y 0, )’s have exactly the same 

distribution as  ’s.). As a result, we have P
j

x
*
j

y U[d=0∧Z|b=0]= P[ =1|b=0]. 

By the same analysis we can have P

)(_
, kExp CPAANO
Aπ

V[d=1∧Z|b=1]= P[ =1|b=1], therefore  )(_
, kExp CPAANO
Aπ

)(_
, kAdv CCAANO
Aπ ≦|P[ =1|b=0]+P[ =1|b=1]-1|     )(_

, kExp CPAANO
Aπ )(_

, kExp CPAANO
Aπ

+ q( + ) )(_
, kAdv CCAKINT
Uπ )(_

, kAdv CCAKINT
Vπ

= +q( + ) )(_
, kAdv CPAANO
Aπ )(_

, kAdv CCAKINT
Uπ )(_

, kAdv CCAKINT
Vπ

The lemma’s inequality can be directly derived and time/query complexity can be easily 
verified according to U’s and V’s constructions.  □ 
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5.3 A More Complicated Example: RSAP-RSA Scheme 
 
ElGamal scheme(in 4.1)is an example which is anonymous against chosen-plaintext attacks 
but not key-integral under chosen-ciphertext attacks. Here we show another well-known 
public-key encryption scheme, OAEP-RSA, is key-integral against chosen-ciphertext attacks 
but not anonymous under chosen-plaintext attacks. These two examples show that 
anonymity against chosen-plaintext attacks and key-integrity against chosen-ciphertext 
attacks are orthogonal each other. Therefore( as proved in section 4.2) to get anonymity 
against chosen-ciphertext attacks, both properties are required.   

OAEP-RSA is a provably secure and widely used public-key encryption scheme [3]. 
However, it is not anonymous even against chosen-plaintext attacks [2](so of course not 
anonymous under chosen-ciphertext attacks). The interesting fact is that it is key-integral 
against chosen-ciphertext attacks. This fact can be shown via the proven anonymity of its 
variant scheme RAEP-RSA. 

Bellare et al in [2] constructed RAEP-RAS scheme which is a variant of OAEP-RSA but 
is both secure and anonymous against chosen-ciphertext attacks. According to the 
consequence in [2] and our theorem 4.1, RAEP-RSA must be key-integral against 
chosen-ciphertext attacks. This fact in combination with next proposition immediately 
derives OAEP-RSA’s key-integrity against chosen-ciphertext attacks.  

Let k be complexity parameter, k0 and k1 are integers satisfying k0+k1<k and let 
n(k)=k-k0-k1. RAEP-RSA’s key generation algorithm KG(k) produces RSA family 
public-secret key pair ((N,e),(N,d)), set pk to be (N,e,k,k0,k1) and sk to be (N,d,k0,k1). G and 
H are random oracles. The encryption and decryption algorithms are presented in figure 2. 

 
Decryption Algorithm D*G, H (sk,y) 

   Parse y as b||v where b is a bit; 

   If b=1 then  

parse v as w||x where |x|=n(k); 

if w=0k0+k1 then z←x;   

else z←⊥ ; 

else 

(s||t)←vd mod N; /*|s|=k1+n, |t|=k0*/  

r←t⊕ H(s); 

      (x||p)←s⊕ G(r); /*|x|=n, |p|=k1*/ 

      If p=0k1 then z←x;   

      Else z←⊥ ; 

   Return(z) 

Encryption Algorithm E*G, H (pk,x) 

  Ctr= -1; 

  repeat    

     Ctr←Ctr+1; 

     r←${0,1}k0; 

     s←(x||0k1) G(r); ⊕

     t←r⊕ H(s); 

     v←(s||t)e mod N; 

  untill (v<2k-2)∨(Ctr=k1); 

  if Ctr=k1 then y←10k0+k1||x 

  else y←0||v; 

  return(y) 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2: RAEP-RSA public-key encryption scheme 
 
Proposition 5.1 If OAEP-RSA scheme Π=(KG,E,D) is non-key-integral under 
chosen-ciphertext attacks, then RAEP-RSA scheme Π*=(KG*,E*,D*) is non-key-integral 
under chosen-ciphertext attacks either.   
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Proof  Let U=(U1,U2) be OAEP-RSA’s KINT-CCA adversary, we construct RAEP-RSA’s 
KINT-CCA adversery V=(V1,V2). Consider the game: 

   )(_
, kExp CCAKINT
VRSARAEP−

   (pk0, sk0)←KG*(k);  
    (M, St)←V1

D*(sk0,.)(pk0) where V1 is implemented as:  
            (M, St)←U1

D(sk0,.)(pk0);   
            return(M, St); 
    y←E*(pk0, M); 
    (pk1, h*, ψ*)←V2

 D*(sk0,.)(y, St) where V2 is implemented as: 
          Parse y as b||y1, where b is a bit; 
          If b=1 then halt;   
          (pk1, h, ψ)←U2

 D(sk0,.)(y1, St) 
          Specify algorithm ψ*(pk,y) as: 
             If y=0||y1 then return(ψ(pk,y1)) else return(⊥ ).   
          Specify algorithm h*(v,y) as: 
             If y=0||y1 then return(h(v,y1)) else return(⊥ ). 
          (pk1, h*, ψ*); 
    y*←ψ(pk1, y);  
    if D*(sk1, y*)=h*(D*(sk0,y*),y) then output 1 else output 0. 
   

V simulates U’s OAEP-RSA decipher oracle via its RAEP-RSA decipher oracle: on query y 
from U, V sets z←0||y, queries its own RAEP-RSA decipher oracle on z and returns the 
answer to U. 

Note that (1)if h, ψ are P.P.T. algorithms and ψ≠E, then h*, ψ* are P.P.T. algorithms and 
ψ*≠E*. (2)In event of ～halt, U’s success in D(sk1, y1*)=h(D(sk0,y1*),y1) implies V’s 
success in D*(sk1, y*)=h*(D*(sk0,y*),y) where y*=0||y1* and y=0||y1. (3)If h and ψ satisfies 

the requirements imposed by  then h* and ψ* will satisfy the 

requirements imposed by .(4)P[～halt]=P[E*(pk

)(_
, kExp CCAKINT
URSAOAEP−

)(_
, kExp CCAKINT
VRSARAEP− 0, M)=0||y1]≥1/4. As a 

result of all these facts, we have 

)(_
, kAdv CCAKINT
VRSARAEP− =P[ =1] )(_

, kExp CCAKINT
VRSARAEP−

≥P[ =1|～halt]P[～halt] )(_
, kExp CCAKINT
VRSARAEP−

   ≥(1/4)P[ =1]=(1/4)                      )(_
, kExp CCAKINT
URSAOAEP− )(_

, kAdv CCAKINT
URSAOAEP−

which is exactly the lemma’s conclusion.     □ 
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Appendix A: Concept of Relevant Anonymity and Proof of Theorem 2.1[15] 
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We only prove the case of chosen-ciphertext attack. The case of chosen-plaintext 
attack can be done following almost exactly the same logic(but more easily). Suppose 
A=(A1,A2) is an P.P.T. adversary cracking П’s chosen-ciphertext anonymity. We 
construct an P.P.T adversary BA=(B1,B2) cracking П’s chosen-ciphertext security as 
the following. Consider the game: 

:)(_
, kExp CCAIND
Bπ  

    (pk0, sk0) ←KG(k);              
    (M0, M1,St)←B1

D(sk0, .)(pk0) where B1 is implemented as: 
  (pk1, sk1)←KG(k);    
  (M*, StA)←A1

D(sk0,.), D(sk1,.) (pk0, pk1);  
  M0←M*; M1←${0,1}|M*|; St←StA||pk1||sk1;  
  return(M0, M1,St);      

    b←${0,1};                             
    y*←E(pk0, Mb);                         
    d←B2

D(sk0, .)(y*, St) where B2 is implemented as: 
                parse St as StA||pk1||sk1;      
                d←A2

D(sk0,.), D(sk1,.) (y*, StA); 
                return(d). 
    if d=b then output 1 else output 0. 
 

In this game, B simulates oracle D(sk0, .) via its own oracle and simulates oracle 
D(sk1,.) via direct decipher computation based-on its possession of sk1. Such 
simulation is obviously perfect. 

 

It’s straightforward to verify that  in case of b=0 is just equivalent 

to  in case of b=0, and  in case of b=1 is equivalent 

to  in case of b=0. On the other hand, we can construct another 

P.P.T. adversary C

)(_
, kExp CCAIND
Bπ

)(_
, kExp CCAANO
Aπ )(_

, kExp CCAIND
Bπ

)(__
, kExp CCAANORE
Aπ

A=(C1,C2) cracking П’s chosen-ciphertext security in very similar 
way as that of BA, with the only difference that C1

D(sk0, .)(pk0) calls A1 in the way of 
A1

D(sk1,.), D(sk0,.) (pk1, pk0), i.e. exchanging the roles of pk0 and pk1. As a result, 

 in case of b=0 is equivalent to  in case of b=1 and 

 in case of b=1 is equivalent to  in case of b=1. 

Therefore: 

)(_
, kExp CCAIND
Cπ )(_

, kExp CCAANO
Aπ

)(_
, kExp CCAIND
Cπ )(__

, kExp CCAANORE
Aπ

      =| |   )(_
, kAdv CCAIND
Bπ −== ]0|1)([ _

, bkExpP CCAIND
Bπ ]1|1)([ _

, == bkExpP CCAIND
Bπ

     =| - | ]0|1)([ _
, == bkExpP CCAANO
Aπ ]0|1)([ __

, == bkExpP CCAANORE
Aπ

)(_
, kAdv CCAIND
Cπ =| | −== ]0|1)([ _

, bkExpP CCAIND
Cπ ]1|1)([ _

, == bkExpP CCAIND
Cπ
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     =| - | ]1|1)([ _
, == bkExpP CCAANO
Aπ ]1|1)([ __

, == bkExpP CCAANORE
Aπ

Then +  )(_
, kAdv CCAIND
Bπ )(_

, kAdv CCAIND
Cπ

≥| - | ]0|1)([ _
, == bkExpP CCAANO
Aπ ]0|1)([ __

, == bkExpP CCAANORE
Aπ

+| - | ]1|1)([ _
, == bkExpP CCAANO
Aπ ]1|1)([ __

, == bkExpP CCAANORE
Aπ

   ≥ - , namely,  )(_
, kAdv CCAANO
Aπ )(__

, kAdv CCAANORE
Aπ

    ≤ + +  )(_
, kAdv CCAANO
Aπ )(__

, kAdv CCAANORE
Aπ )(_

, kAdv CCAIND
Bπ )(_

, kAdv CCAIND
Cπ

The theorem’s inequality can be derived directly and the adversary’s time complexity 
can be easily verified.   □ 
 
 

Appendix B: IBE’s Chosen-Plaintext Anonymity[1] 
 

Let П=(Setup, UKG,E,D) be an IBE encryption scheme, A=(A1,A2) be an P.P.T. adversary. 
Consider the following game: 
 

:)(__
, kExp CPAANOIBE
Aπ                 

    (mpk, msk)←Setup(k);   

    (a0*, a1*, M*, St)← (mpk);  ,.)(
1

mskUKGA
    b←${0,1};            

    y*←E(mpk, ab*, M*);                         

   d← (y*, St);       ,.)(
2

mskUKGA
   if d=b then output 1 else output 0.  

 
In the above game A is disallowed to query any one of a0* and a1* of its oracle-UKG(msk,.). 
The adversary’s advantage  is defined as 

or equivalently |P[d=0|b=0]- P[d=0|b=1]|. П is called 
anonymous against adaptive chosen-plaintext attacks (ANO_CPA anonymous for shorthand) 
if  is a negligible function in k. Hereafter we simply omit “adaptive” and 
denote as . Whenever the adversary’s 
advantage is regarded as a function of computational time t and number of oracle queries q, 
we use the notation  instead of . 

CPAANOIBE
AAdv __

,π

|1]1)([2| __
, −=kExpP CPAANOIBE
Aπ

CPAANOIBE
AAdv __

,π

)(max __
,...

kAdv CPAANOIBE
ATPPA π∈

)(__ kAdv CPAANOIBE
π

),(__ qtAdv CPAANOIBE
π )(__ kAdv CPAANOIBE

π

   To distinguish the anonymity defined in the above from chosen-plaintext master-key 
anonymity defined in definition 3.1, we call this concept as IBE scheme’s “identity 
anonymity”.   
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