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Abstract

In this work, we develop a family of protocols for deniable Internet Key-Exchange (IKE) with the
following properties:

• Highly practical efficiency, and conceptual simplicity and clarity.

• Forward and concurrent (non-malleable) deniability against adversaries with arbitrary auxiliary
inputs.

• Provable security in the Canetti-Krawczyk post-specified-peer model, and maintenance of es-
sential security properties not captured by the Canetti-Krawczyk security model.

• Compatibility with the widely deployed and standardized SIGMA (i.e., the basis of IKEv2) and
(H)MQV protocols, when parties possess DL public-keys.

Our protocols could potentially serve, in part, as either the underlying basis or a useful alternative for
the next generation of IKE (i.e., IKEv3) of IPsec (in particular, when deniability is desired). In view
of the wide deployment and use of IKE and increasing awareness of privacy protection (especially for
E-commerce over Internet), this work is naturally of practical interest.

1 Introduction

Key-exchange (KE) is a traditional area of cryptography. But, key-exchange is also a quite special area
of cryptography, in view of its seemingly simple yet error prone nature. Specifically, most key-exchange
protocols seem to be very simple and even intuitive, and thus appearing to be easily designable, but the
literature has been witnessing that the design of correct and secure KE turns out to be extremely error
prone and could be notoriously subtle and difficult (the literature is filled with protocols that have been
found to contain certain security flaws).

The Internet Key-Exchange (IKE) protocols [16, 18], pioneered by Photuris [17], SKEME [20],
Oakley [26] and SIGMA [21], are the core cryptographic protocols to ensure Internet security, which
specifies key exchange mechanisms used to establish shared keys for use in the Internet Protocol Security
(IPsec) standards [19]. The IPsec and IKE are intended to protect messages communicated in the
IP layer, i.e., “layer 3” of ISO-OSI, that processes the transmission of messages using the network
addresses possibly without knowing end-user peers’ identities. IKE and IPsec can in turn be used to
offer confidentiality, authentication and privacy for communication protocols in the higher layers of
ISO-OSI (note that many communication protocols including many authentication protocols which are
invoked by end-users with explicit peer’s identity information work at “layer 7” of ISO-OSI, i.e., the
application layer) [24].

The standard of IKE has gone through two generations (versions). The first generation IKEv1 [16]
uses public-key encryption as the authentication mechanism (with SKEME serving as the basis in part),
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and IKEv2 [18] uses public-key signature as the authentication mechanism (with SIGMA serving as the
basis in part).

Several salient features of SIGMA helped make it adopted as the basis of IKEv2: (1) it works in the
post-specified-peer ID model; (2) it provides identity concealment and plausible deniability; etc.

Desirability for IKE with post-specified-peer ID [8]. Note that IPsec and IKE are intended
to protect communication protocols in the IP layer that processes the transmission of messages using
network addresses (rather than end-uses’ IDs). This brings forth an issue: the peer’s identity may be not
available at the onset of the IKE, and may be learned by the party only after the protocol run evolves
(even learning from the last message in a run of the protocol). More specifically, in IKE a party may be
activated to exchange a key with an “address” of a peer without knowing the identity of the peer. This
is quite common in practical applications, in particular for IKE. For example, a key-exchange session
may take place with any one of a set of servers sitting behind a (url/ip) address specified in the session
activation. Furthermore, even for protocols running in the higher layers (e.g, the application layer), a
party may respond to a key-exchange request coming from a peer who, for the sake of preserving its
privacy, is not willing to reveal its identity over the network and, sometimes, not even to the responder
before the latter has authenticated itself (e.g., a roaming mobile user connecting from a temporary
address, or a smart-card that authenticates the legitimacy of the card-reader before disclosing its own
identity). Such a general setting for IKE is referred to as “post-specified peer” model [8].

Desirability for deniable IKE [12, 24]. Deniable communication is an essential privacy property,
and has always been a central concern in personal and business communications, with off-the-record
communication serving as an essential social and political tool. Given that many of these interactions
now happen over digital media (email, instant messaging, web transactions, virtual private networks), it
is of critical importance to provide these communications with “off-the-record” or deniability capability:
the sender of a message should be able to deny, e.g., in court, that he or she has sent that message. In
general, we can just run a deniable authentication protocol for each message to be sent when deniability
of the message is desired. However, the beauty of using deniable key-exchange is that if the key-exchange
protocol is deniable, then all transactions using the session-key produced by the key-exchange protocol
will be automatically deniable. In addition, offering deniability at the IP layer is desirable because it
enables various privacy services to be offered at the higher layers with uncompromised quality. Note
that a privacy problem at the IP layer can cause irreparable privacy damage at the application layer.
For example, an identity connected to an IP address, if not deniable, certainly nullifies an anonymous
property offered by a fancy cryptographic protocol running at the application level. A variant of the
SIGMA protocol of [21] (i.e., the underlying basis of public-key IKEv2) has been proved to satisfy some
plausible partial deniability assuming key-aware derivation (typically, with random oracle assumption
of hash functions) [12].

On the desirability of forward and concurrent deniability. In the traditional definition of
deniable authentication, sender Alice wants, in protecting her privacy, to prevent (possibly malicious)
receiver Bob from proving to a third party that he has received a message from Alice by requiring that
the protocol is actually a (computational) zero-knowledge (ZK) protocol in the sense that Bob’s view
can be simulated. Furthermore, we hope the ZK property holds against malicious Bob interacting with
Alice concurrently in many sessions, i.e., the concurrent ZK (CZK) property [14].

However, as clarified in [11], there are scenarios in which deniability is actually a concern to the
receiver’s privacy. Consider the following example presented in [11]. Alice and Bob are involved in
some shady transaction, like drug-dealing or money laundering. Alice wants to make sure that her
communications to Bob cannot be later linked to her, so she uses deniable authentication. Bob thinks
that such communications are indeed deniable, stores all the messages in his hard disk. Later the
operation is busted by the police and Alice and Bob end up in jail, and Bob’s computer is seized. Alice
is offered a sweet deal in exchange for her cooperation in linking Bob to the crime (Bob is claiming that
the messages in his hard disk are not coming from Alice, that he never talked to her, actually does not
even know her, all messages are just simulations!). Alice produces some piece of secret information (her
secret-key for example) that indeed shows that the transcripts in Bob’s hard disk are actually authentic
and not simulated. Bob ends up in jail, cursing himself for dropping out of crypto class in graduate
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school.
The above example shows that deniability is not just a concern for the sender, but also for the

receiver. What we would like to happen is that if the sender acts honestly during the protocols,
she should not be able at a later stage to claim the messages are authentic. This property is called
forward deniability, as it has some affinity to the notion of forward secrecy. In particular, Di Raimondo
and Gennaro have shown that computational ZK does not guarantee forward deniability [11], but
statistical/perfect (concurrent) ZK guarantees forward (concurrent) deniability.

Another typical example where forward deniability is important is for electronic elections [11]. There,
while it is important that both parties, the voting authority and the voter, authenticate each other (for
the authority to know that the voter has the right to vote, for the voter to know that his or her vote
will be counted), it is also mandatory to prevent either party from walking away with a non-repudiable
proof of what the actual vote was (the message being authenticated). This application, in particular,
shows the importance of forward deniability: if the voter (sender) is authenticating his or her vote to
the authority, not only the latter should not be able to prove to a third party how the voter voted, but
even more importantly, the voter should not be able to do so either at a later stage, to prevent coercion
and vote-selling.

Some critiques and concerns on IPsec and IKE. One prominent criticism of IPsec and IKE,
in the literature, is about their intensive system complexity and lack of clarity [24]. In particular, they
contain too many options and too much flexibility. The high system complexity relates to an extreme
obscurity in the system specification. This obscurity may confuse expert reviewers and blind them
from seeing potential security weakness, or may mislead implementors and cause them to code flawed
implementations.

Another main concern about IKE is its ability of protecting players’ privacy over Internet (besides
its ability of ensuring security). For Internet key exchange, both security and privacy are desired, which
would also have been the major criterion underlying the evolution of IKE standards.

1.1 Our contributions

In this work, we present a family of protocols of deniable IKE (in accordance with the main model and
the aggressive model of IKE in IPsec) with the following properties:

• Highly practical efficiency, and conceptual simplicity and clarity.

• Forward and concurrent (non-malleable) deniability against adversaries with arbitrary auxiliary
inputs.

• Provable security in the Canetti-Krawczyk post-specified-peer model [8], and maintenance of es-
sential security properties not captured by the Canetti-Krawczyk security model.

• Compatibility with the widely deployed and standardized SIGMA [21] (i.e., the basis of IKEv2)
and (H)MQV [23, 22] protocols, when parties possess DL public-keys.

We would like to remark that, though our deniable IKE seems to be simple and even intuitive,
its design was thoroughly guided by the profound theory of concurrent non-malleability [13], universal
composability [6], and the theory of secure key-exchange in the post-specified-peer model [21, 18].

The provable security of our protocols relies on the random oracle (RO) assumption and a (very
reasonable and essentially weaker) variant of knowledge-of-exponent assumption (KEA), called “fresh-
challenge KEA with arbitrary auxiliary input”. We note here that the RO and/or KEA assumptions are
common in the stringent situation of deniable key-exchange and authentication [4, 3, 11, 22, 10, 12, 28],
and actually most known KEA-based deniable authentication and key-exchange protocols are not secure
against adversaries with arbitrary auxiliary input. More details can be found in Section 3.

Of independent interest of this work are the clarifications and revision of KEA assumption with arbi-
trary auxiliary input, and clarifications and observations on the independent Stinson-Wu key-exchange
(SW-KE) protocol of [28].
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1.2 Justification and comparison with SIGMA

In comparison with SIGMA protocol (i.e., the basis of IKEv2), our deniable IKE has the following
advantages:

• Our deniable IKE is of very high conceptual simplicity and clarity (which can be seen from the
following discussions and the clarifications presented in Section 3).

• Our deniable IKE provides full concurrent and forward (non-malleable) deniability, while SIGMA
does not (due to the underlying signatures used).

• Our deniable IKE is essentially more practical than SIGMA in practice.

Specifically, in our deniable IKE, the player does not use signatures to show proof-of-possession
of its secret-key; rather, it shows the stronger proof-of-knowledge of its secret-key via an approach
such that the proof-procedure, and the verification-procedure respectively, only needs one modular
exponentiation respectively (we do not know, to our knowledge, so practical secure signature
scheme even in the RO model).

• Our deniable IKE is essentially (maybe controversially) more secure than SIGMA in practice.

– Security beyond the Canetti-Krawczyk model. SIGMA is proved secure in accordance
with the secure KE definition (SK-security) in Canetti-Krawczyk post-specified-peer model.
According to the SK-security, a party that completes a session has the following guarantees:
(1) if the peer to the session is uncorrupted then the session-key is unknown to anyone
except this peer; (2) if the peer completes a matching session then the two parties have the
same shared key. In comparison, the security of our deniable IKE goes one better with the
following provable enhanced guarantee of (2): if a (possibly malicious) player completes a
matching session, then the two parties, not only, have the same shared key, but also and
more importantly, the (possibly malicious) player does “know” the corresponding DH key
exponent (i.e., the shared session-key) and the secret-key corresponding to its alleged public-
key. This provids extra much stronger security guarantee, which helps us provably rule out
most essential security threats not captured by the Canetti-Krawczyk model. SIGMA lacks
formal proofs for some essential security properties not captured by Canetti-Krawczyk model,
at least under standard hardness assumptions.

– Essential security in practice. With our deniable IKE solution, player’s proof-of-knowledge
of its secret-key and the DH-exponent is authentically bounded with session-specific informa-
tion, which is masked by hash function H and then re-masked by MAC (with the output of
H as the key of MAC). Player’s proof-of-knowledge can only be verified by its peer, but not
seen directly by the peer or any other party ; furthermore, correctly verifying player’s proof-
of-knowledge implies that the peer learns nothing from the proof-of-knowledge and can do
no damage to the player’s security. That is, player’s proof-of-knowledge is of both (double-
masked) hiding and authentic (non-malleable) binding. Under CDH assumption and the
underlying key-derivation function KDF is secure, adversarial efforts against our deniable
IKE are essentially confined to attacks on the underlying MAC. When player’s ID is put into
the input of hash function (and/or some public session-specific information is put into the
input of MAC), the adversary still gets no essential advantages even if the underlying MAC
is broken (more details can be found in Section 3). This essentially leaves the adversary only
the play to brute-force retrieve the proof-of-knowledge double-masked by hash function and
MAC. Above discussed properties do not hold for SIGMA. In particular, in SIGMA, player’s
signature is seen and publicly-verifiable by anyone, and the security critically relies on the
security of both signatures and MAC. In this way, in practice, any essential way to violate
the security of our deniable IKE can also be used to violate the security of SIGMA (unless
one can effectively break the KEA assumption).
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The relative disadvantages:

• The provable security of SIGMA in Canetti-Krawczyk post-specified-peer model is based on the
security of the underlying cryptographic components: signatures, MAC and pseudorandom func-
tion (PRF), which can be based on the standard assumptions [8]. Note that the provable security
of our protocol is based on KEA assumption in the random oracle model.

But, one should realize that the theoretical provable security of SIGMA in Canetti-Krawczyk
model has some limitations in practice.

– As discussed above, there are a list of essential security properties of key-exchange that are
not captured by Canetti-Krawczyk model [22, 25], which still need to be analyzed case by
case. SIGMA lacks formal proofs for some of those un-captured essential security properties,
at least under standard assumptions.

– Though SIGMA has theoretical provable security in Canetti-Krawczyk model under standard
assumptions, when SIGMA are used in practice with practical signatures and MAC and
PRFs, in most cases, the security still relies on the random oracle assumption and/or some
non-standard assumption. We remark that RO and/or KEA assumptions are common in the
stringent situation of deniable key-exchange and authentication [4, 3, 11, 22, 10, 12, 28]. In
particular, partial deniability for a variant of SIGMA, with 0 and 1 removed from inputs of
signatures, is proved, assuming key-aware derivation (typically, with the RO assumption of
hash functions and/or some other types of non-standard assumptions).

– The theoretical provable security in Canetti-Krawczyk model is for the basic version of
SIGMA. Though it was discussed on the extension to some variants of SIGMA [8], the
security analysis might not be extended to all variants of SIGMA proposed and used in prac-
tice. We note that the number of proposed variants of SIGMA is much more than that of our
deniable IKE. We essentially propose and recommend only one variant, i.e., putting player’s
ID also into the input of hash function and putting some public session-specific information
also into the input of MAC. This proposed and actually recommended variant is still prov-
ably secure under KEA and RO assumptions, but provides seemingly much stronger security
guarantee in practice (in particular, an adversary seem to get no extra advantages even if it
can break the security of MAC). More details can be found in Section 3.

• Our deniable IKE requires players possessing DL public-keys. On the one hand, this limits the
generality of public-keys used by players, in view that SIGMA can use any secure signature scheme;
On the other hand, our deniable IKE is well compatible with the setting of widely deployed and
standardized (H)MQV (which does require players possessing DL public-keys), and also, practical
secure signature schemes with DL public-keys (in the RO model) are common in practice.

2 Preliminaries

Important note on presentation. Although our deniable IKE protocols and their security properties
can be rigorously formalized and analyzed (that can be found in the full version), we have chosen to
present this work here in a somewhat informal and intuitive way to highlight basic ideas of our approach.

Secure key-exchange in the post-specified-peer model [8]. Let 〈A,B〉 be a key-exchange protocol.
Each activation of the protocol at a party results in a local procedure, called a session. Sessions can
run concurrently and each session is identified by the party’s ID and a (unique) session identifier, e.g.,
the KE session (A, sid) run by A with session identifier sid. The output of the activation of the KE
session (A, sid) is ((A, sid, B), sk), where (A, sid, B) is the public output, and sk is the secret session-key
(sessions can be aborted without producing the secret session-key sk, and in this case a special symbol
is output). A session maintains a local state, e.g., the exponent x of a Diffie-Hellman (DH) component
gx, that is erased when the session completes (i.e., when the party gets the session-key). Each party
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may have additional state, such as a long-term signature key, which is accessed by different sessions
and which is not part of any particular session state. If the session (A, sid) is a completed session with
output ((A, sid, B), sk), then the session (B, sid) run at the side of B is called the matching session of
(A, sid) if either (B, sid) is not completed or (B, sid) is finished with (B, sid, A) as its public output.

The attacker A is a probabilistic polynomial-time (PPT) algorithm that controls the unauthenticated
communication channels and can schedule session activations and message transmissions at will and sees
the outputs of sessions except for the values of session keys. In addition, the attacker can have access to
secret information via session exposure attacks of three types: session-state reveal, session-key queries,
and party corruption. Session-state reveal is directed at an incomplete session and its result is that
the attacker learns the session state, e.g., x of gx, for that particular session. A session-key query can
be performed against a completed session and the result is that the attacker learns the corresponding
session-key. Finally, party corruption means that the attacker learns all information in the memory
of that corrupted party; in addition, from the moment a party is corrupted all its actions are totally
controlled by the attacker. Sessions can expire, and from the time a session has expired the attacker is
not allowed to perform a session-key query or a state-reveal attack against the expired session, but is
still allowed to corrupt the party that holds the session. (Protocols, ensuring that expired sessions are
protected even in case of party corruption, are said to enjoy perfect forward secrecy.)

A KE protocol is secure, called satisfying SK-security, if the following two conditions hold: (1) If
two uncorrupted parties complete matching sessions in a run of the key-exchange protocol, under the
attacker A , the session key output in the matching sessions is the same; (2) For any session, the attacker
cannot distinguish session-key output of the session from an independent random value, provided the
session and its matching sessions are not exposed.

The SK-security guarantees some essential security properties of key-exchange protocols, in the
following sense: a party that completes a session has the guarantee that: (1) if the peer to the session
is uncorrupted then the session-key is unknown to anyone except this peer; (2) if the peer completes
a matching session then the two parties have the same shared key. These properties are guaranteed
even if the attacker has corrupted other parties in the system and/or the attacker has learned the
secret information from other sessions. Furthermore, as shown in [7, 8], the SK-security ensures secure
communication channels via the shared session-keys.

Forward and concurrent deniable key-exchange. A key-exchange protocol 〈A,B〉 is called concurrently
forward deniable for A, if for any PPT malicious A running concurrently with instances of A in any
polynomially many sessions (in any name in each session), there exists a PPT simulator S that, on
public system parameters and public-keys, outputs a simulated transcript that is identical to (or sta-
tistically indistinguishable from) the real view of A in its real concurrent executions (i.e., concurrent
perfect/statistical zero-knowledge). We stress that the real view of A consists of all secret session-key
outputs of all sessions, which means that the deniability of key-exchange implies deniability of subsequent
communications via the shared session-keys. Also, the public-keys used by A in various names/IDs are
not guaranteed to be well-generated (note that the names/identities claimed by A in different sessions
are not necessarily the same), though the association of player’s ID and its public-key is certified by
trusted CA. That is, A may not know corresponding secret-keys of the various public-keys used by it.

The key-exchange protocol 〈A,B〉 is called forward and concurrently deniable, if the concurrent
forward deniability property holds for both A and B simultaneously. That is, for any PPT man-in-
the-middle (MIM) A concurrently interacting with both instances of A and instances of B, its view
can be perfectly simulated. Note that, for simplicity of presentation, w.l.o.g., we assume that the MIM
adversary A interacts concurrently with instances of only two parties with names/IDs: A and B. The
formulation can be trivially extended to the general case of many parties.

Forward and concurrent deniable authentication. A forward and concurrent deniable authentication
protocol 〈P, V 〉 is an interactive protocol between a prover P with public-key PKP and a verifier V (V
is not necessarily of public-key), satisfying the following: (1) It is concurrent perfect zero-knowledge
for P (against possibly malicious V ∗); (2) It is unforgeable against concurrent adaptive chosen-message
attack. That is, a PPT adversary A , who can run concurrently with polynomially many instances of P
on inputs it chooses adaptively, still cannot authenticate to an honest V a new message that P did not
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ever authenticate in the concurrent executions. In a way, forward and concurrent deniable authentication
could be viewed as an interactive public-key signature system with the additional property of concurrent
perfect zero-knowledge.

3 Deniable Internet Key-Exchange: the Main Model

In this section, we present the deniable IKE protocol of the main model, revisit and clarify the subtleties
of KEA assumptions with concurrent adversaries of arbitrary auxiliary input, clarify the essence of ideas
and analyze security properties.

3.1 The protocol construction

The deniable IKE protocol of the main model is depicted in Figure 1. In the protocol specification, A
and B stand for player IDs, x and y are randomly and independently chosen from Zq. For simplicity
of presentation, we do not specify the verification procedure details at each step of the protocol, which
can be understood in a natural way. In particular, the non-one and order q of gx, gy, ga and gb

will be checked (actually, the non-one and order q of players’ public-keys can be checked during key
registration).

Public system parameters: (p, q, g,H), where p and q are large prime numbers such that p = 2q + 1, g
is an element of Z∗p of order q, and H is a hash function.
Player keys: (ga, a) is the public-key and secret-key of A, and (gb, b) is the key pair of B, where a and
b are randomly chosen from Zq. The association of player’s ID and its public-key is certificated by Cert
issued by a trusted CA. We stress that for a malicious player, its public-key can be any element of Z∗p of
order q. That is, no proof-of-possession (of secret-keys) is required for key-registration and certification.

Actual implementation:

A sid, X = gx

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→B

A sid, B, Y = gy, NMZK(B,y) = MACH(sid,gy,gx,gxy)(B)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−B

A sid, (A, CertA), NMZK(a,x) = MACH(sid,gx,gy,Y a,Y x)(A)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→B

A sid, CertB , NMZK(b,y) = MACH(sid,gy,gx,Xb,Xy)(B)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B

Natural language interpretation:

A Hi, I wanna have a session with gx

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→B

A Okey, gy“is sent by B”who knows y←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−B

A Well, I TRULY know (a, x)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→B

A I TRULY know (b, y) as well←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−B

The session-key output is computed by KDF (H(gxy), ·), where KDF is a key-derivation function, e.g.,
PRFH(gxy)(0). In practice, MAC and PRF will be implemented with HMAC of [1].

Figure 1: Deniable IKE (the main model)

3.2 KEA assumption, revisited

The Knowledge-of-Exponent (KEA) assumption. The security analysis of the deniable IKE
(depicted in Figure 1) relies on the KEA assumption in the random oracle model. The KEA assumption
roughly says that: given a challenge C = gc for randomly chosen c ∈ Zq, if a uniform PPT algorithm A
can output valid (X, Y ) of order q each such that Y = Xc, then A must know x = logX

g and x can be
efficiently extracted from the internal states of A (i.e., its codes, random coins and the transcript up to
the point outputting (X, Y )). Note that the KEA assumption is a non-black-box assumption by nature

7



[3]. By “uniform” we mean that A takes no auxiliary input. The KEA assumption was introduced in
[9], and has been used in many subsequent works (e.g., [4, 3, 11, 22, 10, 12], etc). In particular, the
KEA assumption, as well as the random oracle assumption, plays a critical role for provable knowledge-
awareness (PA) of public-key encryption systems, e.g., Cramer-Shoup and OAEP [4, 22, 5], and for
provable deniability of authentication and key-exchange [11, 22, 12].

Subtleties of KEA assumption for protocols running concurrently in the public-key
model. As the KEA assumption is not a standard hardness assumption (thought it seems to be very
reasonable), we should take much care of the employment of the KEA assumption in practice, especially
for IKE. When using KEA in the public-key model for provable security, e.g., for provable plain-text
awareness and deniability [4, 11, 22, 10, 12], the challenge C is actually the player’s public-key. It would
be fine w.r.t. a uniform adversary A without auxiliary input (even with some well-predefined auxiliary
input as is done in [22, 10, 12]). But, when A takes an arbitrary auxiliary input and runs protocols
concurrently in the public-key model (which is just the case of IKE), the KEA assumption can be totally
meaningless. Specifically, in such cases, as the challenge C is player’s public-key, a valid (X, Y ) could be
just got from adversary’s arbitrary auxiliary input (modeling information collected/eavesdropped over
the network from executions of other different protocols prior to any interaction of the protocol at hand)
or from up-to-now transcript of concurrent executions of the protocol at hand. In other words, there
could be practical ways to break the KEA assumption if the challenge C is public-key and A is allowed
with arbitrary auxiliary input and/or concurrent executions in the public-key model, which is however
very natural and practical for cryptographic schemes when they are run concurrently in unpredicted
adversarial settings like the Internet (in particular this is the case for IKE).

We note that the security proofs of PA properties in [4, 10] are critically based on the assumption
that adversaries have no arbitrary (rather than well pre-specified) auxiliary input. In particular, the
plaintext awareness properties of the public-key encryption schemes considered in [4, 10] will not hold
w.r.t adversaries with arbitrary auxiliary input. Furthermore, it implies that the deniability of the
PKE-based message-authenticator of [2] and the SKEME key-exchange protocol of [20], as proven in
[12], will also not hold w.r.t adversaries with arbitrary auxiliary input when the underlying public-key
encryption scheme is implemented by the Cramer-Shoup encryption scheme. (Note that the Cramer-
Shoup encryption scheme is currently the only known PA2-secure public-key encryption scheme based
on KEA but without random oracles [10].) This is the case even for the variants of the PKE-based
message-authenticator and SKEME key-exchange protocols considered in [12], where fresh nonce is sent
on the top to frustrate cooperating judge attack. We note that security proof (for the principal security
of HMQV against revealing ephemeral exponent) in [22], that uses both the KEA assumption and the
random oracle assumption, will also not work when adversaries have arbitrary auxiliary inputs.

Fresh challenge KEA assumption with arbitrary auxiliary input. According to the above
clarifications, when using the KEA assumption for protocols running in the public-key model, we allow
the algorithm A to take arbitrary auxiliary input, but require that the challenge C is fresh in the sense
that each C is answered by A at most once. This implies that C cannot be player’s public-key. Such a
revised KEA assumption is called fresh challenge KEA assumption with arbitrary auxiliary input, which
is necessary and reasonable for protocols running concurrently in the public-key model.

Note that, as clarified, the arbitrary auxiliary input captures any information collected over the
network from executions of arbitrary different protocols prior to any interaction of the protocol at
hand. When using the KEA assumption for provable security of protocols running concurrently in the
public-key model, the protocol should be designed that the transcript of the concurrent execution of
the protocol at hand should also not help A break the KEA assumption, which is left in the security
analysis of the protocol at hand and should be the responsibility and care of the protocol designer.

3.3 Discussion and analysis: security features and properties

Some notable features of our deniable IKE protocol. We first briefly point out some notable
features of our deniable IKE protocol.

• Peer’s ID and public-key concealment: messages from one party do not include its peers’s ID and
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public-key. This perfectly matches the requirement of working in the post-specified-peer model
and the principle of privacy-preserving.

• Concurrent non-malleable (and maybe universal composable) zero-knowledge (CNMZK) authentic
binding: party’s ID (e.g., A), its DH-component (e.g., gx), its proofs of knowledge of its secret-key
(i.e., a or b) and the discrete logarithm (i.e., x or y) of its DH key component (i.e., X or Y ),
and the session-specific information (e.g., (sid, gx, gy)) are authentically bounded in a CNMZK
way, through NMZK(B,y), NMZK(a,x) and NMZK(b,y). NMZK(B,y) denotes that it is a non-
malleable zero-knowledge proof that the second round message is bounded to responder B who
knows y. NMZK(a,x) (resp., NMZK(b,y)) denotes that it is a NMZK proof of knowledge of (a, x)
of initiator A (resp., (b, y) of responder B.) This essentially implies that messages of one session
cannot be malleated into other successful sessions, or messages of one successful session cannot be
malleated from other sessions, other than just simply copying which however is not deemed to be
a harmful activity (more details can be found in the following analysis).

• All authentic messages from B, i.e., NMZK(B,y) and NMZK(b,y), can be computed merely from
the discrete logarithm, i.e., x, of it’s peer’s DH key component X (without knowing (a, b, y)!),
and A does have proved the knowledge of x via NMZK(a,x); The authentic message NMZK(a,x)

can be computed merely from the discrete logarithm, i.e., y, of it’s peer’s DH key component Y
(without knowing (a, b, x)!), , and B does have proved the knowledge of y via NMZK(B,y) and
NMZK(b,y). This is typically fair for the privacy concerns for both A and B.

Security in the post-specified-peer model. We show that, under fresh-challenge KEA as-
sumption with arbitrary auxiliary input and the random oracle assumption of H and computational
Diffie-Hellman (CDH) assumption, the protocol depicted in Figure 1 satisfies SK-security in the post-
specified-peer model of [8], which implies secure communication channels via the shared session-keys
and perfect forward security. The security analysis follows, in a very essential way, the security analysis
of the variant of SIGMA (combining MAC and signatures) presented in [8], which is quite complicated
and lengthy and is deferred to the full version. Below, we provide some high-level hints of the proof.
Our IKE protocol actually could correspond to a variant of SIGMA in which the MAC is combined
into the signature, e.g., combining SIG(sid, gx, gy) and MAC(sid,A) into SIG(MAC(sid, gx, gy, A)).
This variant of SIGMA is still secure in the post-specified-peer model [8]. In view of our protocol, we
note that the first three rounds of our IKE protocol actually amount to a deniable authentication (i.e.,
interactive deniable public-key signature) with A as the signer, and the last three rounds amount to a
deniable authentication with B as the signer (more details are deferred to the full version).

Forward and concurrent (non-malleable) deniability. We show that, under the fresh challenge
KEA assumption with arbitrary auxiliary input and the RO assumption of H and the CDH assumption,
the protocol depicted in Figure 1 is forward and concurrently (non-malleable) deniable. For any PPT
MIM-adversary A concurrently interacting with instances of A and B with possible different IDs/names
and public-keys in different sessions, we briefly hint at the security proof.

From the viewpoint of party A, for the valid second-round message (sid,M, gy, NMZK(M,y) =
MACH(sid,Y =gy ,X=gx,gxy)(M)) of the (A, sid)-session, received from A in the name of M of public-key
gm w.r.t a fresh challenge gx generated and sent by the simulator (in the name of A) at the first-round,
if gy was not generated by A and M 6= B and A did not query the random oracle with (sid, gy, gx, gxy),
there are essentially two possible ways for A to compute out such message:

1. NMZK(M,y) is malleated by A from some second message sent by honest B (who generated gy

and sent NMZK(B,y)), by breaking the security of the underlying MAC. Note that the session-ID
sid is unique to (A, sid) and its matching session (B, sid), and the order of (gy, gx) or (gx, gy)
indicates the role of player (i.e., whether responder B or initiator A).

2. Compute gxy from gx and gy, and guess successfully the answer of the random oracle of H on
(sid, gy, gx, gxy).

9



By the random-oracle of H and the security of the underlying MAC and the CDH assumption,
A must query the random oracle with (sid, gy, gx, gxy), which just contains a valid answer (gy, gxy)
w.r.t. the freshly generated challenge of gx. By the KEA assumption, the simulator (who programs the
random oracle) can extract y, and then finish the (A, sid)-session perfectly. Note that in the third-round
message, the values of (Y a, Y x) in NMZK(a,x) can be computed merely from the extracted value y by
the simulator without knowing (a, x).

Now, from the viewpoint of B, in the session (B, sid), the simulator works as follows: after receiving
the first-round message gx from A , it perfectly computes the second-round message in the name of B by
generating gy. Note that the second-round message, in particular NMZKB,y perfectly hides gxy due to
the random-oracle of H. For the third-round message sent by A in the name of M with public-key gm,
similar to above arguments, A must have queries the random oracle with (sid, gx, gy, Y m, Y x). Then,
by the KEA assumption w.r.t. fresh challenge Y = gy, the value x can be extracted. Note that the
fourth-message can then be perfectly simulated from the extracted value x by the simulator without
knowing (b, y).

On the dual roles of (sid,X, Y )/(sid, Y,X). We remark that including (sid,X = gx, Y = gy)
or (sid, Y,X) into the input of H plays dual roles: On the one hand, the uniqueness of sid provides
freshness to each session in order to prevent replaying attacks; the order of (gx, gy) or (gy, gx) indicates
the role of player (i.e., whether the initiator A or the responder B), which is necessary for resistance
against reflection attack. On the other hand, the inclusion of (sid, gx, gy) or (sid, gy, gx) plays a critical
role in the proof of concurrent deniability (i.e., concurrent zero-knowledge CZK) as well as in the proof
of security in Canetti-Krawczyk model. With the CZK proof as an illustration, as mentioned the KEA
assumption is a non-black-box assumption, and the CZK simulator needs to extract x (resp., y), directly
in a straight-line way, from the internal state (the codes, random coins, and partial transcript up to now)
of A just at the point where it queries the random oracle H with valid (Y, Y x) (resp., (X, Xy)) w.r.t.
a freshly-generated gx (resp., gy). But, if the input to H does not include (sid, gx, gy) or (sid, gy, gx),
the CZK simulator cannot realize whether random-oracle queries made by A include valid Y x (resp.,
Xy) to a fresh challenge gx (resp., gy). Important note: A may query the oracle with gxy after receiving
gx but much earlier before sending the second-round message of that session that contains Y = gy, and
so the CZK-simulator cannot check the validness of gxy before receiving Y . This means that the CZK
simulator has to rewind A whenever it needs to extracts y after receiving the second-round message in
question (including Y ) from A (as the value y may not be extracted from a later state of A ). But, such
rewindings cause exponential blow-up in the simulation time of the CZK-simulator [14]. Furthermore,
even if y could still be extracted from a later state of A (assuming A has faithfully been keeping all its
local states), the CZK-simulator has to be involved with highly inefficient computation/exponentiations
in order to check whether A ever queried with Y x in the history of transcript, which causes highly
inefficiency of the CZK simulation. In a way, (sid,X, Y ) or (sid, Y,X) serves as a pointer to help the
CZK-simulator realize immediately whenever the random-oracle queries made by A includes valid Y x

or Xy.
According to above discussions and clarifications, we have the following theorem:

Theorem 3.1 (informal) Under fresh-challenge KEA assumption with arbitrary auxiliary input and
the random oracle assumption of H and CDH assumption, the IKE protocol depicted in Figure 1 satisfies
SK-security in the post-specified-peer model, and is forward and concurrently deniable.

But, as noted in [22, 25], there are some important security properties of key-exchange that are not
captured by the security model of [2, 8]. We analyze those properties case by case below.

Resistance against cutting-last-message attack. We remark that the cutting-last-message
attack, suffered by IKEv2 and SIGMA, does not work on our IKE protocol (the cutting-last-message
attack on IKEv2 and SIGMA is briefly recalled in Appendix A). Specifically, after receiving the second-
round message (B, Y = gy, NMZK(B,y)) from B, the MIM-adversary A cannot compute and send to
A the message of (M, Y = gy, NMZK(M,y)) in the name of M 6= B, due to the security of MAC and
random oracle assumption of H and CDH assumption. In other words, if A receives a valid second-
round message (M, Y ′ = gy′ , NMZK(M,y′)) from A , it implies Y ′ 6= Y and Y ′ is generated by A who
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knows y′. In this case, the third-round message from A will be w.r.t. Y ′ generated by A (not w.r.t.
Y generated by B), and cannot be forwarded by A to B in order to fool B to believe it will share a
session-key with A, as Y 6= Y ′.

Resistance against key-compromise impersonation (KCI) attack. Informally, security
against KCI attack says that [22]: even if the attacker knows the private-key of a party, e.g., the
private-key a of A, still cannot compromise the session-key established between A and honest B (i.e.,
distinguishing it from independent random value), as long as the attacker is not actively controlling or
observing the secret choices, i.e., x in this case, made by A for that session. The resistance against KCI
attacks of our IKE protocol can be easily checked, from the CDH assumption and the pseudorandomness
of the key-derivation function KDF (H(gxy), ·).

Resistance against reflection attack. In some scenarios, a party may want to establish a secure
channel with itself (i.e., A = B in this case). For example, a mobile user that communicates to its
desktop computer, while both the mobile device and the desktop have the same identity in the form
of the same signature certificate Cert. In a reflection attack, an attacker simply copies (authentic)
messages from A and sends them back to A as the messages coming from the other copy of A. Such
reflection attack fails with our IKE protocol, just by the inclusion of (sid, gx, gy) and (sid, gy, gx) that
indicates the role of initiator and responder even for copies of the same party.

Resistance against unknown key share (UKS) attack. A successful UKS attack is one in
which two parties compute the same session key but have different views of who the peer to the exchange
was (in other words, the attacker successfully managed to make two different sessions, among different
pairs of players, to output the same session-key). The resistance against UKS attack of our IKE protocol
is from its NMZK authentic binding nature: player’s ID (A or B), its DH key component (gx or gy), the
NMZK proofs of knowledge of its secret-key (i.e., a or b) and the discrete logarithm (i.e., x or y) of its DH
key component (i.e., X or Y ), and the specific session information ((sid, gx, gy) or (sid, gy, gx)), in our
IKE protocol, are bounded in a non-malleable authentic way through NMZK(B,y) and NMZK(a,x) and
(NMZK(b,y), in the sense that they adhere to the specific session and cannot be malleated into/from
other sessions. Note that, a successful UKS attack implies that such non-malleable authentic binding
is broken, which in turn implies that at least one of the KEA assumption, the security of MAC, RO
assumption of H and the CDH assumption, will be broken. We remark that the resistance against
UKS attack of our IKE protocol holds even for adversaries who managed to register a public-key that is
identical to that of some honest player but with different name, e.g., an adversary can register (M, ga)
to the CA for certification where ga is actually public-key of A. Note that we do not require player to
prove the knowledge of its secret-key during key registration (which is common in practice). Rather,
each party is required to prove the knowledge of the secret-key to its peer in the NMZK authentic
binding way.

Resistance against leakage of ephemeral DH exponents. That is, the leakage of ephemeral
DH exponent, x or y, should not affect the security of sessions where this exponent is not used. In
particular, the leakage of ephemeral DH exponents, x or y, of one session should not help the attacker
to impersonate A or B in other sessions. This property is from the observation: the NMZK authentic
binding of one session, between two honest parties, holds even if the attacker learns some ephemeral DH
exponents from other sessions. In particular, note that our IKE implies deniable authentication (i.e.,
deniable interactive public-key signatures) both for A and for B, and thus an attacker cannot imper-
sonate A or B without knowing the corresponding long-term secret-key (unless the CDH assumption
or the security of the underlying MAC is broken).

Protocol variants. One recommendable protocol variant is to put one’s own ID (the input of MAC)
additionally into the input of H. This variant is still provably secure in the post-specified-peer model,
but seemingly provides extra stronger security guarantee in practice. Specifically, even the security
of MAC is broken, an adversary is still infeasible to output valid NMZK proofs. For example, given
NMZK(B,y) = MACH(sid,B,gy ,gx,gxy)(B) (in this case), a valid NMZK(M,y) output by an attacker with
M 6= B will have to be MACH(sid,M,gy ,gx,gxy)(M). In other words, with this variant, previous MAC
values sent by B with MAC-key H(sid,B, gy, gx, gxy) provides no extra advantage to an attack in order
to forge a valid MAC value with different name M 6= B, as in this case the attack has to use MAC-key
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H(sid,M, gy, gx, gxy) that is however independent of H(sid,B, gy, gx, gxy). A further simplification of
the above variant is to remove MAC, and only use hash function H to make authentic binding. In
practice, we are against such over-simplified variant, as the security will critically rely on the collision-
resistance and one-way hiding of hash function in practice (which we do not want that). In addition,
some public session-specific information, e.g., (sid,X, Y ) and (sid, Y,X) could also be put into the input
of MAC. When our IKE protocol works in the pre-specified-peer setting and/or players do not much
care about privacy preserving, peer’s ID can also be put into the input of H (and/or the input of MAC).

4 Deniable Internet Key-Exchange: the Aggressive Model

We now present the 3-round variant of our deniable IKE protocol in accordance with the aggressive
model of IKE, which is depicted in Figure 2 (page 12). For presentation simplicity, the public system
parameters, player’s keys and the key-derivation function KDF are omitted here, which remain the
same as in the deniable IKE of the main model (depicted in Figure 1).

A sid, X = gx

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→B

A sid, (B,CertB), Y = gy, NMZK(b,y) = MACH(sid,gy,gx,Xb,Xy)(B)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B

A sid, (A,CertA), NMZK(a,x) = MACH(sid,gx,gy,Y a,Y x)(A)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

B

Figure 2: Deniable IKE (the aggressive model)

Most security properties of the deniable IKE of the plain model are essentially inherited by the above
deniable IKE of the aggressive model, except for the full deniability for player B. Specifically, player B
has only completed-session deniability, in the sense that if A∗ completes the session then B’s deniability
will be guaranteed. But if the (possibly malicious) A∗ just aborts the session after receiving second-
round message, then the deniability for B cannot be proved. Note that player A still has full deniability.
We remark that completed-session deniability for responder is still very useful and reasonable. Consider
the scenario that A is a client and B is a (bank or shop) server: in this case it is the client A who cares
more about its privacy and full deniability does guarantee for it, while the server cares less about the
deniability and a completed-session deniability is still deemed to be good enough for it.

5 Some Observations on the Independent SW-KE Protocol

The Stinson-Wu key-exchange (SW-KE) protocol of [28] is recalled in the left column of Figure 3. (In
the description of [28], B is the initiator and A is the responder, but it does not pose any essential
matter.) The public system parameters and player’s keys (ga for A and gb for B) are identical with our
deniable IKE protocol. We stress that our deniable IKE and authentication protocols are developed
fully independently of [27, 28].

On proof-of-possession. As in our work, [28] also explicitly does not require proof-of-possession
during key registration, which is the common case with PKI in practice. Note that, as proof-of-possession
complicates the already-complicated PKI, in most PKI standards, proof-of-possession is only optional
rather than mandatory or standard. This, in particular, is of this case when we consider identification
schemes within PKI, which is the clearly and repeatedly claimed goal of [27, 28] (already started in title
and abstract). We remark that when we talk about identifications within PKI, it typically assumes no
proof-of-possession during key-registration. Otherwise, in some settings the simplest way to identify
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oneself may be just to send one’s certificate (and we may not need to devise and run any identification
protocols in this case). The formalizations of key-registration in [27, 28] clearly and explicitly do not
require proof-of-possession of secret-keys (which is the common case for identifications within PKI),
and the security analysis (in particular the clearly and repeatedly claimed goal of identification) clearly
implies this assumption.

SW-KE does not work in the post-specified-peer model. Note that the computation of the
first-round message from A needs B’s public-key gb, and the computation of the second-round message
from B needs both A’s public-key ga and B’s public-key gb. We remark that mixing both parties’ IDs in
message computation violates the privacy-preserving principle of IKEv2, i.e., message from one party
should not involve it’s peer’s ID.

On limited deniability and privacy of SW-KE. B has no deniability over Internet (or against
adversary with auxiliary input) even for completed sessions. Specifically, (X, gbx) and/or (X, H(gbx))
could just be collected over network (e.g., from the executions of other different protocols1), or given
by a judge, or eavesdrop from earlier executions of the SW-KE protocol possibly between B and other
parties (rather than A). In this case, B cannot deny the second-round message even for completed
sessions. Similarly, A also has no deniability against adversary with auxiliary input. Specifically,
consider (Y, gay) is collected from network or given by a judge, then A cannot deny the sending of the
third-round message H(gya).

With respect to the fairness concern of peer’s privacy, note that for our deniable IKE, the authentic
information NMZK(a,x) from A can be computed merely from y (without x, a, b), and all the authentic
information from B, NMZK(B,y) and NMZK(b,y), can be merely computed from x (without y, a, b).
In other words, messages from one party cannot be linked to its ID and its DH-component as well as its
peer’s ID. This is thus fair for the concern of privacy for both parties. The SW-KE protocol is clearly
not of this case.

On provable concurrent security. We do not make sure the provable concurrent security of SW-
KE, in view of the subtleties of KEA assumptions with public-keys in the concurrent sessions. As clarified
in Section 3 for the dual role of (sid,X, Y ), for proving concurrent zero-knowledge (CZK), the simulator
needs to extract x from the adversary impersonating A or extract y from the adversary impersonating
B, by employing the KEA assumption. As KEA assumption is a non-black-box assumption, we want
to extract, in straight-line way, the exponent from the local state of the adversary just at the point
that it provides valid KEA answer (e.g., provides (X, gbx) w.r.t. gb). When SW-KE protocols are
executed concurrently, note that the RO queries gbx and gay w.r.t. players public-keys can be made
at any arbitrary stages. Furthermore, the simulator cannot realize whether a valid KEA answer w.r.t
some player’s public-key has been provided by the adversary, as the adversary may make RO queries
much earlier before it reveals X or Y to the simulator (and also there are numerous player’s public-
keys and concurrent sessions). This implies that, for successful and efficient CZK simulation, when the
simulator receives some X or Y it may need to rewind the adversary to much earlier state to extract
the corresponding exponents (otherwise, we may assume the adversary faithfully keeps all its past local
states). But, rewinding causes exponential blow-up in simulation time. Such subtleties could also be
applicable to the analysis of other concurrent security properties of SW-KE, as well as the protocol of
[27]. The inclusion of (sid,X, Y )/(sid, Y,X) can solve such subtleties. We remark that, at least, such
subtleties were not mentioned or realized in [27, 28].

Dangerous UKS attack. Note that, as in the setup for our deniable IKE, the SW-KE protocol
explicitly does not require proof-of-possession during parties’ key-registrations with the CA (which is
also the common case with public-key infrastructure in practice). Now, consider that an attacker A
registers to CA the public-key ga (i.e., the public-key of the honest A) in the name of M . Then, the
message flows of the UKS attack carried by A is depicted in Figure 3.

Effective reflection attacks. There are effective reflection attacks.
1For example, an trusted party/organization identified itself using the protocol of [27].
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A (1). A, X = gx, H(gbx)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→B

A (4). B, Y = gy, H(gay · gbx)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−B

A (5). A, H(gya)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→B

M (2). M, X = gx, H(gbx)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→B

M (3). B, Y = gy, H(gay · gbx)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−B

M (6). M, H(gya)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→B

Result: A believes that he has shared a key gxy with B, but B believes that he has shared the same key gxy with
M . Suppose B is a bank server and A uses the shared key to conduct monetary transactions, then from the view
of the bank, all transactions are in the name of M . This shows that such UKS attack could be very dangerous!

Figure 3: The UKS attack against SW-KE

Concurrent man-in-the-middle attack.
Note that, from an execution of SW-KE between A and itself, an adversary can collect (X =

gx,H(gax)) from the first-round message, and (Y = gy,H(gya)) from the second and the third round
messages. Denote the collected message by (Z = gz,H(gaz)). Then, the adversary A concurrently runs
SW-KE in two sessions with A in the same name of A.

• A initiates the first session with the honest A by playing the role of responder. After receiving
the first-round message, (X = gx,H(gax)), A suspends the first session.

• A initiates the second session with A by playing the role of initiator, and just sends to A the
collected messages (Z = gz,H(gaz)) as the first-round message. After receiving the second-round
message from A, denoted by (Y = gy, h2

2 = H(gay · gaz) = H(ga(y+z)), the adversary suspends the
second session.

• A continues the first session, and computes the second-round message, denoted (Y 1, h1
2), as fol-

lows: Y 1 = Z ·Y ·X−1 = gz ·gy ·g−x = gy+z ·g−x (where Z, Y are the messages of the second session,
and X is in the first-round message of the first session), and h1

2 = h2
2. Note that, from the view of A,

(Y 1, h1
2) is a valid second-round message of the first session, as H((Y 1)a ·(ga)x) = H(ga(y+z)) = h2

2.
After receiving the third-round message from A, A stops.

Consequences: the adversary successfully finishes the first session with A in the same name of A,
BUT without knowing either the DH-exponent or the secret-key of A. Note that the transcript of the
first session is significantly different than that of the second session. Also note that even proof-of-
possession during key-registration does not prevent such reflection attack.

Direct reflection attacks. A runs SW-KE with A in the same name of A, by playing the
role of responder. After receiving the first-round message from A, (X = gx,H(gax)), A sends back
(Y = X−1, h2 = H(1)) as the second-round message. Note that the second-round message is valid from
the view of A, but A knows neither A’s private key nor the DH-exponent.

It appears that explicitly checking h2 6= H(1) can prevent above simple reflection attack. But,
it does not. For example, A forms the second-round message as follows: it selects z ∈ Zq, computes
(Y = X−1 ·gz, h2 = H(gaz)). Note also that proof-of-possession during key-registration does not prevent
such reflection attack.

Explicitly checking non-one of Y for identification of B. It is claimed in [28] that SW-KE
is mutual identification protocol, but it fails. Consider the following simple impersonating attack, in
which an adversary A impersonates B. After receiving the first-round message (X, h1 = H(gbx)) from
A, A sends back (Y = 1, h2 = H((ga)0 · gxb) = H(gbx) = h1). This is a valid second-round message
without checking non-one of Y . This shows that checking non-one of Y is critical for identifying B as
well as for key establishment. We note that this attack was indeed not realized by Stinson and Wu [29],
which is partially due to the separation of proof of DH-exponent and proof of secret-key (which seems
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to be not a sound design principle). In SW-KE, players only abort when Xq 6= 1 or Y q 6= 1. We briefly
note that such attack does not work on our deniable IKE, even without checking non-one of Y !

On key confirmation. It is claimed that SW-KE is of authentical key confirmation (AKC) (in
particular, a player, completing a session, must know the shared key). Suppose player A (possibly
controlled by the adversary) collects some (Z = gz,H(gbz)) over Internet or eavesdrops from executions
of SW-KW between B and another party other than A. Then, A sends (Z, H(gbz)) as the first-round
message, and finishes this session (by using its secret-key in the third-round). Note that A (controlled
by adversary) does not know the shared secret-key.

A general weakness of SW-KE. Note that our deniable IKE guarantees that: if a player success-
fully completes a session with a (possibly malicious) peer, then the possibly malicious peer must know
its DH exponent (i.e., knowing the shared session-key) and the secret-key corresponding to its alleged
public-key. SW-KE loses this important security property in general. Consider the following attack:
the adversary A registers to CA with (M, g2a). That is, A squares player’s A’s public-key ga, and
registers the malleated public-key g2a with the ID M . Then, A runs the SW-KE protocol with player
A, in the name of M and public-key g2a. After receiving X = gx from A in the first round, A computes
the second-round message as follows: it sets Y = g−2x, and sends H(1) to A. Note that, from the view
of A, the second-round message from A is valid, as g−2x·a ·g2ax = 1. BUT, A knows neither the discrete
logarithm of g2a (i.e., the secret-key of its alleged public-key) nor the discrete logarithm (i.e., the DH-
exponent −2x) of its DH-component Y , which means SW-KE loses the authenticated key-confirmation
property claimed in [28]. In general, for some polynomial-time computable functions f(·) and g(·), A
could potentially malleate its alleged public-key as f(ga) and its DH-component Y = g(X), such that it
can successfully provide second-round message without knowing the discrete logarithm of either f(ga)
or g(X). Such general attack works, even if player’s ID and session-specific public information are put
into the input of H.

A note: We would like to stress that the attacks and weakness identified in this section against
SW-KE are mostly stemmed from the independent design experience of our deniable IKE by trying a
rigorous provable security approach (actually, we still have not carefully investigated all (proof) details
in [28]). It appears that SW-KE was ever designed with poor design principles, and more attacks might
be identified in the future with more devoted efforts.

Some fixing suggestions of SW-KE. The above attacks and clarifications demonstrate the sub-
tleties of obtaining correct and secure deniable key-exchange (we stress that our deniable IKE was
developed independently of [27, 28]). One fixing suggestion is to combine H(gbx) into the third-round
as H(gbx, gay), and change H(gay · gxb) of the second-round into H(gay, gxb). In any case, we should
put session-specific information into the input H and explicitly check non-one of Y . Specifically, for
A to put (sid,A, B, gx, gy) and for B to put (sid,B, A, gy, gx). This results in a more efficient and
more secure KE protocol. If one insists using SW-KE, then proof-of-possession of secret-key should be
critically required during key registration, and non-one of Y and X the value of H(1) should also be
explicitly checked. More details are given in the full version.
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Figure 4: The SIGMA protocol (the main model)
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A The SIGMA Protocol and Cutting-Last-Message Attack

SIGMA key-exchange protocol. We briefly recall the SIGMA protocol of [21] (the underlying
basis of IKEv2), which is depicted in Figure 4 (page 17).

The “cutting-last-message” attack works as follows [24]: A man-in-the-middle A interacts with A
in the name of M , while concurrently interacting with B in the name of A. M just relays messages
between A and B, but aborts after receiving the last message from B. Such a simple attack results
in authentication failure as follow: B is perfectly fooled to believe it has shared a session key with
A, while A only thinks it ever took part in an aborted session with M . The above attack can be
simply prevented by adding additional fifth-round of “acknowledgement” from A to B, but increasing
the system complexity.

B Implication and Applications

Deniable message-authenticator. Our deniable IKE implies deniable message-authenticator: to au-
thenticate a message m, A sends {sid,A, X = gx,m} to B in the first-round; in the second-round, B re-
turns back {sid,B, Y = gy,MACH(sid,B,A,Y,X,Xy)(m)}; A sends back {sid,A, MACH(sid,A,B,X,Y,Y a,Y x(m)}
in the third-round.

On-line key-registration with proof-of-knowledge of secret-key. Let A be Certificate Au-
thority with signature public-key PKA and X = gx, and signature secret-key SKA, B wants to register
public-key gb. In the first-round, A selects a random string rA and sends {sid,A, rA} to B; in the
second-round, B returns back {sid,B, gb,MACH(sid,rA,B,A,gb,X,Xb)(B)}; A sends back the certificate
{sid, CERTB = SIGSKA

(rA, B, gb)} in the third-round.
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