
Optimal Irreducible Polynomials for GF(2m)
Arithmetic

Michael Scott

Dublin City University
Ballymun
Dublin
Ireland.

mike@computing.dcu.ie

Abstract. The irreducible polynomials recommended for use by multi-
ple standards documents are in fact far from optimal on many platforms.
Specifically they are suboptimal in terms of performance, for the compu-
tation of field square roots and in the application of the “almost inverse”
field inversion algorithm. In this paper we question the need for the stan-
dardisation of irreducible polynomials in the first place, and derive the
“best” polynomials to use depending on the underlying processor archi-
tecture. Surprisingly it turns out that a trinomial polynomial is in many
cases not necessarily the best choice. Finally we make some specific rec-
ommendations for some particular types of architecture.
Keywords: Irreducible polynomials. Arithmetic in F2m .

1 Introduction

The main application of F2m arithmetic (where m is an odd prime) is in el-
liptic curve cryptography [11], although recently it has also found constructive
application in pairing-based cryptography, specifically in the implementation of
the ηT pairing, which is one of the fastest known [5]. Clearly we would like the
underlying F2m arithmetic to be implemented as efficiently as possible.

Elements in F2m can be represented as a multi-precision string of bits, each bit
representing a coefficient in a polynomial of degree at most (m− 1), a so-called
polynomial basis representation. The field is specified in conjunction with an
irreducible polynomial, and multiplication of field elements is performed modulo
this irreducible polynomial.

Addition of field polynomials is a simple coefficient-by-coefficient XOR oper-
ation. By grouping coefficients into blocks, each block the size of one computer
word of w bits, the addition can be carried out using dm/we word XOR opera-
tions, an operation supported by all computer architectures. This can be thought
of as the same as multiprecision integer addition, without the carries.

Multiplication can be performed using the standard school-boy long multi-
plication algorithm, where in the calculation of each partial product carries are
simply ignored. The carry-free nature of this type of arithmetic can be an advan-
tage (implementing multiplication using Karatsuba’s algorithm for example is



much simpler and faster), and a disadvantage (most architectures do not support
carry-free word multiplications).

Squaring is much faster than multiplication – it can be achieved by simply
inserting a zero between each coefficient. Multiplication or squaring both result
in a polynomial of degree at most 2m− 2, and it is this polynomial which must
be reduced modulo the irreducible polynomial. And it is this reduction process
which is the focus of this paper.

For security reasons the parameter m is chosen as a prime num-
ber. Certain fields are recommended for use in elliptic curve cryptogra-
phy in popular standards. For example Certicom in their “Standards for
Efficient Cryptography” (available from www.secg.org) recommend m ∈
{113, 131, 163, 193, 233, 239, 283, 409, 571}, and it is these fields that we will fo-
cus on here. They also insist on specific irreducible polynomials for each case
(“... must use [these] reduction polynomials ... to encourage interoperability”),
although interestingly they offer a choice of two polynomials for the case of
m = 239, on the grounds that both have been commonly used in practise.

Unfortunately the recommended irreducible polynomials have several disad-
vantages

– Few of them are optimal in terms of the actual implementation of the reduc-
tion algorithm on popular architectures.

– Few are suitable for the calculation of field square roots, which is required
for elliptic curve point halving operations [4], and for the ηT pairing [5].

– Many are unsuitable for use with the almost inverse algorithm for field in-
version [11].

The reason for the standardisation of irreducible polynomials is that the rep-
resention of field elements depends upon it. Therefore it is important for example
in a communications protocol in which field elements are transmitted from one
party to another, that all participants are aware of the irreducible polynomial
in use by the others. However it is a simple matter to include the parameters
that define the irreducible polynomial as part of the domain information which
each participant needs to aware of anyway. In this case the irreducible polyno-
mial might be chosen to facilitate the participant with the lowest computational
power, and hence in most need of an optimal choice of polynomial. Alternatively,
one can change from one polynomial representation to another should that be
necessary as described in [13], section A.7. The change of basis algorithm is a
little awkward, and requires a precomputed m × m bit conversion matrix. It
could represent a significant overhead for a poorly-resourced processor, and so
should only be expected of the more powerful protocol participants.

The fact that standard elliptic curve domain parameters are described in
terms of the standard polynomials presents a barrier to converting them to a
more suitable polynomial, and most implementors just stick with the standard
polynomials for implementation as well as for representation.



2 Irreducible polynomials

For the field F2m it is in practise always possible to chooose as an irreducible
polynomial either a trinomial

xm + xa + 1

or a pentanomial

xm + xa + xb + xc + 1

In both cases the optimal reduction algorithm is linear and fast compared
to the worse-than-linear multiplication algorithm. For efficiency the reduction
algorithm of choice [11] requires that m− a ≥ w.

In [8] it is stated that “performance reasons impose that irreducible poly-
nomials have the shortest number of non-zero terms”, and it appears to be a
commonly held view that trinomials are better than pentanomials. As we shall
see this is not necessarily the case.

The standard polynomials are selected according to the following criteria
(with the exception of one of the m = 239 polynomials). If a trinomial exists,
the trinomial with the smallest value for a is chosen. Otherwise the pentanomial
is chosen with the smallest a, then the smallest b given a, and then the smallest
c given a and b. Given these rules it is relatively easy to find the standard
polynomial for any value of m. They are also most likely to fulfil the condition
that m−a ≥ w. There is also a widespread belief that such polynomials are also in
some sense optimal. For example Ahmadi and Menezes [3] suggest a construction
where the middle terms are “all of relatively low degree and are close to each
other, which in turn facilitates efficient multiplication of polynomials modulo
f(x)”.

However there does not seem to be any basis for this suggestion for software
implementations, although it may have merit in hardware. For example, as we
shall see, the standard polynomial for F2283 is far from being optimal, despite
adhering to these recommendations.

Recently there have emerged applications in which it is important that square
rooting should be fast, specifially point halving algorithms for fast elliptic curve
point multiplication [4], [11], and the ηT pairing [5]. Fast square rooting requires
that a (and b and c for a pentanomial) must all be odd [10]. Such polynomials
are easy to find, but unfortunately most of the standard polynomials are not of
this form [4].

It has been known for some time that the Schroeppel et al. “almost inverse”
algorithm for field inversions is more efficient if a ≥ w for a trinomial, and
c ≥ w for a pentanomial [14] (although in [10] a couple of strategies due to
Knudsen and Schroeppel are described which can to an extent circumvent this
restriction). Many of the standard irreducible polynomials do not satisfy this
condition, although in practise it may be that this algorithm is not the algorithm
of choice [11]. Nonetheless the authors of [14] complain that “Unfortunately, most
of the field polynomials specified in ANSI X9.62 do have terms of low degree. This



increases the timings of the almost inverse algorithm by up to 30%. Therefore,
we conclude that the choice of polynomials in ANSI X9.62 is rather unfortunate,
and may be revised if that is practically feasible.”.

A third, and hitherto largely neglected, issue is that of performance. Although
the reduction algorithm is always fast compared with multiplication, it applies
also to squarings. One of the advantages of using methods based on F2m fields
is that squarings are potentially so fast. But if the reduction algorithm is slow
this advantage will be offset.

3 An Example

For the field F2163 the standard irreducible polynomial is x163 +x7 +x6 +x3 +1.
The reduction algorithm as described by Hankerson et al. in section 2.3.5 of [11]
for a 32-bit processor is illustrated in Algorithm 1.

Algorithm 1 Fast reduction modulo f(x) = x163 + x7 + x6 + x3 + 1
Input: A binary polynomial represented as 10 32-bit words g[.]
Output: g[.] reduced modulo f(x), represented as 6 32-bit words
1: for i ← 10 downto 6 do
2: t ← g[i]
3: g[i] ← 0
4: g[i− 6] ← g[i− 6]⊕ (t ¿ 29)
5: g[i− 5] ← g[i− 5]⊕ (t ¿ 4)⊕ (t ¿ 3)⊕ t⊕ (t À 3)
6: g[i− 4] ← g[i− 4]⊕ (t À 28)⊕ (t À 29)
7: end for
8: t ← g[5] À 3
9: g[0] ← g[0]⊕ t

10: t ← (t ¿ 3)
11: g[1] ← g[1]⊕ (t À 28)⊕ (t À 29)
12: g[0] ← g[0]⊕ t⊕ (t ¿ 4)⊕ (t ¿ 3)
13: g[5] ← g[5]⊕ t

After the loop there is some tidying-up to be done to deal with the most
significant word of the result. Concentrating on the time-critical loop, unrolling
it (and omitting for clarity the rest of the algorithm) we get Algorithm 2.

Note that this requires 30 word shift operations 35 word XORs, which can
be considered as 5 times the 6 shifts and 7 XORs required by each iteration of
the loop.

Now consider a different irreducible polynomial, f(x) = x163 + x99 + x97 +
x3 + 1. The equivalent algorithm is shown in Algorithm 3.

In both cases the number of memory reads and writes are the same. However
it is clear from inspection alone that this last algorithm will be faster. In fact
it requires only 20 word shifts and 30 XORs, or 5 times the 4 shifts and 6
XORs required by each iteration of the loop. To understand the reasons for



Algorithm 2 Loop-unrolled reduction modulo f(x) = x163 + x7 + x6 + x3 + 1
Input: A binary polynomial represented as 10 32-bit words g[.]
Output: g[.] partially reduced modulo f(x), represented as 6 32-bit words
1: g10 ← g[10], g9 ← g[9], g8 ← g[8], g7 ← g[7], g6 ← g[6]
2: g[10] ← g[9] ← g[8] ← g[7] ← g[6] ← 0
3: g6 ← g6 ⊕ (g10 À 28)⊕ (g10 À 29)
4: g[5] ← g[5]⊕ (g10 À 3)⊕ (g10 ¿ 4)⊕ (g10 ¿ 3)⊕ g10 ⊕ (g9 À 28)⊕ (g9 À 29)
5: g[4] ← g[4]⊕(g10 ¿ 29)⊕(g9 À 3)⊕(g9 ¿ 4)⊕(g9 ¿ 3)⊕g9⊕(g8 À 28)⊕(g8 À 29)
6: g[3] ← g[3]⊕(g9 ¿ 29)⊕(g8 À 3)⊕(g8 ¿ 4)⊕(g8 ¿ 3)⊕g8⊕(g7 À 28)⊕(g7 À 29)
7: g[2] ← g[2]⊕(g8 ¿ 29)⊕(g7 À 3)⊕(g7 ¿ 4)⊕(g7 ¿ 3)⊕g7⊕(g6 À 28)⊕(g6 À 29)
8: g[1] ← g[1]⊕ (g7 ¿ 29)⊕ (g6 À 3)⊕ (g6 ¿ 4)⊕ (g6 ¿ 3)⊕ g6

9: g[0] ← g[0]⊕ (g6 ¿ 29)

Algorithm 3 Loop-unrolled reduction modulo f(x) = x163 + x99 + x97 + x3 + 1
Input: A binary polynomial represented as 10 32-bit words g[.]
Output: g[.] partially reduced modulo f(x), represented as 6 32-bit words
1: g10 ← g[10], g9 ← g[9], g8 ← g[8], g7 ← g[7], g6 ← g[6]
2: g[10] ← g[9] ← g[8] ← g[7] ← g[6] ← 0
3: g8 ← g8 ⊕ g10 ⊕ (g10 À 2)
4: g7 ← g7 ⊕ (g10 ¿ 30)⊕ g9 ⊕ (g9 À 2)
5: g6 ← g6 ⊕ (g9 ¿ 30)⊕ g8 ⊕ (g8 À 2)
6: g[5] ← g[5]⊕ (g10 À 3)⊕ g10 ⊕ (g8 ¿ 30)⊕ g7 ⊕ (g7 À 2)
7: g[4] ← g[4]⊕ (g10 ¿ 29)⊕ (g9 À 3)⊕ g9 ⊕ (g7 ¿ 30)⊕ g6 ⊕ (g6 À 2)
8: g[3] ← g[3]⊕ (g9 ¿ 29)⊕ (g8 À 3)⊕ g8 ⊕ (g6 ¿ 30)
9: g[2] ← g[2]⊕ (g8 ¿ 29)⊕ (g7 À 3)⊕ g7

10: g[1] ← g[1]⊕ (g7 ¿ 29)⊕ (g6 À 3)⊕ g6

11: g[0] ← g[0]⊕ (g6 ¿ 29)



the speed up, consider the constants that arise in the shift operations. These
are the numbers m mod w, w− (m mod w), m− a mod w, w− (m− a mod w),
m− b mod w, w− (m− b mod w), m− c mod w and w− (m− c mod w). So for
the standard polynomial these values in pairs are (3, 29), (28, 4), (29, 3), and
(0, 32) respectively. For the fortuitous values of 0 and 32 that arise in this case,
the former implies no shifting, and the latter, a shift by the word length, results
in a zero. This piece of luck results in a saving of 1 XOR and 2 shifts per loop
iteration.

Our selection of irreducible polynomial is based on the idea of “making our
own luck” in the choice of irreducible polynomial. In our case the shift values
are (3, 29), (0, 32), (30, 2), and (0, 32) and this explains the savings achieved.
Given that m is odd our chances of being lucky like this can only improve if we
insist that a, b and c are also all chosen to be odd.

We note that this same idea is also alluded to in recent papers by Ahmadi
et al [1], section 4.2, and by Hankerson and Rodŕıguez-Henŕıquez [12], who also
independently suggested the use of the polynomial x163 + x99 + x97 + x3 + 1.

4 Further analysis

We define a trinomial where m− a ≡ 0 mod w as a lucky trinomial (LT), and a
trinomial for which this condition does not hold as an ordinary trinomial (OT).
We define a pentanomial where m − a ≡ m − b ≡ m − c ≡ 0 mod w as a lucky
pentanomial (LP). A pentanomial for which two out of three of these values is
congruent to zero is called a fortunate pentanomial (FP), the rest are ordinary
pentanomials (OP). In general, as we will see, a lucky trinomial beats a lucky
pentanomial, which beats an ordinary trinomial, which in turn beats a fortunate
pentanomial. Whereas a lucky trinomial is relatively rare, a lucky pentanomial
can often be found, and hence in many cases the pentanomial is superior to a
trinomial.

Is an irreducible lucky pentanomial always possible? The answer is no – a
lucky irreducible pentanomial is not possible for any wordlength w which is a
multiple of 4 if m ≡ ±3 mod 8, as a direct consequence of a recent theorem of
Buhler [6], [2]. Of course all popular computer word-lengths are a multiple of 4
(typically 8, 16, 32 or 64).

However under the same circumstances useful irreducible trinomials do not
exist either [7], and so in these cases we must be satisfied with a fortunate
pentanomial (if we can find one).

When lucky pentanomials do exist for m ≡ ±1 mod 8, we get the added bonus
on a small eight bit processor that the shifts by m mod w and w−m mod w, are
in fact shifts by 1-bit and 7-bits (or visa versa), which are likely to be efficient.

Note that these definitions are word-length dependant. So whereas a lucky
trinomial might exist for one wordlength, it may not be so lucky for a larger
wordlength.



Finally we should point out that there is another way to be lucky. It is
possible that for example m − a ≡ m − b mod w. These means that the same
shifted values can be re-used, with some savings.

5 Some real-world architectures

Of course the significance of all these potential savings depends on the particular
computer architecture. In this paper we consider four representative real-world
examples.

– A 32-bit Pentium or MIPS type of processor, which has fast 1-cycle XOR and
shift instructions. We ignore the fact that these architectures often support
multiple pipelines – we will assume that execution time is simply preportional
to the total number of such instructions (but given the complexity of this
architecture and its many variations, we recognise that this may be a rather
reckless assumption).

– A 32-bit ARM processor. This architecture supports a “barrel shifter”, and
an XOR instruction for example can at no extra cost shift one of its operands
by any number of bits. Therefore shifts are effectively free on this architec-
ture.

– A Texas Instruments ultra-low power msp430 16-bit processor, as used in
wireless sensor networks. This architecture supports a 1 cycle XOR instruc-
tion, but has only a 1-bit shift instruction. Therefore shifts by multiple bits
require multiple instructions. Fortunately the instruction set does allow a
1-cycle byte swap within a register, and simple masking instructions, which
means that for example an 8-bit left shift of a 16-bit register can be accom-
plished in 2 instructions.

– An Atmel Atmega128 low power 8-bit processor, another favourite for ap-
plications in wireless sensor networks. Again a 1-cycle 1-bit shift operation
is supported, along with a 1-cycle nibble swap within a register, as well as
register masking.

To find the optimal irreducible polynomial in any particular circumstance,
we cost each XOR and shift operation appropriately. An XOR always has a cost
of 1. A shift may have a cost of zero (for the ARM), or a larger cost. In the case
of the msp430 processor the costs are given in Table 1.

On this architecture right shifts can be slightly more expensive than left
shifts, as all rotates and right shifts are through the carry flag, and this must
be cleared to obtain a logical right shift as required here. However this only
applies to the first of a sequence of right shifts. Note that if the algorithm needs
a left-shift by 3, and also a left shift of the same value by 4 within a single
iteration, then we assume a compiler will be smart enough to shift once by 3
and follow that by a further shift by 1 bit. A shift left by 15 bits is best achieved
by a rotate right followed by a masking. Similar methods can be deployed for
the Atmel 8-bit processor, and the costs of shifts for this processor are given in
Table 2.



Table 1. Shift cost in clock cycles for msp430 16-bit processor

Shift size Left shift Right shift

1 1 2
2 2 3
3 3 4
4 4 5
5 5 6
6 6 7
7 5 5
8 2 2
9 3 3
10 4 4
11 5 5
12 6 6
13 5 5
14 4 4
15 3 3

Table 2. Shift cost in clock cycles for Atmega128 8-bit processor

Shift size Left shift Right shift

1 1 1
2 2 2
3 3 3
4 2 2
5 3 3
6 4 4
7 3 3



6 Results

For each candidate irreducible trinomial and pentanomial we calculate the as-
sociated costs and we select the cheapest, depending on the cost function that
applies for that architecture. Recall that an irreducible polynomial which is good
for a 16-bit processor may not be so good for a 32-bit processor, for example
(m − a) may be a multiple of 16, but not of 32. In some cases the outcome is
not clear-cut, as it would depend for example on whether or not there would
be an intention to use the “almost inverse” algorithm. In the case of more than
one solution with the same cost, we favour the solution that is friendly for the
“almost inverse” algorithm. We do however insist that all exponents in the ir-
reducible polynomial are odd, given the recently realised significance of field
square roots. In any case, in no instances were optimal polynomials found with
any even exponents.

Some notable outcomes

– In some cases a pentanomial may be cheaper than a trinomial. In fact for
the msp430 architecture a trinomial is never optimal for the fields considered
here. However some algorithms (other than the reduction algorithm) may be
more efficient with a trinomial, so there may still be reasons for preferring a
trinomial if one should exist. For the Atmel 8-bit processor, trinomials make
something of a come-back, as for the first time we find some lucky trinomials.

– The “folklore” requirement that for a pentanomial irreducible polynomial
the middle terms (a, b and c) being close to one another and small leads to
a more efficient algorithm, does not appear to have any validity.

Consider for example the field F2233 . This supports the trinomial x233+x159+
1. However for the Pentium cost model the pentanomial x233+x201+x105+x9+1
is superior. Note that (233-201), (233-105) and (233-9) are all multiples of 32.
Whereas the trinomial requires 4 XORS and 4 shifts per loop iteration, the
pentanomial costs 5 XORS and only 2 shifts. However for the ARM model the
trinomial is still superior as shifts are free. For the msp430 an optimal polynomial
is x233 + x185 + x121 + x105 + 1. In this case we do find a solution which also
accomodates the “almost inverse” algorithm. Note that in no cases are the middle
terms particularly close to one another.

Avanzi [4] suggests choosing the square-root friendly irreducible polynomials
with odd exponents and the least degree sediment, that is with the smallest
size of a. However there seems to be no compelling reason for doing so. For the
m = 163 case the cost as we calculate it is even greater with this choice than
that for the standard polynomial. See Appendix A for a worked example of the
square root algorithm.

7 Redundant Trinomials

In a recent paper Doche [9], building on earlier work by Brent and Zimmerman
[7], has suggested the use of redundant trinomials in place of pentanomials. How-
ever our surprising observation that pentanomials can actually be faster than



Table 3. Optimal irreducible polynomials for Pentium-type 32-bit processor

m Optimal polynomial Cost of this polynomial standard polynomial Type

113 x113 + x15 + 1 8 8 OT
131 x131 + x97 + x65 + x3 + 1 11 13 OP
163 x163 + x99 + x97 + x3 + 1 10 13 FP
193 x193 + x73 + 1 8 8 OT
233 x233 + x201 + x105 + x9 + 1 7 8 LP
239 x239 + x207 + x111 + x47 + 1 7 8 LP
283 x283 + x249 + x219 + x27 + 1 10 16 FP
409 x409 + x377 + x185 + x57 + 1 7 8 LP
571 x571 + x507 + x475 + x417 + 1 10 16 FP

Table 4. Optimal irreducible polynomials for ARM-type 32-bit processor

m Optimal polynomial Cost of this polynomial standard polynomial Type

113 x113 + x15 + 1 4 4 OT
131 x131 + x99 + x97 + x95 + 1 7 7 OP
163 x163 + x99 + x97 + x3 + 1 6 7 FP
193 x193 + x73 + 1 4 4 OT
233 x233 + x159 + 1 4 4 OT
239 x239 + x203 + 1 4 4 OT
283 x283 + x249 + x219 + x27 + 1 6 8 FP
409 x409 + x87 + 1 4 4 OT
571 x571 + x507 + x475 + x417 + 1 6 8 FP

Table 5. Optimal irreducible polynomials for msp430 16-bit processor

m Optimal polynomial Cost of this polynomial standard polynomial Type

113 x113 + x97 + x65 + x33 + 1 10 13 LP
131 x131 + x115 + x81 + x67 + 1 16 22 FP
163 x163 + x131 + x129 + x115 + 1 16 22 FP
193 x193 + x145 + x129 + x113 + 1 10 12 LP
233 x233 + x185 + x121 + x105 + 1 13 16 LP
239 x239 + x207 + x111 + x47 + 1 9 13 LP
283 x283 + x225 + x203 + x107 + 1 17 33 FP
409 x409 + x377 + x185 + x57 + 1 13 19 LP
571 x571 + x507 + x475 + x417 + 1 17 31 FP



Table 6. Optimal irreducible polynomials for Atmega128 8-bit processor

m Optimal polynomial Cost of this polynomial standard polynomial Type

113 x113 + x9 + 1 7 7 LT
131 x131 + x115 + x81 + x67 + 1 13 15 FP
163 x163 + x131 + x129 + x115 + 1 13 17 FP
193 x193 + x73 + 1 7 11 LT
233 x233 + x185 + x121 + x105 + 1 9 12 LP
239 x239 + x207 + x111 + x47 + 1 9 12 LP
283 x283 + x249 + x219 + x27 + 1 13 20 FP
409 x409 + x377 + x185 + x57 + 1 9 11 LP
571 x571 + x507 + x475 + x417 + 1 13 21 FP

trinomials rather undermines the basis of their results. Certainly for applica-
tions in cryptography the premise [7] that pentanomials are “considerably more
expensive in applications” is not supported. Nevertheless there may be cases
where a redundant trinomial (or indeed pentanomial) may be superior to the
irreducible polynomials suggested here. For example, for the trickly m = 163
case the lucky redundant pentanomial x165 +x69 +x37 +x5 +1 is superior in all
cases.

In practice any small improvement possible with redundant polynomials may
be more than offset by the extra complications involved in field element compar-
isons, inversions and by the requirement for possibly one or more extra computer
words to be added to the field representation [9]. Note our extra condition that
m and a be odd further constrains the choice of redundant trinomials, so many
of the solutions presented in [9] are unsuitable.

8 Conclusions

In the light of recent developments the irreducible polynomials as recommended
in some standards are in urgent need of an overhaul. In fact we would argue
that the choice of irreducible polynomial should be left to the implementor, and
that issues that arise from the use of different irreducible polynomials by com-
municating parties should be dealt with in some other way other than through
standardisation.

We have derived polynomials that, when used for modular reduction, are in
all cases at least as fast (and often much faster) than those suggested in the
standards. We have also described a simple methodology for determining the
best polynomial to use in any given circumstance, using a simple and easy to
develop costing model. All of our suggested polynomials support a very fast
field square root operation, and there seems to be no good reason not to use a
square-root friendly polynomial in all cases.

Alternatively, based on the method described here, it might be possible to
come up with good compromise irreducible polynomials, which while not neces-



sarily being optimal in all cases, would nevertheless be an improvement on the
current standards. As can be seen from the tables above, all agree on the optimal
irreducible polynomial for the case m = 571, and there are other examples of
majority agreement for other values of m.

9 Acknowledgments

Thanks are due to Darrel Hankerson and an anonymous referee of an early draft
who pointed out to me the work of Brent and Zimmerman [7] and Doche [9].

References

1. O. Ahmadi, D. Hankerson, and A. Menezes. Software implementation of arithmetic
in GF(3m). CACR Technical Reports, 2007. http://www.cacr.math.uwaterloo.

ca/techreports/2005/cacr2007-15.pdf.
2. O. Ahmadi and A. Menezes. Irreducible polynomials of maximum weight. CACR

Technical Reports, 2005. http://www.cacr.math.uwaterloo.ca/techreports/

2005/cacr2005-01.pdf.
3. O. Ahmadi and A. Menezes. On the number of trace-one elements in polynomial

bases for GF(2m). Designs, Codes and Cryptography, 37:493–507, 2005.
4. R. Avanzi. A note on square roots in binary fields. Cryptology ePrint Archive,

Report 2007/103, 2007. http://eprint.iacr.org/2007/103.
5. P.S.L.M. Barreto, S. Galbraith, C. OhEigeartaigh, and M. Scott. Efficient pairing

computation on supersingular abelian varieties. Designs, Codes and Cryptography,
42:239–271, 2007. http://eprint.iacr.org/2004/375.

6. A. W. Bluher. A Swan-like theorem. Finite Fields Appl., 12:128–138, 2006.
7. R. Brent and P. Zimmerman. Algorithms for finding almost irreducible and al-

most primitive trinomials. Proceedings of a conference in honour of Professor
H.C. Williams, 2003. http://web.comlab.ox.ac.uk/oucl/work/richard.brent/

pd/rpb212.pdf.
8. M. Ciet, J. J. Quisquater, and F. Sica. A short note on irreducible trinomials in

binary fields. Proceedings of the 23rd Symposium on Information Theory in the
Benelux, 2002. citeseer.ist.psu.edu/559928.html.

9. C. Doche. Redundant trinomials for finite fields of characteristic 2. In ACISP
2005, volume 3574 of Lecture Notes in Computer Science, pages 122–133. Springer-
Verlag, 2005.

10. K. Fong, D. Hankerson, J. López, and A. Menezes. Field inversion and point
halving revisited. Technical report CORR 2003-18, University of Waterloo, 2002.

11. D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curves Cryptogra-
phy. Springer, 2004.

12. D. Hankerson and F. Rodŕıguez-Henŕıquez. Parallel formulation of scalar multi-
plication on koblitz curves. CACR Technical Reports, 2007. http://www.cacr.

math.uwaterloo.ca/techreports/2005/cacr2007-18.pdf.
13. IEEE Computer Society, New York, USA. IEEE Standard Specifications for

Public-Key Cryptography – IEEE Std 1363:2000, 2000. http://grouper.ieee.

org/groups/1363.
14. P. De Win, S. Mister, B. Preneel, and M. Wiener. On the performance of signature

schemes based on elliptic curves. In ANTS, 3rd International Symposium, volume
1423 of Lecture Notes in Computer Science, pages 252–266. Springer-Verlag, 1998.



A Calculating square roots

As pointed out by Fong et al. [10] if using an irreducible polynomial with all odd
exponents, for example the trinomial xm + xa + 1, and setting ζ = x(m+1)/2 +
x(a+1)/2, then a field square root can be expressed as

√
α = αeven + ζ.αodd

where αeven are the even indexed bits of α collapsed into a half-sized bit array,
and αodd are the odd indexed bits again collapsed into a half-sized bit array. The
multiplication by the term x(m+1)/2 of ζ is performed by simply abutting αodd

onto αeven as the higher order bits of the final result. The multiplication of αodd

by the other term(s) of ζ must then be finally dealt with, and the amount of
work required for this step depends to an extent on the particular irreducible
polynomial. Note that no reduction of the resulting polynomial is required, as it
will be of degree m− 1.

To extract the odd and even indices of α, small look-up tables can be used.
For example the byte 01111011 needs to be split into evens 1101 and odds
0111, and so 256 element tables can be pre-computed, with evens[123]=13
and odds[123]=7 etc.

In this context being “lucky” as regards an irreducible trinomial, requires
that (m+1)/2 and (a+1)/2 are multiples of the word length. Now consider the
case m = 271, and the lucky pentanomial x271 + x207 + x175 + x111 + 1. Here as
it happens we are doubly lucky as (m + 1)/2, (a + 1)/2, (b + 1)/2 and (c + 1)/2
are all multiples of 16, which is good news for a computer with a word length
of 16 or 8 bits. Below we present the C code for calculating a field square root
on an 8-bit processor, where the input is an array alpha[.] of 34 bytes and the
square root is an array beta[.] also of 34 bytes (and initially cleared to zero).

for (i=0;i<34;i++)
{

n=i/2;
w=alpha[i]; /* get a byte of alpha[.] */

we=evens[w]; /* extract 4 even bits */
wo=odds[w]; /* extract 4 odd bits */
i++;
w=alpha[i]; /* get another byte of alpha */
we|=(evens[w]<<4); /* create 8 bits of evens */
wo|=(odds[w]<<4); /* create 8 bits of odds */

beta[n]^=we; /* store evens */
beta[n+17]=wo; /* abutt odds */
beta[n+13]^=wo; /* multiply by other terms of zeta */
beta[n+11]^=wo;
beta[n+7]^=wo;

}


