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Abstract. In this paper we present a certificateless signature (CLS)
scheme secure in the Random Oracle Model. This scheme requires no
pairing computations for signature generation and only two for signature
verification. As far as we know, this is the only CLS scheme to require
less than four pairing computations on signature verification.
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1 Introduction

Certificateless Public Key Cryptography (CL-PKC) is a novel approach to PKC
proposed in [ARP03] that aims at solving the problem of key escrow, inherent to
ID-Based Public Key Cryptography (ID-PKC) [Sha85]. The main feature of ID-
PKC is the ability to use the user’s identity as his public key, solving, in theory,
the problems involved in managing Public Key Infrastructures (PKI). However,
some sort of secret information must be involved in the computation of private
keys, creating the need for a trusted entity, the Trust Authority (TA), which is
responsible for computing users’ private keys based on their identity. The fact
that the TA has access to users’ private keys, and can thus impersonate them,
is a form of key escrow, and is the main barrier in ID-PKC’s wide adoption.
Certificateless Cryptography tries to change this by introducing a compromise
between the complete absence of public keys and a full-blown PKI. In CL-PKC
each user has a public key created by themselves using some secret random
information. But to sign on behalf of this public key, under a certain identity,
secret information supplied by a Key Generation Center (KGC) must be used
together with the random information used to generate the public key. So, in
principle, no certificates need to be checked because only a user with the correct
ID could have obtained the secret information from the KGC.

Our main contribution in this paper is a certificateless signature (CLS)
scheme that only requires 2 pairing computations on the signature verification
procedure, and none in the singing procedure. It is, as far as our knowledge goes,
the most efficient CLS scheme available.

1.1 Organization

In Section 2 we review a few important concepts and present some useful defini-
tions. In Section 3 we discuss the security of certificateless signatures. In Section
4 we present our signature scheme and in Section 5 we analyze its security.
Finally, in Section 6 we give a quick comparison with other CLS schemes.



2 Preliminaries

2.1 Bilinear maps

Let G1, G2 and GT be groups such that |G1| = |G2| = |GT |. A bilinear map is
a map e : G1 ×G2 → GT that satisfies the following properties:

1. Bilinearity. For all P ∈ G1, Q ∈ G2 and a, b ∈ Z, e(aP, bQ) = e(P,Q)ab;
2. Non-degeneracy. Let Q be a generator of G2 and ψ() an homomorphism

from G2 to G1. Then e(ψ(Q), Q) 6= 1.

Additionally, we want the map e to be efficiently computable. Such a bilinear
map is called admissible. In the particular case where G1 = G2, the map is called
symmetric. Examples of bilinear maps widely used in cryptography are the Weil
pairing (as in [BF01]) and the Tate pairing.

2.2 Security assumptions and hard problems

We base our security reductions on a few important definitions presented below.

Definition 1. Decision Diffie-Hellman Problem (DDHP). Given a mul-
tiplicative group (G, .), and elements α, αa, αb, αc ∈ G, decide wether c = ab.

Definition 2. Computational Diffie-Hellman Problem (CDHP). Given
a multiplicative group (G, .), and elements α, αa, αb ∈ G, compute X = αab.

Definition 3. Generalized Computational Diffie-Hellman Problem (GCDHP).
Given a multiplicative group (G, .), and elements α, αa, αb ∈ G, compute (αabc, αc).

The GCDHP bears a relation to the Generalized Bilinear Diffie-Hellman
Problem used by Al-Riyami & Paterson [ARP03], similar to the one between the
CDHP and the Bilinear Diffie-Hellman Problem [BF01]: it is a strictly weaker
security assumption.

2.3 Certificateless signatures

Definition 4. A Certificateless Signature (CLS) scheme consists of five polynomial-
time algorithms:

– Setup. Run by the KGC to initialize the system. Receives a security pa-
rameter 1k and returns the public and private master keys (mpk,msk).

– Extract Partial Private Key. Takes as input (mpk,msk) and the identity
ID ∈ {0, 1}∗, and outputs the private partial key DID, which is assumed to
be given to the correct user through a secure channel.

– Generate Key Pair. Takes as input mpk and generates the user’s public
key PID and corresponding private key SID.

– CL-Sign. Takes as input mpk, the user’s identity ID, the pair of keys
(DID, SID), and a message M . Outputs a signature σ on M .

– CL-Verify. Takes as input mpk, ID, PID, M and the signature σ, and
outputs ACCEPT if and only if σ is a valid signature by user UID on M under
public key PID.



3 Security of Certificateless Signatures

Since the work of Goldwasser, Micali and Rivest [GMR88] the standard security
notion for a signature scheme is existential unforgeabillity against adaptively
chosen message attacks (EU-CMA). In CLS, EU-CMA security is traditionally
expressed by two similar games: in both cases an attacker A is trying to break
the EU-CMA security of the scheme and runs as follows:

1. The challenger C generates a master key pair (mpk,msk) whose distribution is
indistinguishable from that obtained from running (mpk,msk) = Setup(1k).

2. The attacker A runs on input mpk and (possibly) some extra information
aux. During its execution A has access to some oracles, which are described
subsequently. If A does not abort, it should output a forgery (U∗,M∗, γ∗).

The attacker wins the game if CL-Verify(U∗,M∗,γ∗) = ACCEPT and (U∗,M∗)
has not been queried to the signing oracle. A CLS scheme is secure if it can be
proven that any polynomial-time attacker has negligible chance of breaking the
scheme.

Definition 5. Negligible Function. A function f : N→ R is negligible if, for
each polynomial p, there exists an integer N(p) such that |f(x)| ≤ 1

|p(x)| for all
x ≥ N(p).

Now we have to define the oracles adversaries may have access to.

– RevealPublicKey. The adversary supplies an identity IDi and the chal-
lenger returns the corresponding public key PIDi . If no such key exists, a
new one is generated.

– RevealPartialKey. The adversary supplies an identity IDi and the chal-
lenger returns the corresponding partial private key DIDi . If no such key
exists, a new one is generated.

– RevealSecretValue. The adversary supplies an identity IDi and the chal-
lenger returns the secret value corresponding to its public key. If there is no
public key associated with IDi, one is created. If the public key has been re-
placed and the corresponding secret value is unknown, the challenger returns
⊥.

– ReplacePublicKey. The adversary supplies an identity IDi and a public
key P ∗

IDi
. The challenger sets the public key corresponding to IDi to P ∗

IDi
.

– Sign. The adversary supplies an identity IDi, a message M and optionally
a secret value xIDi ; if xIDi is not supplied, then set xIDi to the current
value of SIDi . The challenger returns a signature of M as generated by
CL-Sign(IDi, xIDi , DIDi ,M). Notice that if an invalid secret value is sup-
plied, an invalid signature will be generated.

If the oracle is required to generate signatures under public keys that were re-
placed by the adversary (as in [ARP03]), it is called a StrongSign oracle. If
this requirement is dropped, then we have a WeakSign oracle.

The security of certificateless signatures is thus expressed by two similar
games, respectively against AI and AII , defined as follows:



Game I: Let CI be the challenger algorithm and k be a security parameter:

1. CI executes Setup(1k) and obtains (mpk,msk);
2. CI runs AI on 1k and mpk. During its run, AI has access to the follow-

ing oracles: RevealPublicKey, RevealPartialKey, RevealSecretValue,

ReplacePublicKey, QueryHash, Sign;
3. AI outputs (ID∗,M∗, σ∗).

AI wins the game if CL-Verify(params,ID∗,PID∗ ,M∗,σ∗)=ACCEPT and both
conditions below hold:

– Sign(ID∗,M∗) was never queried;
– RevealPartialKey(ID∗) was also never queried.

Game II: Let CII be the challenger algorithm and k be a security parameter:

1. CII executes Setup(1k) and obtains (mpk,msk);
2. CII runs AII on 1k and (mpk,msk). During its run, AII has access to the

following oracles: RevealPublicKey, RevealPartialKey, RevealSecretValue,

ReplacePublicKey, QueryHash, Sign;
3. AII outputs (ID∗,M∗, σ∗).

AII wins the game if CL-Verify(params,ID∗,PID∗ ,M∗,σ∗)=ACCEPT and all
conditions below hold:

– Sign(ID∗,M∗) was never queried;
– RevealSecretValue(ID∗) was never queried;
– ReplacePublicKey(ID∗, .) was never queried.

For a longer discussion on CLS security models, we refer the reader to
[HWZD07].

4 A secure and efficient CLS scheme

In this section we present the main contribution of this paper. This scheme is
closely related to the IBS from [YCK04], being an adaptation of the former to
the certificateless setting.

– Setup. Given a GDH group G of order p, with an admissible pairing e and
its generator P , pick s R← Z∗

p (a random element from Z∗
p) and set Ppub = sP .

Choose two hash functions H1 : {0, 1}∗ → G and H2 : {0, 1}∗ × G2 → Z∗
p.

The public information is mpk
def
= (P, Ppub,H1,H2), and the master secret

is msk = s.
– Extract Partial Private Key. Given an identity ID, compute QID =
H1(ID) and DID = sH1(ID). Output DID as the partial private key corre-
sponding to QID = H1(ID).

– Generate Key Pair. Generate a secret x R← Zp. The public key is PID =
xPpub. The user’s private key is SID = x.



– Sign. Given the user’s private keys (DID, x) and a messageM , pick a number
r

R← Z∗
p and output a signature σ = (V,R) where R = rP and V = rQID +

hxDID, where h = H2(M,R,PID).
– Verification. Given a signature σ = (V,R) of a message M for an identity
ID, compute h = H2(M,R,PID). The signature is accepted if and only if

e(P, V ) = e(QID, R+ hPID).

4.1 Correctness

The correctness of our signature scheme can be easily verified as follows:

e(P, V ) = e(P, rQID + hxDID)
= e(P, rQID + hxsQID)
= e((r + hxs)P,QID)
= e(QID, R+ hPID).

5 Security analysis of our scheme

In this section we discuss our scheme’s security under the security model dis-
cussed in Section 3. The main theorem concerning the security of our scheme
is:

Theorem 1. If the CDHP and the GCDHP are hard in G, then our CL-PKS
scheme is secure under the Random Oracle Model.

This result follows directly from Lemmas 1 and 2 below.

Lemma 1. Let A1 be a Type-I adversary that (T1, ε1)-breaks our scheme with
at most qS signature queries and qH2 identity-hash queries. Assume that ε1 ≥
(10(qS + 1)(qS + qH2))/2

k. Then the GCDHP can be solved within running time
T ′

1 ≤ (120686qH2T1)/(ε1(1− 1
2k )), where k is a security parameter.

Proof. We are given an instance (P, aP, bP ) of the GCDHP. We construct the
challenger C1 that will use A1 to solve the GCDHP. On the setup phase, C1 sets
P as the generator of the group, and sets Ppub ← aP . C1 then randomly chooses
the target user identity ID∗, gives (ID∗, params) to A1 and starts to answer
oracle queries with the following procedures:

– ID-Hash Query(IDi). If IDi = ID∗ then let Qi = bP and yi = ⊥. Else, C1
generates a random yi and lets Qi = yiP . In any case, C1 makes Pi = xi = ⊥,
saves the tuple (IDi, Qi, Pi, yi, xi) and returns H1(IDi) = Qi.

– Partial Key Extraction(IDi). Find the tuple (IDi, Qi, Pi, yi, xi). If it does
not exist, or yi = ⊥, then C1 aborts. Otherwise answer with DIDi = yiPpub =
yi(aP ). Note that A1 is not allowed to request the partial key for ID∗.



– Secret Value Extraction(IDi). Find the tuple (IDi, Qi, Pi, yi, xi). If it
does not exist, or yi = ⊥, then C1 aborts. If xi = ⊥, choose a random
xi

R← Zp and save its value. In any case, return xi.
– Public Key Extraction(IDi). Find the tuple (IDi, Qi, Pi, yi, xi). If it does

not exist, or yi = ⊥, then C1 aborts. If xi = ⊥, execute Secret Value
Extraction to generate a private key. Answer with PIDi = xiPpub.

– Public Key Replacement(IDi,P ′
i ). Find the tuple (IDi, Qi, Pi, xi). If it

does not exist, C1 aborts. Otherwise C1 sets xi = ⊥ and Pi = P ′
i .

– Message-Hash Query(Mj,Rj,PIDj
). If H2(Mj , Rj , PIDj

) is not defined,

C1 chooses a random value hj
R← Zp and stores H2(Mj , Rj , PIDj ) = hj . In

any case, H2(Mj , Rj , PIDj ) is returned.
– Sign Query(IDi,Mj). When A1 asks for a signature of user IDi on message
Mj , C1 does the following:
1. Find the tuple (IDi, Qi, PIDi

, yi, xi), aborting if it cannot be found;
2. choose rt, hj

R← Z∗
p;

3. compute Rt = rtP − hjPIDi and Vt = rtQi;
4. if H2(Mj , Rt, PIDi

) is defined, abort; else, set H2(Mj , Rt, PIDi
) = hj ;

5. return the signature σ = (Vt, Rt).

If the challenger C1 does not abort, A1 will output a valid forgery γ1 =
(ID,m, h,R, V ) with probability ε1. The probability of C1 aborting is 1

2k . We
can now use the replay technique from [PS00] to obtain another forgery γ2 =
(ID,m, h′, R′, V ′) such that R = R′, but h 6= h′ within time T ′

1 ≤
120686qH1T1

ε1(1− 1
2k )

.

Now, let Y be computed as follows:

Y =
V − V ′

h− h′
=

(hxDID∗ − h′xDID∗)
h− h′

= xDID∗ = xabP.

So (Y, PID) = (xabP, xP ) is an answer to our GCDHP instance. ut

The proof for Type-2 adversaries is very similar, and is outlined below.

Lemma 2. Let A2 be a Type-2 adversary that (T2, ε2)-breaks our scheme with
at most qS signature queries and qH2 identity-hash queries. Assume that ε2 ≥
(10(qS + 1)(qS + qH2))/2

k. Then, the CDHP can be solved within running time
T ′

2 ≤ (120686qH2T2)/(ε2(1− 1
2k )), where k is a security parameter.

Proof. We are given an instance (P, aP, bP ) of the CDHP. We construct the
challenger C2 that will use A2 to solve the CDHP. On the setup phase, C2 sets
P as the generator of the group, randomly chooses s R← Zp and sets Ppub = sP .
C2 then randomly chooses the target user identity ID∗ and gives (ID∗, params)
to A2 and starts to answer oracle queries with the following procedures:

– ID-Hash Query(IDi). If IDi = ID∗ then make Qi = aP and yi = ⊥.
Else, C2 generates a random yi and makes Qi = yiP . In any case, C2 makes
Pi = xi = ⊥, saves the tuple (IDi, Qi, Pi, yi, xi) and returns H1(IDi) = Qi.



– Partial Key Extraction(IDi). Find the tuple (IDi, Qi, Pi, yi, xi). If it does
not exist, or yi = ⊥, then C2 aborts. Otherwise answer with DIDi = yiPpub =
yi(aP ).

– Secret Value Extraction(IDi). Find the tuple (IDi, Qi, Pi, yi, xi). If it
does not exist, or yi = ⊥, then C2 aborts. If xi = ⊥, choose a random
xi

R← Zp and save it. Return xi.
– Public Key Extraction(IDi). Find the tuple (IDi, Qi, Pi, yi, xi). If it does

not exist, or yi = ⊥, then C2 aborts. If IDi = ID∗, then return PIDi = bP .
If xi = ⊥, execute Private Key Extraction to generate a private key. In
any case, return PIDi = yiPpub.

– Message-Hash Query(Mj,Rj,PIDj). If H2(Mj , Rj , PIDj ) is not defined,

C2 chooses a random value hj
R← Zp and stores H2(Mj , Rj , PIDj ) = hj . In

any case, H2(Mj , Rj , PIDj ) is returned.
– Sign Query(IDi,Mj). When A2 asks for a signature by user IDi on message
Mj , C2 does the following:
1. Find the tuple (IDi, Qi, PIDi

, yi, xi), aborting if it cannot be found;
2. choose random rt, hj

R← Z∗
p;

3. compute Rt = rtP − hjPIDi and Vt = rtQi;
4. ifH2(Mj , Rt, PIDi) is already defined, abort; else, setH2(Mj , Rt, PIDi) =
hj ;

5. return the signature σ = (Vt, Rt).

If the challenger C2 does not abort, A2 will output a valid forgery γ =
(ID,m, h,R, V ) with probability ε2. The probability of C2 aborting is 1

2k . C2
then replays A2 and, by the same replay technique as in Lemma 1, two valid
forgeries, γ and γ′, are obtained within time T ′

2 ≤
120686qH1T2

ε2(1− 1
2k )

.

Now let Y be computed as follows:

Y =
V − V ′

h− h′
=

(hbDID∗ − h′bDID∗)
h− h′

= DID∗ = sabP.

So s−1Y = abP is the answer to our CDHP instance.
ut

5.1 On Malicious KGC Attacks

It has recently come to our attention that our scheme is vulnerable to a new
attack outlined in [ACL+06]. In this attack, the KGC maliciously generates the
system parameters so that it can impersonate users (a specific user or every user
of the system, depending on the severity of the attack). Our scheme is vulnerable
to a weaker version of the attack, in which the KGC can choose only one identity
to attack, as outlined below:

Assume the KGC wants to attack user U∗, whose identity is ID∗. Now it can
compute QID∗ = H1(ID∗), choose k R← Z∗

p, set the main generator P ← k−1QID∗

and proceed with the rest of the setup normally. Now the KGC knows that



kP = QID∗ , so signatures can be forged for any public key without knowledge
of the full private key because

V = rQID∗ + xhDID∗ = rQID∗ + khPID∗

This attack is not covered by the security model presented here and involves
the malicious generation of system parameters by the KGC. Almost every other
CL-PKS scheme available is also vulnerable to some form of this attack (with the
notable exception of the generic scheme from [HWZD06]), but there is a simple
solution to this weak version of the attack: use the binding technique proposed
in [ARP03].

There, the authors propose that the KGC issue partial keys on the identity
appended with the user’s public key (QIDi = H1(IDi||PIDi)), instead of the
identity alone. This solves various security concerns of CL-PKC, but in our
specific attack scenario the KGC has no way of generating the system parameters
maliciously, since it has no way of knowing what the user’s public key will be
beforehand. Thus it cannot mount the attack.

6 Conclusion

In this paper we presented a new certificateless signature (CLS) scheme whose
security was proved under the Random Oracle Model. It is, as far as we know, the
only CLS scheme that requires less than 4 pairing computations on the signature
verification step, making it the most efficient alternative available, as shown in
Table 1.

Scheme Signing Cost Verification Cost

Al-Riyami & Paterson, as in [HSMZ05] 2 5
Li, Chen & Sun [LCS05] 0 4
Zhang et al. [ZWXF06] 0 4

Liu, Au & Susilo [LAS06]1 0 6
Castro & Dahab 0 2

Table 1. The cost columns indicate the number of pairing computations.
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