
A Framework for Game-Based Security Proofs ?

David Nowak

Research Center for Information Security, AIST, Tokyo

June 22, 2007

Abstract. Information security is nowadays an important issue. Its es-
sential ingredient is cryptography. A common way to present security
proofs is to structure them as sequences of games. The main contribu-
tion of this paper is a framework which refines this approach. We make
explicit important theorems used implicitly by cryptographers but never
explicitly stated. Our aim is to have a framework in which proofs are
precise enough to be mechanically checked, and readable enough to be
humanly checked. We illustrate the use of our framework by proving
in a systematic way the so-called semantic security of the encryption
scheme Elgamal and its hashed version. All proofs have been mechani-
cally checked in the proof assistant Coq.
Keywords: cryptography, monad, probability, proof assistant, games

1 Introduction

Information security is nowadays an important issue. Its essential ingredient is
cryptography. To be accepted, a cryptographic scheme must come with a proof
that it satisfies some standard security properties. However, because crypto-
graphic schemes are based on non-trivial mathematics such as number theory,
group theory or probability theory, this makes the proofs error-prone and difficult
to check. Bellare and Rogaway even claim that “many proofs in cryptography
has become essentially unverifiable” [BR04]. In particular, proofs often rely on
assumptions that are not clearly stated. This is why they advocate the usage of
sequences of games (a.k.a. game-playing technique or game-hopping technique).

This methodology is explicitly presented in [BR04] and [Sho04] but has been
used in various styles before in the literature. It is a way to structure proofs so
as to make them less error-prone, more easily verifiable, and, ideally, machine-
checkable. A proof starts with the initial game which comes from the definition
of the security property to be proved. This can be seen as a challenge involving
the attacker and oracles. Attacker and oracles are efficient probabilistic algo-
rithms (usually modeled as probabilistic polynomial-time algorithms). Oracles
model services provided by the environment. For example an oracle might pro-
vide signed messages in order to model the spying of signed messages circulating
on a network. A testing oracle checks whether an attack is successful of not.
? Full version. First public version: May 28, 2007

There are also encryption and decryption oracles. From the initial game, one
builds a sequence of games such that the last one is simple enough to reason
on directly. The result is then backtracked to the initial game. This is possible
because transformations result either in an equivalent game or introduce small
enough and quantified changes.

We propose a formalization of games which is based on [Sho04] where games
are seen as probability distributions. The main contribution of this paper is a
framework which refines this approach. We make explicit important theorems
used implicitly by cryptographers but never explicitly stated. This is in particular
the case of theorems connecting group theory and probability theory. Our aim
is to have a framework in which proofs are precise enough to be mechanically
checked, and readable enough to be humanly checked. We illustrate the use of our
framework by proving in a systematic way the so-called semantic security of the
encryption scheme ElGamal and its hashed version [Elg85]. It is a widely-used
asymmetric key encryption algorithm. It is notably used by GNU Privacy Guard
software, recent versions of PGP and other cryptographic software. Under the
so-called Decisional Diffie-Hellman (DDH) assumption [DH76], it can be proved
semantically secure. Our framework is implemented as a library of theorems for
the proof assistant Coq [Coq07] and its usability is shown by its application to
the proof of semantic security for the ElGamal encryption scheme1.

Outline. We start with related work in Section 2. In Section 3, we introduce our
mathematical framework. In Section 4, we formalize some security notions. In
Section 5, we show how to prove semantic security for the encryption scheme
ElGamal and its hashed version. Implementation issues in Coq are addressed in
Section 6. Finally, we conclude and give our plan for future work in Section 7.

2 Related work

The approach to game-based proofs by Shoup [Sho04] differs from the one by
Bellare and Rogaway [BR04] where games are seen as syntactic objects. An
interest in founding our formalization on this latter approach would be the pos-
sibility for more automation because game transformations would be syntactic.
But each syntactic transformation should then be proved correct with respect
to a precise semantics in terms of probability distributions. However in [BR04]
the semantics is left implicit. They provide arguments for their syntactic trans-
formations, but they cannot be directly formalized in a proof assistant due to
the lack of semantics.

The so-called generic model and random oracle model have been formalized
in Coq for making proofs on signature schemes [BCT04]. In particular, it was
applied in [BT04] to the ElGamal signature scheme (not to be confused with
ElGamal encryption scheme we are dealing with is Section 5). In contrast to
our approach, it is not based on sequences of games which had not yet been
popularized by [Sho04] and [BR04].
1 The source code is available on request.

2

CryptoVerif is a software for automated security proofs with sequences of
games [BP06a]. It is illustrated with a proof of the Full-Domain Hash (FDH)
signature scheme [BR96]. However this proof relies on certain equivalences that
have to be introduced by the user. Those equivalences are proved manually in
Appendix B of [BP06b]. These are difficult parts of the proof that cannot be
handled by CryptoVerif.

The closest work to ours is the probabilistic Hoare-style logic which has been
proposed (but not implemented) in [CdH06] to formalize game-based proofs. In
their and our framework we do not need to define precisely the terms efficient
and negligible. However those terms can be given precise definitions in terms of
polynomials. The logic in [CdH06] allows for rigorous proofs but differs from
game-based proofs by cryptographers. Indeed, because they model games as im-
perative programs, they are led to use a Hoare-style logic. They illustrate their
logic by proving semantic security of the non-hashed version of ElGamal en-
cryption scheme. However, in this example they do not use while loops. It is thus
not clear in which way such imperative language for games and its associated
Hoare-style logic are beneficial. In our approach, logical reasoning is closer to the
one used by cryptographers: we avoid imperative features such as assignments
and while loops, which are at the crux of Hoare logic. It is possible because the
variables used in [Sho04] are mathematical variables in the sense that they are
defined once and only once whereas the value of a variable in an imperative
program can change in the course of execution. By the way, the property that
a variable is defined once and only once is also enforced in CryptoVerif. More-
over, while loops, if used, would have to be restricted because their unrestricted
use might break the hypothesis that the attacker and the oracles are efficient
algorithms. Our games are probability distributions which are easily defined in
our framework. We finally obtain a more natural proof of semantic security of
ElGamal than the one in [CdH06].

3 Mathematical framework

In this section we give the mathematical bases on which rely our framework:
probabilities, cyclic groups and properties relating them.

3.1 Probabilities

Oracles and games are probabilistic algorithms. We model them as functions
returning finite probability distributions. A probabilistic choice is a side effect.
A standard way to model side effects is with a monad. And indeed probability
distributions have a monadic structure [RP02,APM06]. In our case we only need
to consider the simpler case of finite probability distributions.

Definition 3.1 (Finite probability distribution). A finite probability dis-
tribution δ over a set A is a finite multiset of ordered pairs from A×R such that∑

(a,p)∈δ p = 1. We write ∆A for the set of finite probability distributions over
a set A.

3

From now on, we will use the word distribution as an abbreviation for finite
probability distribution.

We define the basic operations which will be used to define games and oracles.

Definition 3.2 (Operations).

[a] =def {(a, 1)} (1)

let x ⇐ δ in ϕ(x) =def

⋃
(a,p)∈δ

p · ϕ(a) (2)

⊕
{a1, . . . , an} =def {(a1,

1
n

), . . . , (an,
1
n

)} (3)

where, in (2), ϕ(x) denotes a distribution parameterized by a value x,
⋃

is the
union of multisets, and:

p · {(a1, p1), . . . , (an, pn)} =def {(a1, p · p1), . . . , (an, p · pn)}

It is easily seen that those three operations above produce well-defined dis-
tributions.

In the rest of this paper, we use the following syntactic sugar:

(i) let x ← a in ϕ(x) for let x ⇐ [a] in ϕ(x), and
(ii) let x

R← A in ϕ(x) for let x ⇐
⊕
A in ϕ(x).

The intuitive meaning of let x ⇐ δ in ϕ(x) is that it selects randomly one
value x from the distribution δ and passes it to the function ϕ. In (i) we choose
ramdomly a value from a distribution with only one value: it is a deterministic
assignment. (ii) is a notation for choosing a uniformly random value from a list
of values.

It might seem surprising that our distributions are multisets instead of sets.
If we were to take sets, our definition of let would be more tricky as it would
involve a phase of normalization. Let us see why on an example. Consider the
distribution defined by

let x
R← {1, 2} in [x ?= x]

where ?= is the function that returns the boolean true if its two arguments are
equal, or false otherwise. The above defined distribution is equal to the multiset
{(true, 1

2), (true, 1
2)}. If distributions were sets, we would have to define let in

such a way that it returns what might be called the normal form {(true, 1)}.
The following theorem states that we have indeed defined a (strong) monad.

Theorem 3.3 (Monad laws).

let x ← a in ϕ(x) = ϕ(a) (4)
let x ⇐ δ in [x] = δ (5)

let y ⇐ (let x⇐ δ in ϕ(x)) in ψ(y) = let x⇐ δ in let y ⇐ ϕ(x) in ψ(y) (6)

4

Equation (4) allows for propagating constants. Equation (6) states associa-
tivity which allows for getting rid of nested let.

Based on our notion of distribution, we can now define the probability that
an element chosen randomly from a distribution satisfies a certain predicate.

Definition 3.4 (Probability). The probability Pr
P (δ)

 that an element
chosen randomly in a distribution δ satisfies a predicate P is given by:

Pr
P (δ)

 =def

∑
(a,p)∈δ s.t. P (a)

p

We write Pr= true

 δ
 for Pr

(λx · x = true) (δ)
 where λx · x = true is

the predicate that holds iff its argument x is equal to the boolean value true.
The following proposition tells us how to compute the probability for a dis-

tribution defined by a let.

Proposition 3.5. For all P , δ and ϕ,

Pr
P (let x ⇐ δ in ϕ(x))

 =
∑

(a,p)∈δ

p ·Pr
P (ϕ(a))


The following corollary shows how to compute the probability of a successful

equality test between a random value and a constant.

Corollary 3.6. For any finite set A, for any a ∈ A,

Pr= true

 let x
R← A in

[x ?= a]

 =
1
|A|

The following corollary allows for rewriting under a let.

Corollary 3.7. For all sets A and B, for any distribution δ ∈ ∆A, for all func-
tions ϕ and ψ from A to ∆B, if ∀a ∈ A · Pr

P (ϕ(a))
 = Pr

P (ψ(a))


then Pr
P (let x ⇐ δ in ϕ(x))

 = Pr
P (let x ⇐ δ in ψ(x))


As another corollary, we obtain a mean to replace a randomly uniform choice

in a goal by a universal quantifier2.

Corollary 3.8. For all P , A, ϕ and p,

(∀x ∈ A · Pr
P (ϕ(x))

 = p) ⇒ Pr
P (let x R← A in ϕ(x)

) = p

2 We assume here a backward reasoning as in the proof assistant Coq where we start
from the goal and go backward to the hypothesis. For example, if our goal is Q and
we have a theorem stating that P ⇒ Q, applying this theorem leaves us with P as
a new goal.

5

The reverse implication is not true. We can see that on a counterexample:
if the reverse implication was true, from Corollary 3.6 we would deduce that
∀x ∈ A · Pr= true

 [x ?= a]
 = 1

|A| . This is not true. Here x is either equal
or not to a: in case of equality the probability is 1; in case of non-equality the
probability is 0. This is particularly interesting as it shows us a fundamental
difference between universal quantification and random choice.

The following proposition allows for moving around independent random
choices in the definitions of games.

Proposition 3.9. For all finite sets A, B and C, for any δ1 ∈ ∆A, for any
δ2 ∈ ∆B, for any ϕ : A×B → ∆C , if δ1 and δ2 are independent, then:

Pr

P
 let x ⇐ δ1 in

let y ⇐ δ2 in
ϕ(x, y)

 = Pr

P
 let y ⇐ δ1 in

let x ⇐ δ2 in
ϕ(x, y)


Additionally we define a necessity modality stating that a certain predicate

is satisfied by all those elements of a distribution that have a probability strictly
greater than 0.

Definition 3.10 (Necessity). �P (δ) states that a predicate P holds necessar-
ily for a distribution δ: �P (δ) ⇔def ∀(a, p) ∈ δ · p > 0 ⇒ P (a)

If P is a predicate on a set A, then �P is a predicate on ∆A. Because distribu-
tions are finite, �P δ is equivalent to Pr

P (δ)
 = 1.

The following proposition, when applied recursively, will remove the necessity
modality from the goal.

Proposition 3.11.

P (a) ⇒ �P ([a]) (7)

∀a ∈ A · P (a) ⇒ �P (
⊕

A) (8)

�(λx ·�P (ϕ(x))) (δ) ⇒ �P (let x ⇐ δ in ϕ(x)) (9)

3.2 Cyclic groups

A group (G, ∗) consists in a set G with an associative operation ∗ satisfying
certain axioms. We write a−1 for the inverse of a. We write ai for a ∗ · · · ∗ a︸ ︷︷ ︸

i times

.

A group (G, ∗) is finite if the set G is finite. In a finite group G, the number
of elements is called the order of G. A group is cyclic if there is an element γ ∈ G
such that for each a ∈ G there is an integer i with a = γi. Such γ is called a
generator of G.

The following permutation properties of cyclic groups will allow us below to
connect probabilities with cyclic groups. Let G be a finite cyclic group.

Proposition 3.12. If the order of G is q, then {γi | 0 ≤ i < q} = G

6

Proposition 3.13. For any b ∈ G, {a ∗ b | a ∈ G} = G

The set of bit strings of length l equipped the the bitwise exclusive disjunction
⊕ forms a commutative group (not cyclic) where the following proposition holds:

Proposition 3.14. For any s′ ∈ {0, 1}l,
{
s⊕ s′ | s ∈ {0, 1}l

}
= {0, 1}l

3.3 Probabilities over cyclic groups

The following theorem and its corollaries make explicit a fundamental relation
between probabilities and cyclic groups. They are important properties used
implicitly by cryptographers but never explicitly stated.

We write Zq for the set of integers {0, . . . , q − 1}.
Theorem 3.15. for all sets A, B and C, for any bijective function f : A→ B,
for any function g : B → C, for any predicate P on C,

Pr

P
(

let x R← A in
[g(f(x))]

) = Pr

P
(

let y R← B in
[g(y)]

)
Corollary 3.16. for any set A, for any function f from G to A, for any pred-
icate P on A,

Pr

P
(

let x
R← Zq in

[f(γx)]

) = Pr

P
(

let m
R← G in

[f(m)]

)
Proof. By Proposition 3.12, γ is bijective. We can thus apply Theorem 3.15.

ut
Corollary 3.17. for any set A, for any function f from G to A, for any pred-
icate P on A, for any m′ ∈ G,

Pr

P
(

let m
R← G in

[f(m ∗m′)]

) = Pr

P
(

let m
R← G in

[f(m)]

)
Proof. By Proposition 3.13, ∗m′ is bijective. We can thus apply Theorem 3.15.

ut
Corollary 3.18. for any set A, for any function f from {0, 1}l to A, for any
predicate P on A, for any s′ ∈ {0, 1}l,

Pr

P
(

let s
R← {0, 1}l in

[f(s⊕ s′)]

) = Pr

P
(

let s
R← {0, 1}l in

[f(s)]

)
Proof. By Proposition 3.14, ⊕m′ is bijective. We can thus apply Theorem 3.15.

ut
In Section 3.3 of [Sho04] the proof of semantic security for the encryption

scheme ElGamal uses implicitly those two corollaries. Shoup writes: “by inde-
pendence, the conditional distribution of δ is the uniform distribution on G, and
hence from this, one sees that the conditional distribution of ζ = δ · mb is the
uniform distribution on G”. The “by independence” part corresponds to our
corollary 3.16, while the “one sees that” part corresponds to our corollary 3.17.

7

4 Formal security

In this section we formalize in our framework some security notions which are
fundamental in cryptography: the Decisional Diffie-Hellman assumption (DDH),
entropy smoothing and semantic security. We also formalize what it means for
an encryption scheme to be correct.

4.1 The Decisional Diffie-Hellman assumption

Let G be a finite cyclic group of order q and γ ∈ G be a generator3.
The DDH assumption [DH76] for G states that, roughtly speaking, no ef-

ficient algorithm can distinguish between triples of the form (γx, γy, γxy) and
(γx, γy, γz) where x, y and z are chosen randomly in the set Zq. More formally,
there exists a negligible upper-bound εDDH such that for any efficient algorithm
ϕ from G×G×G to ∆{false, true}:∣∣∣∣∣∣∣∣∣Pr= true


let x

R← Zq in

let y
R← Zq in

ϕ(γx, γy, γxy)

−Pr= true


let x

R← Zq in

let y
R← Zq in

let z
R← Zq in

ϕ(γx, γy, γz)


∣∣∣∣∣∣∣∣∣ ≤ εDDH

As will be seen in Section 5, security proofs in our framework mainly consist
in game transformations. Thus, as in [CdH06], we do not need to define precisely
the terms efficient and negligible. However they can be given precise definitions
in terms of polynomials.

4.2 Entropy smoothing

A family (Hk)k∈K , where each Hk is a hash function from G to {0, 1}l, is entropy
smoothing iff there exists a negligible upper-bound εES such that for any efficient
algorithm ϕ from K × {0, 1}l to ∆{false, true}:∣∣∣∣∣∣∣Pr= true


let k

R← K in

let m
R← G in

ϕ(k,Hk(m))

−Pr= true


let k

R← K in

let h
R← {0, 1}l in

ϕ(k, h)


∣∣∣∣∣∣∣ ≤ εES

Roughly speaking, it means that no efficient algorithm can distinguish between
(k,Hk(m)) and (k, h) where k, m and h are chosen randomly.

3 We do not assume that q is prime. However most groups in which DDH is believed
to be true have prime order [Bon98].

8

4.3 Semantic security

The notion of semantic security was introduced by Goldwasser and Micali [GM82].
They later showed that it is equivalent to indistinguishability under Chosen
Plaintext Attack (IND-CPA) [GM84]. We use this latter formulation which is
nowadays the most commonly used.

We assume two oracles: a key generation oracle keygen which generates a pair
of public and private keys; and an encryption oracle encrypt which encrypts a
given plaintext with a given public key. Because oracles are probabilistic algo-
rithms, they are modeled as functions returning distributions. The attacker is
modeled as two deterministic efficient algorithms A1 and A2 that take among
other input a random seed r taken for some non-empty set R.

The semantic security game SSG(keygen, encrypt, A1, A2) consists in calling
the oracle keygen, then passing the generated public key and a random seed to
A1 which returns a pair of messages m1 and m2. One of the messages is chosen
randomly and encrypted by the oracle encrypt which returns the corresponding
ciphertext. This ciphertext is passed to A2 which tries to guess which of the two
messages was encrypted. In our framework, it is defined by:

let (kp, ks) ⇐ keygen() in

let r
R← R in let (m1,m2) ← A1(r, kp) in

let b
R← {1, 2} in let c ⇐ encrypt(kp,mb) in

let b̂ ← A2(r, kp, c) in

[b̂ ?= b]

Definition 4.1 (Semantic security). An encryption scheme with key genera-
tion algorithm keygen and encryption algoritm encrypt is semantically secure iff
for all deterministic efficient algorithms A1 and A2,∣∣∣∣Pr= true

SSG(keygen, encrypt, A1, A2)
− 1

2

∣∣∣∣ is negligible.

4.4 Correctness of a cryptographic scheme

In a similar manner we define a correctness game CG(keygen, encrypt, decrypt,m)
by:

let (kp, ks) ⇐ keygen() in
let c ⇐ encrypt(kp,m) in
let m′ ⇐ decrypt(ks, c) in

[m ?= m′].
where decrypt is a decryption oracle which decrypts a given ciphertext with
a given secret key. The purpose of this game is to show that encrypting any
message m ∈ G with a public key, and then decrypting the obtained ciphertext
with the corresponding secret key gives back the same message m. Formally, an
encryption scheme given as a triple (keygen, encrypt, decrypt) is correct iff for any
message m the correctness game necessarily returns true:

∀m · �(λx · x = true) CG(keygen, encrypt, decrypt,m)

9

5 Application to the ElGamal encryption scheme

We illustrate the use of our framework by proving in a systematic way the so-
called semantic security of the encryption scheme ElGamal [Elg85] and its hashed
version.

5.1 The ElGamal encryption scheme

Let G be a finite cyclic group of order q and γ ∈ G be a generator. The ElGamal
encryption scheme consists in the following probabilistic algorithms:

– The key generation algorithm keygen(): let x
R← Zq in [(γx, x)]

– The encryption algorithm encrypt(kp,m): let y
R← Zq in [(γy, kpy ∗m)]

– The decryption algorithm decrypt(ks, c): [π2(c) ∗
(
π1(c)ks

)−1]

Messages and public keys are elements of G; secret keys are elements of Zq;
ciphertexts are elements of G×G.

To prove that ElGamal is a correct encryption scheme (as defined in Sec-
tion 4.4), we apply backward and recursively Proposition 3.11 until we are left
with the following equation in G to prove: m = γxy ∗m ∗ (γyx)−1. It is obvious
from the laws of a group. This backward and recursive application of Proposi-
tion 3.11 is dealt with automatically in our implementation (See Section 6).

Theorem 5.1. The ElGamal encryption scheme is semantically secure.

Proof. In this proof we implicitly apply Corollaries 3.7 and 3.8, and Proposi-
tion 3.9 which respectively allow for rewriting under let and reordering uniform
choices.

Let us fix A1 and A2. We proceed by successive game transformations.

G0. By definition of semantic security and knowing that εDDH is negligible, we
are led to prove that:

∣∣∣∣∣∣∣∣∣∣∣
Pr= true



let (kp, ks) ⇐ keygen() in

let r
R← R in let (m1,m2) ← A1(r, kp) in

let b
R← {1, 2} in let c ⇐ encrypt(kp,mb) in

let b̂ ← A2(r, kp, c) in

[b̂ ?= b]


− 1

2

∣∣∣∣∣∣∣∣∣∣∣
≤ εDDH

10

G1. We unfold definitions of oracles and apply associativity of let.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr= true



let x
R← Zq in

let(kp, ks) ← (γx, x) in

let r
R← R in

let (m0,m1) ← A1(r, kp)
let b

R← {1, 2} in

let y
R← Zq in

let c ← (γy, kpy ∗mb) in

let b̂ ← A2(r, kp, c) in

[b̂ ?= b]



− 1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ εDDH

G2. We propagate definitions of kp, ks, m0, m1, c and b̂ (by Theorem 3.3 (4)).∣∣∣∣∣∣∣∣∣∣∣∣
Pr= true



let x
R← Zq in

let y
R← Zq in

let r
R← R in

let b
R← {1, 2} in

[A2(r, γx, (γy, γxy ∗ πb(A1(r, γx)))) ?= b]


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣
≤ εDDH

G3. According to DDH assumption, we have that:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr= true



let x
R← Zq in

let y
R← Zq in

let r
R← R in

let b
R← {1, 2} in

[A2(r, γx, (γy,
γxy∗
πb(A1(r, γx)))) ?= b]


−Pr= true



let x
R← Zq in

let y
R← Zq in

let z
R← Zq in

let r
R← R in

let b
R← {1, 2} in

[A2(r, γx, (γy,
γz∗
πb(A1(r, γx)))) ?= b]



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ εDDH

We are thus left to prove that:

Pr= true



let x
R← Zq in

let y
R← Zq in

let r
R← R in

let b
R← {1, 2} in

let z
R← Zq in

[A2(r, γx, (γy, γz ∗ πb(A1(r, γx)))) ?= b]


=

1
2

11

G4. We replace the randomly uniform choice of z and the computation γz with
a random choice of an element of G (by Corollary 3.16).

Pr= true



let x
R← Zq in

let y
R← Zq in

let r
R← R in

let b
R← {1, 2} in

let mz
R← G in

[A2(r, γx, (γy,mz ∗ πb(A1(r, γx)))) ?= b]


=

1
2

G5. We apply Corollary 3.17.

Pr= true



let x
R← Zq in

let y
R← Zq in

let r
R← R in

let mz
R← G in

let b
R← {1, 2} in

[A2(r, γx, (γy,mz))
?= b]


=

1
2

This is true by Corollary 3.6. ut

5.2 The hashed ElGamal encryption scheme

In practice, it is more convenient to consider messages which are bit strings (say
of length l) instead of elements of a cyclic group. The hashed version of the
ElGamal encryption scheme allows for this.

We assume that we are given an entropy-smoothing family of hash functions
(Hk)k∈K , each Hk being a function from G to {0, 1}l.

– The key generation algorithm keygen():
let x

R← Zq in let k
R← K in [((γx, k), (x, k))]

– The encryption algorithm encrypt((α, k),m):
let y

R← Zq in [(γy, Hk (αy)⊕m)]
– The decryption algorithm decrypt((x, k), c):

[Hk(π1(c)x)⊕ π2(c)]

Messages are elements of {0, 1}l; public keys are elements of G×K; secret keys
are elements of Zq ×K; ciphertexts are elements of G× {0, 1}l.

To prove that hashed ElGamal is a correct encryption scheme (as defined in
Section 4.4), we apply backward and recursively Proposition 3.11 until we are left
with the following equation which obviously holds:m = Hk(γxy)⊕(Hk(γyx)⊕m).

Theorem 5.2. The hashed ElGamal encryption scheme is semantically secure.

12

Proof. In this proof we implicitly apply Corollaries 3.7 and 3.8, and Proposi-
tion 3.9 which respectively allow for rewriting under let and reordering uniform
choices.

Let us fix A1 and A2. We proceed by successive game transformations.

G0. By definition of semantic security and knowing that εDDH and εES are neg-
ligible, we are led to prove that:

∣∣∣∣∣∣∣∣∣∣∣
Pr= true



let (kp, ks) ⇐ keygen() in

let r
R← R in let (m1,m2) ← A1(r, kp) in

let b
R← {1, 2} in let c ⇐ encrypt(kp,mb) in

let b̂ ← A2(r, kp, c) in

[b̂ ?= b]


− 1

2

∣∣∣∣∣∣∣∣∣∣∣
≤ εDDH+εES

G1. We unfold definitions of oracles and apply associativity of let.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr= true



let x
R← Zq in

let k
R← K in

let(kp, ks) ← ((γx, k), (x, k)) in

let r
R← R in

let (m0,m1) ← A1(r, kp)
let b

R← {1, 2} in

let y
R← Zq in

let c ← (γy, Hπ2(kp)(π1(kp)y)⊕mb) in

let b̂ ← A2(r, kp, c) in

[b̂ ?= b]



− 1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ εDDH + εES

G2. We propagate definitions of kp, ks, m0, m1, c and b̂ (by Theorem 3.3 (4)).

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr= true



let x
R← Zq in

let y
R← Zq in

let k
R← K in

let r
R← R in

let b
R← {1, 2} in

[A2(r, (γx, k), (γy, Hk(γxy)⊕ πb(A1(r, (γx, k))))) ?= b]


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ εDDH+εES

13

G3. According to DDH assumption, we have that:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr= true



let x
R← Zq in

let y
R← Zq in

let k
R← K in

let r
R← R in

let b
R← {1, 2} in

[A2(r, (γx, k), (γy,
Hk(γxy)⊕
πb(A1(r, (γx, k))))) ?= b]


−Pr= true



let x
R← Zq in

let y
R← Zq in

let z
R← Zq in

let k
R← K in

let r
R← R in

let b
R← {1, 2} in

[A2(r, (γx, k), (γy,
Hk(γz)⊕
πb(A1(r, (γx, k))))) ?= b]



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ εDDH

We are thus left to prove that:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr= true



let x
R← Zq in

let y
R← Zq in

let k
R← K in

let r
R← R in

let b
R← {1, 2} in

let z
R← Zq in

[A2(r, (γx, k), (γy, Hk(γz)⊕ πb(A1(r, (γx, k))))) ?= b]


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ εES

G4. We replace the randomly uniform choice of z and the computation γz with
a random choice of an element of G (by Corollary 3.16).

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr= true



let k
R← K in

let mz
R← G in

let x
R← Zq in

let y
R← Zq in

let r
R← R in

let b
R← {1, 2} in

[A2(r, (γx, k), (γy, Hk(mz)⊕ πb(A1(r, (γx, k))))) ?= b]


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ εES

14

G5. According to the entropy-smoothing assumption, we have that:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr= true



let k
R← K in

let mz
R← G in

let x
R← Zq in

let y
R← Zq in

let r
R← R in

let b
R← {1, 2} in

[A2(r, (γx, k), (γy,
Hk(mz)⊕
πb(A1(r, (γx, k))))) ?= b]



−Pr= true



let k
R← K in

let h
R← {0, 1}l in

let x
R← Zq in

let y
R← Zq in

let r
R← R in

let b
R← {1, 2} in

[A2(r, (γx, k), (γy,
h⊕
πb(A1(r, (γx, k))))) ?= b]



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ εES

We are thus left to prove that:

Pr= true



let k
R← K in

let x
R← Zq in

let y
R← Zq in

let r
R← R in

let b
R← {1, 2} in

let h
R← {0, 1}l in

[A2(r, (γx, k), γy, h⊕ πb(A1(r, (γx, k))) ?= b]


=

1
2

G6. We apply Corollary 3.18.

Pr= true



let k
R← K in

let x
R← Zq in

let y
R← Zq in

let r
R← R in

let h
R← {0, 1}l in

let b
R← {1, 2} in

[A2(r, (γx, k), γy, h) ?= b]


=

1
2

This is true by Corollary 3.6. ut

6 Implementation in the proof assistant Coq

The proof assistant Coq. Coq is goal-directed proof assistant. This means that if
we are trying to prove that a formula Q (the goal) is true, and we have a theorem
stating that P1 & P2 implies Q, then we can apply this theorem. Coq will replace
the goal Q by two subgoals P1 and P2. We proceed this way until we finally
reach goals that are either axioms or are true by definition. On the way, Coq

15

builds a so-called proof term. The critical part of Coq is its kernel which takes
a proof term as an input and checks whether it is correct or not. On top of that
there is a script language which allows users to state theorems and build their
proofs interactively. This script language includes predefined tactics to prove
automatically some mathematical statements such as tautologies, Presburger
arithmetic statements, linear inequation over real numbers. . . Users can also
define their own tactics.

Our framework in Coq. Our current implementation consists in the following
files:

CoqLib.v addendum to the Coq standard library
Distrib.v distributions, probabilities and necessity
DistribLib.v representation-independent properties of distributions
Group.v basic group theory, cyclic groups
GroupProba.v probabilities over cyclic groups
BitString.v bit strings
Games.v correctness and security game
DDH.v the DDH assumption
EntropySmoothing.v entropy smoothing
ElGamal.v correctness and semantic security for ElGamal
HashedElGamal.v correctness and semantic security for hashed ElGamal

The whole implementation consists of 2500 lines of source code where about 20%
is specific to ElGamal. This shows that our framework, while allowing for fully
detailed and readable security proofs, is scalable. Therefore, we believe that it
can be further extended and applied to much more involved security proofs.

Because the language we use for games is functional, we can write games as
Coq functions and reason on them using the full logic of Coq: this is a so-called
shallow embedding. Probabilistic choices occurring in games are modeled with
a monad. A similar encoding of randomized algorithms was given in [APM06].
However our encoding is much simpler due to the fact that it is enough for our
purpose to consider distributions which are finite.

In order to be able to compute a probability, we need to decide whether a
predicate is true or not for each value of a distribution. We thus restrict ourselves
to decidable predicates, i.e. predicates that can be encoded as a computable
functions into booleans.

We use Coq notations which allow for games and formulas to be written in
a syntax close to the one used in this paper. For example, the game G0 in the
proof of Theorem 5.1 appears in Coq as:

Rabs
(probability
(fun b : bool => b=true) (fun b : bool => bool_dec b true)
(

16

mlet k := keygen in
mlet r := uniform seed in mlet mm := [A1 r (fst k)] in
mlet b := [|true, false|] in
mlet c := encrypt (fst k) (if b then fst mm else snd mm) in
[eqb (A2 r (fst k) (fst c) (snd c)) b]
)
- 1 / 2) <= epsilon_DDH

When proving correctness of an encryption scheme, the backward and recur-
sive application of Proposition 3.11 is dealt with automatically by the following
tactic defined in the file DistribLib.v:

Ltac necessarily :=
repeat (
match goal with
| |- Necessarily _ _ (unit _) => apply nec_unit
| |- Necessarily _ _ (bind _ _) => apply nec_bind; intros
| |- Necessarily _ _ (uniform _) => apply nec_uniform
end;
intros

).

It parses the current game and, depending on the root of the syntax tree, applies
the corresponding equation of Proposition 3.11.

Difficulties. A trouble with Coq and similar proof assistants based on intensional
type theory is the way they deal with equality. Equality is important because
it allows for replacing a subterm by an equal one. The equality in Coq is in-
tensional: roughly speaking, two expressions are equal iff they have the same
definition (modulo β-equivalence). But in mathematics we commonly use exten-
sional equality for functions: roughly speaking, two functions f and g are equal
iff for any x, f(x) = g(x). Fortunately, it is safe to assume an axiom stating
that the extensional equality for functions implies the intensional one. This ax-
iom is consistent because, whenever two functions are extensionally equal, it is
not provable in Coq that those two functions are not intensionally equal. This
axiom can be seen in many Coq developments and is one of the recurring ques-
tions on the Coq mailing-list. It is important for our formalization because we
deal with functions: for example, let x ⇐ δ in ϕ(x) is encoded in Coq by
bind δ (λx · ϕ(x)).

Because the sets and multisets we deal with are finite, we can simply encode
them as lists. Equality of sets (or multisets) is then defined appropriately. As in
the case of extensional equality for functions, because equality of sets is not the
intensional equality of Coq, we cannot replace at will a set (or a multiset) with
an equal one. And the trick used for functions consisting in adding an axiom
permitting this cannot be used as, in this case, it would lead to inconsistency!
It might be profitable to use the Coq mechanism for setoids which allows for
dealing with such user-defined equalities in a transparent way. However one can

17

only do replacements in contexts which are syntactic compositions of morphisms
that have been proved compatible with the user-defined equality. Another way
would be to enforce a normal form by using a dependent type so that user-defined
equality for terms is exactly Coq’s equality for terms in normal form.

Also, with Coq it is not possible to replace a term by an equal one under a
function binder. Thus, in order to rewrite inside a let, we need to go through
Corollaries 3.7 and 3.8.

Another limitation of Coq is that, When a goal contains a subterm of the
form let x ⇐ δ in ϕ(x), the tactic language of Coq cannot parse properly
the ϕ(x). This is due to the fact that unification in the tactic language of Coq
is limited to non-linear first order unification and therefore cannot parse under
lambdas.

7 Conclusions and future work

We have proposed a framework for formalizing game-based proofs of crypto-
graphic schemes. It allows for security proofs which are precise enough to be
mechanically checked, and readable enough to be humanly checked. We have im-
plemented it as a library of theorems and tactics for the proof assistant Coq. We
have illustrated its use by proving semantic security for the encryption scheme
ElGamal and its hashed version. Our proofs are close to the ones given by Shoup
[Sho04] but more precise. The main advantages of using a proof assistant are that
reasoning errors are not possible and that all the assumptions must be stated.
On the other hand all tedious details of the proof must be dealt with: you cannot
simply claim that something is obvious. This is why we need to develop libraries
which deal once and for all with those details.

As future work, we plan to formalize more security notions in our framework.
Another extension is obviously to extend the mathematical framework with more
on groups in order to be able to deal with more advanced cryptographic schemes
such as the Weil pairing used in elliptic curve cryptography and identity based
encryption. It is also easy to extend our framework with a syntax for games,
and with an associated semantics in terms of distributions. In order to increase
automation and have simpler security proofs, one possible direction is to make
such an extension and prove that some syntactic transformations are correct.
A syntax would help to overcome the impossibility we have currently to parse
under let in the tactic language, and would then allow us to write more powerful
tactics by reflection which would for example take care automatically of rewriting
under let, or reordering uniform choices.

Acknowledgements. We would like to thank Reynald Affeldt for having directed
us to this research area in the first place, and for helpful discussions. We are
also grateful to Nicolas Marti, Kirill Morozov, Miki Tanaka and Rui Zhang for
fruitful discussions.

18

References

[APM06] Philippe Audebaud and Christine Paulin-Mohring. Proofs of randomized al-
gorithms in Coq. In MPC, volume 4014 of Lecture Notes in Computer Science,
pages 49–68. Springer, 2006.

[BCT04] Gilles Barthe, Jan Cederquist, and Sabrina Tarento. A machine-checked
formalization of the generic model and the random oracle model. In IJCAR,
volume 3097 of Lecture Notes in Computer Science, pages 385–399. Springer,
2004.

[Bon98] Dan Boneh. The Decision Diffie-Hellman problem. In ANTS, volume 1423 of
Lecture Notes in Computer Science, pages 48–63. Springer, 1998.

[BP06a] Bruno Blanchet and David Pointcheval. Automated security proofs with se-
quences of games. In CRYPTO, volume 4117 of Lecture Notes in Computer
Science, pages 537–554. Springer, 2006.

[BP06b] Bruno Blanchet and David Pointcheval. Automated security proofs with
sequences of games. Cryptology ePrint Archive, Report 2006/069, 2006.
http://eprint.iacr.org/.

[BR96] Mihir Bellare and Phillip Rogaway. The exact security of digital signatures -
how to sign with RSA and Rabin. In EUROCRYPT, pages 399–416, 1996.

[BR04] Mihir Bellare and Phillip Rogaway. Code-based game-playing proofs and the
security of triple encryption. Cryptology ePrint Archive, Report 2004/331,
2004. http://eprint.iacr.org/.

[BT04] Gilles Barthe and Sabrina Tarento. A machine-checked formalization of the
random oracle model. In TYPES, volume 3839 of Lecture Notes in Computer
Science, pages 33–49. Springer, 2004.

[CdH06] Ricardo Corin and Jerry den Hartog. A probabilistic Hoare-style logic for
game-based cryptographic proofs. In ICALP, volume 4052 of Lecture Notes in
Computer Science, pages 252–263. Springer, 2006.

[Coq07] Coq Development Team. The Coq Proof Assistant Reference Manual – Version
8.1, 2007. http://coq.inria.fr/.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, IT-22(6):644–654, 1976.

[Elg85] Taher Elgamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–
472, 1985.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play
mental poker keeping secret all partial information. In STOC, pages 365–377.
ACM, 1982.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst.
Sci., 28(2):270–299, 1984.

[RP02] Norman Ramsey and Avi Pfeffer. Stochastic lambda calculus and monads of
probability distributions. In POPL, pages 154–165, 2002.

[Sho04] Victor Shoup. Sequences of games: a tool for taming complexity in security
proofs. Cryptology ePrint Archive, Report 2004/332, 2004. http://eprint.

iacr.org/.

19

