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Abstract. In 2004, Wang et al. obtained breakthrough collision attacks on the main
hash functions from the MD4 family. The attacks are differential attacks in which one
closely follows the inner steps of the underlying compression function, based on a so-called
differential path. 1t is generally assumed that such differential paths were found “by hand”.
In this paper, we present an algorithm which automatically finds suitable differential paths,
in the case of MD4. As a first application, we obtain new differential paths for MD4, which
improve upon previously known MD4 differential paths. This algorithm could be used to
find new differential paths, and to build new attacks against MD4.
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1 Introduction

Hash functions are fundamental primitives used in many cryptographic schemes and
protocols. In a breakthrough work, Wang et al. recently discovered devastating collision
attacks [T92T2220] on the main hash functions from the MD4 family, e.g. MD4 [19],
RIPE-MD [19], MD5 [21], SHA-0 [22] and SHA-1 [20]. Such attacks can find collisions in
much less time than the birthday paradox. Despite the efficiency of these new attacks,
their impact on the security of existing hash-based cryptographic schemes is unclear, for
at least two reasons: the applications of hash functions rely on various security properties
which may be much weaker than collision resistance (such as pseudorandomness); Wang
et al.’s attacks are still not completely understood.

In the past few years, much work [SIT8JTIOIT3] has been devoted to better understand
the new attacks [BITI2T2220]. Roughly speaking, attacks a la Wang first select a specific
message difference A such that carefully selected message pairs of the form (M, M + A)
will collide for the hash function. To do this, one specifies a differential path: during
the computation of the hash function on respectively M and M + A, the internal state
of the hash function varies at each step of the compression function, depending on the
particular value of M; the differential path specifies a particular variation that guarantees
(M, M+ A) to be a hash collision. Next, one computes a set of sufficient conditions on the
internal state (and sometimes on the message) such that if the message M satisfies all the
conditions, then the pair (M, M+ A) is guaranteed to follow the differential path, and will
therefore give a collision. Finally, using message modifications, one shows how to satisfy
many conditions deterministically, and therefore efficiently find messages M satisfying all
the sufficient conditions. The final stages where one computes a set of sufficient conditions
and finds suitable message modifications are arguably well-understood now. However, the
search for a suitable differential path remains mysterious.



Our Results. This paper focuses on differential paths for the MD4 hash function. We
present a new way to search for differential paths, based on a novel internal representation
of the path, and we hope that this will give a better understanding of the notion of
differential path.

The search algorithm has some applications. It allows to improve previous attacks:
namely, we have found better paths for MD4 collisions based on [TYT6] and for second-
preimage attacks on MD4 on weak messages [23]. More precisely, the new collision paths
lead to fewer (or equal) conditions in each of the three rounds of the compression func-
tion; and the new second-preimage path decreases the total number of conditions, which
therefore increases the success probability.

The search algorithm also allows us to test new message differences, or to search for
differential path with some other specific property. We believe this is an interesting tool,
and this could led to new kind of attacks against MD4. For instance, Sasaki et al. have
shown in the rump session of FSE 2007 how to improve an attack against APOP using
a new differential path [I4]. Since MD4 is believed to be quite weak, it is expected that
more powerful attacks than mere collisions are possible, and our algorithm could be used
to find differential paths adapted to specific attacks. This is a work in progress: we are
trying to find new applications and new differential paths using our algorithm.

Related Work. Wang et al. presented two differential paths for MD4: the first one [19]
was designed to find collisions efficiently, while the second one [23] was better suited to

find second preimages of weak messages. It is usually assumed that such paths have been
found “by hand”.

At FSE 06, Schléffer and Oswald [I6] presented an algorithm to automatically find
differential paths in MD4, and interestingly found a new path, which is better suited
for collision search than the first path [T9]. However, the search algorithm was not fully
automatic.

At ASTACRYPT ’06, De Canniére and Rechberger [2] proposed a method to find
differential paths in SHA-1, and gave a two-block collision for 64-step SHA-1 based on
a new characteristic. They use a generalized notion of the differential path, and provide
a way to estimate the work-factor to find a collision, using a slightly modified message-
finding algorithm.

At FSE ’07, Sasaki et al. proposed a new message difference that allows a more efficient
collision attack on MD4 [I5]. He gave a differential path with this message difference and
some insight on how he improved the algorithm from Schliffer and Oswald to find this
path.

Road Map. This paper is divided in three sections: we will first give some general
background and notations about MD4, and Wang’s attack, then we will present our
algorithm, and in the last section we will show some applications of this algorithm.



2 Background and notation

Unfortunately, there does not seem to be any standard notation in the hash function
literature. Here, we will use a notation similar to that of Daum [6].

2.1 MD4

MD4 follows the Merkle-Damgard construction. Its compression function is designed to
be very efficient using 32-bit words and operations implemented in hardware in most
processors:

— rotation <<
— addition mod 232 B;
— bitwise Boolean operations @;, among:

o IF(z,y,2) =(zxAy)V(-zAz) if 0<i<16
o MAJ(z,y,2) = (zAy)V(xAz)V(yAz) if 16 <7 < 32
e XOR(z,y,2) =2 dy® = if 32 <i < 48

The compression function uses an internal state of four words, and updates them one
by one in 48 steps. Here, we will assign a name to every different value of these registers,
so the description is different from the standard one: the value changed on step i is called
Q;. Then the MD4 compression function is given by:

Step update: Q; = (Qi—4 B Pi(Qi—1,Qi—2,Qi—3) Bm; BE;) K s;
Input: Q_4||Q-1[|Q—2||Q—3
Output: Q_4 B Qua||Q—1 B Qur||Q—2 B Qu6]|Q—3 B Qus

The security of the compression function was based on the fact that such operations
are not “compatible” and mix the properties of the input.

2.2 Wang’s Attack against MD4

Wang et al. published a very efficient collision attack for MD4 at EUROCRYPT 05 [T9).
This attack is a differential one, and is divided in two main parts:

1. A precomputation phase:
— choose a message difference A
— find a differential path
— compute a set of sufficient conditions
2. Search for a message M satisfying all the conditions; then MD4(M) = MD4(M + A).

The differential path specifies how the computations of MD4(M) and MD4(M + A)
are related: it tells how the differences introduced in the message will evolve in the internal
state ;. If we choose A with a low Hamming weight, and some extra properties, we can
find some differences in the @); that are very likely. Then we look at each step of the
compression function, and we can express a set of sufficient conditions that will make



the @Q;’s follow the path. These conditions are on the bits of (J;, so we can not directly
find a message satisfying them (and the probability that a random message fulfills them
is too low).

Wang introduced three important ideas to make such an attack possible:

— The path is specified with a signed difference on the bits, which contains both the
modular difference and the XOR-difference.

— Once a path is chosen, it is possible to compute a set of conditions on the internal
states (); which are sufficient for a message M to collide with M + A.

— Some of these conditions can be fulfilled deterministically through message modifica-
tions, and the rest will be statistical by trial and error; then the number of messages
we need to try is low enough for a practical attack.

This first part of Wang’s attack is not very well understood, and there are very few
papers about it [I3T6L2]. It is believed that Wang’s paths were found by hand, and all
the work on the second part of the attack just uses Wang’s path (eg. [ITJI/IR9]). In
this paper we study this first part in the case of MD4, and we give an algorithm to find
differential paths.

2.3 Notation

In this paper we use d(x,y) = y Bz to denote the modular difference and 9(z,y) =
<y[31} — B B0l _ 2301 [ (1] [0 x[0]> to denote Wang’s difference. We will use
A and V to represent +1 and —1, and we will give a compact representation by omitting
the zeroes, and grouping the bits, eg. <A[O],VA[3’4},M[3O’31]> stands for <1, 1,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,—1,0,0,1). We use zl¥/ to represent the k+1-
st bit of z, that is 2/¥ = (z >> k) mod 2 (note that we count bits and steps starting
from 0).

We will consider two messages M and M’, and we use a prime to represent any
variable related to the message M’ (eg. Q}, m}). As a shortcut, we will sometimes use
dX (resp. 0X) to represent §(X, X') (resp. (X, X)), and ®; for &;(Q;—1,Qi—2,Qi—3).

When we are given a differential path, we will call it 9;, and a message follows the
path if 0Q; = 0; holds for every step i. We will also use J; as the desired value of 5Q);.

3 Automatic Search of Differential Paths

Before giving the description of the algorithm itself, let us study some useful properties
of the different operations used in MD4. MD4 security is based on the interaction of
incompatible operations, so we will see how to unify them. Some of these results are
already in the literature (eg. [6], [I3]), but we give them together using our notations.

3.1 Mathematical Toolbox

The first tool to study MD4 operations is Wang’s 9 difference. It contains both the
modular difference § and the XOR-difference, and we will often have to switch between
these representations.



Relation between the modular difference and the 9-difference. If the value of
O(z,y) is known, then we know the value of §(z,y), but a given d(z,y) can be satisfied
with different d(z,y), with some carry extensions. For instance, if §(z,y) = 227, we can
have 9(z,y) = (A7) or (val27:28]) = 228 _ 927 op (wwal2T:28.29]) = 929 _ 928 _ 927 yp to
<""A[27...31}> and <VWVV[27"'31]>.

However, if §(z,y) is written in a way that satisfies some extra conditions, we can

compute d(z,y):

Theorem 1. Let x,y € Z9ys2. Then:

Z?lzo ;20 = §(z,y)
Vj,z’:“j S {—1,0,+1}
Vjiej =41 = zll =0
Vj:aj:—1:>xm:1

a(x,y) = <€31,630, ...€0> <

Proof. The “=" direction is easy. Reciprocally, let <5j>§?1:0 and <€;>?1:0 be two sequences
which fulfill the right-hand side conditions. Then we have > (e; — 8;-)2j = 0, and every
€5 — 69 isin {—1,0,+1} because of the last two conditions. By reducing this sum modulo
two, one sees that 9 — g, = 0 mod 2, therefore ey — &, = 0. By iterating, one sees that
Vi, € = 6;. Hence the sequence is unique, and since d(z,y) is one candidate, it is the
only one. O

Note that some of the conditions depend on z; if only §(z, y) is known, we have many
possible d(z, y), but when bits of = are known, the set of possible d(z,y) gets smaller (if
x is completely known, we know y and therefore d(z,y)).

Interactions between modular difference and rotation. To build a differential
path, we need to know how a modular difference is affected by a rotation. This turns out
to be rather easy, due to the following result (see Appendix [A] for a detailed proof):

Theorem 2. Let a,b € Zy32, 0 < s <32 and a = a K 5,0 =b K s. Then we may
compute v = 0(«, B) from u = d(a,b) and a, as follows:

v = (u <K s) if a+u < 2% and

(a mod 2327%) + (u mod 2327%) < 2327
ve = (u <& s)H1 if a+u < 2% and

(a mod 2327%) 4 (u mod 2327%) > 232—
vy = (u <K s)B2° if a +u > 2% and

(a mod 2327%) 4 (u mod 2327%) < 232—5
vy =(u<ks)B2°B1ifa+u>2% and

(a mod 2327%) 4 (u mod 2327%) > 232—

So, if we known 6(a, b), we can choose a value for §(a << s,b < s), and with some
extra conditions on a, this will be the correct one.



Remark. In [T3], Sasaki et al. used the fact that there are only 4 possible values, but did
not give a proof of this, and they computed these values by exhaustive search over the
232 inputs.

Interactions between the 9-difference and the boolean functions. The main
advantage of the signed difference 0 over the modular difference ¢ is to handle the boolean
function. The &;’s are bitwise functions and we know for each bit how the input and
output are supposed to change between M and M’; if we add some conditions to restrict
the inputs, we can make sure the output follows the path. See Table Bl in Appendix
for the full conditions.

Based on these tools, we will first show how to compute a set of sufficient conditions
once a differential path is given. As such, it can be used to check a given differential path,
and it will be the basis of our differential path search algorithm.

3.2 Computing a Set of Sufficient Conditions

The technique used here is rather simple, and is the same as [I3]. This algorithm (referred
to as SC algorithm) will take as input a message difference A and a differential path
(0:)i%,.

The SC algorithm will follow the path backwards from Q4g to (g, and will recursively
compute a set of conditions: at each step 7, we assume that the current set is sufficient
to satisfy the path from step @Q;+1 to Q4s, and we will add some conditions to extend it
to step 7. If we look at step i + 4 for messages M and M’', we have:

Qita = (Qi BPira(Qits, Qiv2, Qit1) Bmypa Bhips) K siya
Qs = (Qi B Pira(Qiys, Qiyo, Qiyy) Bmiyy Bkits) <K siya
We know how to compute 5i>_>il = 0(Qira >> 5i44, Qi y > sita) from iy (see
Section Bl), and this will give a first set of conditions on Q; 4 (we call these conditions
< -conditions). Then we will add some extra conditions so that the path is followed:

L If®, ,BPiy=0d EI(524>+>>4 B Ait4, then 0Q; = ;, so we select a O(Pi14, P}, ,), and we
can ensure it is followed by adding a few extra conditions on the inputs Q;41, Qit2,
Qi+3 of @iy (see Table Bl). We call these conditions @-conditions.

2. Once we have §Q; = §;, we only need a few extra conditions on @Q); to get 0Q; = 0;
by Theorem [M We call these conditions 0-conditions.

3.3 The Differential Path Search Algorithm

Our algorithm is based on the SC algorithm. The basic idea is to run the SC computation,
but since we do not know d; nor d®;, we will assume that é®; = 0, which gives §; =
5Z.>J>r>4 H A;14: the differences will only appear every 4 turns, and will not propagate in
between. This is possible in the first two rounds, because the boolean functions IF and



MAJ can absorb one input difference. Using this basic idea, we find a path with a non-
zero difference in Q_4...QQ_1, that is, a path leading to pseudo-collisions (this initial path
is called € in the algorithm).

Then we will run another pass of the algorithm, but we will try to modify the path
so as to lower the number of differences in the IV. In fact, we will have a set of paths P,
and every run will select a path, try to enhance it, and insert new paths in this set. This
basic structure is described in Algorithm [} we will make an extensive use of recursivity
to explore the path space. This algorithm will be referred to as the DP algorithm.

Algorithm 1 Overview of the differential path search algorithm

1: function PATHFIND

2: P — {e} > € is the path with §¢; =0
3: loop

4: extract P from P

5: PATHSTEP(P,¢€,48) > start search from last step
6: function PATHSTEP(P,P,i) > Extend path P to step i, following Py
T if i < 0 then

8: add P to P

9: else
10: for all possible choice P’ do
11: PATCHTARGET (P, P’ i)
12: function PATCHTARGET(Fy,P,i) > Modify P to fix IV differences in the end
13: for all possible choice P’ do
14: PATCHCARRIES(Py, P’ i)
15: function PATcHCARRIES(DP,P,i) > Extend some carries to help the next steps
16: for all possible choice P’ do

17: PatusTEP(Py,P’ i — 1)

Path representation. During the computation of a path, we represent the path as
(0Q;)#8,, where each 0Q; is given as 32 values in {—1,0,+1}. However, between two
passes, this representation is almost useless: when we apply a local modification to a
0Q;, the 0Q;’s for the rest of the path will become quite different.

Therefore we propose a new representation of the path: we will store <5@i>§§0. The
0Q;’s can be efficiently computed from the d®;’s, even if there is a little loss of infor-
mation: a given (6®;)?) can correspond to many (0;)#5, (for instance using different
carry extensions), but the algorithm quickly finds a good one. The main advantage of
this representation is that a local modification of 0®; will not modify the other 6®;, and
we recompute the full path (OQQ?EO. In fact, since 9¥; = 0 most of the time, this is a
much better description of the path: it tells us where we have to do something unusual.

Overview of the algorithm. The function PATHSTEP will extend the path one step

further, using the same ideas as the SC algorithm at step ¢ + 4. It assumes the 0Q);’s

and 09;’s are chosen for j > i. Then, for every possible choice of 5Z-<f_<4, it will compute



0Q; from 9Q;14 and 09,14 and add the <-conditions and @-conditions. It will have to
choose a 0P;;4 matching §®; 4 that is feasible given 0Q;+1, 0Q;12, and 0Q;43; if none
is available, this branch of the search is aborted. Here we will also set d®; to the value it
had in the path Fy, so that the new path is similar the old one.

The function PATCHTARGET will then modify 0®; so as to remove some unwanted
differences in the IV (trying to turn a pseudo-collision path into a collision path).

To finish the step 4, the function PATCHCARRIES will select a 9Q); corresponding to
0Q;, and will extend some carries according to the values 6®; 1, 6®;+2 and dP;,3. This
step is important because we need a non-zero bit in a 0Q;_1, 0Q 2 or 9Q;_3 for every
non-zero bit in 0P;. Then it will add the 0-conditions.

Correcting Differences. The critical part of the algorithm is the computation of the
bits to modify in step 7 so as to correct a difference in the IV. To change directly a bit
QE?, we will set a non-zero difference in @EIZE%}. However, we detect the differences in
the IV, and we can’t fix them here; we will have to act on a different step and see how
the difference evolves. The simplest way to do so is to keep §®; unmodified in the rest
of the path, which is possible if the difference is absorbed by the @;’s. So we will try to
use bit legilfiio] to modify bit QEIZ], and so on until we find a bit of @Q;,+4¢ which can be
changed using .

When such a modification succeeds, it will remove one difference in the IV. This
simple correction method is already useful: it finds the path from [23], but not the one

from [19].

Indirect Correction. While searching for more complex paths, we will have some
differences in the IV which cannot be dealt with this way. So we will introduce a difference
which will not directly cancel the difference in the IV, but which will allow us to remove
the target difference using the previous method. More precisely, to fix QEIZ],
difference in some @;,+4¢, but we need a difference in the inputs of @;,4¢; so we will try
to introduce a difference in Qjyt4¢+q, where a € {1,2,3}, and this will use @;41+q+4¢'-
See Algorithm B for a pseudo-code description.

When this succeeds, it removes the target difference, but it introduces a new un-
wanted difference. Hopefully, we may remove this new difference without indirect mod-
ifications... This method works rather well, and finds many paths using the message
difference from [19).

we want a

Impossible paths. As we compute the differential path and the sufficient conditions at
the same time, we do not have to deal with impossible path, during the execution of the
algorithm: if a modification of the paths leads to an impossibility, we abort the search
and look for other modifications. However, if the path with d®; = 0 is impossible — and
this is the case if there are some differences in the third roundﬂ — the first pass of the

! for Wang’s EUROCRYPT path, the differences in the third round form a local collisions, so we can
as well run the algorithm only for the first two rounds.



Algorithm 2 Details on the bit correcting part of the algorithm
1: function PATCHTARGET(Po,P,i)

2: for all st] bit to fix in Py do > we try every difference, one by one
3: PATCHTARGETBIT(Po,P,i,%0,k,m0)

4: function PATCHTARGETBIT(P),P,i,%0,k,n) > 7 indirect modifications allowed
5: if 7 < ip then return

6: else if i = ip then

T modify P on bit k of step 4

8: ParcHCARRIES (P, P, 1) > next step of the algorithm
9: else

10: PATCHTARGETBIT(P, P, 4,10 + 4, k + si, mod 32,7) > Direct correction
11: if n > 0 then

12: modify Py on bit k of step io > Indirect correction
13: for a € {1,2,3} do PATCHTARGETBIT(P,P,ii0 + a,k,n — 1)

algorithm will abort with an incomplete path. Therefore we also add incomplete paths
to the set P, and we correct their errors in the same ways we correct differences in the

IV.

Exploring the search space. In order to avoid spending too much time on uninterest-
ing paths, we have to choose an interesting path in the set P. As the indirect corrections
are much expensive that direct ones, we only search for them on paths that have already
been run without indirect corrections, and we favour runs without indirect corrections.
We implemented the set P as a priority queue, and our priority function is based on:

— the number of difference in the IV

— the number of conditions

— the number of indirect correction allowed

— the depth in the tree (ie. the number of run between the first path and the current
path)

To restrict the search space, we also set some limits on the path we are looking for.
The difficulty here is to keep enough paths to find the good ones, while cutting enough
branches in the search tree to finish in reasonable time. In our algorithm, we limit the
size of the carries, and the number of total conditions in a path. We also limit the total
number of runs of the algorithm, which allows to keep the set P to a fixed size.

Example. See Table Blin Appendix [Bl for an example of how the algorithm modifies the
paths until it has no IV difference. For this path, there is no need for indirect correction.

3.4 Comparison with Existing Algorithms

Schléiffer and Oswald [16]. Our algorithm bears some similarity with the algorithm
of Schléffer and Oswald’s (eg. the computation of the bits to modify when we have some
difference in the IV is very similar to their computation of target differences), but we think



the basic idea that rules the algorithm is not the same. Schléffer and Oswald basically try
to cancel the differences introduced in the message, while we basically try to compute
Q; for Qiy1...Q;14. Our approach computes the path and the sufficient conditions at
the same time, whereas Schléffer and Oswald performed these two steps separately, and
had to deal with impossible paths. A more important innovation from our algorithm
comes from the possibility of indirect corrections: Oswald and Schliffer had to manually
introduce disturbance difference which seemed to play the same role. It seems that the
general structure of their algorithm is not well suited to automate this part. As a result
our algorithm finds better ways to choose the indirect corrections, which results in a
much better path.

De Canniére and Rechberger [2]. This work introduces some important new ideas,
and some of them could be used to enhance our algorithm (eg. the generalised differential
V). However their algorithm as such does not seem really suitable for MD4. It seems that
they are only doing local modification to the path, and they can’t correct a difference
far from were it was introduced. This feature is well adapted to MD5, SHA-0 and SHA-1
because the step update function will duplicate a difference in the internal state. In
MD4, a difference can be absorbed by the @;’s, and we can correct it many steps further.
Furthermore, the basic idea of iteratively adding conditions seems incompatible with our
indirect modification scheme.

Sasaki [I5]. Sasaki introduces an interesting idea in FSE ’07 [I5]: he combines forward
search and backward search with a meet-in-the-middle approach. We believe this can be
adapted to our algorithm but we didn’t had the time to do it yet. More importantly,
Sasaki introduces a new message difference and a correspond path. Our algorithm does
not work yet with this message difference, but we are working on it.

4 Applications

The algorithm was implemented in the C language, and we ran it with different message
differences on a desktop computer. We used it to check the paths given by Wang et al.
in [T9] and [23].

4.1 Yu et al.’s CANS Path [23]
By applying our algorithm to Yu et al.’s CANS path [23], we found that

— This path is rather easy to find and does not require any indirect modifications. Our
algorithm finds it in about 0.1 s.

— In [23], the authors claim that the path can be rotated and gives 32 similar paths
using a message difference on the different bits of @4, but only 28 paths are actually
correctt].

2 it fails if the difference is on bit 17,20,26 or 28.



— If the difference is applied to bit 25 instead of bit 22, the path has only 58 conditions
instead of 62. This is good news for applications where one only needs one path with
the smallest possible number of conditions, such as attacks against NMAC-MD4 [14].

4.2 Wang’s EUROCRYPT Path [19]

We also ran our algorithm with the message difference of Wang’s EUROCRYPT path [19],
and we found many paths with less conditions; the two best are detailed in Path Ol and
Path Bl These paths are much harder to find: they need some indirect modifications, and
our algorithm takes a few hours to find them (however, a first solution is found in a few
minutes, and it already has only 19 conditions on the second round). Our path is also
better than the one found by Oswald and Schlaffer, see Table [ for a quick comparison.
The number of conditions in a path determines the complexity of the collisions finding
phase: conditions in the first round cost almost nothing (because message modification
in the first round always succeeds); in the beginning of the second round, they cost a
little bit more; and in the end of the second round and in the last round they can only
be fulfilled statistically, so they have an exponential cost.

Table 1: Comparison of paths using the same message difference

Number of conditions | round 1 round 2 round 3 total

With Wang’s message difference:

Wang et al.’s path [19] 96 25 2 123

Schliffer and Oswald’s path [I6] 122 22 2 146

Our path 72 16 2 90
With Sasaki’s message difference:

Sasaki et al.’s path [I5] | 167 9 1 177

As far as MD4 collisions are concerned, the best path currently known is due do
Sasaki et al. [T5] and uses another message difference. Unfortunately, we have not yet
been able to make our algorithm work with this message difference.

4.3 IV-dependent differential path

Using the DP algorithm, we can search for paths with message differences on the first
message word mg, which is used in the first step of the compression function. In this
case, the @-conditions for the first step will involve Q_; and Q)_s, that is, the IV. This
kind of IV-dependent path can be used to recover some bits of the IV: if the condition
on the IV is fulfilled, we will find collisions if we try enough message pairs with the
prescribed difference; but if the condition is not fulfilled, that will not happen. This gives
us a distinguisher which learns one bit of the IV. If we can find enough paths, and we
do not need to try too many messages before a collision is found, we can then do an



exhaustive search over the remaining IV bits, and we can easily check the validity of the
IV using the collisions found.

IV-dependent differential paths can be used to attack some MAC algorithms, in
particular NMAC/HMAC.

Our algorithm found 22 IV-dependent paths with a one-bit difference Ag = 2F. Path [l

in Appendix [Bl shows one of them with & = 0, and the other ones are obtained with a bit

rotation of the whole path. They have one condition on the IV: Q[f? so] _ Q[_kgﬂ 80], and

79 conditions on the other internal state variables.

Conclusion and outlook

Our algorithm is successful at finding differential paths with some given message differ-
ential. Our paths have fewer conditions than the previously known ones, which shows
that our algorithm is efficient. Good paths are not really needed for collision search, since
collisions are already very cheap, but we believe that new kinds of attack against MD4
or MD4-based constructions could be found thanks to this algorithm. New differential
paths could led to new attacks.

We are trying to explore what can be done with various differential paths, and we
have already found a full key-recovery attack against NMAC-MD4 based on IV-dependent
path.
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Interaction between modular difference and rotation

Let a,b € Zgs2,0 < s < 32and o = a K 8,0 = b < s. We want to compute v = §(«, 3)
from u = d(a,b) and a. We will use the integer addition + (in Z) and the modular
addition B (in Zg32), and we express the rotation in the following way:

d 232
T < s = (2°z mod 2%%) + {wJ

9232—s
We will use the following result on integer part:

lz] + y] ifr+y<|z]+ |yl +1

lz+y] = lz| + |yl +1 fx4+y>|z|+ |yl +1
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If a +u < 23 (in Z), then:

f—a= ( {;g;—_“J +2s(¢+U>> - ( |7=) +%>
N B?’;F—ZJ B in’g—SJ e

L#J + 28u or L%J + 2Su + 1

fBHBa=u<s or (uks)HB1

Otherwise, 232 < a + u < 233:

f—a= ( {%J +23(a+u)> - (bBZSJ +2sa>
=2t ([ |42t n) - [+ 20)

fBa=(uks)B2° o (us)BH2°H1

Furthermore, we can explicit precise conditions for each case:

v1 = (u K 8) if @ +u < 2% and

(a mod 2327%) 4 (u mod 2327%) < 232—5
v = (u < s)H1 if a +u < 2% and

(a mod 2327%) 4 (u mod 2327%) > 232—
vy = (u <K s)B2° if a +u > 232 and

(a mod 2327%) 4 (u mod 2327%) < 232—5
vy = (u<ks)B2°@M1ifa+u>2% and

(a mod 2327%) 4 (u mod 2327%) > 232—

B Differential Paths

All the paths given in this section will use the notations defined in the article. Moreover,
there are two extra differences with Wang’s tables:

— The 0-conditions are not included in the table, since they can be easily be deduced
from 0; (eg. Q[16] = 1 in step 1 of Path [I).

— The $-conditions and <«-conditions are listed in the step were they are needed, rather
than in the step were the message modification will be done. This makes the paths
easier to read, but must be taken into account if one wants to count the conditions
in each round.



Path 1: First of the two best paths we found with the same message difference as [T9].

|step| S; | omy; | o0P; | 0Q; | @-conditions and <«-conditions
03

17| (AP (vl

2 [11[(v*8 Al (a1 QI = QI

3 |19 Q) =0,Q1" = Qy", QY = Qf Q1 = Qb

4 |3 <v[6]> <AV[9’10]> Qgﬁ] =0, Q[ﬂ 0, Q[S] 0, Qgg] —

5 |7 <A[7]> <A[13]> QEZ] 0, Q[S] 1, Q[g] 0, Q[IO] :Q[glo]

6 |11 <y[10]> <v[18]> Q[9J Q[lo] Q[13] = QI [13]

7 119 Q[Q] 1 Q[IO] 17 Qém] 0 Q[IS] QLIS]

8 |3 (A (v w8 [ QIS — o QI — o

9 7 <v[12] <A[19]> Q[712] _ 17 Qém] _ 07 Q[716] _ [16]7 Q717 — £517]7 Lls] —1
10 1 <A[17]> <v[zs]> lez] =0, Q[IG] 0, Q[917] —1, Q819 _ Q[719]

11 19 Q) =1, Q“G]—l Qly =1, Q%" =0, QF = QI
12 3] (v (a1 (viel a2 or — o, QI =

317 <"A[26.4.28]> [15] Q1105 7 Q[QQ] Q[1202]7 Q[1228] -1

14 |11 (AP [ﬁo:’] =0, Q7 =0, =, QY =0, @Y =1, Q' =
15 |19 (a7 (Al =100 =107 =007 =0Q% =1
16 3 Ty D) Q. - QAT —ah. 0T —aF
17 |5 (aB1) 5T QI QBT = i

i [s ool o ol g g

19 [13]  (v0) (v [1285] =Q7, QY = QY

20 [3] (aPU)  [(v B[ (48] yBIY QI £ QI Q[SI] # QR

2115 (v&1) [f‘g” # QL%

22 9 B =Ql

23 |13 ) o QY Q) =i

24 [ 3 [(v*1 aB1)

25 |5

26 |19

27 |13

28 |3

29 |5

30 |9

31 (13

32 |3

3319

34 |11

35 [15] (v (w31

36 | 3 <V[28],A[31]> <v[31]> <v[31]>

3719

38 |11

39 [15 (aBT)

40 [3] (AP

41 19

42 (11

43 |15

44 13

4519

46 |11

47 |15

90 conditions: 72 + 16 + 2




Path 2: Second of the two best paths found with the same message difference as [19].

|step| S; | omy; | o0P; | 0Q; | @-conditions and <k -conditions
013

1 |7] (AP (Al

2 |11 <V[28],A[31]> <V[7],A[10]> ng] — Q[—Gll

3 |19 Q[26] . 07 Q[l [7] Q110 leo]

43 (av®T) | (aavl®- 11 QU — o, QU7 =1, Qlo —

5 |7 <A[13]> o =1, Qg 2 QSIO —0, Q[n] omm

6 |11 WY [ W) QT =0, gl =1, QU = 1, QI = I

7 119 Qég] 1, Qm 1, Q[n] 1, Qém] 0, Q518 _ LIS]
3 |3 <A[13]> <v[12]7A[16]> Q[m] 0, QIISJ

9 |7 <v[12]> <A[19]> Q[12] —1, Q[12] 0, Q[716] _ Qé16]7 QES] -1

10 |11 Ry 1R =0, QI =0, QUT = QI

11 9 Q[m] 1, Q[IG] 1, Q[llog]:07 Q[929]: ng]

12 3] (v (AN [ (w1 a2 1O — o, QI =

3 <v"A[26.4.29]> [15] Q1105 7 Q[QQ] Q1202 , Q[1229] -1

14 |11 (a2 0, Q@ =0, @ = Q7 QT =g, QT — g, 0% = 1, gF =
15 |19 (VaPS2Ty | (a0 T =1, 0 =0, @ — 0, =1, P =1
16 |3 () (a2 “"] £ Q1 QT = QY QT = QF, oY = @I, Q1Y = QY
1715 W) QT =l QT — g

i [s ool ol ol g g

19 |13 <v[16]> <v[28]> [1285] _ Q[1275], [31] Q1361]

20 [3] (aPU) [(vE aPT)[ (aFST 4oy [2817,5621278]7(2[3117&@1?;1]

2115 (1) o # QY

22 |9 =l

23 |13 (APl B QR, QBT = Qb

24 [ 3 [(vCT AP

25 |5

26 |19

27 |13

28 |3

29 |5

3019

31 (13

32 |3

3319

34 |11

35 [15] (v (yi31]

36 | 3 <V[28],A[31]> <V[31]> <v[31]>

3719

38 |11

39 |15 (aBTY

40 [3] (AP

41 19

42 |11

43 |15

44 13

4519

46 |11

47 |15

90 conditions: 72 + 16 + 2




Path 3: Improved version of the path from Yu et al. [23].

|step|si| om; | 0P, | 0Q; | conditions
03
17
2 |11
3 |19
[25] [28]
4 |3 [(a®) (A% —
5 |7 s =Qy
6 |11 Q™ =0
7 (19 QP =1
8 |3 (aBT)
9 7 [731]:Qé31]
10 |11 (B (o QP =1
11 |19 7=l QT =1
12 |3 (a?) “O] =0
13 |7 [121]*Q10: [1120]:1
14 |11 (v 1l =0
15 19 QT =1, Q% = QY
16 1 3 <A[5] > [21] Q121
17 | 5 [(aP1)] (aFTY [ (alOT 40Ty [5175@2147 2T Qle]
18 |9 (v Q% = @i, [fé” QY Q' = QY
19 |13 s =07 Qi = Qlg’
0 [ Aol =l
21 |5 <V[30]> <A[15]> [1%] le: [30]7&Q1390
22 |9 <Av[7’8]> [281] —_ Q197 [15] Q1195
23 |13 0=k, “5] = Qs
243 vy Tl ol Z ol o = g
25 |5 P 10V = QI @b = QY
26 | 9 Ty QDT = QB
27 |13 “6] =Q5, Q' = QY
28 |3 o ol Q= gl
29 |5 ATy QT = ol
30 | 9 (V1) Q[ff] = Q5
31 |13
323
33 |9 ) 2=
34 [11](aP)
35 |15
36 | 3
37 |9
38 |11
39 |15
10 [3
419
42 11
43 [15
443
45 (9
46 [11
47 [15

58 conditions: 20 + 37 + 1




Path 4: An IV-dependent path with the message difference on the first word.

|step|si| oms; |

0P;

0Q;

&-conditions and <«-conditions

0 [ 3 [(a") R
L[ Q="
2 |11 QP =0
3 |19 QY =1
4 |3 (val®™)
517 QY = QY Q' = QY
6 11 Q=0 QT =
2 I G O 7 L
s |3 Y AT Ry QBT — 1 QP =0
9 7 Q[79] :QESQ]7 Qé% O Q [29]
10 |11 Q[99 —0, Q926 _ Q 29]
11 |19 @ [l =1, QT =
12 | 3 (v a0 Q1103 — QM
13 Qn —Q107 Q1112 [1102]7 1123 =0
14 |11 (O [ (aavl- B0 (o =1, Q1Y =0, Q1Y =
15 |19 () Qi =1, Qi = QY 1132 =0,QY =10 =0
16 |3 [T v ) T QT £ A 2
17 |5 Qe = Q5" Q" = @1, QI = QI
18 |9 <AAAV[20"‘23]>
19 13 Q[1270] [1260]7 [1271] Q12617Q[22] Q12627Q1273 _ [1263]
20 |3 (%) oy 1R =@, @y = @, QY = QY Q1Y # QY
21 |5 QW =i, R = Q% QI = o, @5 = QT QY = Q'Y
2219 o) e = Qi
23 |13 Q' =Qy, QR = QW)
24 3 <A'[29’30]> Q[2239] _ [2219]
2% |5 Q5 = Qb
26 |9 (a7 QR # Q% Q5 = Q%
27 |13 QR =R, Q5 = Qi
28 |3 (v
29 |5 Q27 Q26
30 19 ng Q27
31 13 QC’)O_QZQ
32 |3 [{al)
3309
34 |11
35 |15
36 |3
3719
38 |11
39 |15
40 |3
41 |9
42 |11
43|15
44 (3
45 |9
16 |11
47 |15
80 conditions: (1+) 42437+0




Initial path Path 1 Path 2 Path 3 Final Path
113 <A[22] > [ED) V22 V22 AL25] <A[25] >
5 |7 Q[mlﬂ <v[8],A[20]> (13] <A[20]> [13] <A[20]> (13] <A[20]>
6 11 Sl <v[28] > w7l <v[28] >
7 119
] |3 <VA[28 29] <VA[28,29]>
9 7 <V[15],A[27]> <A[27]> <VA[27,28]> <A[27]
10 |11 <y[7] > <y[7] > <v[28] > <v[7]> <v[28] > <v[7] > <v[28] > <v[7] >
11 (19
12 |3 <A[31] > <A[31] >
13 |7 <A[2]7v[22] <A[2]> <A[2]> <A[2]>
14 11 <v[18]> <v[18]> <v[18]> <v[18]> <v[18]>
15 |19
16 | 3 A?) A
17 15 <A[22J> <A[7] <A[7]7A[27]> <A[7],A[27]> <A[7J7A[27J> <A[2]> <A[7]7A[27]>
s s ) ) G ] )
19 |13
20 |3 (aPh (AP
21 | 5 <A[12J> <y[27J> <A[12J> <v[27]> A[12]> <v[27J> <A[12]> <y[27]> <A[12J>
2219 (v ) (v {aveey {av=ey
23 |13
24 |3 (Y& (vPh
25 |5 <A[17]> <A[17]> <A[17]> <A[17] <A[17]>
2% 19 <v[13]> <v[13]> <V[13]> <v[13]> <v[13]>
27 |13
28 |3
29 15 <A[22] > <A[22] > <A[22] > <A[22] > <A[22] >
30 19 <v[22] > <v[22] > <v[22] > <v[22] > <v[22] >
31 (13
32 |3
35 9 ) ) ) ) )
34 [11](aP)
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F(z,y,2) =1F(z,y,2)

G(z,y,2) = MAJ(z,y, 2)

H(z,y,2) =2®ydz

I(z,y,2) =y ® (zV —2)

|0z Oy 0z[[0F =0] OF =1 [0F = —1[|0G = 0]0G = 1]0G = —1][0H = 0]0H = 1]0H = —1]][oI =0] 9I =1 | oI = —1]

oooff « | X | X [« [ X ] X [« [ X ] X [ ] X | X ]
0 0 +1jjz=1| z=0 X r=y|x#y X X z=y | z#y |[|z=1|z,y=0,1|z,y=0,0
0 0 —1||z=1 X =0 T=y X TH£y X z#y| z=y |z=1|z,y=0,0/z,y=0,1
041 0)|jlz=0] z=1 X r=z|x#z X X w=z| ®£z X z,z2=0,1{z,y # 1,0
0 -1 0| zz=0 X =1 =y X T # 2z X T F#z =z X z,y #1,0/z,2=0,1
+1 0 O0||ly=2|y,z2=1,0ly,2=0,1|| y=2 | y # = X X Y=z Y F£z z=0|y,z=0,1|y,z=1,1
-1 0 Ofly=z2|y,z=0,11y,2=1,0|| y==2 X Y F£z X Yy #£z Y=z z=0|y,z=1,1|y,2=0,1
0 +1+1|| X v X X v X v X X z=0 X =1
0 —1+1f] X z=0 z=1 v X X v X X T = =1 X
0 +1-1|] X r=1 z=0 v X X v X X z=0 X r=1
0 —-1-1|| X v X X v v X X z=0| z=1 X
+1 0 +1|ly=0] y=1 X X v X v X X v X
—10 41||y=1| y=0 X v X X v X X X | y=1 y=0
+10 —1fjy=1 X y=0 v X X v X X X | y=o0 y=1
10 —1|y=0 X y=1 X X v v X X v X X
+141 0|[z=1] z=0 X X v X v X X z=1 X 2=0
141 0l z=0| z=1 X v X X v X X z=1 X z2=0
+1-10|z=0 X z=1 v X X v X X z=1| 2z=0 X
—1-1 0]l z=1 X z2=0 X X v v X X z=1| 2z=0 X
+1+41+1|] X v X X v X X v X X X v
“1+141|| X v X X v X X X v v X X
+1-1+1|| v X X X v X X X v X v X
—1-1+1|| v X X X X v X v X v X X
+1+1-1|| v X X X v X X X v v X X
—141-1]| v X X X X v X v X X X v
+1-1-1|| X X v X X v X v X v X X
—1-1-1|| X X v X X v X X v X v X
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