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Abstract

We investigate the security of n-bit to m-bit vectorial Boolean functions in stream ciphers. Such
stream ciphers have higher throughput than those using single-bit output Boolean functions. How-
ever, as shown by Zhang and Chan at Crypto 2000, linear approximations based on composing the
vector output with any Boolean functions have higher bias than those based on the usual corre-
lation attack. In this paper, we introduce a new approach for analyzing vector Boolean functions
called generalized correlation analysis. It is based on approximate equations which are linear in the
input x but of free degree in the output z = F (x). The complexity for computing the generalized
nonlinearity for this new attack is reduced from 22m×n+n to 22n. Based on experimental results,
we show that the new generalized correlation attack gives linear approximation with much higher
bias than the Zhang-Chan and usual correlation attack. We confirm this with a theoretical upper
bound for generalized nonlinearity, which is much lower than for the unrestricted nonlinearity (for
Zhang-Chan’s attack) and a fortiori for usual nonlinearity. We also prove a lower bound for gen-
eralized nonlinearity which allows us to construct vector Boolean functions with high generalized
nonlinearity from bent and almost bent functions. We derive the generalized nonlinearity of some
known secondary constructions for secure vector Boolean functions. Finally, we prove that if a vec-
tor Boolean function has high nonlinearity or even a high unrestricted nonlinearity, it cannot ensure
that it will have high generalized nonlinearity.

Keywords. Vectorial Boolean Functions, Unrestricted Nonlinearity, Generalized Nonlinearity.

∗This is an extended version of a paper [3] presented at the FSE 2007 conference. New results are presented in Sections
6, 7, 8 and 9 of this paper.
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1 Introduction

In this paper, we consider n-bit to m-bit vectorial Boolean functions when they are used in stream

ciphers. There are two basic designs for such stream ciphers based on linear feedback shift registers

(LFSR). One is the combiner generator [11] which consists of n LFSR’s and a vector function F (x). At

each clock, one bit is tapped from the secret state of each LFSR as an input bit of F (x) to produce m

bits of output keystream. This keystream is then XORed with the plaintext to form the ciphertext. The

other model is the filter function generator [11] where n bits are tapped from one LFSR as input to F (x)

to produce the keystream output. The advantage of using vector Boolean functions is that the stream

ciphers have then higher throughput, since the encryption and decryption speed is m times faster than

with single output Boolean functions. However, we need to study its security when compared to the

single-bit output case.

A basic attack on these stream ciphers is the correlation attack of Siegenthaler [13]. In [13], a linear

approximation is formed between the LFSR state bits and output keystream. If the approximation

has probability p 6= 1/2, then we can recover the secret LFSR bits when enough keystream bits are

known. Siegenthaler’s attack was described for single-output Boolean functions but it can be generalized

naturally to the vector output case where we take any linear combination of output bits.

This attack can be improved as shown by Zhang and Chan at Crypto 2000 [14] where they consider

linear approximation of any combination (instead of just linear combination) of the output vector bits.

Since there are 22m+n linear approximations to choose from in the Zhang-Chan approach compared to

just 2n+m linear approximations in the usual approach, it seems easier to choose one with higher bias,

i.e. where probability p is further away from 1/2. This has been confirmed by an upper bound on the

parameter quantifying the resistance of the function to the Zhang-Chan attack, called its unrestricted

nonlinearity [4].

In Section 2, we introduce the generalized correlation attack by considering linear approximations

which are linear in the input x as for the Zhang-Chan attack, but of free degree in the output z = F (x).

Now there are 22m×(n+1) linear approximations from which we can choose one with even higher bias

than the Zhang-Chan and usual correlation attack. However, choosing the best linear approximation

out of that many choices is infeasible. Therefore in Section 3, we reduce the complexity of choosing the

best linear approximation for generalized correlation attack from 22m×(n+1)+n to 22n, which is much

more manageable.

The generalized nonlinearity is an analogue of the usual nonlinearity, which measures the effective-

ness of a function against generalized correlation attack. Based on efficient computation for finding

the best generalized linear approximation, we computed the generalized nonlinearity of highly nonlinear
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vector functions and randomly generated vector functions in Section 3.2. We observe that the general-

ized nonlinearity is much lower than the usual nonlinearity and unrestricted nonlinearity (corresponding

to Zhang-Chan’s attack) for these functions. For example, when the inverse function on GF (28) is re-

stricted to 5, 6, 7 output bits, the usual and unrestricted nonlinearities are non-zero while the generalized

nonlinearity is already zero. That means the stream cipher can be attacked as a deterministic linear

system while the Zhang-Chan and usual correlation attack are still probabilistic.

Theoretical bounds on the generalized nonlinearity are also derived. In Section 4, we derive an upper

bound for generalized nonlinearity which is much lower than the upper bound for usual correlation

attack (covering radius bound [2]) and that for Zhang-Chan’s attack (unrestricted nonlinearity bound

[4]). Thus it gives further evidence that generalized correlation attack is more effective than the other

correlation attacks on vector Boolean functions. In Section 6, we prove a lower bound for generalized

nonlinearity in terms of the nonlinearity of a function. Based on this lower bound, we can derive vector

Boolean functions with high generalized nonlinearity from bent and almost bent functions. Furthermore,

we prove in Section 7 that when the chosen almost bent functions are the Gold or the Kasami power

functions, the resulting generalized nonlinearity can be improved.

The generalized correlation attack on single-bit output Boolean functions corresponds to bilinear

cryptanalysis. However, we can deduce from the lower bound on generalized nonlinearity that biliniear

cryptanalysis does not improve on the usual correlation attack.

In Section 8, we investigate the generalized nonlinearity of some secondary constructions for vector

Boolean functions that are resilient and/or possess high nonlinearity. Some consequences of our study

include the following. Input composition of a vector Boolean function with an invertible linear func-

tion preserves generalized nonlinearity. Output composition (e.g. dropping output bits) of balanced

vector functions may increase generalized nonlinearity (the generalized nonlinearity is preserved when

the output is composed with a bijection). The construction of Zhang-Zheng [15] for obtaining nonlinear

resilient functions from linear resilient functions is insecure (this fact has also been noted in [2]). For

a concatenated function to possess high generalized nonlinearity, we require all component functions to

possess high generalized nonlinearity.

In [4], a function with high unrestricted nonlinearity 2n−1 − 2n/2 (n even) is constructed. This

unrestricted nonlinearity is the best known as it is the same as the highest nonlinearity of balanced

vectorial functions known in the literature [2]. However, we shall show in Section 9 that its generalized

nonlinearity is zero. Thus, a high unrestricted nonlinearity is not sufficient to ensure high generalized

nonlinearity.

In Section 10, we summarize our findings and pose some open problems for further research.
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2 Generalized Correlation Analysis of Vector Output Stream
Ciphers

In this section, we consider a stream cipher where the state bits of one or more linear feedback shift

registers are filtered by a vector Boolean function F : GF (2)n → GF (2)m to form keystream bits. The

keystream bits will be XORed with the plaintext to form the ciphertext.

Traditionally, an adversary who wants to perform correlation attack on this stream cipher tries to

find an approximation of a linear combination of output bits by a linear combination of input bits

u · F (x) ≈ w · x. For correlation attack to be successful, we require that the bias defined by:

Bias = |Pr(u · F (x) = w · x)− 1/2|, u ∈ GF (2)m, w ∈ GF (2)n,

is large. Conversely, if all linear approximations of u · F (x) have small bias, then F is secure against

correlation attack.

A concept related to the correlation attack is the Hadamard (or Walsh) transform f̂ : GF (2)n → R

of a Boolean function f : GF (2)n → GF (2) which is defined as:

f̂(w) =
∑

x∈GF (2)n

(−1)f(x)+w·x.

Based on the Hadamard transform, we can define the nonlinearity [2] of F (x) as:

NF = 2n−1 − 1/2 max
0 6=u∈GF (2)m,w∈GF (2)n

|û · F (w)|. (1)

From the above equation, we deduce that a high nonlinearity ensures protection against correlation

attack. It is well known that 0 ≤ NF ≤ 2n−1 − 2n/2−1 (see e.g. [2]).

At Crypto 2000, Zhang and Chan [14] observed that instead of taking linear combination of the

output bit functions u · F (x), we can compose F (x) with any Boolean function g : GF (2)m → GF (2)

and consider the probability:

Pr(g(z) = w · x) where z = F (x). (2)

Because z = F (x) corresponds to the output keystream which is known, then g(z) is also known.

Therefore g(z) ≈ w · x is a linear approximation which can be used in correlation attacks. Since

we are choosing from a larger set of equations now, we can find linear approximations with larger bias

|Pr(g(z) = w ·x)−1/2|. Let us define the unrestricted nonlinearity [4] which measures the effectiveness of

the Zhang-Chan attack. Denote by wt(f) the number of ones among the output of f : GF (2)n → GF (2).

Definition 1. Let F : GF (2)n → GF (2)m and let G be the set of m-bit Boolean functions g : GF (2)m →

GF (2).
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We define the unrestricted nonlinearity as:

UNF = min{ min
0 6=u∈GF (2)m

(wt(u · F ), 2n − wt(u · F )), nonlinUNF}

where

nonlinUNF = 2n−1 − 1
2

max
w 6=0,g∈G

ĝ ◦ F (w). (3)

Remark 1. If w = 0 in equation (2), then it does not involve the input x and it is not useful for

correlation attack. Thus we let w 6= 0 when computing nonlinUNF which gauges the effectiveness of

equation (2) for correlation attack. The other part minu 6=0(wt(u · F ), 2n − wt(u · F )) ensures that F (x)

is close to balanced when UNF is high. This is essential because an unbalanced keystream will reveal

statistical information on the plaintext.

From equation (3), we deduce that a high unrestricted nonlinearity is required for protection against

correlation attack on g ◦ F (x).

In this paper, we introduce a linear approximation for performing correlation attack, which is more

effective than the Zhang-Chan attack [14]. The idea is to consider implicit equations which are linear in

the input variable x and of any degree in the output variable z = F (x), i.e. we consider the probability

of the expression:

Pr(g(z) + w1(z)x1 + w2(z)x2 + · · ·+ wn(z)xn = 0), (4)

where z = F (x) and wi : GF (2)m → GF (2). Because z = F (x) corresponds to the output keystream

which is known, g(z) and wi(z) are known for all i = 1, . . . , n. Thus equation (4) is a useful linear

approximation.

We call the attack based on this linear approximation the generalized correlation attack. This attack

can be considered as a generalization of Zhang-Chan’s correlation attack because if we let wi(z) = 0 or

1 for i = 1 . . . n, equation (4) becomes equation (2). Since we are choosing from a larger set than that

of Zhang and Chan, it is easier to find a linear approximation with larger bias |Pr(g(z) + w1(z)x1 +

w2(z)x2 + · · ·wn(z)xn = 0)− 1/2|.

In relation to the approximation of equation (4), we make the following definition:

Definition 2. Let F : GF (2)n → GF (2)m. The generalized Hadamard transform F̂ : (GF (2)2
m

)n+1 →

R is defined as:

F̂ (g(·), w1(·), . . . , wn(·)) =
∑

x∈GF (2)n

(−1)g(F (x))+w1(F (x))x1+···wn(F (x))xn .

where the input is an (n + 1)-tuple of Boolean functions g, wi : GF (2)m → GF (2), i = 1, . . . , n.

Let G be defined as in Definition 1 and let W be the set of all n-tuple functions w(·) = (w1(·), . . . , wn(·))
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where wi ∈ G and such that w(z) = (w1(z), . . . , wn(z)) 6= (0, . . . , 0) for all z ∈ GF (2)m. The generalized

nonlinearity is defined as:

GNF = min{ min
0 6=u∈GF (2)m

(wt(u · F ), 2n − wt(u · F )), nonlingenF},

where

nonlingenF = 2n−1 − 1
2

max
g∈G,w∈W

F̂ (g(·), w1(·), . . . , wn(·)). (5)

Remark 2. We introduce the set W to give a meaningful definition to the generalized nonlinearity. This

is because if there exists z ∈ GF (2)m such that (w1(z), . . . , wn(z)) = (0, . . . , 0), then equation (4) does

not involve the input x and it is not useful for correlation attack. Thus we let w ∈ W when computing

nonlingenF . The other part minu 6=0(wt(u · F ), 2n − wt(u · F )) ensures that F (x) is close to balanced

when GNF is high. This is essential because an unbalanced keystream will reveal statistical information

on the plaintext.

From equation (5), we deduce that a high generalized nonlinearity is required for protection against

generalized correlation attack.

In Proposition 1, we show that the generalized nonlinearity is lower than the other nonlinearity

measures and thus provides linear approximations with better bias for correlation attack. The proof

follows naturally from the definitions of the various nonlinearities.

Proposition 1. Let F : GF (2)n → GF (2)m. Then the nonlinearity, unrestricted nonlinearity and

generalized nonlinearity are related by the following inequality:

GNF ≤ UNF ≤ NF . (6)

I.e., the generalized correlation attack is more effective than the Zhang-Chan’s correlation attack, which

itself is more effective than the usual correlation attack.

Proof. Let us first consider the case when w = 0 in the definition of NF . We see that

2n−1 − 1/2 max
0 6=u∈GF (2)m

|û · F (0)| = min
0 6=u∈GF (2)m

(wt(u · F ), 2n − wt(u · F )).

This measure indicates how balanced the output of F (x) is and has been included in the definition of

UNF and GNF .

Let us now consider the case when w 6= 0, that is, when the input x is involved in the linear approximation

(which is more useful for correlation attack). Because the set of functions {u · F (x) + w · x + c ; u ∈

GF (2)m\{0};w ∈ GF (2)m\{0}, c ∈ GF (2)} is a subset of the set of functions {g◦F (x)+w ·x | g ∈ G, w ∈

6



GF (2)m\{0}}, which itself is a subset of the set of functions {g(F (x))+w1(F (x))x1+· · ·wn(F (x))xn | g ∈

G, w ∈ W}, we have

max
0 6=u∈GF (2)m,0 6=w∈GF (2)n

|û · F (w)| ≤ max
w 6=0,g∈G

ĝ ◦ F (w) ≤ max
g∈G,w∈W

F̂ (g(·), w1(·), . . . , wn(·)).

By substituting this inequality in the definition of nonlinUNF and nonlingenF , we have:

nonlingenF ≤ nonlinUNF ≤ 2n−1 − 1/2 max
0 6=u∈GF (2)m,0 6=w∈GF (2)n

|û · F (w)|

By combining the two cases w = 0 and w 6= 0, we conclude that GNF ≤ UNF ≤ NF .

Remark 3. A vector function F : GF (2)n → GF (2)m is said to be balanced if |F−1(z)| = 2n−m for

all z ∈ GF (2)m. It is well-known that wt(u · F ) = 2n−1 for all u ∈ GF (2)m − {0} if and only if F is

balanced (see e.g. [2]). Thus

GNF = min{ min
0 6=u∈GF (2)m

(wt(u·F ), 2n−wt(u·F )), nonlingenF} = min(2n−1, nonlingenF ) = nonlingenF,

because GNF ≤ NF ≤ 2n−1 − 2(n−1)/2 (see e.g. [2]). Therefore GNF = nonlingenF if F is balanced. In

a similar way, UNF = nonlinUNF if F is balanced.

2.1 The Single-Bit Output Case and Bilinear Cryptanalysis

It is easy to see that in the single output case (m = 1), the Zhang-Chan correlation attack is equivalent

to the usual correlation attack, i.e. UNF = NF . However, it is not so obvious whether the generalized

correlation attack is better than the usual correlation attack. The expression used for the generalized

correlation attack is a bilinear approximation:

Pr(a0z + b0 + (a1z + b1)x1 + (a2z + b2)x2 + · · ·+ (anz + bn)xn = 0), ai, bi ∈ GF (2),

where for any z ∈ GF (2), some a1z + b1, . . . , anz + bn is a non-zero function. We state the following fact

without proof since it can be seen as a corollary of Theorem 4 in Section 6.

Fact 1. Let f : GF (2)n → GF (2). Then GNf = Nf .

Thus we see that generalized correlation attack does not improve on the usual correlation attack

when the number of output bits is m = 1. But in Section 3.2, we will give many examples where

generalized correlation attack yields better results than the usual and Zhang-Chan correlation attack

when the number of output bits is m ≥ 2.
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3 Efficient Computation of the Generalized Nonlinearity

To compute the generalized nonlinearity GNF , we first compute min0 6=u∈GF (2)m(wt(u · F ), 2n − wt(u ·

F )) with complexity approximatively 2m+n. Then we need to compute nonlingenF which requires

computation of the generalized Hadamard transform over all input. But the complexity of computing

F̂ (g(·), w1(·), . . . , wn(·)) in a naive way, for all possible (n + 1)-tuples of m-bit functions is ≈ 2n ×

22m×(n+1): for each fixed (g(·), w1(·), . . . , wn(·)), we sum over 2n elements x to compute F̂ and there are

approximately1 22m×(n+1) tuple of functions g, wi : GF (2)m → GF (2), i = 1, . . . , n. This computation

quickly becomes unmanageable even for small values of n, m. Since the bulk of the computational time

comes from nonlingenF , we need to make it more efficient to compute.

First, we state Lemma 1 which rewrites the generalized Hadamard transform as a double sum.

Lemma 1. Let F : GF (2)n → GF (2)m and wi : GF (2)m → GF (2). Let w(·) denote the n-tuple of

m-bit Boolean functions (w1(·), . . . , wn(·)). Then the generalized Hadamard transform can be expressed

as:

F̂ (g(·), w1(·), . . . , wn(·)) =
∑

x∈GF (2)n

(−1)g(F (x))+w(F (x))·x

=
∑

z∈GF (2)m

(−1)g(z)
∑

x∈F−1(z)

(−1)w(z)·x.

Based on Lemma 1, we get the following theorem, which is an analogue of Theorem 1 of [14].

Theorem 1. Let F : GF (2)n → GF (2)m and w(·) denote the n-tuple of m-bit Boolean functions

(w1(·), . . . , wn(·)). The generalized nonlinearity measure nonlingenF can be computed as:

nonlingenF = 2n−1 − 1/2
∑

z∈GF (2)m

max
w(z)∈GF (2)n−{0}

∣∣∣∣∣∣
∑

x∈F−1(z)

(−1)w(z)·x

∣∣∣∣∣∣
Proof. Based on Lemma 1, we have:

max
g∈G,w∈W

F̂ (g(·), w1(·), . . . , wn(·))

= max
g∈G,w∈W

∑
z∈GF (2)m

(−1)g(z)
∑

x∈F−1(z)

(−1)w(z)·x

=
∑

z∈GF (2)m

max
g(z)∈GF (2),w(z)∈GF (2)n−{0}

(−1)g(z)
∑

x∈F−1(z)

(−1)w(z)·x.

1We say approximately 22m×(n+1) functions because we do not range over all tuples of functions (w1(·), . . . , wn(·)) but
only over those in the set W of Defintion 2
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To maximize this expression, we choose g(z) = 0 if
∑

x∈F−1(z)(−1)w(z)·x > 0, else we choose g(z) = 1.

Thus we can equivalently write the expression as:

max
g∈G,w∈W

F̂ (g(·), w1(·), . . . , wn(·)) =
∑

z∈GF (2)m

max
w(z)∈GF (2)n−{0}

∣∣∣∣∣∣
∑

x∈F−1(z)

(−1)w(z)·x

∣∣∣∣∣∣ .

By substituting this expression in equation (5), we get nonlingenF .

Remark 4. The proof of Theorem 1 also provides the functions g(·), wi(·), i = 1, . . . , n, for the best

generalized linear approximation. At each z, the optimal g(z) is the one that makes the inner sum

positive while and the optimal tuple (w1(z), . . . , wn(z)) is the n-bit vector that maximizes the inner sum.

3.1 Reduction in Complexity

To compute nonlingenF based on Theorem 1, we first perform a pre-computation to identify the sets

{x : x ∈ F−1(z)} with complexity 2n and store them with memory of size n × 2n. This is needed in

computing the sum
∑

x∈F−1(z)(−1)w(z)·x. We consider then the 2m elements z ∈ GF (2m). For each z,

we find w(z) ∈ GF (2)n which maximizes the sum
∣∣∣∑x∈F−1(z)(−1)w(z)·x

∣∣∣. The additional computational

complexity is:

Complexity =
∑

z∈GF (2)m

2n × |{x : x ∈ F−1(z)}| = 2n
∑

z∈GF (2)m

|{x : x ∈ F−1(z)}|

= 2n × |Domain(F )| = 2n × 2n = 22n.

Together with a complexity of 2m+n to compute min0 6=u∈GF (2)m(wt(u · F ), 2n −wt(u · F )), the total

complexity for computing GNF is:

Precomputation = 2n, Memory = n× 2n, Time Complexity = 2m+n + 22n.

This is much less than a time complexity of 2m+n + 2n+2m×(n+1) by the direct approach.

3.2 Experimental Results

Based on Theorem 1, we can compute the generalized nonlinearity of some highly nonlinear functions.

We also computed the unrestricted nonlinearity of these functions for comparison. The bulk of the

complexity for computing UNF comes from nonlinUNF . To compute nonlinUNF efficiently, we recall

Theorem 1 of [14].

We give now some examples of computations of NF , UNF and GNF and of the corresponding

optimum bias. First, let us look at bent functions, which have the highest nonlinearity NF = 2n−1 −

2n/2−1.
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Table 1: Truth Table of F (x) from Example 1.
x 0000 0001 0010 0011 0100 0101 0110 0111

F (x) 00 00 00 00 00 01 10 11
x 1000 1001 1010 1011 1100 1101 1110 1111

F (x) 11 00 10 01 11 01 00 10

Example 1. Consider the bent function F : GF (2)4 → GF (2)2 defined by F (x1, x2, x3, x4) = (z1, z2) =

(x1 + x1x4 + x2x3, x1 + x1x3 + x1x4 + x2x4). The truth table of F is listed in Table 1. The various

nonlinearity and bias take the following values:

Usual nonlinearity NF = 6 ⇒ Bias = 0.125

Unrestricted nonlinearity UNF = 5 ⇒ Bias = 0.1875

Generalized nonlinearity GNF = 2 ⇒ Bias = 0.375.

From Remark 4, we deduce that the following approximation holds with bias 0.375.

Pr(z1 + z2 = (z1 + 1)(z2 + 1)x2 + z1x3 + z2x4) =
14
16

,

where x = 0100, 1110 are the only two points not satisfying the relation.

We experimented with other bent functions, and observed that the generalized nonlinearity is strictly

lower than the other nonlinearities for these functions. In the next example, we look at functions formed

from dropping (n −m) output bits of the inverse function x−1 over the finite field GF (2n). They are

balanced functions with high nonlinearity.

Example 2. Let GF (28) be the finite field defined by the relation α8 + α4 + α3 + α2 + 1 = 0. Consider

the S-box Inv : GF (2)8 → GF (2)8 of the x−1 function with the correspondence

(x1, x2, x3, x4, x5, x6, x7, x8) ↔ x1α
7 + x2α

6 + · · ·+ x7α + x8

Consider Inv(x) restricted to the least significant m bits. Then the nonlinearity, unrestricted nonlinearity

and generalized nonlinearity are given by Table 2. We see that the generalized nonlinearity for the inverse

function restricted to m output bits is lower than the usual and unrestricted nonlinearities. Therefore

generalized correlation attack works better in this case.

Moreover, for m ≥ 5 output bits, the generalized nonlinearity is already 0 which means the system can

be broken by linear algebra with very few keystream bits. In comparison, the linear relations in the usual

and Zhang-Chan correlation attack are still probabilistic and require more keystream bits to determine

the right key.
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Table 2: Nonlinearities for x−1 on GF (28) restricted to m least significant output bits.
n 8 8 8 8 8 8 8
m 1 2 3 4 5 6 7
NF 112 112 112 112 112 112 112

UNF 112 108 100 94 84 70 56
GNF 112 80 66 40 0 0 0

Table 3: Average nonlinearity for randomly generated balanced functions, n = 2m
n 6 8 10 12 14
m 3 4 5 6 7
NF 18 100 443 1897 7856

UNF 16 88 407 1768 7454
GNF 6 36 213 1101 5224

Example 3. Lastly in Table 3, we tabulate the average nonlinearity measures for 100 randomly generated

balanced functions F : GF (2)n → GF (2)m, n = 2m, for various n. Again, we see that the average

generalized nonlinearity is much lower than the unrestricted and usual nonlinearities, and that generalized

correlation attack is more effective.

4 Upper Bound on Generalized Nonlinearity

In this Section, we prove an upper bound for the generalized nonlinearity. This allows us to gauge

theoretically the effectiveness of the generalized correlation attack.

Theorem 2. Let F : GF (2)n → GF (2)m. Then the following inequality holds.

nonlingenF ≤ 2n−1 − 1
4

∑
z∈GF (2)m

√
2n+2|F−1(z)| − 4|F−1(z)|2

2n − 1
.

Furthermore if F (x) is balanced, then we have:

GNF ≤ 2n−1 − 2n−1

√
2m − 1
2n − 1

Proof. According to Theorem 1, we have:

nonlingenF = 2n−1 − 1/2
∑

z∈GF (2)m

max
a∈GF (2)n−{0}

∣∣∣∣∣∣
∑

x∈F−1(z)

(−1)a·x

∣∣∣∣∣∣ .
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Let φz(x) be the indicator function of F−1(z). I.e., φz(x) = 1 if F (x) = z else φz(x) = 0. Then:

∑
x∈F−1(z)

(−1)a·x =
∑

x∈GF (2)n

φz(x)(−1)a·x =
∑

x∈GF (2)n

1− (−1)φz(x)

2
(−1)a·x

= −1
2

∑
x∈GF (2)n

(−1)φz(x)+a·x = −1
2
φ̂z(a), when a 6= 0.

Thus

nonlingenF = 2n−1 − 1/4
∑

z∈GF (2)m

max
a∈GF (2)n−{0}

∣∣∣φ̂z(a)
∣∣∣ .

In a similar way to the computation of
∑

x∈F−1(z)(−1)a·x, we can prove that |F−1(z)| =
∑

x∈F−1(z)(−1)0·x =

2n−1 − 1
2 φ̂z(0). This implies φ̂z(0) = 2n − 2|F−1(z)|.

By Parseval’s relation, ∑
a∈GF (2)n−{0}

φ̂z(a)2 = 22n − φ̂z(0)2

= 22n − (2n − 2|F−1(z)|)2 = 2n+2|F−1(z)| − 4|F−1(z)|2.

By the pigeon hole principle, we deduce that

max
a∈GF (2)n−{0}

φ̂z(a)2 ≥ 2n+2|F−1(z)| − 4|F−1(z)|2

2n − 1
.

and therefore

nonlingenF ≤ 2n−1 − 1
4

∑
z∈GF (2)m

√
2n+2|F−1(z)| − 4|F−1(z)|2

2n − 1
.

When F (x) is balanced, nonlingenF = GNF , |F−1(z)| = 2n−m for all z ∈ GF (2)m and we deduce:

GNF ≤ 2n−1 − 2m−2

√
22n−m+2 − 22n−2m+2

2n − 1
= 2n−1 − 2n−1

√
2m − 1
2n − 1

.

This upper bound is much lower than the covering radius bound and the upper bound for UNF

deduced in [4]:

UNF ≤ 2n−1 − 1
2

22m − 2m

2n − 1
+

√
22n − 22n−m

2n − 1
+

(
22m − 2m

2n − 1
− 1

)2

− 1

 . (7)

when F : GF (2)n → GF (2)m is balanced.

From [4], it is stated that the upper bound for UNF in equation (7) is higher than the covering radius

bound 2n−1 − 2n/2−1 when m ≤ n/2. Therefore it is not a useful bound when m ≤ n/2. In comparison,
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Table 4: Comparison of Upper Bound for NF , UNF and GNF when m = n/2
n 6 8 10 12 14 16
m 3 4 5 6 7 8
NF 28 120 496 2016 8128 32640

UNF 29 121 497 2017 8129 32641
GNF 22 97 423 1794 7471 30724

Table 5: Comparison of Upper Bound for NF , UNF and GNF when m = b3n/4c
n 6 8 10 12 14 16
m 4 6 7 9 10 12
NF 28 120 496 2016 8128 32640

UNF 27 110 487 1972 8090 32460
GNF 17 65 332 1325 6145 24577

the upper bound for GNF in Theorem 2 is clearly lower than the covering radius bound, for every m.

In Table 4, we illustrate this fact for n even and m = n/2.

When m > n/2, the upper bound for UNF is lower than the covering radius bound 2n−1 − 2(n−1)/2.

However it is not as low as the upper bound of GNF . We demonstrate this fact in Table 5 for n even

and m = b3n/4c.

Thus Theorem 2 provides further evidence that generalized correlation attack is more effective than

the usual and Zhang-Chan correlation attacks on vector Boolean functions.

5 Spectral Characterization of Generalized Correlation

In Theorem 3, we express the generalized correlation in terms of the values of the Hadamard transform

of F (its Hadamard, or Walsh, spectrum). This allows us to deduce general correlation properties based

on the spectral distribution.

Theorem 3. Let F : GF (2)n → GF (2)m and wi : GF (2)m → GF (2). Let w(·) denote the n-tuple of

m-bit Boolean functions (w1(·), . . . , wn(·)). Then the generalized Hadamard transform can be expressed

as:

F̂ (g(·), w1(·), . . . , wn(·)) =
1

2m

∑
z∈GF (2)m

(−1)g(z)
∑

v∈GF (2)m

(−1)v·z v̂ · F (w(z)).

13



Proof. Let φz(x) be defined as in the proof of Theorem 2. For a fixed z ∈ GF (2)m:∑
x∈F−1(z)

(−1)w(z)·x =
1

2m

∑
x∈GF (2)n

(−1)w(z)·x × 2mφz(x)

=
1

2m

∑
x∈GF (2)n

(−1)w(z)·x ×
∑

v∈GF (2)m

(−1)v·(F (x)+z)

(because
∑

v∈GF (2)m

(−1)v·a = 2m if and only if a = 0)

=
1

2m

∑
v∈GF (2)m

(−1)v·z ×
∑

x∈GF (2)n

(−1)w(z)·x+v·F (x)

=
1

2m

∑
v∈GF (2)m

(−1)v·z v̂ · F (w(z)).

By substituting this expression in Lemma 1, the proof is complete.

Remark 5. Based on Theorem 3 and equation (5), we get the following expression for nonlingenF .

nonlingenF = 2n−1 − 1
2m+1

∑
z∈GF (2)m

max
w(z)∈GF (2)n−{0}

∣∣∣∣∣∣
∑

v∈GF (2)m

(−1)v·z v̂ · F (w(z))

∣∣∣∣∣∣ . (8)

Assume the Hadamard transform distribution of F (x) is known, then we can have a more efficient

computation of GNF . By equation (8), we compute nonlingenF by an outer sum over 2m elements z,

each of which finds the maximum inner sum (over 2m elements v) for 2n choices of w(z). Thus the

complexity of computing nonlingenF is 2n+2m. Together with a complexity of 2m+n for determining the

balanceness of F (x), the complexity for computing GNF is 2m+n + 2n+2m. This is more efficient than

the computation of Theorem 1 because usually, m is much smaller than n in applications. Furthermore,

we do not need pre-computation and memory to store the sets {x : x ∈ F−1(z)} as in Theorem 1.

Some examples of vectorial Boolean functions on which this optimization can be applied is the Maiorana-

McFarland class of functions, e.g. see [2, 5].

Besides enabling more efficient computation of the generalized nonlinearity when the spectral dis-

tribution is known, Theorem 3 also allows us to compute a lower bound for generalized nonlinearity

(through equation (8)) in Section 6.

6 Lower Bound on Generalized Nonlinearity

In Section 4, we derived an upper bound for the generalized nonlinearity of a vectorial Boolean function.

In this section, we shall derive a lower bound for the generalized nonlinearity.

14



Theorem 4. Let F : GF (2)n → GF (2)m, then

GNF ≥ 2n−1 − (2m − 1)(2n−1 −NF ).

Proof. From equation (8) in Section 5 of our paper, we see that nonlingenF depends on the following

sum, that we shall bound in terms of the nonlinearity NF .

∑
z∈GF (2)m

max
a∈GF (2)n−{0}

∣∣∣∣∣∣
∑

v∈GF (2)m

(−1)v·z v̂ · F (a)

∣∣∣∣∣∣
≤

∑
z∈GF (2)m

∑
v∈GF (2)m

max
a6=0

|v̂ · F (a)|

=
∑

z∈GF (2)m

∑
v∈GF (2)m−{0}

max
a6=0

|v̂ · F (a)| (because v̂ · F (a) = 0 when v = 0, a 6= 0)

= 2m(2m − 1) max
v 6=0,a6=0

|v̂ · F (a)| ≤ 2m+1(2m − 1)(2n−1 −NF ).

(because max
v 6=0,a6=0

|v̂ · F (a)| ≤ max
v 6=0,a

|v̂ · F (a)| = 2n − 2NF )

By substituting this inequality in equation (8) we have the following inequality.

nonlingenF ≥ 2n−1 − (2m − 1)(2n−1 −NF ).

Also,

min
0 6=u∈GF (2)m

(wt(u · F ), 2n − wt(u · F ))

≥ NF ≥ 2n−1 − (2m − 1)(2n−1 −NF ).

Thus

GNF = min{ min
0 6=u∈GF (2)m

(wt(u · F ), 2n − wt(u · F )), nonlingenF}

≥ 2n−1 − (2m − 1)(2n−1 −NF ).

The following corollary is an immediate consequence of Theorem 6.

Corollary 1. Let f : GF (2)n → GF (2). Then GNf = Nf .

Proof. From Proposition 1, we see that GNf ≤ Nf . From Theorem 6, we see that GNf ≥ Nf when the

number of output bits is m = 1. Therefore GNf = Nf when m = 1.

Based on Theorem 4, we can construct vector Boolean functions with relatively high generalized

nonlinearity from those with high nonlinearity. Two well known classes of vector Boolean functions with
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high nonlinarity are the bent functions and almost bent functions. The bent functions F : GF (2)n →

GF (2)m have optimal nonlinearity 2n−1− 2n/2−1 and they exist only when n is even and m ≤ n/2. The

almost bent functions S : GF (2)n → GF (2)n have optimal nonlinearity 2n−1 − 2(n−1)/2 when n is odd.

By composing S(x) with a surjective linear function L : GF (2)n → GF (2)m, we can construct vector

Boolean functions F : GF (2)n → GF (2)m, F (x) = L ◦ S(x) with high nonlinearity 2n−1 − 2(n−1)/2

(obviously, this is not the only way of reaching such nonlinearity for n odd, but it is a simple one).

The following proposition on construction of vector Boolean functions with relatively high generalized

nonlinearity is a direct application of Theorem 4.

Proposition 2. 1. Let n be even and S : GF (2)n → GF (2)k, k ≤ n/2, be a bent function. Let

L : GF (2)k → GF (2)m be a surjective linear function and F : GF (2)n → GF (2)m be defined by

F (x) = L ◦ S(x). Then

GNF ≥ 2n−1 − 2n/2−1(2m − 1).

2. Let n be odd and S : GF (2)n → GF (2)n be an almost bent function. Let L : GF (2)n → GF (2)m

be a surjective linear function and F : GF (2)n → GF (2)m be defined by F (x) = L ◦ S(x). Then

GNF ≥ 2n−1 − 2(n−1)/2(2m − 1).

7 Functions with Improved Generalized Nonlinearity

In this Section, we shall show that when S(x) is some specially chosen almost bent function in Propo-

sition 2 part (2), we can improve (increase) the lower bound on generalized nonlinearity from 2n−1 −

2(n−1)/2(2m − 1) to 2n−1 − 2(n−1)/2+m−1.

Theorem 5. Let n be an odd integer and m be an integer dividing n. Let F : GF (2n) → GF (2m) be

defined by

1. F (x) = Trn
m(xk) where k = 2r + 1, gcd(r, n) = 1 or

2. F (x) = Trn
m(xk) where k = 22r − 2r + 1, 3r ≡ 1 mod n.

Then the generalized nonlinearity satisfies GNF ≥ 2n−1 − 2(n−1)/2+m−1.

Before we prove Theorem 5, we present Lemma 2 and 3 which we need for the proof.

Lemma 2. Let n be odd and f(x) = Trn
1 (xk) on GF (2n).

1. (Gold [8]) Let k = 2r + 1 where gcd(r, n) = 1. Then f̂(λ) = 0 ⇐⇒ Trn
1 (λ) = 0.
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2. (Dillon [7, Theorem 7]) Let k = 22r − 2r + 1 where 3r ≡ 1 mod n. Then f̂(λ) = 0 ⇐⇒

Trn
1 (λ2r+1) = 0.

We also need the following lemma on the trace function of subfield elements.

Lemma 3. Let n be odd and GF (2m) be a subfield of GF (2n), i.e. m|n. Let u be an integer such that

gcd(u, 2m − 1) = 1 and λ ∈ GF (2n). Then

|{b ∈ GF (2m)|Trn
1 (λbu) = 0}| ≥ 2m−1.

Proof. Note that

Trn
1 (λbu) = Trm

1 (Trn
m(buλ)) = Trm

1 (buTrn
m(λ))

because bu ∈ GF (2m). Since Trn
m(λ) is fixed, Trm

1 is balanced and b 7→ bu is a permutation on

GF (2m), half of Trn
1 (λbu) are 0’s when we vary b if Trn

m(λ) 6= 0. Trn
1 (λbu) is 0 for all b ∈ GF (2m) if

Trn
m(λ) = 0.

Proof of Theorem 5: For any linear combination of output bits v ·F (x), v ∈ GF (2)m, there exists

a unique element b ∈ GF (2m) such that v · F (x) = Trm
1 (bF (x)). And Trm

1 (bF (x)) = Trn
1 (bxk). We see

that

v̂ · F (λ) =
∑

x∈GF (2n)

(−1)Trn
1 (bxk)+Trn

1 (λx)

=
∑

y∈GF (2n)

(−1)Trn
1 (yk)+Trn

1 (λb−k−1
y), y = bk−1

x

= f̂(λb−k−1
) where f(x) := Trn

1 (xk), λ 6= 0.

By Lemma 2,

f̂(λb−k−1
) = 0 ⇐⇒ Trn

1 (λb−k−1
) = 0 for k = 2r + 1

f̂(λb−k−1
) = 0 ⇐⇒ Trn

1 (λ2r+1b−k−1(2r+1)) = 0 for k = 22r − 2r + 1.

By Lemma 3, for every λ, at least 2m−1 elements b ∈ GF (2m) satisfy this condition. Therefore, v̂ · F (λ) =

0 for at least 2m−1 elements v ∈ GF (2)m. For the other ≤ 2m−1 elements v ∈ GF (2)m, v̂ · F (λ) =

±2(n+1)/2 because the permutation xk is almost bent. Thus for each z ∈ GF (2)m,

max
a∈GF (2)n−{0}

∣∣∣∣∣∣
∑

v∈GF (2)m

(−1)v·z v̂ · F (a)

∣∣∣∣∣∣
≤ 2m−1 ×max

v,a
|v̂ · F (a)| = 2m−1 × 2(n+1)/2 = 2m+(n−1)/2,
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Table 6: Comparison of Generalized Nonlinearity Bounds for Constructions from Proposition 2 and
Theorem 5.

n 9 15 15 21 21
m 3 3 5 3 7

Lower Bound of GNF

from Proposition 2 part (2) 144 15488 12416 1041408 918528
Lower Bound of GNF

from Theorem 5 192 15872 14336 1044480 983040
NF of Almost
Bent functions 240 16256 16256 1047552 1047552

and

∑
z∈GF (2)m

max
a∈GF (2)n−{0}

∣∣∣∣∣∣
∑

v∈GF (2)m

(−1)v·z v̂ · F (a)

∣∣∣∣∣∣
≤ 2m × 2m+(n−1)/2 = 22m+(n−1)/2.

By substituting this inequality in equation (8), we have

nonlingenF ≥ 2n−1 − 1
2m+1

× 22m+(n−1)/2 = 2n−1 − 2(n−1)/2+m−1.

Since F (x) is a balanced function, we have GNF = nonlingenF and we are done.

In Table 6, we illustrate that the generalized nonlinearity of the functions constructed from Theorem

5 is higher than that from Proposition 2 part (2). We also list the nonlinearity of almost bent functions

for comparison.

8 Generalized Nonlinearity of Secondary Constructions

Secondary constructions produce Boolean functions with high nonlinearity, resiliency and other good

cryptographic properties from other Boolean functions as building blocks. With respect to the generalized

correlation attack, it would be useful to check if these constructions yield functions with high generalized

nonlinearity. The first secondary construction we will look at is input composition with an invertible

linear function. As in the case of nonlinearity, generalized nonlinearity is preserved in this case.

Proposition 3. Let F : GF (2)n → GF (2)m be a vectorial Boolean function and let L : GF (2)n →

GF (2)n be an invertible linear function. Then GNF◦L = GNF .
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Proof. When computing GNF◦L, we compute the expression:

nonlingenF ◦ L = 2n−1 − 1/2 max
g,w

∑
x

(−1)g(F (L(x))+w(F (L(x))·x

= 2n−1 − 1/2 max
g,w

∑
y

(−1)g(F (y))+w(F (y))·L−1(y)

= 2n−1 − 1/2 max
g,w

∑
y

(−1)g(F (y))+(L−1)∗(w(F (y)))·y

= 2n−1 − 1/2 max
g,w′

∑
y

(−1)g(F (y))+w′(F (y))·y

= nonlingenF.

where L∗ is the adjoint (transpose) of the linear function L and w′ : GF (2)n → GF (2)n is defined by

w′(x) = [(L−1)∗ ◦ w](x). Furthermore wt(F ) = wt(F ◦ L), therefore GNF = GNF◦L.

The next secondary construction we look at is output composition. One common candidate for

output composition is the projection function, i.e. dropping output bits. For example, there are many

known permutations with high nonlinearity [1] and by dropping output bits, we form vectorial Boolean

functions with the same or higher nonlinearity.

Proposition 4. Let F : GF (2)n → GF (2)m and G : GF (2)m → GF (2)k be balanced functions. Then

GNG◦F ≥ GNF . If G(z) is a permutation, then GNG◦F = GNF .

Proof. Let G,W and G′,W ′ be the set of m-bit and k-bit Boolean functions in Definitions 1 and 2

respectively.

max
g′∈G′,w′∈W′

Ĝ ◦ F (g′, w′
1, . . . , w

′
n) = max

g′∈G′,w′∈W′
F̂ (g′ ◦G, w′

1 ◦G, . . . , w′
n ◦G) ≤ max

g∈G,w∈W
F̂ (g, w1, . . . , wn).

Therefore by equation (5), nonlingenG ◦F ≥ nonlingenF . Note that w′ ∈ W ′ implies w′ ◦G ∈ W in the

above inequality.

Since F (x) is balanced, nonlingenF = GNF by remark 3. It is easy to deduce that G ◦F is balanced

if both F and G are balanced. Thus nonlingenG◦F = GNG◦F by remark 3 and we have GNG◦F ≥ GNF .

If G(z) is a permutation, then {g ◦G|g ∈ G} = G and {(w1 ◦G, . . . , wn ◦G)|w ∈ W} = W. Thus we

have nonlingenG ◦ F = nonlingenF which implies GNG◦F = GNF .

By Proposition 4, we see that output composition, e.g. dropping output bits, is good for enhancing

security as it may increase the generalized nonlinearity.

However, output composition is not always good. It is well-known that linear error correction codes

correspond to resilient vectorial Boolean functions [6], so they are easy to construct. However, one

drawback is that they are linear and thus not useful for stream cipher applications. In [15], Zhang and
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Zheng proved that if we compose the output of a resilient function with a permutation, then the order

of resiliency is preserved in the resulting function. Thus they composed linear resilient functions with

highly nonlinear permutation to form large sets of resilient vector functions with relatively high algebraic

degree and nonlinearity. By applying Proposition 4 to Zhang and Zheng’s construction, we immediately

deduce that their construction is not secure.

Corollary 2. Let F : GF (2)n → GF (2)m be a linear function and G : GF (2)m → GF (2)m be any

bijective map. Then G ◦F has null generalized nonlinearity. Thus the construction of Zhang and Zheng

in [15, Section 4] is insecure for stream cipher applications.

Proof. This is because G(z) is a permutation implies GNG◦F = GNF by Proposition 4 and GNF = 0

because F (x) is linear.

The consequence of Corollary 2 is that we can form exact linear equations between the output

keystream and secret LFSR state bits. Thus the secret key can be recovered easily by simple linear

algebra with less keystream bits than correlation attacks. This fact has also been pointed out in [2]

where they remarked that the unrestricted nonlinearity of the Zhang-Zheng construction is 0.

Another common construction for vectorial resilient functions is concatenation. Let us look at the

known results on this construction.

Proposition 5. ([15, Corollary 4]) Let F1 : GF (2)n1 → GF (2)m1 be a t1-resilient function and F2 :

GF (2)n2 → GF (2)m2 be a t2-resilient function. Then F1||F2 : GF (2)n1+n2 → GF (2)m1+m2 defined by

F1||F2(x, y) = (F1(x), F2(y))

is a t-resilient function where t = min(t1, t2).

By Proposition 5, given two smaller vectorial Boolean functions which are t-resilient, we can form a

bigger Boolean function which is t-resilient. With respect to generalized correlation attack, we would

like to know its generalized nonlinearity.

Proposition 6. Let F1 : GF (2)n1 → GF (2)m1 and F2 : GF (2)n2 → GF (2)m2 be balanced functions.

Then the generalized nonlinearity of their concatenation F (x, y) = F1(x)||F2(y) satisfies:

GNF ≤ 2n1+n2−1 − 1
2
(2n1 − 2GNF1)(2

n2 − 2GNF2).

Proof. Consider any gi : GF (2)mi → GF (2), i = 1, 2 and any wi,1, . . . , wi,ni : GF (2)mi → GF (2),
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i = 1, 2 where for all z ∈ GF (2)mi , (wi,1(z), . . . , wi,ni
(z)) 6= (0, . . . , 0). We see that:

F̂1(g1(·), w1,1(·), . . . , w1,n1(·))× F̂2(g2(·), w2,1(·), . . . , w2,n2(·))

=
∑

x

(−1)g1(F1(x))+w1,1(F1(x))x1+...+w1,n1 (F1(x))xn1

∑
y

(−1)g2(F2(y))+w2,1(F2(y))y1+...+w2,n2 (F2(y))yn2

=
∑
x,y

(−1)g(F1(x),F2(y))+w1(F1(x),F2(y))x1+...+wn1+n2 (F1(x),F2(y))yn2

= ̂(F1, F2)(g(·), w1(·), . . . , wn1+n2(·)).

where we let g : GF (2)m1+m2 → GF (2) be defined by g(z1, z2) = g1(z1) + g2(z2). Let

w1(z1, z2) = w1,1(z1), . . . , wn1(z1, z2) = w1,n1(z1), wn1+1(z1, z2) = w2,1(z2), . . . , wn1+n2(z1, z2) = w2,n2(z2).

Then for all (z1, z2) ∈ GF (2)m1+m2 , it is obvious that (w1(z1, z2), . . . , wn1+n2(z1, z2)) 6= (0, . . . , 0).

Since on the left hand side of the above equations g(·) and wi,j(·) can be any functions while the

g, wi defined on the right hand side are only functions on (z1, z2) ∈ GF (2)m1+m2 of a special form, we

have:

max
g1,w1,i

F̂1(g1(·), w1,i(·))× max
g2,w2,i

F̂2(g2(·), w2,i(·)) ≤ max
g,wi

̂(F1||F2)(g(·), w1(·), . . . , wn1+n2(·).

By substituting this inequality in equation (5), we get

nonlingen(F1||F2) ≤ 2n1+n2−1 − 1
2
(2n1 − 2nonlingenF1)(2n2 − 2nonlingenF2). (9)

Since F1(x) and F2(y) are balanced functions, we have nonlingenFi = GNFi
by remark 3. Furthermore,

it is easy to see that (F1(x), F2(y)) is a balanced function. Thus nonlingen(F1||F2) = GN(F1||F2) by

remark 3. Thus we can substitute all the nonlingenF in equation (9) by GNF and we are done.

By Proposition 6, we see that for a concatenated function to possess high generalized nonlinearity,

both the component functions have to possess high generalized nonlinearity.

9 Generalized Nonlinearity of a Function with Very High Un-
restricted Nonlinearity

In Corollary 2, we saw that although the Zhang-Zheng function has very high nonlinearity, it has zero

unrestricted and generalized nonlinearity. A related question which we may ask is this: if a vectorial

Boolean function has very high unrestricted nonlinearity, does it ensure that it has high generalized

nonlinearity? We shall answer this question in this Section.

The following function from [4] has high unrestricted nonlinearity:
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Proposition 7. (Carlet-Prouff [4, Proposition 4]) Let F : GF (2n/2)×GF (2n/2) → GF (2n/2) be defined

by F (x, y) = x/y if y 6= 0 and F (x, y) = x when y = 0. Then UNF = 2n−1 − 2n/2.

There are many contructions for balanced vectorial Boolean functions with high nonlinearity but to

the best of our knowledge, there are none with nonlinearity higher than 2n−1 − 2n/2 when n is even

[2]. Therefore this function has the best possible unrestricted nonlinearity. Next we shall compute its

generalized nonlinearity.

Theorem 6. Let F : GF (2n/2) × GF (2n/2) → GF (2n/2) be defined by F (x, y) = x/y if y 6= 0 and

F (x, y) = x when y = 0. Then GNF = 0.

Proof. From the proof of Theorem 2, we see that:

GNF = 2n−1 − 1/4
∑

z∈GF (2n/2)

max
(a,b) 6=(0,0)

∣∣∣φ̂z(a, b)
∣∣∣ , (10)

where φz(x, y) = 1 if z = F (x, y) and φz(x, y) = 0 otherwise. Here we write GNF for nonlingenF

because F (x) is balanced.

For a subset A ⊂ GF (2n/2)×GF (2n/2), let IndA(x, y) be the indicator function of A, i.e. IndA(x, y) =

1 if (x, y) ∈ A, IndA(x, y) = 0 otherwise.

Let z = F (x, y). We know that, for every z,

φz(x, y) = IndGF (2n/2)×(z,1)(x, y)− Ind(0,0)(x, y) + Ind(z,0)(x, y). (11)

We need to compute the Walsh transform φ̂z(a, b) when (a, b) 6= (0, 0):

φ̂z(a, b) =
∑
x,y

(−1)φz(x,y)+Tr(ax+by)

=
∑
x,y

(−1)Tr(ax+by) − 2
∑
x,y

φz(x, y)(−1)Tr(ax+by)

= −2×
∑
x,y

φz(x, y)(−1)Tr(ax+by) (because (a, b) 6= (0, 0)).

From equation (11), we see that:∑
x,y

φz(x, y)(−1)Tr(ax+by) =
∑

y

(−1)Tr((az+b)y) − 1 + (−1)Tr(az)

= 2n/2IndGF (2n/2)×(1,z)(a, b)− 1 + (−1)Tr(az).

Thus the maximum of |φ̂z(a, b)| is 2n/2+1 and we see that GNF = 0 by substituting max(a,b) 6=(0,0) |φ̂z(a, b)|

in equation (10):

GNF = 2n−1 − 1/4
∑

z∈GF (2n/2)

2n/2+1 = 0.
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Theorem 6 shows the surprising result that although a vectorial function may have very high unre-

stricted nonlinearity, it may still be possible for it to have zero generalized nonlinearity.

10 Conclusion

In this paper, we have introduced the generalized correlation attack on stream ciphers with vector output

pseudo-random generators. When the generalized correlation attack is applied to the single output case,

it is equivalent to a bilinear cryptanalysis. Unfortunately, we showed that it does not improve on the

usual correlation attack in this case. However, for the case of multiple output bits, we found promising

results which show that generalized correlation attack improves on current methods. An upper bound for

generalized correlation is proved which shows that generalized correlation attack is more effective than

the Zhang-Chan and usual correlation attack for vector Boolean functions in general. Efficient ways to

find the best generalized linear approximations were also investigated. From experimental results, we saw

that the bias of generalized linear approximations is much larger than that of the Zhang-Chan and usual

correlation attack. Furthermore, there were several cases where the generalized linear equation is exact

while the usual correlation and/or Zhang-Chan approach can only yield linear approximations (e.g. see

example 2, Zhang-Zheng resilient functions). We also proved a lower bound for generalized nonlinearity

and used it to construct functions with high generalized nonlinearity. Next, we found the generalized

nonlinearity of some secondary constructions like pre-composition, post-composition and concatenation.

Finally, we showed through the Zhang-Zheng function from [15] and Carlet-Prouff function from [4] that

high nonlinearity and/or high unrestricted nonlinearity does not ensure high generalized nonlinearity.

There are still more open questions to investigate for further research. One is to find better lower

and upper bounds for generalized correlation. We can also find the generalized nonlinearity of other

useful secondary constructions like the direct sum (and its generalization by Carlet) and the vector

Maiorana-McFarland construction. Another direction is to investigate practical implementations of the

attack on actual stream ciphers.
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