
RC4 State Information at Any Stage Reveals the
Secret Key∗

Goutam Paul†, Subhamoy Maitra‡

Abstract

A theoretical analysis of the RC4 Key Scheduling Algorithm (KSA) is presented in
this paper, where the nonlinear operation is swapping among the permutation bytes.
Explicit formulae are provided for the probabilities with which the permutation bytes
at any stage of the KSA are biased to the secret key. Theoretical proofs of these
formulae have been left open since Roos’s work (1995). Based on this analysis, an
algorithm is devised to recover the l bytes (i.e., 8l bits, typically 5 ≤ l ≤ 16) secret
key from the permutation after any round of the KSA with constant probability of
success. The search requires O(24l) many operations which is the square root of
the exhaustive key search complexity 28l. Moreover, given the state information,
i.e., (a) the permutation, (b) the number of bytes generated (which is related to the
index i) and (c) the value of the index j, after any number of rounds in Pseudo-
Random Generation Algorithm (PRGA) of RC4, one can deterministically get back
to the permutation after the KSA and thereby extract the keys efficiently with a
constant probability of success. Finally, a generalization of the RC4 KSA is analyzed
corresponding to a class of update functions of the indices involved in the swaps.
This reveals an inherent weakness of shuffle-exchange kind of key scheduling.

Keywords: Bias, Cryptanalysis, Key Scheduling, Permutation, RC4, Stream Cipher.

1 Introduction

Two decades have passed since the inception of RC4. Though a variety of other stream
ciphers have been discovered after RC4, it is still the most popular and most frequently
used stream cipher algorithm due to its simplicity, ease of implementation, speed and

∗This is an extended version of the paper “Permutation after RC4 Key Scheduling Reveals the Secret
Key”, presented in 14th Annual Workshop on Selected Areas in Cryptography, SAC 2007, August 16-17,
Ottawa, Canada.

†Department of Computer Science and Engineering, Jadavpur University, Kolkata 700 032, India, Email:
goutam paul@cse.jdvu.ac.in

‡Applied Statistics Unit, Indian Statistical Institute, 203 B T Road, Kolkata 700 108, India, Email:
subho@isical.ac.in

1

efficiency. RC4 is widely used in the Secure Sockets Layer (SSL) and similar protocols
to protect the internet traffic, and was integrated into Microsoft Windows, Lotus Notes,
Apple AOCE, Oracle Secure SQL, etc. Though the algorithm can be stated in less than ten
lines, even after many years of analysis its strengths and weaknesses are of great interest
to the community. In this paper, we study the Key Scheduling Algorithm of RC4 in detail
and find out results that have implications towards the security of RC4. Before getting
into the contribution in this paper, we first revisit the basics of RC4.

The RC4 stream cipher has been designed by Ron Rivest for RSA Data Security in
1987, and was a propriety algorithm until 1994. It uses an S-Box S = (S[0], . . . , S[N − 1])
of length N , each location being of 8 bits. Typically, N = 256. S is initialized as the
identity permutation, i.e., S[i] = i for 0 ≤ i ≤ N −1. A secret key of size l bytes (typically,
5 ≤ l ≤ 16) is used to scramble this permutation. An array K = (K[0], . . . , K[N − 1]) is
used to hold the secret key, where each location is of 8 bits. The key is repeated in the array
K at key length boundaries. For example, if the key size is 40 bits, then K[0], . . . , K[4]
are filled by the key and then this pattern is repeated to fill up the entire array K.

The RC4 cipher has two components, namely, the Key Scheduling Algorithm (KSA)
and the Pseudo-Random Generation Algorithm (PRGA). The KSA turns the random key
K into a permutation S of 0, 1, . . . , N − 1 and PRGA uses this permutation to generate
pseudo-random keystream bytes. The keystream output byte z is XOR-ed with the message
byte to generate the ciphertext byte at the sender end. Again, z is XOR-ed with the
ciphertext byte to get back the message byte at the receiver end.

Any addition used related to the RC4 description is in general addition modulo N
unless specified otherwise.

Algorithm KSA
Initialization:

For i = 0, . . . , N − 1
S[i] = i;

j = 0;
Scrambling :

For i = 0, . . . , N − 1
j = (j + S[i] + K[i]);
Swap(S[i], S[j]);

Algorithm PRGA
Initialization:

i = j = 0;
Output Keystream Generation Loop:

i = i + 1;
j = j + S[i];
Swap(S[i], S[j]);
t = S[i] + S[j];
Output z = S[t];

Note that defining the array K to be of size N enables us to write K[i] instead of
the typical K[i mod l] in the description of the algorithm. This is done for the sake of
simplification in the subsequent analysis of the algorithm.

1.1 Outline of the contribution

In this paper, the update of the permutation S in different rounds of the KSA is analyzed
and it is theoretically proved that at any stage of the KSA, the initial bytes of the permu-
tation will be significantly biased towards some combination of the secret key bytes. Such
biases were observed by Roos in [14] for the first time. It has been noted in [14] that after

2

the completion of the KSA, the most likely value of the i-th element of the permutation

for the first few values of i is given by S[i] = i(i+1)
2

+
i∑

x=0

K[x]. However, the probability

P (S[i] = i(i+1)
2

+
i∑

x=0

K[x]) could not be theoretically arrived in [14] and experimental values

have been provided as in Table 1 below.

i P (S[i] = i(i+1)
2

+
i∑

x=0

K[x])

0-15 .370 .368 .362 .358 .349 .340 .330 .322 .309 .298 .285 .275 .260 .245 .229 .216
16-31 .203 .189 .173 .161 .147 .135 .124 .112 .101 .090 .082 .074 .064 .057 .051 .044
32-47 .039 .035 .030 .026 .023 .020 .017 .014 .013 .012 .010 .009 .008 .007 .006 .006

Table 1: The probabilities experimentally observed by Roos [14].

Note that Roos’s observation [14] was about the final permutation after the KSA. We
here theoretically prove for the first time with what probabilities the permutation bytes at
any stage of the KSA are correlated with the secret key bytes. Thus, our results include
Roos’s observation as a special case. Roos [14] commented that “Swapping is a nasty
nonlinear process which is hard to analyze.” That process is analyzed in a disciplined
manner in this paper that unfolds the effect of swapping in the KSA of RC4 (see Lemma 1,
Lemma 2 and Theorem 1 in Section 2).

In Section 3, we use these biases to show that if the permutation at any stage of the
KSA is available, then one can retrieve the key bytes in time much less than the exhaustive
key search. For a secret key of size 8l bits (48 ≤ 8l ≤ 128), the key can be recovered in

O(2
8l
2) effort with a constant probability of success. In a shuffle-exchange kind of stream

cipher, for proper cryptographic security, one may expect that after the key scheduling
algorithm one should not be able to get any information regarding the secret key bytes
from the random permutation in time complexity less than the exhaustive key search. We
show that the KSA of RC4 is weak in this aspect.

Next, in Section 4, we point out that if the state information of RC4 during the PRGA
is available, then one can deterministically get back to the permutation after the KSA.
By state information we mean (a) the entire permutation S, (b) the number of keystream
output bytes generated (which is related to the index i) and (c) the value of the index j.
Once the final permutation after the KSA is retrieved, using the approach of Section 3 we
can recover the secret key.

Finally, in Section 5, we consider the generalization of the RC4 KSA where the index j
can be updated in different manners. In RC4 KSA, the update rule is j = (j +S[i]+K[i]).
We show that for any arbitrary secret key and for a certain class of update functions which
compute the new value of the index j in the current round as a function of “the permutation
S and j in the previous round” and “the secret key K”, it is always possible to construct

3

explicit functions of the key bytes which the permutation at every stage of the KSA will
be biased to. This shows that the RC4 KSA cannot be made more secure by replacing the
update rule j = j + S[i] + K[i] with any rule from a large class that we present. Such bias
is intrinsic to shuffle-exchange kind of paradigm, where one index (i) is updated linearly
and another index (j) is modified pseudo-randomly.

1.2 Background

There are two broad approaches in the study of cryptanalysis of RC4: attacks based on the
weaknesses of the KSA and those based on the weaknesses of the PRGA. Distinguishing
attacks are the main motivation for PRGA-based approach [1, 3, 6, 7, 8, 12, 13]. Important
results in this approach include bias in the keystream output bytes. For example, a bias
in the second output byte being zero has been proved in [6] and a bias in the equality of
the first two output bytes has been shown in [13]. In [10], RC4 has been analyzed using
the theory of random shuffles and it has been recommended that initial 512 bytes of the
keystream output should be discarded in order to be safe.

Initial empirical works based on the weaknesses of the RC4 KSA were done in [14, 16]
and several classes of weak keys had been identified. Recently, a more general theoretical
study has been performed in [11] which includes the observations of [14]. The work [11]
shows how the bias of the “third permutation byte” (after the KSA) towards the “first three
secret key bytes” propagates to the first keystream output byte (in the PRGA). Thus, it
renews the interest to study how the permutation after the KSA (which acts as a bridge
between the KSA and the PRGA) is biased towards the secret key, which is theoretically
solved in this paper.

Some weaknesses of the KSA have been addressed in great detail in [2] and practi-
cal attacks have been mounted on RC4 in the IV mode (e.g. WEP [4]). Further, the
propagation of weak key patterns to the output keystream bytes has also been discussed
in [2]. Subsequently, the work [5] improved [2]. In [9, Chapter 6], correlation between the
permutations that are a few rounds apart have been discussed.

2 Theoretical Analysis of the Key Scheduling

Let jr and Sr be respectively the value of the pseudo-random index j and the permutation
after the r-th round of the KSA, r ≥ 1. Hence SN is the final permutation after the KSA.
We also denote the initial permutation by S0 and the initial value 0 of the index j by j0.
In the original RC4, S0 is the identity permutation. Also, note that for the deterministic
index i, we have r = i + 1, 0 ≤ i ≤ N − 1.

We now prove a general formula (Theorem 1) that estimates the probabilities with
which the permutation bytes after each round of the RC4 KSA are related to certain
combinations of the secret key bytes. The result we present has two-fold significance. It
gives for the first time a theoretical proof explicitly showing how these probabilities change
as functions of i. Further, it does not assume that the initial permutation is an identity

4

permutation. The result holds for any arbitrary initial permutation. Note that though j is
updated using a deterministic formula, it is a linear function of the pseudo-random secret
key bytes, and is therefore itself pseudo-random. If the secret key generator produces the
secret keys uniformly at random, which is a reasonable assumption, then the distribution
of j will also be uniform.

The proof of Theorem 1 depends on Lemma 1 and Lemma 2 which we prove below
first.

Lemma 1 Assume that during the KSA rounds, the index j takes its values from {0, 1, . . .,

N − 1} uniformly at random. Then, P (ji+1 =
i∑

x=0

S0[x] +
i∑

x=0

K[x]) ≈(N−1
N

)1+
i(i+1)

2 + 1
N

,

0 ≤ i ≤ N − 1.

Proof: One contribution towards the event E : (ji+1 =
i∑

x=0

S0[x] +
i∑

x=0

K[x]) is approxi-

mately (N−1
N

)
i(i+1)

2 . This part is due to the association based on the recursive updates of j
and can be proved by induction on i.

• Base Case: Before the beginning of the KSA, j0 = 0. Now, in the first round with

i = 0, we have j1 = j0 + S0[0] + K[0] = 0 + S0[0] + K[0] =
0∑

x=0

S0[x] +
0∑

x=0

K[x] with

probability 1 = (N−1
N

)
0(0+1)

2 . Hence, the result holds for the base case.

• Inductive Case: Suppose, that the result holds for the first i rounds, when the deter-
ministic index takes its values from 0 to i − 1, i ≥ 1. Now, for the (i + 1)-th round,

we would have ji+1 = ji + Si[i] + K[i]. Thus, ji+1 can equal
i∑

x=0

S0[x] +
i∑

x=0

K[x], if

ji =
i−1∑
x=0

S0[x] +
i−1∑
x=0

K[x] and Si[i] = S0[i].

By inductive hypothesis, we get P (ji =
i−1∑
x=0

S0[x] +
i−1∑
x=0

K[x]) ≈(N−1
N

)
i(i−1)

2 . Further,

Si[i] remains the same as S0[i], if it has not been involved in any swap during the
previous rounds, i.e., if any of the values j1, j2, . . . , ji has not hit the index i, the
probability of which is (N−1

N
)i. Thus, the probability that the event E occurs along

the above recursive path is ≈ (N−1
N

)
i(i−1)

2 · (N−1
N

)i = (N−1
N

)
i(i+1)

2 .

A second contribution towards the event E is due to random association when
the above recursive path is not followed. This probability is approximately

(
1 −

(N−1
N

)
i(i+1)

2

)
· 1

N
. Adding these two contributions, we get the total probability ≈

(N−1
N

)
i(i+1)

2 +
(
1− (N−1

N
)

i(i+1)
2

)
· 1

N
= (1− 1

N
) · (N−1

N
)

i(i+1)
2 + 1

N
= (N−1

N
)1+

i(i+1)
2 + 1

N
.

5

Lemma 2 Assume that during the KSA rounds, the index j takes its values from {0, 1, . . .,
N − 1} uniformly at random. Then, P (Sr[i] = S0[ji+1]) ≈ (N−i

N
) · (N−1

N
)r−1, 0 ≤ i ≤ r − 1,

1 ≤ r ≤ N .

Proof: During the swap in round i + 1, Si+1[i] is assigned the value of Si[ji+1]. Now,
the index ji+1 is not involved in any swap during the previous i many rounds, if it is
not touched by the indices {0, 1, . . . , i − 1}, the probability of which is (N−i

N
), as well

as if it is not touched by the indices {j1, j2, . . . , ji}, the probability of which is (N−1
N

)i.
Hence, P (Si+1[i] = S0[ji+1]) ≈ (N−i

N
) · (N−1

N
)i. After round i + 1, index i is not touched

by any of the subsequent r − 1 − i many j values with probability (N−1
N

)r−1−i. Hence,
P (Sr[i] = S0[ji+1]) ≈ (N−i

N
) · (N−1

N
)i · (N−1

N
)r−1−i = (N−i

N
) · (N−1

N
)r−1.

Theorem 1 Assume that during the KSA rounds, the index j takes its values from {0, 1,
. . . , N − 1} uniformly at random. Then, P (Sr[i] = fi) ≈ (N−i

N
) · (N−1

N
)[

i(i+1)
2

+r] + 1
N

, where

fi = S0

[i∑
x=0

S0[x] +
i∑

x=0

K[x]
]
, 0 ≤ i ≤ r − 1, 1 ≤ r ≤ N .

Proof: Sr[i] can equal S0

[i∑
x=0

S0[x] +
i∑

x=0

K[x]
]

in two ways. One way is that ji+1 =

i∑
x=0

S0[x] +
i∑

x=0

K[x] following the recursive path as in the proof of Lemma 1, and Sr[i] =

S0[ji+1]. Combining the results of Lemma 1 and Lemma 2, we get the contribution of

this part ≈ (N−1
N

)
i(i+1)

2 · (N−i
N

) · (N−1
N

)r−1 = (N−i
N

) · (N−1
N

)[
i(i+1)

2
+(r−1)]. Another way is

that neither of the above events happen and still Sr[i] equals S0

[i∑
x=0

S0[x] +
i∑

x=0

K[x]
]

due to random association. The contribution of this second part is approximately
(
1 −

(N−i
N

) · (N−1
N

)[
i(i+1)

2
+(r−1)]

)
· 1

N
. Adding these two contributions, we get the total probabil-

ity ≈ (N−i
N

) · (N−1
N

)[
i(i+1)

2
+(r−1)] +

(
1 − (N−i

N
) · (N−1

N
)[

i(i+1)
2

+(r−1)]
)
· 1

N
= (1 − 1

N
) · (N−i

N
) ·

(N−1
N

)[
i(i+1)

2
+(r−1)] + 1

N
= (N−i

N
) · (N−1

N
)[

i(i+1)
2

+r] + 1
N

.

Corollary 1 If the initial permutation is the identity permutation, then fi = i(i+1)
2

+
i∑

x=0

K[x], 0 ≤ i ≤ N − 1.

Proof: Substitute S0[i] = i in the form fi = S0

[i∑
x=0

S0[x]+
i∑

x=0

K[x]
]

for 0 ≤ i ≤ N − 1.

Corollary 2 The bias of the final permutation after the KSA towards the secret key is

given by P (SN [i] = fi) ≈ (N−i
N

) · (N−1
N

)[
i(i+1)

2
+N] + 1

N
, 0 ≤ i ≤ N − 1.

6

Proof: Substitute r = N in the statement of the theorem.
In the following table we list the values of probabilities P (SN [i] = fi) (when the initial

permutation is identity, i.e., when fi = i(i+1)
2

+
i∑

x=0

K[x]) to compare with the experimental

values provided in [14] and summarized in our Table 1.

i P (SN [i] = i(i+1)
2

+
i∑

x=0

K[x])

0-15 .371 .368 .364 .358 .351 .343 .334 .324 .313 .301 .288 .275 .262 .248 .234 .220
16-31 .206 .192 .179 .165 .153 .140 .129 .117 .107 .097 .087 .079 .071 .063 .056 .050
32-47 .045 .039 .035 .031 .027 .024 .021 .019 .016 .015 .013 .011 .010 .009 .008 .008

Table 2: The probabilities following Corollary 2.

After the index 48 and onwards, both the theoretical as well as the experimental values
tend to 1

N
(= 0.0039 for N = 256) as is expected when we consider the equality between

two randomly chosen values from a set of N elements.

3 Recovering the Secret Key from the Permutation

at Any Stage of the KSA

In this section, we discuss how to get back the secret key, if we know the permutation at
any stage of the KSA.

We explain the scenario with an example first. In all the examples in this section,
we consider, without loss of generality, only the final permutation after the KSA, i.e., we
consider the case r = N only.

Example 1 Consider a 5 byte secret key with K[0] = 106, K[1] = 59, K[2] = 220, K[3] =

65, and K[4] = 34. We denote fi = i(i+1)
2

+
i∑

x=0

K[x]. If one runs the KSA, then the first

16 bytes of the final permutation will be as follows.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
fi 106 166 132 200 238 93 158 129 202 245 105 175 151 229 21 142
S256[i] 230 166 87 48 238 93 68 239 202 83 105 147 151 229 35 142

The strategy of key recovery would be to consider all possible sets of 5 equations chosen from
the 16 equations SN [i] = fi, 0 ≤ i ≤ 15, and then try to solve them. Whether the solution is
correct or not can be checked by running the KSA and comparing the permutation obtained
with the permutation in hand. Some of the choices may not be solvable at all.

7

The case of correct solution for this example correspond to the choices i = 1, 4, 5, 8 and
12, and the corresponding equations are:

K[0] + K[1] + (1 · 2)/2 = 166 (1)

K[0] + K[1] + K[2] + K[3] + K[4] + (4 · 5)/2 = 238 (2)

K[0] + . . . + K[5] + (5 · 6)/2 = 93 (3)

K[0] + . . . + K[8] + (8 · 9)/2 = 202 (4)

K[0] + . . . + K[12] + (12 · 13)/2 = 151 (5)

In general, the correctness of the solution depends on the correctness of the selected
equations. The probability that we will indeed get correct solutions is related to the joint
probability of Sr[i] = fi for the set of chosen i-values. Note that we do not need the
assumption that the majority of the equations are correct. Whether indeed the equations
selected are correct or not can be cross-checked by running the KSA again. Moreover,
empirical results show that in a significant proportion of the cases we get enough correct
equations to solve for the key.

For a 5 byte key, if we go for an exhaustive search for the key, then the complexity would
be 240. Whereas in our approach, we need to consider at the most

(
16
5

)
= 4368 < 213 sets of 5

equations. Since the equations are triangular in form, solving each set of 5 equations would
take approximately 52 = 25 (times a small constant) < 25 many additions/subtractions.
Hence the improvement over exhaustive search is almost by a factor of 240

213·25 = 222.
From Corollary 1, we get how Sr[i] is biased to different combinations of the keys,

namely, with fi = i(i+1)
2

+
i∑

x=0

K[x]. Let us denote P (Sr[i] = fi) = pr,i for 0 ≤ i ≤ r − 1,

1 ≤ r ≤ N . We initiate the discussion for RC4 with secret key of size l bytes. Suppose
we want to recover exactly m out of the l secret key bytes by solving equations and the
other l − m bytes by exhaustive key search. For this, we consider n (m ≤ n ≤ r) many
equations Sr[i] = fi, i = 0, 1, . . . , n − 1, in l variables (the key bytes). Let EIt denote the
set of all independent systems of t equations, or, equivalently, the collection of the indices
{i1, i2, . . . , it} ⊆ {0, 1, . . . , n − 1}, corresponding to all sets of t independent equations
(selected from the above system of n equations).

If we want to recover m key bytes by solving m equations out of the first n equations
of the form Sr[i] = fi, in general, we need to check whether each of the

(
n
m

)
systems of m

equations is independent or not. In the next Theorem, we present the criteria for checking
the independence of such a set of equations and also the total number of such sets.

Theorem 2 Let l ≥ 2 be the RC4 key length in bytes. Suppose we want to select systems
of m independent equations, 2 ≤ m ≤ l, from the following n equations of the form
Sr[i] = fi involving the permutation bytes after round r of the KSA, m ≤ n ≤ r ≤ N ,

where fi = i(i+1)
2

+
i∑

x=0

K[x], 0 ≤ i ≤ n− 1.

8

1. The system Sr[iq] = fiq , 1 ≤ q ≤ m, of m equations selected from Sr[i] = fi,
0 ≤ i ≤ n − 1, corresponding to i = i1, i2, . . . , im, is independent if and only if any
one of the following two conditions hold: either (i) iq mod l, 1 ≤ q ≤ m, yields m
distinct values, or (ii) iq mod l 6= (l − 1), 1 ≤ q ≤ m, and there is exactly one pair
ix, iy ∈ {i1, i2, . . . , im} such that ix = iy (mod l), and all other iq mod l, q 6= x, q 6= y
yields m− 2 distinct values different from ix, iy (mod l).

2. The total number of independent systems of m (≥ 2) equations is given by

|EIm| =
m∑

x=0

(
n mod l

x

)(
l−n mod l

m−x

)
(bn

l
c + 1)x(bn

l
c)m−x

+
(

n mod l
1

)(bn
l
c+1
2

) m−2∑
x=0

(
n mod l−1

x

)(
l−n mod l−1

m−2−x

)
(bn

l
c + 1)x(bn

l
c)m−2−x

+
(

l−n mod l−1
1

)(bn
l
c

2

) m−2∑
x=0

(
n mod l

x

)(
l−n mod l−2

m−2−x

)
(bn

l
c + 1)x(bn

l
c)m−2−x,

where the binomial coefficient
(

u
v

)
has the value 0, if u < v.

Proof: (Part 1) First, we will show that any one of the conditions (i) and (ii) is sufficient.
Suppose that the condition (i) holds, i.e., iq mod l (1 ≤ q ≤ m) yields m distinct values.
Then each equation involves a different key byte as a variable, and hence the system is
independent. Now, suppose that the condition (ii) holds. Then there exists exactly one pair
x, y ∈ {1, . . . ,m}, x 6= y, where ix = iy mod l. Without loss of generality, suppose ix < iy.
Then we can subtract Sr[ix] = fix from Sr[iy] = fiy to get one equation involving some

multiple of the sum s =
l−1∑
x=0

K[x] of the key bytes. So we can replace exactly one equation

involving either ix or iy by the new equation involving s, which will become a different
equation with a new variable K[l − 1], since l − 1 /∈ {i1 mod l, i2 mod l, . . . , im mod l}.
Thus, the resulting system is independent.

Next, we are going to show that the conditions are necessary. Suppose that neither
condition (i) nor condition (ii) holds. Then either we will have a triplet x, y, z such that
ix = iy = iz = modl, or we will have a pair x, y with ix = iy mod l and l − 1 ∈ {i1 mod
l, i2 mod l, . . . , im mod l}. In the first case, subtracting two of the equations from the third
one would result in two equations involving s and the same key bytes as variables. Thus
the resulting system will not be independent. In the second case, subtracting one equation
from the other will result in an equation which is dependent on the equation involving the
key byte K[l − 1].

(Part 2) We know that n = (bn
l
c)l + (n mod l). If we compute i mod l, for i =

0, 1, . . . n− 1, then we will have the following residue classes:

9

[0] = {0, l, 2l, . . . , (bn
l
c)l}

[1] = {1, l + 1, 2l + 1, . . . , (bn
l
c)l + 1}

...
...

...
[n mod l − 1] = {n mod l − 1, l + (n mod l − 1), 2l + (n mod l − 1), . . . ,

(bn
l
c)l + (n mod l − 1)}

[n mod l] = {n mod l, l + (n mod l), 2l + (n mod l), . . . , (bn
l
c − 1)l

+(n mod l)}
...

...
...

[l − 1] = {l − 1, l + (l − 1), 2l + (l − 1), . . . , (bn
l
c − 1)l + (l − 1)}

The set of these l many residue classes can be classified into two mutually exclusive subsets,
namely A = {[0], . . . , [n mod l−1]} and B = {[n mod l], . . . , [l−1]}, such that each residue
class a ∈ A has bn

l
c + 1 members and each residue class b ∈ B has bn

l
c members. Note

that |A| = n mod l and |B| = l − (n mod l).
Now, the independent systems of m equations can be selected in three mutually ex-

clusive and exhaustive ways. Case I corresponds to the condition (i) and Cases II & III
correspond to the condition (ii) stated in the theorem.
Case I: Select m different residue classes from A∪B and choose one i-value (the equation
number) from each of these m residue classes. Now, x of the m residue classes can be
selected from the set A in

(
n mod l

x

)
ways and the remaining m − x can be selected from

the set B in
(

l−n mod l
m−x

)
ways. Again, corresponding to each such choice, the first x residue

classes would give bn
l
c + 1 choices for i (the equation number) and each of the remaining

m− x residue classes would give bn
l
c choices for i. Thus, the total number of independent

equations in this case is given by
m∑

x=0

(
n mod l

x

)(
l−n mod l

m−x

)
(bn

l
c + 1)x(bn

l
c)m−x.

Case II: Select two i-values from any residue class in A. Then select m − 2 other residue
classes except [l − 1] and select one i-value from each of those m − 2 residue classes. We
can pick one residue class a ∈ A in

(
n mod l

1

)
ways and subsequently two i-values from a

in
(bn

l
c+1
2

)
ways. Of the remaining m − 2 residue classes, x can be selected from A \ {a}

in
(

n mod l−1
x

)
ways and the remaining m − 2 − x can be selected from B \ {[l − 1]} in(

l−n mod l−1
m−2−x

)
ways. Again, corresponding to each such choice, the first x residue classes

would give bn
l
c+1 choices for i (the equation number) and each of the remaining m−2−x

residue classes would give bn
l
c choices for i. Thus, the total number of independent equa-

tions in this case is given by
(

n mod l
1

)(bn
l
c+1
2

) m−2∑
x=0

(
n mod l−1

x

)(
l−n mod l−1

m−2−x

)
(bn

l
c+1)x(bn

l
c)m−2−x.

Case III: Select two i-values from any residue class in B \ {[l − 1]}. Then select m − 2
other residue classes and select one i-value from each of those m− 2 residue classes. This
case is similar to case II, and the total number of independent equations in this case is

given by
(

l−n mod l−1
1

)(bn
l
c

2

) m−2∑
x=0

(
n mod l

x

)(
l−n mod l−2

m−2−x

)
(bn

l
c + 1)x(bn

l
c)m−2−x.

Adding the counts for the above three cases, we get the result.

10

Proposition 1 Given n and m, it takes O(m2 ·
(

n
m

)
) time to generate the set EIm using

Theorem 2.

Proof: We need to check a total of
(

n
m

)
many m tuples {i1, i2, . . . , im}, and using the

independence criteria of Theorem 2, it takes O(m2) amount of time to determine if each
tuple belongs to EIm or not.

Proposition 2 Suppose we have an independent system of equations of the form Sr[iq] =
fiq involving the l key bytes as variables corresponding to the tuple {i1, i2, . . . , im}, 0 ≤ iq ≤

n − 1, 1 ≤ q ≤ m, where fi = i(i+1)
2

+
i∑

x=0

K[x]. If there is one equation in the system

involving s =
l−1∑
x=0

K[x], then we would have at most bn
l
c many solutions for the key.

Proof: If the coefficient of s is a, then by Linear Congruence Theorem [15], we would
have at most gcd(a, N) many solutions for s, each of which would give a different solution
for the key. To find the maximum possible number of solutions, we need to find an upper
bound of gcd(a, N).

Since the key is of length l, the coefficient a of s would be b is
l
c, where is is the i-value

∈ {i1, i2, . . . , im} corresponding to the equation involving s. Thus, gcd(a, N) ≤ a = b is
l
c ≤

bn
l
c.
Let us consider an example to demonstrate the case when we have two i-values (equation

numbers) from the same residue class in the selected system of m equations, but still the
system is independent and hence solvable.

Example 2 Assume that the secret key is of length 5 bytes. Let us consider 16 equations of
the form SN [i] = fi, 0 ≤ i ≤ 15. We would consider all possible sets of 5 equations chosen
from the above 16 equations and then try to solve them. One such set would correspond
to i = 0, 1, 2, 3 and 13. Let the corresponding SN [i] values be 246, 250, 47, 204 and 185
respectively. Then we can form the following equations:

K[0] = 246 (6)

K[0] + K[1] + (1 · 2)/2 = 250 (7)

K[0] + K[1] + K[2] + (2 · 3)/2 = 47 (8)

K[0] + K[1] + K[2] + K[3] + (3 · 4)/2 = 204 (9)

K[0] + . . . + K[13] + (13 · 14)/2 = 185 (10)

From the first four equations, we readily get K[0] = 246, K[1] = 3, K[2] = 51 and
K[3] = 154. Since the key is 5 bytes long, K[5] = K[0], . . . , K[9] = K[4], K[10] =
K[0], . . . , K[13] = K[3]. Denoting the sum of the key bytes K[0] + . . . + K[4] by s, we
can rewrite equation (10) as:

2s + K[0] + K[1] + K[2] + K[3] + 91 = 185 (11)

11

Subtracting (9) from (11), and solving for s, we get s = 76 or 204. Taking the value 76,
we get

K[0] + K[1] + K[2] + K[3] + K[4] = 76 (12)

Subtracting (9) from (12), we get K[4] = 134. s = 204 does not give the correct key, as
can be verified by running the KSA and observing the permutation obtained.

We now present the general algorithm for recovering the secret key bytes from the
permutation at any stage of the KSA.

Algorithm RecoverKey
Inputs:
1. Number of key bytes: l.
2. Number of key bytes to be solved from equations: m (≤ l).
3. Number of equations to be tried: n (≥ m).
4. The permutation bytes: Sr[i], 0 ≤ i ≤ r − 1 and the stage r, n ≤ r ≤ N .
Output:
The recovered key bytes K[0], K[1], . . . , K[l − 1], if they are found.
Otherwise, the algorithm halts after trying all the |EIm| systems of
m independent equations.
Steps:
1. For each distinct tuple {i1, i2, . . . , im}, 0 ≤ iq ≤ n− 1, 1 ≤ q ≤ m do

1.1. If the tuple belongs to EIm then do
1.1.1 Arbitrarily select any m variables present in the system;
1.1.2 For each possible assignment of the remaining l −m variables do

1.1.2.1 Solve for the m variables;
1.1.2.2 Run r many rounds of the KSA with the solved key;
1.1.2.3 If the permutation obtained is the same as the given Sr,

then the recovered key is the correct one.

If one does not use the independence criteria (Theorem 2), all
(

n
m

)
sets of equations need

to be checked. However, the number of independent systems is |EIm|, which is much
smaller than

(
n
m

)
. Table 3 shows that |EIm| < 1

2

(
n
m

)
for most values of l, n, and m. Thus,

the independence criteria in step 1.1 reduces the number of iterations in step 1.1.2 by a
substantial factor.

The following Theorem quantifies the amount of time required to recover the key due
to our algorithm.

Theorem 3 The time complexity of the RecoverKey algorithm is given by

O
(
m2 ·

(
n
m

)
+ m2 · |EIm| · bn

l
c · 28(l−m)

)
,

where |EIm| is given by Theorem 2.

12

Proof: According to Proposition 1, for a complete run of the algorithm, checking the
condition at step 1.1 consumes a total of O(m2 ·

(
n
m

)
) amount of time.

Further, the loop in step 1.1.2 undergoes |EIm| many iterations, each of which exhaus-
tively searches l−m many key bytes and solves a system of m equations. By Proposition 2,
each system can yield at the most O(bn

l
c) many solutions for the key. Also, finding each

solution involves O(m2) many addition/subtraction operations (the equations being train-
gular in form). Thus, the total time consumed by step 1.1.2 for a complete run would be
O(m2 · |EIm| · bn

l
c · 28(l−m)).

Hence, the time complexity is given by O
(
m2 ·

(
n
m

)
+ m2 · |EIm| · bn

l
c · 28(l−m)

)
.

Next, we estimate what is the probability of getting a set of independent correct equa-
tions when we run the above algorithm.

Proposition 3 Suppose that we are given the system of equations Sr[i] = fi, i = 0, 1, . . .,
n− 1, m ≤ n ≤ r ≤ N . Let cr,n be the number of independent correct equations. Then

P (cr,n ≥ m) =
n∑

t=m

∑
{i1,i2,...,it}∈EIt

pr(i1, i2, . . . , it),

where EIt is the collection of the indices {i1, i2, . . . , it} corresponding to all sets of t inde-
pendent equations, and pr(i1, i2, . . . , it) is the joint probability that the t equations corre-
sponding to the indices {i1, i2, . . . , it} are correct and the other n−t equations corresponding
to the indices {0, 1, . . . , n − 1} \ {i1, i2, . . . , it} are incorrect.

Proof: We need to sum |EIt| number of terms of the form pr(i1, i2, . . . , it) to get the prob-

ability that exactly t equations are correct, i.e., P (cr,n = t) =
∑

{i1,i2,...,it}∈EIt

pr(i1, i2, . . . , it).

Hence, P (cr,n ≥ m) =
n∑

t=m

P (cr,n = t) =
n∑

t=m

∑
{i1,i2,...,it}∈EIt

pr(i1, i2, . . . , it).

Note that P (cr,n ≥ m) gives the success probability with which one can recover the
secret key from the permutation after the r-th round of the KSA.

In Theorem 1, we observed that as the number r of rounds increase, the probabilities
P (Sr[i] = fi) decrease. Finally, after the KSA, when r = N , (see Corollary 2) the proba-
bilities settle to the values as given in Table 2. However, as the events (Sr[i] = fi) are not
independent for different i’s, theoretically presenting the formulae for the joint probability
pr(i1, i2, . . . , it) seems to be extremely tedious.

In the following table, we provide experimental results on the probability of having at
least m independent correct equations, when the first n equations SN [i] = fi, 0 ≤ i ≤ n−1
are considered for the RecoverKey algorithm for different values of n, m, and the key
length l, satisfying m ≤ l ≤ n. For each probability calculation, the complete KSA
(i.e. r = N rounds) was repeated a million times, each time with a randomly chosen
key. We also compare the values of the exhaustive search complexity and the reduction
due to our algorithm. Let e = dlog2(m

2 ·
(

n
m

)
+ m2 · |EIm| · bn

l
c · 28(l−m))e. The time

13

complexity of exhaustive search is O(28l) and that of the RecoverKey algorithm, according
to Theorem 3, is given by O(2e). Thus, the reduction in search complexity due to our
algorithm is by a factor O(28l−e). One may note from Table 3 that by suitably choosing

the parameters one can achieve the search complexity O(2
8l
2) = O(24l), which is the square

root of the exhaustive key search complexity. The results in Table 3 clearly show that the
probabilities (i.e., the empirical value of P (cr,n ≥ m)) in most of the cases are greater than
10%. However, the algorithm does not use the probabilities to recover the key. For certain
keys the algorithm will be able to recover the keys and for certain other keys the algorithm
will not be able to recover the keys by solving the equations. The success probability can
be interpreted as the proportion of keys for which the algorithm will be able to successfully
recover the key. The keys, that can be recovered from the permutation after the KSA using
the RecoverKey algorithm, may be considered as weak keys in RC4.

l n m
(

n
m

)
|EIm| 8l e 8l − e P (cr,n ≥ m)

5 16 5 4368 810 40 18 22 0.250
5 24 5 42504 7500 40 21 19 0.385

8 16 6 8008 3472 64 34 30 0.273
8 20 7 77520 13068 64 29 35 0.158
8 40 8 76904685 1484375 64 33 31 0.092

10 16 7 11440 5840 80 43 37 0.166
10 24 8 735471 130248 80 40 40 0.162
10 48 9 1677106640 58125000 80 43 37 0.107

12 24 8 735471 274560 96 58 38 0.241
12 24 9 1307504 281600 96 50 46 0.116

16 24 9 1307504 721800 128 60 68 0.185
16 32 10 64512240 19731712 128 63 65 0.160
16 32 11 129024480 24321024 128 64 64 0.086
16 40 12 5586853480 367105284 128 64 64 0.050

Table 3: Running the RecoverKey algorithm with different parameters for the final per-
mutation after the KSA

4 Recovering the Secret Key from RC4 State Infor-

mation at Any Stage of the PRGA

The PRGA is exactly the same as the KSA with the starting value of i as 1 (instead of 0)
and with K[i] set to 0 for all i. Thus, if we know the RC4 state information at any round
of PRGA, we can deterministically get back the permutation after the KSA and thereby
recover the secret key.

14

Consider that τ many keystream output bytes are generated in the PRGA and the
current permutation is SC . Further we take the current value of j as jC . These values
constitute the state information of RC4. Note that we only need to get the value of τ ,
and not the keystream output bytes themselves. From τ , we can get the current value of
i which we denote as iC . In the first round of PRGA, i starts from 1, and thereafter i is
updated by (i+1) mod N in every step. Hence iC = τ mod N . Assuming jC to be known,
Algorithm PRGAreverse stated below retrieves the permutation after the KSA from the
permutation after τ many rounds of the PRGA. Note that all subtractions except r = r−1
in Algorithm PRGAreverse are modulo N operations.

Algorithm PRGA
Initialization:

i = 0;
j = 0;

Output Keystream Generation Loop:
i = i + 1;
j = j + S[i];
Swap(S[i], S[j]);
t = S[i] + S[j];
Output z = S[t];

Algorithm PRGAreverse
Initialization:

i = iC ; j = jC ;S = SC ;
r = τ ;

Do
Swap(S[i], S[j]);
j = j − S[i];
i = i− 1;
r = r − 1;

While r > 0;

Once the permutation after the KSA is retrieved, Algorithm RecoverKey (Section 3)
can be used to efficiently get back the secret key with constant success probability.

5 Intrinsic Weakness of Shuffle-exchange Type KSA

In the KSA of RC4, i is incremented by one and j is updated pseudo-randomly by the rule
j = j +S[i]+K[i]. Here, the increment of j is a function of the permutation and the secret
key. One may expect that the correlation between the secret key and the permutation
can be removed by modifying the update rule for j. Here we show that for a certain class
of rules of this type, where j across different rounds is uniformly randomly distributed,
there will always exist significant bias of the permutation at any stage of the KSA towards
some combination of the secret key bytes with significant probability. Though the proof
technique is similar to that in Section 2, it may be noted that the analysis in the proofs
here focus on the weakness of the particular “form” of RC4 KSA, and not on the exact
quantity of the bias.

Using the notation of Section 2, we can model the update of j in the KSA as an arbitrary
function u of (a) the current values of i, j, (b) the i-th and j-th permutation bytes from
the previous round, and (c) the i-th and j-th key bytes, i.e.,

ji+1 = u(i, ji, Si[i], Si[ji], K[i], K[ji]).

For subsequent reference, let us call the KSA with this generalized update rule as GKSA.

15

Lemma 3 Assume that during the GKSA rounds, the index j takes its values from {0, 1,
. . . , N − 1} uniformly at random. Then, one can always construct functions hi(S0, K),
which depends only on i, the secret key bytes and the initial permutation, and probabilities
πi, which depends only on i and N , such that P (ji+1 = hi(S0, K)) = (N−1

N
)πi +

1
N

, 0 ≤ i ≤
N − 1.

Proof: By induction on i, we will show (i) how to construct the recursive functions
hi(S0, K) and probabilities πi and (ii) that one contribution towards the event (ji+1 =
hi(S0, K)) is πi.

• Base Case: Initially, before the beginning of round 1, j0 = 0. In round 1, we
have i = 0 and hence j1 = u(0, 0, S0[0], S0[0], K[0], K[0]) = h0(S0, K) (say), with
probability π0 = 1.

• Inductive Case: Suppose, P (ji = hi−1(S0, K)) = πi−1, i ≥ 1 (inductive hypothesis).
We know that ji+1 = u(i, ji, Si[i], Si[ji], K[i], K[ji]). In the right hand side of this
equality, all occurrences of Si[i] can be replaced by S0[i] with probability (N−1

N
)i,

which is the probability of index i not being involved in any swap in the previous i
many rounds. Also, due to the swap in round i, we have Si[ji] = Si−1[i − 1], which
again can be replaced by S0[i − 1] with probability (N−1

N
)i−1. Finally, all occur-

rences of ji can be replaced by hi−1(S0, K) with probability πi−1 (using the inductive
hypothesis). Thus, ji+1 equals u(i, hi−1(S0, K), S0[i], S0[i − 1], K[i], K[hi−1(S0, K)])
with some probability πi which can be computed as a function of i, N , and πi−1,
depending on the occurrence or non-occurrence of various terms in u. If we denote
hi(S0, K) = u(i, hi−1(S0, K), S0[i], S0[i − 1], K[i], K[hi−1(S0, K)]), then (i) and (ii)
follow by induction.

When the recursive path does not occur, then the event

(ji+1 = u(i, hi−1(S0, K), S0[i], S0[i− 1], K[i], K[hi−1(S0, K)]))

occurs due to random association with probability (1 − πi) · 1
N

. Adding the above
two contributions, we get P (ji+1 = hi(S0, K)) = πi + (1 − πi) · 1

N
= (N−1

N
)πi + 1

N
.

Theorem 4 Assume that during the GKSA rounds, the index j takes its values uni-
formly at random from {0, 1, . . . , N − 1}. Then, one can always construct functions
fi(S0, K), which depends only on i, the secret key bytes and the initial permutation, such
that P (Sr[i] = fi(S0, K)) ≈ (N−i

N
) · (N−1

N
)r · πi + 1

N
, 0 ≤ i ≤ r − 1, 1 ≤ r ≤ N .

Proof: We will show that fi(S0, K) = S0[hi(S0, K)] where the function his are given by
Lemma 3.

Now, Sr[i] can equal S0[hi(S0, K)] in two ways. One way is that ji+1 = hi(S0, K))
following the recursive path as in Lemma 3 and Sr[i] = S0[ji+1]. Combining Lemma 3 and
Lemma 2, we find the probability of this event to be approximately (N−i

N
) · (N−1

N
)r−1 · πi.

Another way is that the above path is not followed and still Sr[i] = S0[hi(S0, K)] due to

16

random association. The contribution of this part is approximately
(
1− (N−i

N
) · (N−1

N
)r−1 ·

πi

)
· 1
N

. Adding the above two contributions, we get the total probability ≈ (N−i
N

)·(N−1
N

)r−1·

πi+
(
1−(N−i

N
) ·(N−1

N
)r−1 ·πi

)
· 1

N
= (1− 1

N
) ·(N−i

N
) ·(N−1

N
)r−1 ·πi+

1
N

= (N−i
N

) ·(N−1
N

)r ·πi+
1
N

.

Next, we discuss some special cases of the update rule u as illustrative examples of how
to construct the functions fis and the probabilities πis for small values of i using Lemma 3.
In all the following cases, we assume S0 to be an identity permutation and hence fi(S0, K)
is the same as hi(S0, K).

Example 3 Consider the KSA of RC4, where

u(i, ji, Si[i], Si[ji], K[i], K[ji]) = ji + Si[i] + K[i].

We have h0(S0, K) = u(0, 0, S0[0], S0[0], K[0], K[0]) = 0 + 0 + K[0] = K[0]. Moreover,
π0 = P (j1 = h0(S0, K)) = 1. For i ≥ 1,
hi(S0, K) = u(i, hi−1(S0, K), S0[i], S0[i− 1], K[i], K[hi−1(S0, K)])

= hi−1(S0, K) + S0[i] + K[i]
= hi−1(S0, K) + i + K[i].

Solving the recurrence, we get hi(S0, K) = i(i+1)
2

+
i∑

x=0

K[x]. From the analysis in the proof

of Lemma 3, we see that in the recurrence of hi, Si[i] has been replaced by S0[i] and ji

has been replaced by hi−1(S0, K). Hence, we would have πi = P (Si[i] = S0[i]) · P (ji =

hi−1(S0, K)) = (N−1
N

)i · πi−1. Solving this recurrence, we get πi =
i∏

x=0

(N−1
N

)x = (N−1
N

)
i(i+1)

2 .

These expressions coincide with those in Corollary 1 and Corollary 2.

Example 4 Consider the update rule

u(i, ji, Si[i], Si[ji], K[i], K[ji]) = ji + Si[ji] + K[ji].

Here, h0(S0, K) = u(0, 0, S0[0], S0[0], K[0], K[0]) = 0 + 0 + K[0] = K[0] and π0 = P (j1 =
h0(S0, K)) = 1. For i ≥ 1,
hi(S0, K) = u(i, hi−1(S0, K), S0[i], S0[i− 1], K[i], K[hi−1(S0, K)])

= hi−1(S0, K) + S0[i− 1] + K[hi−1(S0, K)]
= hi−1(S0, K) + (i− 1) + K[hi−1(S0, K)].

From the analysis in the proof of Lemma 3, we see that in the recurrence of hi, Si−1[i− 1]
and ji are respectively replaced by S0[i − 1] and hi−1(S0, K). Thus, we would have πi =

(N−1
N

)i−1 · πi−1. Solving this recurrence, we get πi =
i∏

x=1

(N−1
N

)x−1 = (N−1
N

)
i(i−1)

2 .

Example 5 As another example, suppose

u(i, ji, Si[i], Si[ji], K[i], K[ji]) = ji + i · Si[ji] + K[ji].

17

As before, h0(S0, K) = u(0, 0, S0[0], S0[0], K[0], K[0]) = 0+0 ·S[0]+K[0] = 0+0+K[0] =
K[0] and π0 = P (j1 = h0(S0, K)) = 1. For i ≥ 1,
hi(S0, K) = u(i, hi−1(S0, K), S0[i], S0[i− 1], K[i], K[hi−1(S0, K)])

= hi−1(S0, K)]) + i · S0[i− 1] + K[hi−1(S0, K)]
= hi−1(S0, K)]) + i · (i− 1) + K[hi−1(S0, K)].

As in the previous example, here also the recurrence relation for the probabilities is πi =

(N−1
N

)i−1 · πi−1, whose solution is πi =
i∏

x=1

(N−1
N

)x−1 = (N−1
N

)
i(i−1)

2 .

Our results show that the design of RC4 KSA cannot achieve further security by changing
the update rule j = j + S[i] + K[i] by any rule from a large class that we present.

6 Conclusion

We theoretically prove how the permutation bytes at any stage of the KSA are biased to
the secret key bytes. In addition, we show how to use this result to recover the secret
key bytes from the RC4 state at any stage (i.e., after arbitrary number of rounds of the
KSA or the PRGA) with constant probability of success in less than the square root of the
time required for exhaustive key search. Since the state (which includes the permutation
and the indices) is in general not observable, this does not immediately pose an additional
threat to the security of RC4. However, for an ideal stream cipher, no information about
the secret key should be revealed even if the complete state of the system is known at any
instant. Our work clearly points out an intrinsic structural weaknesses of RC4 and certain
generalizations of it.

References

[1] S. R. Fluhrer and D. A. McGrew. Statistical Analysis of the Alleged RC4 Keystream
Generator. FSE 2000, pages 19-30, vol. 1978, Lecture Notes in Computer Science,
Springer-Verlag.

[2] S. R. Fluhrer, I. Mantin and A. Shamir. Weaknesses in the Key Scheduling Algorithm
of RC4. Selected Areas in Cryptography 2001, pages 1-24, vol. 2259, Lecture Notes in
Computer Science, Springer-Verlag.

[3] J. Golic. Linear statistical weakness of alleged RC4 keystream generator. EURO-
CRYPT 1997, pages 226-238, vol. 1233, Lecture Notes in Computer Science, Springer-
Verlag.

[4] LAN/MAN Standard Committee. Wireless LAN medium access control (MAC) and
physical layer (PHY) specifications, 1999 edition. IEEE standard 802.11, 1999.

18

[5] A. Klein. Attacks on the RC4 stream cipher. February 27, 2006. Available at
http://cage.ugent.be/ klein/RC4/, [last accessed on June 27, 2007].

[6] I. Mantin and A. Shamir. A Practical Attack on Broadcast RC4. FSE 2001, pages
152-164, vol. 2355, Lecture Notes in Computer Science, Springer-Verlag.

[7] I. Mantin. A Practical Attack on the Fixed RC4 in the WEP Mode. ASIACRYPT 2005,
pages 395-411, volume 3788, Lecture Notes in Computer Science, Springer-Verlag.

[8] I. Mantin. Predicting and Distinguishing Attacks on RC4 Keystream Generator. EU-
ROCRYPT 2005, pages 491-506, vol. 3494, Lecture Notes in Computer Science,
Springer-Verlag.

[9] I. Mantin. Analysis of the stream cipher RC4. Master’s Thesis, The Weizmann Insti-
tute of Science, Israel, 2001.

[10] I. Mironov. (Not So) Random Shuffles of RC4. CRYPTO 2002, pages 304-319, vol.
2442, Lecture Notes in Computer Science, Springer-Verlag.

[11] G. Paul, S. Rathi and S. Maitra. On Non-negligible Bias of the First Output Byte of
RC4 towards the First Three Bytes of the Secret Key. Proceedings of the International
Workshop on Coding and Cryptography 2007, pages 285-294.

[12] S. Paul and B. Preneel. Analysis of Non-fortuitous Predictive States of the RC4
Keystream Generator. INDOCRYPT 2003, pages 52-67, vol. 2904, Lecture Notes in
Computer Science, Springer-Verlag.

[13] S. Paul and B. Preneel. A New Weakness in the RC4 Keystream Generator and an
Approach to Improve the Security of the Cipher. FSE 2004, pages 245-259, vol. 3017,
Lecture Notes in Computer Science, Springer-Verlag.

[14] A. Roos. A class of weak keys in the RC4 stream cipher. Two posts in sci.crypt,
message-id 43u1eh$1j3@hermes.is.co.za and 44ebge$llf@hermes.is.co.za, 1995.
Available at http://marcel.wanda.ch/Archive/WeakKeys.

[15] J. Silverman. A Friendly Introduction to Number Theory. Prentice Hall, NJ. Page 56,
Second Edition, 2001.

[16] D. Wagner. My RC4 weak keys.
Post in sci.crypt, message-id 447o1l$cbj@cnn.Princeton.EDU, 26 September, 1995.
Available at http://www.cs.berkeley.edu/∼daw/my-posts/my-rc4-weak-keys.

19

