
RC4 State Information at Any Stage Reveals the
Secret Key∗

Goutam Paul†, Subhamoy Maitra‡

Abstract

A theoretical analysis of the RC4 Key Scheduling Algorithm (KSA) is presented in
this paper, where the nonlinear operation is swapping among the permutation bytes.
Explicit formulae are provided for the probabilities with which the permutation bytes
at any stage of the KSA are biased to the secret key. Theoretical proofs of these
formulae have been left open since Roos’s work (1995). While this result shows
that only the initial bytes of the permutation after the KSA (denoted by SN) are
biased to the secret key, we additionally show that each byte of SN actually reveals
secret key information. Looking at all the elements of the final permutation SN and
its inverse S−1

N , the value of the hidden index j in each round of the KSA can be
estimated from a “pair of values” in 0, . . . , N−1 with a constant probability of success
π = N−2

N ·(N−1
N)N−1+ 2

N (we get π ≈ 0.37, for N = 256), which is significantly higher
than the random association. Using the values of two consecutive j’s, we estimate the
y-th key byte from at most a “quadruple of values” in 0, . . . , N −1 with a probability
> 0.12. As a secret key of l bytes is repeated at least bNl c times in RC4, these
many quadruples can be accumulated to get each byte of the secret key with very
high probability (e.g., 0.8 to close to 1) from a small set of values. Based on our
analysis, for the first time we show that the secret key of RC4 can be recovered
from the state information in a time much less than the exhaustive search with good
probability. Finally, a generalization of the RC4 KSA is analyzed corresponding to
a class of update functions of the indices involved in the swaps. This reveals an
inherent weakness of shuffle-exchange kind of key scheduling.

Keywords: Bias, Cryptanalysis, Key Scheduling, Permutation, RC4, Stream Cipher.

∗This is a revised and substantially extended version of the paper [17] “Permutation after RC4 Key
Scheduling Reveals the Secret Key”, presented in 14th Annual Workshop on Selected Areas in Cryptog-
raphy, SAC 2007, August 16-17, Ottawa, Canada. Sections 2.1, 3.3, 4 are similar to [17] with revision in
Section 3.3.1. Rest of the technical contents in this version are new.

†Department of Computer Science and Engineering, Jadavpur University, Kolkata 700 032, India, Email:
goutam paul@cse.jdvu.ac.in

‡Applied Statistics Unit, Indian Statistical Institute, Kolkata 700 108, India, Email: subho@isical.ac.in

1

Contents

1 Introduction 2
1.1 Outline of the Contribution . 3
1.2 Background . 5

2 Theoretical Analysis of the Key Scheduling 6
2.1 Correlation between Secret Key and Initial Bytes of the Permutation . . . 6
2.2 Getting Individual Key Bytes using All Bytes of SN 9

2.2.1 Experimental Evidences . 14

3 Recovering the Secret Key from the Permutation 16
3.1 Overview . 17
3.2 Issues Related to Time Complexity Estimates 17
3.3 Complete Key Recovery by Solving Simultaneous Equations 17

3.3.1 Algorithm and Complexity Analysis 22
3.4 Complete Key Recovery from Frequency Table 25

3.4.1 Experimental Results for 5 Byte Keys 26
3.4.2 Experimental Results for Other Key Lengths 27

3.5 Brief Review of [2] and Detailed Comparison with Our Work 28
3.5.1 Work of [2] in Relation to Section 3.3.1 of this Paper 30

3.6 Brief Review of [1] and Detailed Comparison with Our Works 31
3.6.1 Work of [1] in Relation to Our Works 31

4 Intrinsic Weakness of Shuffle-exchange Type KSA 32

5 Conclusion 35

1 Introduction

Two decades have passed since the inception of RC4. Though a variety of other stream
ciphers have been discovered after RC4, it is still the most popular and most frequently
used stream cipher algorithm due to its simplicity, ease of implementation, speed and
efficiency. RC4 is widely used in the Secure Sockets Layer (SSL) and similar protocols
to protect the internet traffic, and was integrated into Microsoft Windows, Lotus Notes,
Apple AOCE, Oracle Secure SQL, etc. Though the algorithm can be stated in less than ten
lines, even after many years of analysis its strengths and weaknesses are of great interest
to the community. In this paper, we study the Key Scheduling Algorithm of RC4 in detail
and find out results that have implications towards the security of RC4. Before getting
into the contribution in this paper, we first revisit the basics of RC4.

The RC4 stream cipher has been designed by Ron Rivest for RSA Data Security in 1987,
and was a propriety algorithm until 1994. It uses an S-Box S = (S[0], . . . , S[N − 1]) of
length N , each location being of 8 bits. Typically, N = 256. S is initialized as the identity

2

permutation, i.e., S[y] = y for 0 ≤ y ≤ N − 1. A secret key of size l bytes (typically,
5 ≤ l ≤ 16) is used to scramble this permutation. An array K = (K[0], . . . , K[N − 1]) is
used to hold the secret key, where each location is of 8 bits. The key is repeated in the array
K at key length boundaries. For example, if the key size is 40 bits, then K[0], . . . , K[4]
are filled by the key and then this pattern is repeated to fill up the entire array K.

The RC4 cipher has two components, namely, the Key Scheduling Algorithm (KSA)
and the Pseudo-Random Generation Algorithm (PRGA). The KSA turns the random key
K into a permutation S of 0, 1, . . . , N − 1 and PRGA uses this permutation to generate
pseudo-random keystream bytes. The keystream output byte z is XOR-ed with the message
byte to generate the ciphertext byte at the sender end. Again, z is XOR-ed with the
ciphertext byte to get back the message byte at the receiver end.

Any addition used related to the RC4 description is in general addition modulo N
unless specified otherwise.

Algorithm KSA
Initialization:

For i = 0, . . . , N − 1
S[i] = i;

j = 0;
Scrambling :

For i = 0, . . . , N − 1
j = (j + S[i] + K[i]);
Swap(S[i], S[j]);

Algorithm PRGA
Initialization:

i = j = 0;
Output Keystream Generation Loop:

i = i + 1;
j = j + S[i];
Swap(S[i], S[j]);
t = S[i] + S[j];
Output z = S[t];

Note that defining the array K to be of size N enables us to write K[y] instead of
the typical K[y mod l] in the description of the algorithm. This is done for the sake of
simplification in the subsequent analysis of the algorithm.

1.1 Outline of the Contribution

In this paper, the update of the permutation S in different rounds of the KSA is analyzed
and it is theoretically proved that at any stage of the KSA, the initial bytes of the permu-
tation will be significantly biased towards some combination of the secret key bytes. Such
biases were observed by Roos in [20] for the first time. It has been noted in [20] that after
the completion of the KSA, the most likely value of the y-th element of the permutation

(denoted by SN) for the first few values of y is given by SN [y] = y(y+1)
2

+

y∑
x=0

K[x]. However,

the probability P (SN [y] = y(y+1)
2

+

y∑
x=0

K[x]) could not be theoretically arrived in [20] and

experimental values have been provided as in Table 1 below.
Note that Roos’s observation [20] was about the final permutation after the KSA. We

here theoretically prove for the first time with what probabilities the permutation bytes at
any stage of the KSA are correlated with the secret key bytes. Thus, our results include

3

y P (SN [y] = y(y+1)
2

+

y∑
x=0

K[x])

0-15 .370 .368 .362 .358 .349 .340 .330 .322 .309 .298 .285 .275 .260 .245 .229 .216
16-31 .203 .189 .173 .161 .147 .135 .124 .112 .101 .090 .082 .074 .064 .057 .051 .044
32-47 .039 .035 .030 .026 .023 .020 .017 .014 .013 .012 .010 .009 .008 .007 .006 .006

Table 1: The probabilities experimentally observed by Roos [20].

Roos’s observation as a special case. Roos [20] commented that “Swapping is a nasty
nonlinear process which is hard to analyze.” That process is analyzed in a disciplined
manner in this paper that unfolds the effect of swapping in the KSA of RC4 (see Lemma 1,
Lemma 2 and Theorem 1 in Section 2.1).

In Section 2.2, we exploit all entries of both the permutations SN and S−1
N to gather

information about the index j (we narrow it down to only two values in the range of
0, . . . , N−1 instead of N options) in each round of the KSA with a very good and constant
probability of success (> 0.37). The estimates of the two consecutive pairs of j’s give four
possible values of a key byte with good probability. These results (Theorems 2, 3) are
the theoretical foundations of this section which were not known earlier to the best of our
knowledge. Since each key is repeated at least bN

l
c times, using the above idea we can

form a frequency table for each secret key byte (see Theorems 4, 5).
In Section 3.3, we use the biases of Section 2.1 to show that if the permutation at any

stage of the KSA is available, then one can retrieve the key bytes in time much less than
the exhaustive key search. For a secret key of size 8l bits (40 ≤ 8l ≤ 128), the key can

be recovered in O(2
8l
2) effort with a constant probability of success. In a shuffle-exchange

kind of stream cipher, for proper cryptographic security, one may expect that after the key
scheduling algorithm one should not be able to get any information regarding the secret key
bytes from the random permutation in time complexity less than the exhaustive key search.
We show that the KSA of RC4 is weak in this aspect. Based on the theoretical results of
Section 2.2, in Section 3.4 we present further ideas in this direction, which produce better
complexities and success probabilities than those in Section 3.3.

Subsequent to our work in [17], other researchers also have shown interest in the problem
of recovering the secret key from RC4 permutation. In this paper, we briefly discuss these
works [2, 1] in relation to our contributions (see Sections 3.5.1, 3.6.1). We convincingly
argue that though there are a few implementation ideas in which other works achieve better
efficiency in recovering the secret key in certain cases, the basic techniques used in other
works are mostly based on our theoretical foundation.

One may note that if the state information of RC4 during the PRGA is available, then
one can deterministically get back to the permutation after the KSA. By state information
we mean (a) the entire permutation S, (b) the number of keystream output bytes generated
(which is related to the index i) and (c) the value of the index j. Once the final permutation
after the KSA is retrieved, using the approach of Section 3 we can recover the secret key.

4

Finally, in Section 4, we consider the generalization of the RC4 KSA where the index j
can be updated in different manners. In RC4 KSA, the update rule is j = (j +S[i]+K[i]).
We show that for any arbitrary secret key and for a certain class of update functions which
compute the new value of the index j in the current round as a function of “the permutation
S and j in the previous round” and “the secret key K”, it is always possible to construct
explicit functions of the key bytes which the permutation at every stage of the KSA will
be biased to. This shows that the RC4 KSA cannot be made more secure by replacing the
update rule j = j + S[i] + K[i] with any rule from a large class that we present. Such bias
is intrinsic to shuffle-exchange kind of paradigm, where one index (i) is updated linearly
and another index (j) is modified pseudo-randomly.

1.2 Background

There are two broad approaches in the study of cryptanalysis of RC4: attacks based on the
weaknesses of the KSA and those based on the weaknesses of the PRGA. Distinguishing
attacks are the main motivation for PRGA-based approach [3, 5, 10, 11, 12, 18, 19]. Impor-
tant results in this approach include bias in the keystream output bytes. For example, a
bias in the second output byte being zero has been proved in [10] and a bias in the equality
of the first two output bytes has been shown in [19]. In [15], RC4 has been analyzed using
the theory of random shuffles and it has been recommended that initial 512 bytes of the
keystream output should be discarded in order to be safe.

Initial empirical works based on the weaknesses of the RC4 KSA were done in [20, 23]
and several classes of weak keys had been identified. Recently, a more general theoretical
study has been performed in [16] which includes the observations of [20]. The work [16]
shows how the bias of the “third permutation byte” (after the KSA) towards the “first three
secret key bytes” propagates to the first keystream output byte (in the PRGA). Thus, it
renews the interest to study how the permutation after the KSA (which acts as a bridge
between the KSA and the PRGA) is biased towards the secret key, which is theoretically
solved in this paper.

Some weaknesses of the KSA have been addressed in great detail in [4] and practi-
cal attacks have been mounted on RC4 in the IV mode (e.g. WEP [7]). Further, the
propagation of weak key patterns to the output keystream bytes has also been discussed
in [4]. Subsequently, the work [8] improved [4]. In [13, Chapter 6], correlation between the
permutations that are a few rounds apart have been discussed.

Reconstruction of the permutation looking at the keystream output bytes is another
approach to attack RC4. In [6, Table 2], it has been estimated that this kind of attack
would require around 2779 to 2797 complexity. Later in [22, Table 7], an improved idea
has been presented that estimates a complexity of 2731. A much improved result [14] in
this area shows that the permutation can be recovered in around 2241 complexity. This
shows that RC4 is not secure when the key length is more than 30 bytes. Fortunately, this
result does not affect RC4 for the typical secret key size of 5 to 16 bytes. If the complexity
of “recovering the secret key from the permutation” is less than that of “recovering RC4
permutation from the keystream output bytes in PRGA”, then by cascading the techniques

5

of the latter [6, 22, 14] with those of the former, “recovering the secret key from the
keystream output bytes” is possible at the same complexity as the latter.

2 Theoretical Analysis of the Key Scheduling

Let jy+1 and Sy+1 be respectively the value of the pseudo-random index j and the permu-
tation after the y-th round of the KSA, 0 ≤ y ≤ N . As we have already denoted, SN is
the final permutation after the KSA. We also denote the initial permutation by S0 and the
initial value 0 of the index j by j0. In the original RC4, S0 is the identity permutation.

2.1 Correlation between Secret Key and Initial Bytes of the Per-
mutation

We now prove a general formula (Theorem 1) that estimates the probabilities with which
the permutation bytes after each round of the RC4 KSA are related to certain combinations
of the secret key bytes. The result we present has two-fold significance. It gives for the first
time a theoretical proof explicitly showing how these probabilities change as functions of i.
Further, it does not assume that the initial permutation is an identity permutation. The
result holds for any arbitrary initial permutation. Note that though j is updated using a
deterministic formula, it is a linear function of the pseudo-random secret key bytes, and
is therefore itself pseudo-random. If the secret key generator produces the secret keys
uniformly at random, which is a reasonable assumption, then the distribution of j will also
be uniform.

The proof of Theorem 1 depends on Lemma 1 and Lemma 2 which we prove below
first.

Lemma 1 Assume that during the KSA rounds, the index j takes its values from {0, 1, . . .,

N − 1} uniformly at random. Then, P (jy+1 =

y∑
x=0

S0[x] +

y∑
x=0

K[x]) ≈(N−1
N

)1+
y(y+1)

2 + 1
N

,

0 ≤ y ≤ N − 1.

Proof: One contribution towards the event E : (jy+1 =

y∑
x=0

S0[x] +

y∑
x=0

K[x]) is approxi-

mately (N−1
N

)
y(y+1)

2 . This part is due to the association based on the recursive updates of
j and can be proved by induction on y.

• Base Case: Before the beginning of the KSA, j0 = 0. Now, in the first round, we

have j1 = j0 +S0[0]+K[0] = 0+S0[0]+K[0] =
0∑

x=0

S0[x]+
0∑

x=0

K[x] with probability

1 = (N−1
N

)
0(0+1)

2 . Hence, the result holds for the base case.

6

• Inductive Case: Suppose, that the result holds for the first y rounds, when the
deterministic index i takes its values from 0 to y − 1, y ≥ 1. Now, for the (y + 1)-th
round, when i = y, we would have jy+1 = jy + Sy[y] + K[y]. Thus, jy+1 can equal

y∑
x=0

S0[x] +

y∑
x=0

K[x], if jy =

y−1∑
x=0

S0[x] +

y−1∑
x=0

K[x] and Sy[y] = S0[y].

By inductive hypothesis, we get P (jy =

y−1∑
x=0

S0[x] +

y−1∑
x=0

K[x]) ≈(N−1
N

)
y(y−1)

2 . Further,

Sy[y] remains the same as S0[y], if it has not been involved in any swap during the
previous rounds, i.e., if any of the values j1, j2, . . . , jy has not hit the index y, the
probability of which is (N−1

N
)y. Thus, the probability that the event E occurs along

the above recursive path is ≈ (N−1
N

)
y(y−1)

2 · (N−1
N

)y = (N−1
N

)
y(y+1)

2 .

A second contribution towards the event E is due to random association when
the above recursive path is not followed. This probability is approximately

(
1 −

(N−1
N

)
y(y+1)

2

)
· 1

N
. Adding these two contributions, we get the total probability

≈ (N−1
N

)
y(y+1)

2 +
(
1− (N−1

N
)

y(y+1)
2

)
· 1

N
= (1− 1

N
) · (N−1

N
)

y(y+1)
2 + 1

N
= (N−1

N
)1+

y(y+1)
2 + 1

N
.

Lemma 2 Assume that during the KSA rounds, the index j takes its values from {0, 1, . . .,
N−1} uniformly at random. Then, P (Sr[y] = S0[jy+1]) ≈ (N−y

N
) · (N−1

N
)r−1, 0 ≤ y ≤ r−1,

1 ≤ r ≤ N .

Proof: During the swap in round y + 1, Sy+1[y] is assigned the value of Sy[jy+1]. Now,
the index jy+1 is not involved in any swap during the previous y many rounds, if it is
not touched by the indices {0, 1, . . . , y − 1}, the probability of which is (N−y

N
), as well

as if it is not touched by the indices {j1, j2, . . . , jy}, the probability of which is (N−1
N

)y.

Hence, P (Sy+1[y] = S0[jy+1]) ≈ (N−y
N

) · (N−1
N

)y. After round y + 1, index y is not touched
by any of the subsequent r − 1 − y many j values with probability (N−1

N
)r−1−y. Hence,

P (Sr[y] = S0[jy+1]) ≈ (N−y
N

) · (N−1
N

)y · (N−1
N

)r−1−y = (N−y
N

) · (N−1
N

)r−1.

Theorem 1 Assume that during the KSA rounds, the index j takes its values from {0, 1,
. . . , N −1} uniformly at random. Then, P (Sr[y] = fy) ≈ (N−y

N
) · (N−1

N
)[

y(y+1)
2

+r] + 1
N

, where

fy = S0

[y∑
x=0

S0[x] +

y∑
x=0

K[x]
]
, 0 ≤ y ≤ r − 1, 1 ≤ r ≤ N .

Proof: Sr[y] can equal S0

[y∑
x=0

S0[x] +

y∑
x=0

K[x]
]

in two ways. One way is that jy+1 =

y∑
x=0

S0[x] +

y∑
x=0

K[x] following the recursive path as in the proof of Lemma 1, and Sr[y] =

7

S0[jy+1]. Combining the results of Lemma 1 and Lemma 2, we get the contribution of

this part ≈ (N−1
N

)
y(y+1)

2 · (N−y
N

) · (N−1
N

)r−1 = (N−y
N

) · (N−1
N

)[
y(y+1)

2
+(r−1)]. Another way is

that neither of the above events happen and still Sr[y] equals S0

[y∑
x=0

S0[x] +

y∑
x=0

K[x]
]

due to random association. The contribution of this second part is approximately
(
1 −

(N−y
N

) ·(N−1
N

)[
y(y+1)

2
+(r−1)]

)
· 1

N
. Adding these two contributions, we get the total probability

≈ (N−y
N

) · (N−1
N

)[
y(y+1)

2
+(r−1)] +

(
1 − (N−y

N
) · (N−1

N
)[

y(y+1)
2

+(r−1)]
)
· 1

N
= (1 − 1

N
) · (N−y

N
) ·

(N−1
N

)[
y(y+1)

2
+(r−1)] + 1

N
= (N−y

N
) · (N−1

N
)[

y(y+1)
2

+r] + 1
N

.

Corollary 1 If the initial permutation is the identity permutation, then fy = y(y+1)
2

+
y∑

x=0

K[x], 0 ≤ y ≤ N − 1.

Proof: Substitute S0[y] = y in the form fy = S0

[y∑
x=0

S0[x] +

y∑
x=0

K[x]
]

for 0 ≤ y ≤ N − 1.

Corollary 2 The bias of the final permutation after the KSA towards the secret key is

given by P (SN [y] = fy) ≈ (N−y
N

) · (N−1
N

)[
y(y+1)

2
+N] + 1

N
, 0 ≤ y ≤ N − 1.

Proof: Substitute r = N in the statement of the theorem.
In the following table we list the values of probabilities P (SN [y] = fy) (when the initial

permutation is identity, i.e., when fy = y(y+1)
2

+

y∑
x=0

K[x]) to compare with the experimental

values provided in [20] and summarized in our Table 1.

y P (SN [y] = y(y+1)
2

+

y∑
x=0

K[x])

0-15 .371 .368 .364 .358 .351 .343 .334 .324 .313 .301 .288 .275 .262 .248 .234 .220
16-31 .206 .192 .179 .165 .153 .140 .129 .117 .107 .097 .087 .079 .071 .063 .056 .050
32-47 .045 .039 .035 .031 .027 .024 .021 .019 .016 .015 .013 .011 .010 .009 .008 .008

Table 2: The probabilities following Corollary 2.

After the index 48 and onwards, both the theoretical as well as the experimental values
tend to 1

N
(= 0.0039 for N = 256) as is expected when we consider the equality between

two randomly chosen values from a set of N elements.

8

2.2 Getting Individual Key Bytes using All Bytes of SN

First note that, every value y in the permutation is touched at least once during the KSA
by the indices i, j, 0 ≤ y ≤ N − 1. Initially, y is located at index y in the permutation. In
round y + 1, when i reaches index y, either y is still in index y, or it has been moved due
to swaps in one of the previous y rounds. In the former case, i will touch it in round y +1.
In the latter case, one of {j1, j2, . . . , jy} has touched it already.

In the proofs of this section, whenever we replace the probability of a joint event by
the product of the probabilities of the individual events, independence of the underlying
events is implicitly assumed.

Theorem 2 P (jy+1 = S−1
N [y] or jy+1 = SN [y]) = N−2

N
· (N−1

N
)N−1 + 2

N
, 0 ≤ y ≤ N − 1.

Proof: The event (jy+1 = S−1
N [y]), or, equivalently, the event (SN [jy+1] = y) occurs, if

E1(y), which is a combination of the following two events, holds.

1. y is not touched by any of {j1, j2, . . . , jy} in the first y rounds. This happens with
probability (N−1

N
)y.

2. In round y+1, when i becomes y, jy+1 moves y to one of the indices in {0, . . . , y} due
to the swap and y remains there until the end of KSA. This happens with probability
P (jy+1 ∈ {0, . . . , y}) · P (jt 6= jy+1, y + 2 ≤ t ≤ N) = y+1

N
· (N−1

N
)N−y−1.

Thus, P (E1(y)) = (N−1
N

)y · y+1
N
· (N−1

N
)N−y−1 = y+1

N
· (N−1

N
)N−1.

Again, the event (jy+1 = SN [y]) occurs, if E2(y), which is a combination of the following
two events, holds. (Note that the event E2(y) is taken from Lemma 2. We here outline
the proof of the probability of E2(y) for easy reference.)

1. Sy[jy+1] = jy+1 and therefore after the swap in round y + 1, Sy+1[y] = jy+1. This
happens if jy+1 ∈ {y, . . . , N − 1} and had not been touched by any of {j1, j2, . . . , jy}
in the first y rounds. The probability of this is N−y

N
· (N−1

N
)y.

2. Once jy+1 sits in index y due to the above, it is not touched by any of the remain-
ing N − y − 1 many j values until the end of the KSA. The probability of this is
(N−1

N
)N−y−1.

Thus, P (E2(y)) = N−y
N
· (N−1

N
)y · (N−1

N
)N−y−1 = N−y

N
· (N−1

N
)N−1.

Now, both E1(y) and E2(y) hold if jy+1 = SN [y] = S−1
N [y]. This happens if y is not

touched by any of {j1, j2, . . . , jy} in the first y rounds, and then jy+1 = y so that y is not
moved due to the swap, and subsequently y is not touched by any of the remaining N−y−1
many j values until the end of the KSA. Thus, P (E1(y)∩E2(y)) = (N−1

N
)y · 1

N
·(N−1

N
)N−y−1 =

1
N

(N−1
N

)N−1.

Hence, P (E1(y)∪E2(y)) = P (E1(y))+P (E2(y))−P (E1(y)∩E2(y)) = y+1
N
·(N−1

N
)N−1 +

N−y
N
· (N−1

N
)N−1 − 1

N
(N−1

N
)N−1 = (N−1

N
)N−1.

One way the event (jy+1 = S−1
N [y] or jy+1 = SN [y]) occurs is through E1(y) ∪ E2(y).

Another way is that neither E1(y) nor E2(y) holds, yet jy+1 ∈ {S−1
N [y], SN [y]} due to

9

random association, whose probability contribution is (1 − (N−1
N

)N−1) · 2
N

. Adding these
two contributions, we get the result.

For N = 256, the value turns out to be > 0.37, which conforms to experimental
observation. The result of Theorem 2 identifies for the first time that the permutation SN

and its inverse S−1
N reveal information about the secret index j in each byte. This theorem

can be used to reveal the secret key in the following manner.
Let G0 = {SN [0], S−1

N [0]} and for 1 ≤ y ≤ N − 1, let Gy = {u − v − y|u ∈ {SN [y]} ∪
{S−1

N [y]}, v ∈ {SN [y−1]}∪{S−1
N [y−1]}}. Once more we like to remind that in (u−v−y),

the operations are modulo N .

Remark 1 It is highly likely that SN [y] 6= S−1
N [y] and SN [y − 1] 6= S−1

N [y − 1]. So we
consider |G0| = 2 and |Gy| = 4, 1 ≤ y ≤ N − 1.

We write G0 = {g01, g02}, where g01 = S−1
N [0], and g02 = SN [0]; and for 1 ≤ y ≤ N − 1,

Gy = {gy1, gy2, gy3, gy4}, where gy1 = S−1
N [y]− S−1

N [y − 1]− y, gy2 = SN [y]− SN [y − 1]− y,
gy3 = S−1

N [y]−SN [y−1]−y, and gy4 = SN [y]−S−1
N [y−1]−y. Further, let p0x = P (K[0] =

g0x), 1 ≤ x ≤ 2, and for 1 ≤ y ≤ N − 1, let pyx = P (K[y] = gyx), 1 ≤ x ≤ 4. We have the
following result.

Theorem 3
(1) p01 = 1

N
· (N−1

N
)N + 1

N
, and p02 = (N−1

N
)N + 1

N
.

(2) For 1 ≤ y ≤ N − 1,

py1 = y(y+1)
N2 · (N−1

N
)2N−1 + 1

N
, py2 = (N−y)(N−y+1)

N2 · (N−1
N

)2N−1+y + 1
N

,

py3 = (y+1)(N−y+1)
N2 · (N−1

N
)2N−1+y + 1

N
, and py4 = y(N−y)

N2 · (N−1
N

)2N−1+y + 1
N

.

Proof: We would be referring to the events E1(y) and E2(y) in the proof of Theorem 2.
From Theorem 2, we have P (E1(y)) = y+1

N
· (N−1

N
)N−1 and P (E2(y)) = N−y

N
· (N−1

N
)N−1.

For each probability pyx in items (1) and (2), we would consider two components. The
component which comes due to the contributions of the events E1(y), E2(y) etc, would be
called αyx. The other component is due to random association and is given by (1−αyx) · 1

N
.

So for each probability pyx, deriving the part αyx suffices, as the total probability can be
computed as αyx + (1− αyx) · 1

N
= N−1

N
· αyx + 1

N
.

Consider the update rule in the KSA: jy+1 = jy + Sy[y] + K[y], 0 ≤ y ≤ N − 1, where
j0 = 0.

First, we prove item (1). Since S0[0] = 0, we can write j1 = K[0]. Considering
j1 = S−1

N [0], we have α01 = P (E1(0)) and considering j1 = SN [0], we have α02 = P (E2(0)).
Substituting 0 for y in the expressions for P (E1(y)) and P (E2(y)), we get the results.

Now, we come to item (2). In the update rule, Sy[y] can be replaced by y, assuming
that it has not been touched by any one of j1, j2, . . . , jy in the first y rounds of the KSA.
This happens with a probability (N−1

N
)y, 0 ≤ y ≤ N −1. Assuming Sy[y] = y, we can write

K[y] = jy+1−jy−y. When considering the contribution of E1(y) to jy+1, the factor (N−1
N

)y

need not be taken into account, as the event (Sy[y] = y) is already contained in E1(y).
Thus, the components αyx’s for the probabilities py1, py2, py3 and py4 are respectively given
by

10

αy1 = P (E1(y)) · P (E1(y − 1)), αy2 = P (E2(y)) · P (E2(y − 1)) · (N−1
N

)y,
αy3 = P (E1(y)) · P (E2(y − 1)), and αy4 = P (E2(y)) · P (E1(y − 1)) · (N−1

N
)y.

Substituting the probability expressions for E1(y), E1(y − 1), E2(y) and E2(y − 1), we get
the results.

Corollary 3
(1) P (K[0] ∈ G0) = 1− (1− p01)(1− p02).
(2) For 1 ≤ y ≤ N − 1, P (K[y] ∈ Gy) = 1− (1− py1)(1− py2)(1− py3)(1− py4).

Substituting values for y, we find that P (K[0] ∈ G0) ≈ 0.37 and For 1 ≤ y ≤ N − 1,
P (K[y] ∈ Gy) varies between 0.12 and 0.15. Experimental results also confirm these
theoretical estimates.

Theorems 2, 3 are the foundations of this paper. Next, we present additional theoretical
results based on the above two theorems to build the framework of retrieving individual
key bytes.

The RC4 key k of l bytes gets repeated to fill the N bytes of the key array K. The
number of places in K where the same key byte k[w] is repeated is given by

nw =

{
bN

l
c+ 1 for 0 ≤ w < N mod l;

bN
l
c for N mod l ≤ w < l.

Thus, when considering a key byte kw, we are interested in the set

Tw = ∪y∈[0,N−1],y mod l=wGy,

which is a union of nw many Gy’s. Let us denote these Gy’s by Gw1 , Gw2 , . . . , Gwnw
and the

corresponding pyx’s by pw1x, pw2x, . . . , pwnwx. Also, for notational convenience in represent-
ing the formulas, we denote the size of Gy by My. According to Remark 1, M0 = 2 and
My = 4, 1 ≤ y ≤ N − 1. In the results below, E(X) denotes the expectation of a random
variable X.

Theorem 4 For 0 ≤ w ≤ l − 1, let freqw be the frequency (i.e., no. of occurrences) of
k[w] in the set Tw. Then for 0 ≤ w ≤ l − 1, we have the following.

(1) P (k[w] ∈ Tw) = 1−
nw∏
t=1

Mwt∏
x=1

(1− pwtx).

(2) P (freqw = c) =

∑
{t1,t2,...,tc}
⊆{1,2,...,nw}

 c∏
r=1

Mwtr∑
x=1

pwtr x

∏
x′ 6=x

(1− pwtr x′)


 ∏

r∈{1,2,...,nw}\
{t1,t2,...,tc}

Mwr∏
x=1

(1− pwrx)

.

(3) E(freqw) =
nw∑
t=1

Mwt∑
x=1

pwtx.

11

Proof: First, we prove item (1). We know that kw /∈ Tw iff kw /∈ Gwt for all t ∈ {1, . . . , nw}.
Again, kw /∈ Gwt , iff for each x ∈ {1, . . . ,Mwt}, kw 6= gwtx, the probability of which is
(1− pwtx). Hence the result follows.

Next, we prove item (2). Item (2) is a generalization of item (1), since P (kw ∈ Tw) =
1 − P (freqw = 0). For arbitrary c, 0 ≤ c ≤ nw, kw occurs exactly c times in Tw, iff it
occurs once in exactly c out of nw many Gw’s, say once in each of Gwt1

, Gwt2
, . . . , Gwtc

,
and it does not occur in any of the remaining nw − c many Gw’s. We call such a division
of the Gw’s a c-division. Again, k[w] occurs exactly once in Gwt iff k[w] equals exactly
one of the Mwt members of Gwt and it does not equal any of the remaining (Mwt − 1)
members of Gwt . Thus, the probability that k[w] occurs exactly once in Gwt is given by
Mwtr∑
x=1

pwtr x

∏
x′ 6=x

(1 − pwtr x′). Also, for any r ∈ {1, 2, . . . , nw} \ {t1, t2, . . . , tc}, k[w] does not

occur in Gwr with probability

Mwr∏
x=1

(1 − pwrx). Adding the contributions of all
(

nw

c

)
many

c-division’s, we get the result.
Finally, we come to item (3). For 1 ≤ t ≤ nw, 1 ≤ x ≤ Mwt let ut,x = 1, if k[w] =

gwtx; otherwise, let ut,x = 0. Thus, the number of occurrences of k[w] in Tw is freqw =
nw∑
t=1

Mwt∑
x=1

ut,x. Then E(freqw) is given by
nw∑
t=1

Mwt∑
x=1

E(ut,x), where E(ut,x) = P (ut,x = 1) =

pwtx.

Corollary 4 For 0 ≤ w ≤ l− 1, given a threshold TH, P (freqw > TH) can be estimated

as 1−
TH∑
c=0

P (freqw = c), where P (freqw = c)’s are as given in Theorem 3, item 2.

Theorem 5 Let qyx = 1−pyx

N−1
, 0 ≤ x ≤ My, 0 ≤ y ≤ N − 1. Then for 0 ≤ w ≤ l − 1, we

have the following.
(1) The expected number of distinct values ∈ [0, N − 1] occurring in Tw is given by

Edist = N −
nw∏
t=1

Mwt∏
x=1

(1− pwtx)− (N − 1)
nw∏
t=1

Mwt∏
x=1

(1− qwtx).

(2) The expected number of distinct values ∈ [0, N − 1], each occurring exactly c times in
Tw, is given by

Ec =
∑

{t1,t2,...,tc}
⊆{1,2,...,nw}

 c∏
r=1

Mwtr∑
x=1

pwtr x

∏
x′ 6=x

(1− pwtr x′)


 ∏

r∈{1,2,...,nw}\
{t1,t2,...,tc}

Mwr∏
x=1

(1− pwrx)

 +

(N − 1)
∑

{t1,t2,...,tc}
⊆{1,2,...,nw}

 c∏
r=1

Mwtr∑
x=1

qwtr x

∏
x′ 6=x

(1− qwtr x′)


 ∏

r∈{1,2,...,nw}\
{t1,t2,...,tc}

Mwr∏
x=1

(1− qwrx)

.

12

Proof: First, we prove item (1). For 0 ≤ u ≤ N − 1, let xu = 1, if u does not occur in Tw;
otherwise, let xu = 0. Hence, the number of values from [0, N − 1] that do not occur at

all in Tw is given by X =
N−1∑
u=0

xu. A value u does not occur in Tw iff it does not occur in

any Gwt . For u = k[w], according to item 1 of Theorem 4, P (xu = 1) =
nw∏
t=1

Mwt∏
x=1

(1− pwtx).

Assuming that each gwtx, 1 ≤ x ≤ Mwt , takes each value u ∈ [0, N] \ {k[w]} with equal
probabilities, we have P (gwtx = u) =

1−pwtx

N−1
= qwtx. So, for u ∈ [0, N] \ {k[w]}, P (xu =

1) =
nw∏
t=1

Mwt∏
x=1

(1 − qwtx). We compute E(X) =
N−1∑
u=0

E(xu) = E(xk[w]) +
∑

u∈[0,N]\{k[w]}

E(xu),

where E(xu) = P (xu = 1). The expected number of distinct values ∈ [0, N − 1] occurring
in Tw is then given by N − E(X).

Next, we come to item (2). Here, let x′
u = 1, if u occurs exactly c times in Tw; otherwise,

let x′
u = 0. Hence, the number of values from [0, N − 1] that occurs exactly c times in Tw

is given by X ′ =
N−1∑
u=0

x′
u. Now, u occurs exactly c times in Tw, iff it occurs once in exactly c

out of nw many Gw’s and it does not occur in any of the remaining nw− c many Gw’s. For
u = k[w], P (x′

u = 1) is given by item (2) of Theorem 4. In the same expression, pwtr x would

be replaced by qwtr x, when u 6= k[w]. Since E(x′
u) = P (x′

u = 1), and E(X ′) =
N−1∑
u=0

E(x′
u),

we get the result by adding the individual expectations.

Corollary 5 For 0 ≤ w ≤ l − 1, given a threshold TH, the expected number of distinct

values ∈ [0, N − 1], each occurring > TH times in Tw, can be estimated as N −
TH∑
c=0

Ec,

where Ec is the the expected number of distinct values ∈ [0, N − 1], each occurring exactly
c times in Tw, as given in Theorem 5, item 3.

We can use the above results to devise an algorithm BuildKeyTable for building a
frequency table for each key byte and use the table to extract important information
about the key.

13

BuildKeyTable(SN)
Data Structures:

Arrays jarr1[N + 1], jarr2[N + 1], karr[l][N].
1. jarr1[0] = jarr2[0] = 0;
2. For y = 0 to N − 1 do

jarr1[y + 1] = S[y] and jarr2[y + 1] = S−1
N [y];

3. For w = 0 to l − 1 and for y = 0 to N − 1 do
karr[w][y] = 0;

4 karr
[
0
][

jarr1[1]
]

+= 1 and karr
[
0
][

jarr2[1]
]

+= 1;
5. For y = 1 to N − 1 do

5.1 karr
[
y mod l

][
jarr1[y + 1]− jarr1[y]− y

]
+= 1;

5.2 karr
[
y mod l

][
jarr1[y + 1]− jarr2[y]− y

]
+= 1;

5.3 karr
[
y mod l

][
jarr2[y + 1]− jarr1[y]− y

]
+= 1;

5.4 karr
[
y mod l

][
jarr2[y + 1]− jarr2[y]− y

]
+= 1;

The arrays jarr1 and jarr2 contain the values of jy’s as estimated from SN and S−1
N

respectively. For each key byte k[w], 0 ≤ w ≤ l− 1, the frequency of a value y ∈ [0, N − 1]
is stored in karr[w][y]. The notation ‘x += 1’ is used to denote that x is incremented by
1.

When guessing a specific key byte k[w], one would generally consider all values ∈
[0, N − 1] that have occurred at least once. However, one may try other alternatives such
as considering only those values ∈ [0, N − 1] that have frequency above a certain threshold
c.

2.2.1 Experimental Evidences

To compare how close the theoretical estimates are to the experimental ones, we present
some results here. All the experiments are carried out with 1 million randomly chosen keys
and the results presented are average of each run.

First we present experimental results corresponding to Theorems 4, 5 in Table 3. For
all key lengths, the estimates are given for k[3] (i.e. for w = 3 and c = 2) only as a
representative. However, we have verified the results for all key bytes k[w], 0 ≤ w ≤ l− 1,
for each key length l = 5, 8, 10, 12 and 16, and for different values of c.

In few cases, the theoretical and the empirical values are not close. These cases arise
because the idealistic assumption of independence of events does not always hold in prac-
tice. However, we find that in general the theoretical formula fits the empirical data to a
very good approximation.

Next we present some experiments related to the BuildKeyTable algorithm. We show
that each individual key byte can be recovered with a very high probability. Table 4 shows
data for the first two bytes of secret keys with key lengths 5, 8, 10, 12 and 16. The results
are obtained by considering 1 million randomly chosen secret keys of different key lengths.
In Table 4, ‘Succ.’ denotes the success probability and ‘Search’ denotes the number of
values ∈ [0, N − 1] that have frequency above the threshold c. Theoretical estimates of

14

l 5 8 10 12 16

P (k[w] ∈ Tw)
Theory 0.9991 0.9881 0.9729 0.9532 0.8909
Exp. 0.9994 0.9902 0.9764 0.9578 0.8970

P (freqw = c)
Theory 0.0225 0.1210 0.1814 0.2243 0.2682
Exp. 0.0186 0.1204 0.1873 0.2353 0.2872

E(freqw)
Theory 6.8 4.3 3.5 3.0 2.1
Exp. 6.8 4.3 3.5 2.9 2.1

Edist
Theory 138.5 99.2 84.2 73.4 55.9
Exp. 138.2 98.9 84.0 73.2 55.8

Ec
Theory 34.7 18.1 13.1 10.0 5.8
Exp. 35.2 18.6 13.6 10.4 6.2

Table 3: Theoretical vs. empirical estimates with w = 3 and c = 2 for Theorems 4, 5.

these values are given in Theorem 3 and Theorem 5 respectively.

Threshold c = 0 Threshold c = 1 Threshold c = 2
l Key byte Succ. Search Succ. Search Succ. Search

5
k[0] 0.9997 138.9 0.9967 47.9 0.9836 12.4
k[1] 0.9995 138.2 0.9950 47.4 0.9763 12.2

8
k[0] 0.9927 97.6 0.9526 22.2 0.8477 4.1
k[1] 0.9902 98.9 0.9400 22.9 0.8190 4.2

10
k[0] 0.9827 82.5 0.9041 15.7 0.7364 2.6
k[1] 0.9761 84.0 0.8797 16.3 0.6927 2.7

12
k[0] 0.9686 71.6 0.8482 11.8 0.6315 1.8
k[1] 0.9577 73.2 0.8118 12.3 0.5763 1.8

16
k[0] 0.9241 54.1 0.7072 6.7 0.4232 0.9
k[1] 0.8969 55.8 0.6451 7.1 0.3586 0.9

Table 4: Experimental results for first two key bytes using different thresholds.

As an example, each secret key byte for l = 5 can be guessed with a probability
> 0.97 amongst only around 12 values each of which has frequency at least 3; whereas, for
random guess, one need to consider at least 248 (≈ 256× 0.97) values to achieve the same
probability.

For any key length, the success probability and search complexity of other bytes from
k[2] onwards are almost same as those of k[1]. So the data for k[1] is a representative of
the other key bytes. Observe that the success probability for K[0] is always little more
than that for the other key bytes. This happens because K[0] is estimated as j1 − j0 − 0,
where j0 = 0 with probability 1. This is also consistent with item (1) of Theorem 3.

For the same threshold c, the probability as well as the search complexity for each
key byte decreases as the key length l increases. This happens because the number of
repetitions corresponding to each key byte decreases with the increase in l.

15

This is an independent novel work for separately retrieving the individual secret key
bytes from SN as opposed to the earlier works of solving simultaneous equations. This
reveals a new kind of weakness in the key scheduling of RC4. How this result can be
combined with the earlier techniques to improve upon them for complete key recovery is
not our immediate goal. However, we present some simple strategies in the next section
to demonstrate possible applications of our results towards the complete key recovery.
In certain cases, our results are currently the best known. We believe that our results,
plugged with the existing strategies [17, 2, 1], would provide much more sharper results in
this direction.

3 Recovering the Secret Key from the Permutation

In this section, we discuss how to get back the secret key, if we know the permutation
at any stage of the KSA. Moreover, if we know the RC4 state information at any round
of PRGA, we can deterministically get back the permutation after the KSA and thereby
recover the secret key. By state information, we mean (a) the entire permutation S, (b)
the number of keystream output bytes generated (which is related to the index i) and (c)
the value of the index j.

Consider that τ many keystream output bytes are generated in the PRGA and the
current permutation is SC . Further we take the current value of j as jC . These values
constitute the state information of RC4. Note that we only need to get the value of τ ,
and not the keystream output bytes themselves. From τ , we can get the current value of
i which we denote as iC . In the first round of PRGA, i starts from 1, and thereafter i is
updated by (i+1) mod N in every step. Hence iC = τ mod N . Assuming jC to be known,
Algorithm PRGAreverse stated below retrieves the permutation after the KSA from the
permutation after τ many rounds of the PRGA. Note that all subtractions except r = r−1
in Algorithm PRGAreverse are modulo N operations.

Algorithm PRGA
Initialization:

i = 0;
j = 0;

Output Keystream Generation Loop:
i = i + 1;
j = j + S[i];
Swap(S[i], S[j]);
t = S[i] + S[j];
Output z = S[t];

Algorithm PRGAreverse
Initialization:

i = iC ; j = jC ;S = SC ;
r = τ ;

Do
Swap(S[i], S[j]);
j = j − S[i];
i = i− 1;
r = r − 1;

While r > 0;

The technique for recovering secret key from the permutation after the KSA or at any
stage during the KSA is the main theme of this section.

16

3.1 Overview

We have first introduced the idea of recovering the complete key from SN in [17]. Subse-
quent to our work of [17], Biham and Carmeli [2] refined the idea of [17] and also pointed
out some minor errors in the tables related to complexity calculations. In Section 3.3.1
of this paper, we revise the complexity analysis of RecoverKey algorithm and related ex-
perimental results of our earlier version presented in [17, Section 3]. In particular, refer
to Table 5 in Section 3.3.1 of this paper for a corrected and revised version of [17, Table
3]. The idea of [2] is presented in Section 3.5 and where the work of [2] stands in relation
to our Section 3.3.1 in this paper is discussed in Section 3.5.1. The work of [1] is briefly
explained in Section 3.6 and its relation to our work is discussed in Section 3.6.1. Note that
the works of Sections 2.2, 3.4 of this paper and the work of [1] are performed independently
at the same time.

3.2 Issues Related to Time Complexity Estimates

Given the permutation Sr after the r-th round of the KSA, whatever may be the underlying
algorithm for guessing the key, after each guess an additional complexity of around r is
required to run the KSA for the first r rounds and compare the permutation obtained
with Sr to verify correctness of the key. If we start with the permutation SN after the
KSA, then (with the typical N = 256) this would require an additional complexity of 28

for verifying each key. Thus, the search space for exhaustive search of an l byte secret
key is 28l, but the actual complexity including the verification time is around 28l+8. In
the complexity analysis we do not include the key verification time, but only consider
the number of keys to be searched. The reason for this is two-fold. First, the additional
complexity overhead of 28 per key verification is constant for any algorithm. So all the
algorithms can be compared under a common model, if only the key search complexity is
considered, excluding the key verification time. Secondly, when a wrong key is verified, in
practice one may not need to run N complete rounds of the KSA. If the initial bytes of the
permutation after a few (such as 32) rounds of the KSA do not match at any position with
the corresponding permutation bytes in hand, then one may discard the current guess and
try with the next one. Since almost all the keys in the search space is wrong, on average
key verification can be assumed to take a constant amount of time.

Remark 2 Some of the works [2, 1], with which we compare our strategy, use time esti-
mates instead of exact complexity. We have checked that on a 2.8 GHz CPU, verifying 220

many secret keys can be completed in a second by a simple C code. Thus, the values of our
time complexities can be divided by 220 to get the estimate in seconds.

3.3 Complete Key Recovery by Solving Simultaneous Equations

We explain the scenario with an example first. In all the examples in this section, we
consider, without loss of generality, only the final permutation after the KSA, i.e., we
consider the case r = N only.

17

Example 1 Consider a 5 byte secret key with K[0] = 106, K[1] = 59, K[2] = 220, K[3] =

65, and K[4] = 34. We denote fy = y(y+1)
2

+

y∑
x=0

K[x]. If one runs the KSA, then the first

16 bytes of the final permutation will be as follows.

y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
fy 106 166 132 200 238 93 158 129 202 245 105 175 151 229 21 142
S256[i] 230 166 87 48 238 93 68 239 202 83 105 147 151 229 35 142

The strategy of key recovery would be to consider all possible sets of 5 equations chosen
from the 16 equations SN [y] = fy, 0 ≤ y ≤ 15, and then try to solve them. Whether the
solution is correct or not can be checked by running the KSA and comparing the permutation
obtained with the permutation in hand. Some of the choices may not be solvable at all.

The case of correct solution for this example correspond to the choices y = 1, 4, 5, 8 and
12, and the corresponding equations are:

K[0] + K[1] + (1 · 2)/2 = 166 (1)

K[0] + K[1] + K[2] + K[3] + K[4] + (4 · 5)/2 = 238 (2)

K[0] + . . . + K[5] + (5 · 6)/2 = 93 (3)

K[0] + . . . + K[8] + (8 · 9)/2 = 202 (4)

K[0] + . . . + K[12] + (12 · 13)/2 = 151 (5)

In general, the correctness of the solution depends on the correctness of the selected
equations. The probability that we will indeed get correct solutions is related to the joint
probability of Sr[y] = fy for the set of chosen y-values. Note that we do not need the
assumption that the majority of the equations are correct. Whether indeed the equations
selected are correct or not can be cross-checked by running the KSA again. Moreover,
empirical results show that in a significant proportion of the cases we get enough correct
equations to solve for the key.

For a 5 byte key, if we go for an exhaustive search for the key, then the complexity would
be 240. Whereas in our approach, we need to consider at the most

(
16
5

)
= 4368 < 213 sets of 5

equations. Since the equations are triangular in form, solving each set of 5 equations would
take approximately 52 = 25 (times a small constant) < 25 many additions/subtractions.
Hence the improvement over exhaustive search is almost by a factor of 240

213·25 = 222.
From Corollary 1, we get how Sr[y] is biased to different combinations of the keys,

namely, with fy = y(y+1)
2

+

y∑
x=0

K[x]. Let us denote P (Sr[y] = fy) = pr,y for 0 ≤ y ≤ r− 1,

1 ≤ r ≤ N . We initiate the discussion for RC4 with secret key of size l bytes. Suppose
we want to recover exactly m out of the l secret key bytes by solving equations and the
other l −m bytes by exhaustive key search. For this, we consider n (m ≤ n ≤ r) many
equations Sr[y] = fy, y = 0, 1, . . . , n− 1, in l variables (the key bytes). Let EIt denote the
set of all independent systems of t equations, or, equivalently, the collection of the indices
{y1, y2, . . . , yt} ⊆ {0, 1, . . . , n − 1}, corresponding to all sets of t independent equations
(selected from the above system of n equations).

18

If we want to recover m key bytes by solving m equations out of the first n equations
of the form Sr[y] = fy, in general, we need to check whether each of the

(
n
m

)
systems of m

equations is independent or not. In the next Theorem, we present the criteria for checking
the independence of such a set of equations and also the total number of such sets.

Theorem 6 Let l ≥ 2 be the RC4 key length in bytes. Suppose we want to select systems
of m independent equations, 2 ≤ m ≤ l, from the following n equations of the form
Sr[y] = fy involving the permutation bytes after round r of the KSA, m ≤ n ≤ r ≤ N ,

where fy = y(y+1)
2

+

y∑
x=0

K[x], 0 ≤ y ≤ n− 1.

1. The system Sr[yq] = fyq , 1 ≤ q ≤ m, of m equations selected from Sr[y] = fy,
0 ≤ y ≤ n− 1, corresponding to y = y1, y2, . . . , ym, is independent if and only if any
one of the following two conditions hold: either (i) yq mod l, 1 ≤ q ≤ m, yields m
distinct values, or (ii) yq mod l 6= (l − 1), 1 ≤ q ≤ m, and there is exactly one pair
ya, yb ∈ {y1, y2, . . . , ym} such that ya = yb (mod l), and all other yq mod l, q 6= a, q 6=
b yields m− 2 distinct values different from ya, yb (mod l).

2. The total number of independent systems of m (≥ 2) equations is given by

|EIm| =
m∑

x=0

(
n mod l

x

)(
l−n mod l

m−x

)
(bn

l
c+ 1)x(bn

l
c)m−x

+
(

n mod l
1

)(bn
l
c+1
2

) m−2∑
x=0

(
n mod l−1

x

)(
l−n mod l−1

m−2−x

)
(bn

l
c+ 1)x(bn

l
c)m−2−x

+
(

l−n mod l−1
1

)(bn
l
c

2

) m−2∑
x=0

(
n mod l

x

)(
l−n mod l−2

m−2−x

)
(bn

l
c+ 1)x(bn

l
c)m−2−x,

where the binomial coefficient
(

u
v

)
has the value 0, if u < v.

Proof: (Part 1) First, we will show that any one of the conditions (i) and (ii) is sufficient.
Suppose that the condition (i) holds, i.e., yq mod l (1 ≤ q ≤ m) yields m distinct values.
Then each equation involves a different key byte as a variable, and hence the system is
independent. Now, suppose that the condition (ii) holds. Then there exists exactly one pair
a, b ∈ {1, . . . ,m}, a 6= b, where ya = yb mod l. Without loss of generality, suppose ya < yb.
Then we can subtract Sr[ya] = fya from Sr[yb] = fyb

to get one equation involving some

multiple of the sum s =
l−1∑
x=0

K[x] of the key bytes. So we can replace exactly one equation

involving either ya or yb by the new equation involving s, which will become a different
equation with a new variable K[l − 1], since l − 1 /∈ {y1 mod l, y2 mod l, . . . , ym mod l}.
Thus, the resulting system is independent.

Next, we are going to show that the conditions are necessary. Suppose that neither
condition (i) nor condition (ii) holds. Then either we will have a triplet a, b, c such that
ya = yb = yc = mod l, or we will have a pair a, b with ya = yb mod l and l − 1 ∈

19

{y1 mod l, y2 mod l, . . . , ym mod l}. In the first case, subtracting two of the equations from
the third one would result in two equations involving s and the same key bytes as variables.
Thus the resulting system will not be independent. In the second case, subtracting one
equation from the other will result in an equation which is dependent on the equation
involving the key byte K[l − 1].

(Part 2) We know that n = (bn
l
c)l + (n mod l). If we compute y mod l, for y =

0, 1, . . . n− 1, then we will have the following residue classes:

[0] = {0, l, 2l, . . . , (bn
l
c)l}

[1] = {1, l + 1, 2l + 1, . . . , (bn
l
c)l + 1}

...
...

...
[n mod l − 1] = {n mod l − 1, l + (n mod l − 1), 2l + (n mod l − 1), . . . ,

(bn
l
c)l + (n mod l − 1)}

[n mod l] = {n mod l, l + (n mod l), 2l + (n mod l), . . . , (bn
l
c − 1)l

+(n mod l)}
...

...
...

[l − 1] = {l − 1, l + (l − 1), 2l + (l − 1), . . . , (bn
l
c − 1)l + (l − 1)}

The set of these l many residue classes can be classified into two mutually exclusive subsets,
namely A = {[0], . . . , [n mod l−1]} and B = {[n mod l], . . . , [l−1]}, such that each residue
class ∈ A has bn

l
c + 1 members and each residue class ∈ B has bn

l
c members. Note that

|A| = n mod l and |B| = l − (n mod l).
Now, the independent systems of m equations can be selected in three mutually ex-

clusive and exhaustive ways. Case I corresponds to the condition (i) and Cases II & III
correspond to the condition (ii) stated in the theorem.
Case I: Select m different residue classes from A∪B and choose one y-value (the equation
number) from each of these m residue classes. Now, x of the m residue classes can be
selected from the set A in

(
n mod l

x

)
ways and the remaining m − x can be selected from

the set B in
(

l−n mod l
m−x

)
ways. Again, corresponding to each such choice, the first x residue

classes would give bn
l
c+ 1 choices for y (the equation number) and each of the remaining

m− x residue classes would give bn
l
c choices for y. Thus, the total number of independent

equations in this case is given by
m∑

x=0

(
n mod l

x

)(
l−n mod l

m−x

)
(bn

l
c+ 1)x(bn

l
c)m−x.

Case II: Select two y-values from any residue class in A. Then select m− 2 other residue
classes except [l − 1] and select one y-value from each of those m− 2 residue classes. We
can pick one residue class a ∈ A in

(
n mod l

1

)
ways and subsequently two y-values from a in(bn

l
c+1
2

)
ways. Of the remaining m − 2 residue classes, x can be selected from A \ {a} in(

n mod l−1
x

)
ways and the remaining m−2−x can be selected from B\{[l−1]} in

(
l−n mod l−1

m−2−x

)
ways. Again, corresponding to each such choice, the first x residue classes would give bn

l
c+1

choices for y (the equation number) and each of the remaining m − 2 − x residue classes
would give bn

l
c choices for y. Thus, the total number of independent equations in this case

20

is given by
(

n mod l
1

)(bn
l
c+1
2

) m−2∑
x=0

(
n mod l−1

x

)(
l−n mod l−1

m−2−x

)
(bn

l
c+ 1)x(bn

l
c)m−2−x.

Case III: Select two y-values from any residue class in B \ {[l − 1]}. Then select m − 2
other residue classes and select one y-value from each of those m− 2 residue classes. This
case is similar to case II, and the total number of independent equations in this case is

given by
(

l−n mod l−1
1

)(bn
l
c

2

) m−2∑
x=0

(
n mod l

x

)(
l−n mod l−2

m−2−x

)
(bn

l
c+ 1)x(bn

l
c)m−2−x.

Adding the counts for the above three cases, we get the result.

Proposition 1 Given n and m, it takes O(m2 ·
(

n
m

)
) time to generate the set EIm using

Theorem 6.

Proof: We need to check a total of
(

n
m

)
many m tuples {y1, y2, . . . , ym}, and using the

independence criteria of Theorem 6, it takes O(m2) amount of time to determine if each
tuple belongs to EIm or not.

Proposition 2 Suppose we have an independent system of equations of the form Sr[yq] =
fyq involving the l key bytes as variables corresponding to the tuple {y1, y2, . . . , ym}, 0 ≤

yq ≤ n−1, 1 ≤ q ≤ m, where fy = y(y+1)
2

+

y∑
x=0

K[x]. If there is one equation in the system

involving s =
l−1∑
x=0

K[x], then we would have at most bn
l
c many solutions for the key.

Proof: If the coefficient of s is a, then by Linear Congruence Theorem [21], we would
have at most gcd(a, N) many solutions for s, each of which would give a different solution
for the key. To find the maximum possible number of solutions, we need to find an upper
bound of gcd(a, N).

Since the key is of length l, the coefficient a of s would be bys

l
c, where ys is the y-

value ∈ {y1, y2, . . . , ym} corresponding to the equation involving s. Thus, gcd(a, N) ≤ a =
bys

l
c ≤ bn

l
c.

Let us consider an example to demonstrate the case when we have two y-values (equa-
tion numbers) from the same residue class in the selected system of m equations, but still
the system is independent and hence solvable.

Example 2 Assume that the secret key is of length 5 bytes. Let us consider 16 equations of
the form SN [y] = fy, 0 ≤ y ≤ 15. We would consider all possible sets of 5 equations chosen
from the above 16 equations and then try to solve them. One such set would correspond
to y = 0, 1, 2, 3 and 13. Let the corresponding SN [y] values be 246, 250, 47, 204 and 185

21

respectively. Then we can form the following equations:

K[0] = 246 (6)

K[0] + K[1] + (1 · 2)/2 = 250 (7)

K[0] + K[1] + K[2] + (2 · 3)/2 = 47 (8)

K[0] + K[1] + K[2] + K[3] + (3 · 4)/2 = 204 (9)

K[0] + . . . + K[13] + (13 · 14)/2 = 185 (10)

From the first four equations, we readily get K[0] = 246, K[1] = 3, K[2] = 51 and
K[3] = 154. Since the key is 5 bytes long, K[5] = K[0], . . . , K[9] = K[4], K[10] =
K[0], . . . , K[13] = K[3]. Denoting the sum of the key bytes K[0] + . . . + K[4] by s, we
can rewrite equation (10) as:

2s + K[0] + K[1] + K[2] + K[3] + 91 = 185 (11)

Subtracting (9) from (11), and solving for s, we get s = 76 or 204. Taking the value 76,
we get

K[0] + K[1] + K[2] + K[3] + K[4] = 76 (12)

Subtracting (9) from (12), we get K[4] = 134. s = 204 does not give the correct key, as
can be verified by running the KSA and observing the permutation obtained.

3.3.1 Algorithm and Complexity Analysis

We now present the general algorithm for recovering the secret key bytes from the permu-
tation at any stage of the KSA.

Algorithm RecoverKey
Inputs:
1. Number of key bytes: l.
2. Number of key bytes to be solved from equations: m (≤ l).
3. Number of equations to be tried: n (≥ m).
4. The permutation bytes: Sr[y], 0 ≤ y ≤ r − 1 and the stage r, n ≤ r ≤ N .
Output:
The recovered key bytes K[0], K[1], . . . , K[l − 1], if they are found.
Otherwise, the algorithm halts after trying all the |EIm| systems of
m independent equations.
Steps:
1. For each distinct tuple {y1, y2, . . . , ym}, 0 ≤ yq ≤ n− 1, 1 ≤ q ≤ m do

1.1. If the tuple belongs to EIm then do
1.1.1 Arbitrarily select any m variables present in the system;
1.1.2 Solve for the m variables in terms of the remaining l −m variables;
1.1.3 For each possible assignment of the l −m variables do

1.1.3.1 Find values of the other m key bytes;
1.1.3.2 If the correct key is found, return it.

22

If one does not use the independence criteria (Theorem 6), all
(

n
m

)
sets of equations need

to be checked. However, the number of independent systems is |EIm|, which is much
smaller than

(
n
m

)
. Table 5 shows that |EIm| < 1

2

(
n
m

)
for most values of l, n, and m. Thus,

the independence criteria in Step 1.1 reduces the number of iterations in Step 1.1.2 by a
substantial factor.

The following Theorem quantifies the amount of time required to recover the key due
to our algorithm.

Theorem 7 The time complexity of the RecoverKey algorithm is given by

O
(
m2 ·

(
n
m

)
+ |EIm| ·

(
m2 + bn

l
c · 28(l−m)

))
,

where |EIm| is given by Theorem 6.

Proof: According to Proposition 1, for a complete run of the algorithm, checking the
condition at Step 1.1 consumes a total of O(m2 ·

(
n
m

)
) amount of time.

Further, the Steps 1.1.1, 1.1.2 and 1.1.3 are executed |EIm| times. Among them,
finding the solution in Step 1.1.2 involves O(m2) many addition/subtraction operations
(the equations being triangular in form). By Proposition 2, each system can yield at the
most O(bn

l
c) many solutions for the key. After the solution is found, Step 1.1.3 involves

28(l−m) many trials. Thus, the total time consumed by Steps 1.1.1, 1.1.2 and 1.1.3 for a

complete run would be O
(
|EIm| ·

(
m2 + bn

l
c · 28(l−m)

))
.

Hence, the time complexity is given by O
(
m2 ·

(
n
m

)
+ |EIm| ·

(
m2 + bn

l
c · 28(l−m)

))
.

Next, we estimate what is the probability of getting a set of independent correct equa-
tions when we run the above algorithm.

Proposition 3 Suppose that we are given the system of equations Sr[y] = fy, y = 0, 1, . . .,
n− 1, m ≤ n ≤ r ≤ N . Let cr,n be the number of independent correct equations. Then

P (cr,n ≥ m) =
n∑

t=m

∑
{y1,y2,...,yt}∈EIt

pr(y1, y2, . . . , yt),

where EIt is the collection of the indices {y1, y2, . . . , yt} corresponding to all sets of t
independent equations, and pr(y1, y2, . . . , yt) is the joint probability that the t equations
corresponding to the indices {y1, y2, . . . , yt} are correct and the other n − t equations cor-
responding to the indices {0, 1, . . . , n− 1} \ {y1, y2, . . . , yt} are incorrect.

Proof: We need to sum |EIt| number of terms of the form pr(y1, y2, . . . , yt) to get the
probability that exactly t equations are correct, i.e.,

P (cr,n = t) =
∑

{y1,y2,...,yt}∈EIt

pr(y1, y2, . . . , yt).

23

Hence, P (cr,n ≥ m) =
n∑

t=m

P (cr,n = t) =
n∑

t=m

∑
{y1,y2,...,yt}∈EIt

pr(y1, y2, . . . , yt).

Note that P (cr,n ≥ m) gives the success probability with which one can recover the
secret key from the permutation after the r-th round of the KSA.

In Theorem 1, we observed that as the number r of rounds increase, the probabilities
P (Sr[y] = fy) decrease. Finally, after the KSA, when r = N , (see Corollary 2) the
probabilities settle to the values as given in Table 2. However, as the events (Sr[y] = fy)
are not independent for different y’s, theoretically presenting the formulae for the joint
probability pr(y1, y2, . . . , yt) seems to be extremely tedious.

In Table 5, we provide experimental results on the probability of having at least m
independent correct equations, when the first n equations SN [y] = fy, 0 ≤ y ≤ n− 1, after
the complete KSA (i.e., r = N), are considered for the RecoverKey algorithm for different
values of n, m, and the key length l, satisfying m ≤ l ≤ n. Table 5 is a corrected and
revised version of [17, Table 3].

l n m
(

n
m

)
|EIm| 8l e P (cN,n ≥ m)

5 48 5 40 1712304 238500 25.6 0.431
5 24 5 42504 7500 40 20.3 0.385
5 16 5 4368 810 40 17.0 0.250

8 22 6 74613 29646 64 31.9 0.414
8 16 6 8008 3472 64 28.8 0.273
8 20 7 77520 13068 64 23.4 0.158

10 16 7 11440 5840 80 36.5 0.166
10 24 8 735471 130248 80 34.0 0.162

12 24 8 735471 274560 96 51.1 0.241
12 24 9 1307504 281600 96 43.1 0.116
12 21 10 352716 49920 96 31.6 0.026

16 24 9 1307504 721800 128 75.5 0.185
16 32 10 64512240 19731712 128 73.2 0.160
16 32 11 129024480 24321024 128 65.5 0.086
16 40 12 5586853480 367105284 128 61.5 0.050

16 27 12 17383860 2478464 128 53.2 0.022
16 26 12 9657700 1422080 128 52.4 0.019
16 44 14 114955808528 847648395 128 46.9 0.006
16 24 14 1961256 69120 128 32.2 0.0006

Table 5: Running the RecoverKey algorithm using different parameters for the final per-
mutation after the complete KSA (with N = 256 rounds).

For each probability calculation, the complete KSA (with N = 256 rounds) is repeated
a million times, each time with a randomly chosen key. We also compare the values

24

of the exhaustive search complexity and the reduction due to our algorithm. Let e =

log2

(
m2 ·

(
n
m

)
+ |EIm| ·

(
m2 + bn

l
c · 28(l−m)

))
. The time complexity of exhaustive search is

O(28l) and that of the RecoverKey algorithm, according to Theorem 7, is given by O(2e).
Thus, the reduction in search complexity due to our algorithm is by a factor O(28l−e).
One may note from Table 5 that by suitably choosing the parameters, one can achieve the
search complexity O(2

8l
2) = O(24l), which is the square root of the exhaustive key search

complexity.
The results in Table 5 clearly show that the probabilities (i.e., the empirical values of

P (cN,n ≥ m)) in most of the cases are greater than 10%. However, the algorithm does
not use the probabilities to recover the key. For certain keys the algorithm will be able to
recover the keys and for certain other keys the algorithm will not be able to recover the
keys by solving the equations. The success probability can be interpreted as the proportion
of keys for which the algorithm will be able to successfully recover the key. The keys, that
can be recovered from the permutation after the KSA using the RecoverKey algorithm,
may be considered as weak keys in RC4.

3.4 Complete Key Recovery from Frequency Table

In this section, we discuss how the complete key can be recovered using our technique
described in Section 2.2. We first like to refer to the BuildKeyTable algorithm from Sec-
tion 2.2. Corresponding to this algorithm, we have already explained the probabilities of
getting an individual key byte from a selected set of values. Now we estimate the probabil-
ity and time complexity when all the key bytes are identified at the same time. By Method
1, we refer to this simple strategy of guessing the complete key using different thresholds
on the basic table obtained from BuildKeyTable algorithm.

Towards improving Method 1, we present Method 1A below. Method 1A updates the
basic frequency table obtained from the BuildKeyTable algorithm by considering the val-
ues obtained from the S[S[y]] type of biases [9]. In [9, Section 2], it was shown that

biases towards fy = y(y+1)
2

+

y∑
x=0

K[y] exist at the permutation bytes SN [y], SN [SN [y]],

SN [SN [SN [y]]], SN [SN [SN [SN [y]]]], and so on. So, given the values of K[0], K[1], . . . , K[y−
1], the value of K[y] may be computed from the equations Sd

N [y] = fy, where d is the level
of indirections considered. Here, for frequency updates of k[0], the first four levels of indi-
rections (i.e., d = 1, 2, 3 and 4) are used and for frequency updates of other four key bytes,
only the first two levels of indirections are used. For frequency updates of k[1], only the
values of k[0] with frequency > 2 are considered. Similarly, for k[2], the threshold frequen-
cies of k[0] and k[1] are taken as 3 and 4 respectively. For k[3], the threshold frequencies
of k[0], k[1] and k[2] are 4 and 5 and 6 respectively. And finally, for k[4], the threshold
frequencies of k[0], k[1], k[2] and k[3] are 4, 5, 6 and 7 respectively. While updating the
table for the key byte k[w], we increase the thresholds for k[0], . . . , k[w−1], as w increases.
This is due to the reason that we want to selectively consider those cases which are highly
probable. Low thresholds for k[0], . . . , k[w−1] substantially increase the number of choices

25

for k[w] without significantly increasing the probability for correct k[w]. The thresholds
we have presented here are tuned empirically. In Method 1A, we apply the thresholds after
updating the frequency table as discussed above.

3.4.1 Experimental Results for 5 Byte Keys

In Table 6, we present the complete data related to all the bytes for 5 bytes secret key
using both Method 1 and Method 1A. ‘Succ.’ denotes the success probability and ‘comp.’
denotes the search complexity. The complexity of retrieving the entire key is computed
by multiplying the average number of values that need to be searched for individual key
bytes. We see that without using any heuristic, just applying our simple Method 1 on the
basic table obtained from BuildKeyTable algorithm helps to achieve 89.46% success rate in
a complexity 12.4× (12.2)4 ≈ 218.1.

Threshold c = 0 Threshold c = 1 Threshold c = 2
Key byte Method Succ. Comp. Succ. Comp. Succ. Comp.

k[0]
1 0.9997 138.9 0.9967 47.9 0.9836 12.4

1A 0.9998 140.2 0.9980 49.2 0.9900 13.0

k[1]
1 0.9995 138.2 0.9950 47.4 0.9763 12.2

1A 0.9997 149.2 0.9971 56.6 0.9857 16.1

k[2]
1 0.9995 138.2 0.9949 47.4 0.9764 12.2

1A 0.9996 142.2 0.9965 50.7 0.9834 13.6

k[3]
1 0.9995 138.2 0.9950 47.4 0.9761 12.2

1A 0.9996 138.7 0.9958 47.8 0.9796 12.4

k[4]
1 0.9995 138.2 0.9950 47.4 0.9766 12.2

1A 0.9996 138.7 0.9958 47.8 0.9796 12.4

Entire Key
1 0.9976 235.6 0.9768 227.8 0.8946 218.1

1A 0.9983 235.7 0.9830 228.3 0.9203 218.7

Table 6: Experimental results for all key bytes using different thresholds for l = 5.

Next, we try enhancements of the basic technique for 5 byte key to achieve better
results. For each key byte, we first try the value with the maximum frequency, then the
second maximum and so on. The search is done in an iterative deepening manner so that
if dw is the depth (starting from the most frequent guess) of the correct value for k[w],
then the search never go beyond depth dmax = max{dw, 0 ≤ w ≤ 4} for any key byte. The
complexity is calculated by finding the average of d5

max over 1 million trials, each with a
different key. We also set a depth limit G, which denotes at most how many different values
is to be tried for each key in descending order of their frequencies, starting from the most
frequent value. We denote this strategy as Method 2. If we update the frequency table
as in Method 1A before performing the search in descending order of frequencies, then we
name it as Method 2A.

26

The experimental results for the above two enhancements are presented in Table 7. As
before, ‘succ.’ denotes the success probability and ‘comp.’ denotes the time complexity.

Method G 10 16 32 48 64 80 96 160

2
Succ. 0.8434 0.9008 0.9383 0.9719 0.9800 0.9841 0.9870 0.9980
Comp. 214.3 217.0 221.3 223.5 224.8 226.0 227.1 229.0

2A
Succ. 0.8678 0.9196 0.9503 0.9772 0.9855 0.9876 0.9906 0.9985
Comp. 214.0 216.7 220.9 223.1 224.5 225.7 226.6 228.7

Table 7: Experimental results for l = 5 using the most frequent guesses of the key bytes.

Note that for 5 byte key, [2] reports a success probability of 0.8640 in 0.02 seconds
and [1] reports a success probability of 0.998 in 0.008 seconds. Whereas, we achieve a
success probability of 0.9985 in complexity 228.7. So far, this is the best known result for
5 byte key.

Our further results related to l = 8, 10, 12, 16 are discussed later in Table 8 while we
will compare our results with the other works related to this area.

3.4.2 Experimental Results for Other Key Lengths

For key lengths l = 8, 10, 12 and 16, we performed simple experiments using Method 1A
where the technique of updating the frequency table is applied for the first 5 key bytes
only (as we have already implemented this for our experiments on 5 byte secret keys).
In Table 8, we compare our success probabilities with those presented in [2, Table 4] and
with [1]. In [2, 1], time estimates are presented in seconds instead of time complexity
estimates of searching the number of keys. If there are multiple results for the same key
length, we report the entry corresponding to the best probability in each of [2, 1] for each
key length in Table 8.

In Table 8, we present three sets of results, namely, selected entries from Table 5 and
data generated from Exp. I and II which are explained below. In Exp. I, we report the
exact time complexities for our experiments in which we just exceed the probabilities given
in [2, Table 4]. In Exp. II, we report the success probabilities for each key length that is
achievable in complexity around 240, which should take less than a day using a few state
of the art machines (see Remark 2). In Exp. I, for l = 8, 10 and 12, we use a threshold of
2 for each of the first 4 bytes and for l = 16, we use a threshold of 2 for each of the first 2
bytes. A threshold of 1 is used for the remaining bytes for each key length. In Exp. II, for
l = 16, the thresholds are same as those in Exp. I. For other key lengths, the thresholds
are as follow. For l = 8, we use a threshold of 1 for each of the first 6 bytes and a threshold
of 0 for each of the last two bytes. A threshold of 1 is used for each key byte for the case
l = 10. For l = 12, a threshold of 2 is used for the first byte and a threshold of 1 is used
for each of the rest.

Here we only study the difference between two consecutive j’s to extract a single byte
of the key. However, the difference between any two j’s can be considered to get equations

27

l 8 10 12 16

Work of [2]
Probability 0.4058 0.1290 0.0212 0.0005

Time in Seconds [2] 0.60 3.93 7.43 278

Our Results from Table 5
Probability 0.414 0.162 0.026 0.0006
Complexity 231.9 234.0 231.6 232.2

Our Exp. I
Probability 0.4362 0.1421 0.0275 0.0007
Complexity 226.8 229.9 232.0 240.0

Our Exp. II
Probability 0.7250 0.2921 0.0659 0.0007
Complexity 240.6 240.1 240.1 240.0

Work of [1]
Probability 0.931 – 0.506 0.0745

Time in Seconds 8.602 – 54.390 1572

Table 8: Comparing our results with the existing works for l = 8, 10, 12, 16.

involving sum of more than one key bytes (in the same line as the idea of [17] has been
extended in [2]).

We would like to emphasize here that our immediate goal in this paper is not to study
all possible choices of parameters and heuristics through empirical trial and error for faster
recovery of the secret key. Our main aim is to build a theoretical framework for recovering
the key based on formal analysis of the correlation between the permutation and the secret
key. Our basic technique, when combined with the heuristics of [2, 1] would certainly
provide further improvements in success probability as well as time complexity.

3.5 Brief Review of [2] and Detailed Comparison with Our Work

After publication of [17], our idea has been exploited in [2] to achieve faster recovery of

the secret key at the same success probability. In [2], K[a . . . b] denotes
b∑

x=a

K[x] and Cy

denotes SN [y] − y(y+1)
2

. According to this notation, [17] has used a system of equations
of the form K[0 . . . y1] = Cy1 , K[0 . . . y2] = Cy2 . Whereas, the approach in [2] subtracts
the equations of the above form to generate more equations of the form K[0 . . . y2] −
K[0 . . . y1] = K[y1 + 1 . . . y2] = Cy2 − Cy1 . Among the sums K[a . . . b] for different a, b,
the sum s = K[0 . . . l − 1] of all the key bytes is guessed first. Plugging in the value
of s reduces all the remaining equations to sums of fewer than l key bytes, of the form
K[y1 . . . y2], 0 ≤ y1 < l, y1 ≤ y2 < y1 + l − 1. At each stage, the value for a new sum
of key bytes is guessed. Equations that are linearly dependent on prior guesses are not
considered. After l such guesses, the resulting set of equations reveals the key. Below we
enumerate additional techniques used in [2] towards improvement.

1. Since several equations suggest different values of the same sum of the key bytes,
each equation with a specific sum is associated with a set of N counters for storing
the weight of each possible value in [0, . . . , N]. A weight of 2 is assigned to values

28

with probability > 0.05, a weight of 1 is assigned to values with probability between
0.008 and 0.05 and a weight of 0 to all other values.

2. For each equation, the value with the highest weight is considered first and if this
fails to retrieve the correct key, backtracking is performed and the value with the
second highest weight is considered, and so on. The number of attempts λt to be
tried on the t-th guess, 0 ≤ t < l, are parameters of the algorithm, that are tuned
empirically.

3. Two sums are said to be in the same equivalence class if and only if the value of each
of them can be computed from the value of the other and the values of the known
sums. Counters of such sums are merged together and exactly one representative of
each equivalence class is kept.

4. If the sum K[y1 + 1 . . . y2] is correct, then it is expected that all the following three
events occurred with high probability.

• Sr[r] = r, r ∈ [y1 + 1, y2].

• S[y1] = jy1+1.

• S[y2] = jy2+1.

This information is utilized in two ways.

(a) When considering a value for a sum of of key bytes K[y1 +1 . . . y2] which is still
unknown, if the known sums indicate that the above three events are likely to
have occurred for y1, y2, then the weight associated with the value for the sum
K[y1 + 1 . . . y2] is increased.

(b) All suggestions passing over some r, y1 < r < y2, for which Sr[r] 6= r must
have the same error ∆ = Cy2 − Cy1 −K[y1 + 1 . . . y2]. So, if several suggestions
passing over some r have the same error ∆, then other suggestions passing over
r are corrected by ∆.

5. If S[y] = v < y for some y, then the equation derived from S[y] is discarded, as it
is expected that v has already been swapped when i = v had occurred and so is not
likely to be in location y after y iterations of the KSA.

If S[y] = v > y for some y, then there are two ways in which the assignment S[y]← v
might have occurred: (a) when i = y and j = S[j] = v, or (b) when i = S[i] = v
and j = y. The first case yields equation of the typical form K[0 . . . v] = Cv. In the

second case, the event (y = K[0 . . . v] + v(v+1)
2

) occurs with high probability and so

Cv = S−1[v] − v(v+1)
2

can be considered as an alternative suggestion (in addition to
Cv) for K[0 . . . v].

6. If the already-made guesses are correct, then after merging counters it is expected
that the weight of the highest counter is significantly higher than other counters.

29

With an aim to eliminating wrong guesses, when considering candidates for the t-th
guess, only the ones with a weight of at least µt are considered, 0 ≤ t < l. The
optimal values of these thresholds are determined empirically.

3.5.1 Work of [2] in Relation to Section 3.3.1 of this Paper

The work [2] claimed to improve upon [17] by increasing the probability of the equations
involved through taking differences of the original equations in [17]. For example, in [2,
Section 4.1], it was mentioned that the probability that P (K[0] + · · · + K[50]) = C50) =
0.0059, and P (K[0] + · · ·+ K[52]) = C52) = 0.0052, but P (K[51] + K[52] = C52 − C50) =
0.0624, which is more than 10 times the probabilities of the individual equations. However,
this does not hold for the initial bytes of the permutation. For the initial bytes, the
probability of the difference of two equations being true is little more than the product
of the probabilities of the individual equations, but it is much less than each individual
probabilities. For example, P (K[0] + K[1] = C1) = 0.3682 and P (K[0] + · · · + K[3] =
C3) = 0.3583, whereas P (K[2] + K[3] = C3 − C1) = 0.1403, which is much less than the
values 0.3682 and 0.3583, and only little above their product 0.1319. So this cannot give
major improvement in the success probability.

To substantiate this further, we like to refer to the work of [17]. As it is correctly
pointed out in [2], there were some erroneous data related to the complexity calculation
(due to integer overflow) in [17, Table 3]. Also the complexity formula of [17] was over-
estimated. We present the revised formula and the updated table in Section 3.3.1 of this
paper.

In [2, Table 4], it is demonstrated that a 16 bytes key can be recovered in 278 seconds
with success probability 0.0005, but no formal complexity analysis is provided. Further,
the impact of the 2l many tunable parameters (λw and µw, 0 ≤ w ≤ l− 1, see Appendix A
for their definitions) on the success probability and the search complexity is not discussed
in [2]. The result that the heuristic of [2] requires 278 seconds for a success probability
0.0005 on a Pentium IV 3 GHz machine does not give clear idea about the complexity
when the same strategy is used to achieve a higher success probability.

In Table 5, it is shown that a probability of success of 0.0006 (more than 0.0005 as in [2,
Table 4]) can be achieved in 232.2 time complexity which requires around 4705 seconds (see
Remark 1). From the results reported in [2], it is not clear how much increase in search
complexity is required for a certain increase in the success probability. However, the last 8
entries corresponding to 16 bytes key length in Table 5 give a flavour about the relationship
between the complexity and success probability. For example, when the success probability
increases from 0.0006 to 0.006 (i.e. increases by 10 times), the complexity increases by a
factor of 214.7.

Note that our work in Section 3.4 achieves better success probabilities than those of [2]
for each key length.

30

3.6 Brief Review of [1] and Detailed Comparison with Our Works

The work [17] had showed for the first time how one can retrieve the secret key from the
permutation SN after the KSA. Later, [2] used some heuristics on the same idea to achieve
faster recovery of the key. Recently, [1] has revisited the key reconstruction from SN with
some improvements. They have accumulated the theoretical results in the earlier works
along with some additional observations to devise an algorithm for key recovery. The key
retrieval algorithm in [1] considers 6 types of events for guessing one j value:

1. jy+1 = SN [y].

2. jy+1 = S−1
N [y].

3. jy+1 = SN [SN [[y]].

4. jy+1 = S−1
N [S−1

N [y]].

5. jy+1 = SN [SN [SN [y]]].

6. jy+1 = S−1
N [S−1

N [S−1
N [y]]].

From two successive j values jy and jy+1, 6× 6 = 36 candidates for the key byte K[y]
are obtained. They are weighted according to their probabilities. In addition to these, the
equations of [2] are also used and the sum s of the key bytes is guessed first. Then, for
all m-byte combinations of l key bytes, m key bytes are assigned values with the highest
weight. After that, the remaining l−m key-bytes are solved as follows. For each group of
four bytes, some of them are already guessed (being part of the selected m-combination).
New candidates for the remaining (being part of the other l−m key bytes) ones are found
using the sum information (i.e., Cy values) in these 4 byte sequence. The values for these
are then fixed by trying all possible candidates through a selected depth.

3.6.1 Work of [1] in Relation to Our Works

Many of the theoretical results used in [1] were already known. These are briefly mentioned
here.

1. Theorem 4 in Section 5 of [1] was already proved in [17, Section 2, Lemma 2], which
appears as Lemma 2 in this paper.

2. Definitions 3 and 5 in [1] about SN [SN [[y]] and SN [SN [SN [y]]] were introduced for
the first time in [9] which also had some results related to these definitions.

3. Definition 2 in [1] about S−1
N [y] is introduced independently in our current work of

Section 2.2. Moreover, similar to the natural extension of SN [y] into SN [SN [[y]],
SN [SN [SN [y]]] etc. as performed in [9], the work in [1] has also extended the concept
of S−1

N [y] into S−1
N [S−1

N [y]] and S−1
N [S−1

N [S−1
N [y]]] in their Definitions 4 and 6.

31

4. Theorem 5 in Section 5 of [1] is contained in the event E1(y) of Theorem 2 in this
paper. This is done independently and at the same time. It is interesting to note that
our Theorem 2 covers both Theorem 4 and Theorem 5 of [1] for all the permutation
indices y, 0 ≤ y ≤ N − 1.

Though the above discussion shows that many theoretical results used in [1] are not
new, the work [1] has taken them all together into an efficient implementation of the key
retrieval algorithm. Our theoretical framework, when combined with the implementation
techniques of [1], is likely to provide further improvements.

4 Intrinsic Weakness of Shuffle-exchange Type KSA

In the KSA of RC4, the index i is incremented by one and j is updated pseudo-randomly by
the rule j = j +S[i]+K[i]. In the notations of Section 2, we may write, for 0 ≤ y ≤ N−1,

jy+1 = jy + Sy[y] + K[y].

Here, the increment of j is a function of the permutation and the secret key. One may
expect that the correlation between the secret key and the permutation can be removed by
modifying the update rule for j. Here we show that for a certain class of rules of this type,
where j across different rounds is uniformly randomly distributed, there will always exist
significant bias of the permutation at any stage of the KSA towards some combination of
the secret key bytes with significant probability. Though the proof technique is similar
to that in Section 2, it may be noted that the analysis in the proofs here focus on the
weakness of the particular “form” of RC4 KSA, and not on the exact quantity of the bias.

We can model the update of j in the KSA as an arbitrary function u of (a) the current
values of i, j, (b) the i-th and j-th permutation bytes from the previous round, and (c) the
i-th and j-th key bytes. Using the notations of Section 2, we may write

jy+1 = u(y, jy, Sy[y], Sy[jy], K[y], K[jy]).

For subsequent reference, let us call the KSA with this generalized update rule as GKSA.

Lemma 3 Assume that during the GKSA rounds, the index j takes its values from {0, 1,
. . . , N − 1} uniformly at random. Then, one can always construct functions hy(S0, K),
which depends only on y, the secret key bytes and the initial permutation, and probabilities
πy, which depends only on y and N , such that P (jy+1 = hy(S0, K)) = (N−1

N
)πy + 1

N
,

0 ≤ y ≤ N − 1.

Proof: By induction on y, we will show (i) how to construct the recursive functions
hy(S0, K) and probabilities πy and (ii) that one contribution towards the event (jy+1 =
hy(S0, K)) is πy.

• Base Case: Initially, before the beginning of round 1, j0 = 0. In round 1, j1 =
u(0, 0, S0[0], S0[0], K[0], K[0]) = h0(S0, K) (say), with probability π0 = 1.

32

• Inductive Case: Suppose, P (jy = hy−1(S0, K)) = πy−1, y ≥ 1 (inductive hypothesis).
We know that jy+1 = u(y, jy, Sy[y], Sy[jy], K[y], K[jy]). In the right hand side of this
equality, all occurrences of Sy[y] can be replaced by S0[y] with probability (N−1

N
)y,

which is the probability of index y not being involved in any swap in the previous y
many rounds. Also, due to the swap in round y, we have Sy[jy] = Sy−1[y− 1], which
again can be replaced by S0[y−1] with probability (N−1

N
)y−1. Finally, all occurrences

of jy can be replaced by hy−1(S0, K) with probability πy−1 (using the inductive hy-
pothesis). Thus, jy+1 equals u(y, hy−1(S0, K), S0[y], S0[y − 1], K[y], K[hy−1(S0, K)])
with some probability πy which can be computed as a function of y, N , and πy−1,
depending on the occurrence or non-occurrence of various terms in u. If we denote
hy(S0, K) = u(y, hy−1(S0, K), S0[y], S0[y − 1], K[y], K[hy−1(S0, K)]), then (i) and (ii)
follow by induction.

When the recursive path does not occur, then the event(
jy+1 = u

(
y, hy−1(S0, K), S0[y], S0[y − 1], K[y], K[hy−1(S0, K)]

))
occurs due to random association with probability (1 − πy) · 1

N
. Adding the above

two contributions, we get P (jy+1 = hy(S0, K)) = πy + (1− πy) · 1
N

= (N−1
N

)πy + 1
N

.

Theorem 8 Assume that during the GKSA rounds, the index j takes its values uniformly
at random from {0, 1, . . . , N − 1}. Then, one can always construct functions fy(S0, K),
which depends only on y, the secret key bytes and the initial permutation, such that
P (Sr[y] = fy(S0, K)) ≈ (N−y

N
) · (N−1

N
)r · πy + 1

N
, 0 ≤ y ≤ r − 1, 1 ≤ r ≤ N .

Proof: We will show that fy(S0, K) = S0[hy(S0, K)] where the function hy’s are given by
Lemma 3.

Now, Sr[y] can equal S0[hy(S0, K)] in two ways. One way is that jy+1 = hy(S0, K))
following the recursive path as in Lemma 3 and Sr[y] = S0[jy+1]. Combining Lemma 3 and
Lemma 2, we find the probability of this event to be approximately (N−y

N
) · (N−1

N
)r−1 · πy.

Another way is that the above path is not followed and still Sr[y] = S0[hy(S0, K)] due to

random association. The contribution of this part is approximately
(
1− (N−y

N
) · (N−1

N
)r−1 ·

πy

)
· 1
N

. Adding the above two contributions, we get the total probability≈ (N−y
N

)·(N−1
N

)r−1·

πy+
(
1−(N−y

N
)·(N−1

N
)r−1 ·πy

)
· 1
N

= (1− 1
N

)·(N−y
N

)·(N−1
N

)r−1 ·πy+ 1
N

= (N−y
N

)·(N−1
N

)r ·πy+ 1
N

.

Next, we discuss some special cases of the update rule u as illustrative examples of
how to construct the functions fy’s and the probabilities πy’s for small values of y using
Lemma 3. In all the following cases, we assume S0 to be an identity permutation and hence
fy(S0, K) is the same as hy(S0, K).

Example 3 Consider the KSA of RC4, where

u(y, jy, Sy[y], Sy[jy], K[y], K[jy]) = jy + Sy[y] + K[y].

33

We have h0(S0, K) = u(0, 0, S0[0], S0[0], K[0], K[0]) = 0 + 0 + K[0] = K[0]. Moreover,
π0 = P (j1 = h0(S0, K)) = 1. For y ≥ 1,
hy(S0, K) = u(y, hy−1(S0, K), S0[y], S0[y − 1], K[y], K[hy−1(S0, K)])

= hy−1(S0, K) + S0[y] + K[y]
= hy−1(S0, K) + y + K[y].

Solving the recurrence, we get hy(S0, K) = y(y+1)
2

+

y∑
x=0

K[x]. From the analysis in the proof

of Lemma 3, we see that in the recurrence of hy, Sy[y] has been replaced by S0[y] and jy

has been replaced by hy−1(S0, K). Hence, we would have πy = P (Sy[y] = S0[y]) · P (jy =

hy−1(S0, K)) = (N−1
N

)y ·πy−1. Solving this recurrence, we get πy =

y∏
x=0

(N−1
N

)x = (N−1
N

)
y(y+1)

2 .

These expressions coincide with those in Corollary 1 and Corollary 2.

Example 4 Consider the update rule

u(y, jy, Sy[y], Sy[jy], K[y], K[jy]) = jy + Sy[jy] + K[jy].

Here, h0(S0, K) = u(0, 0, S0[0], S0[0], K[0], K[0]) = 0 + 0 + K[0] = K[0] and π0 = P (j1 =
h0(S0, K)) = 1. For y ≥ 1,
hy(S0, K) = u(y, hy−1(S0, K), S0[y], S0[y − 1], K[y], K[hy−1(S0, K)])

= hy−1(S0, K) + S0[y − 1] + K[hy−1(S0, K)]
= hy−1(S0, K) + (y − 1) + K[hy−1(S0, K)].

From the analysis in the proof of Lemma 3, we see that in the recurrence of hy, Sy−1[y− 1]
and jy are respectively replaced by S0[y − 1] and hy−1(S0, K). Thus, we would have πy =

(N−1
N

)y−1 · πy−1. Solving this recurrence, we get πy =

y∏
x=1

(N−1
N

)x−1 = (N−1
N

)
y(y−1)

2 .

Example 5 As another example, suppose

u(y, jy, Sy[y], Sy[jy], K[y], K[jy]) = jy + y · Sy[jy] + K[jy].

As before, h0(S0, K) = u(0, 0, S0[0], S0[0], K[0], K[0]) = 0+0 ·S[0]+K[0] = 0+0+K[0] =
K[0] and π0 = P (j1 = h0(S0, K)) = 1. For y ≥ 1,
hy(S0, K) = u(y, hy−1(S0, K), S0[y], S0[y − 1], K[y], K[hy−1(S0, K)])

= hy−1(S0, K)]) + y · S0[y − 1] + K[hy−1(S0, K)]
= hy−1(S0, K)]) + y · (y − 1) + K[hy−1(S0, K)].

As in the previous example, here also the recurrence relation for the probabilities is πy =

(N−1
N

)y−1 · πy−1, whose solution is πy =

y∏
x=1

(N−1
N

)x−1 = (N−1
N

)
y(y−1)

2 .

Our results show that the design of RC4 KSA cannot achieve further security by changing
the update rule by any rule from a large class that we present.

34

5 Conclusion

We theoretically prove how the permutation bytes at any stage of the KSA are biased to
the secret key bytes. In addition, we show how to use this result to recover the secret key
bytes from the RC4 state at any stage (i.e., after arbitrary number of rounds of the KSA
or the PRGA) with constant probability of success in less than the square root of the time
required for exhaustive key search.

We also show that significant amount of information about the individual key byte
can be obtained exploiting all the bytes of SN , S−1

N . Our simple experiments (which are
straightforward applications of our theoretical results) sometimes outperform other works
(such as [2], as depicted in Table 8). Our method, when combined with other methods, such
as those in [17, 2, 1], or used with proper heuristics having empirically tunable parameters,
is likely to provide further improvements.

Further, we analyze a generalization of the RC4 KSA corresponding to a class of func-
tions to update the hidden index j and find that the correlation of the permutation with
the secret key exist for each function in this class. Since the state (which includes the
permutation and the indices) is in general not observable, this work does not immediately
pose an additional threat to the security of RC4. However, for an ideal stream cipher, no
information about the secret key should be revealed even if the complete state of the system
is known at any instant. Our work clearly points out an intrinsic structural weaknesses of
RC4 and certain generalizations of it.

References

[1] M. Akgun, P. Kavak and H. Demirci. New Results on the Key Scheduling Algorithm
of RC4. Preprint, received on May 19, 2008 by email. A sketch of this work has been
presented in Eurocrypt 2008 Rump Session, available at
http://www.iacr.org/conferences/eurocrypt2008v/index.html.

[2] E. Biham and Y. Carmeli. Efficient Reconstruction of RC4 Keys from Internal States.
Preproceedings of Fast Software Encryprion, FSE 2008, pages 267-285.

[3] S. R. Fluhrer and D. A. McGrew. Statistical Analysis of the Alleged RC4 Keystream
Generator. FSE 2000, pages 19-30, vol. 1978, Lecture Notes in Computer Science,
Springer-Verlag.

[4] S. R. Fluhrer, I. Mantin and A. Shamir. Weaknesses in the Key Scheduling Algorithm
of RC4. Selected Areas in Cryptography 2001, pages 1-24, vol. 2259, Lecture Notes in
Computer Science, Springer-Verlag.

[5] J. Golic. Linear statistical weakness of alleged RC4 keystream generator. EURO-
CRYPT 1997, pages 226-238, vol. 1233, Lecture Notes in Computer Science, Springer-
Verlag.

35

[6] L. R. Knudsen, W. Meier, B. Preneel, V. Rijmen and S. Verdoolaege. Analysis Methods
for (Alleged) RCA. ASIACRYPT 1998, pages 327-341, vol. 1514, Lecture Notes in
Computer Science, Springer-Verlag.

[7] LAN/MAN Standard Committee. Wireless LAN medium access control (MAC) and
physical layer (PHY) specifications, 1999 edition. IEEE standard 802.11, 1999.

[8] A. Klein. Attacks on the RC4 stream cipher. February 27, 2006. Available at
http://cage.ugent.be/ klein/RC4/, [last accessed on June 27, 2007].

[9] S. Maitra and G. Paul. New Form of Permutation Bias and Secret Key Leakage in
Keystream Bytes of RC4. Preproceedings of Fast Software Encryprion, FSE 2008,
pages 250-266.

[10] I. Mantin and A. Shamir. A Practical Attack on Broadcast RC4. FSE 2001, pages
152-164, vol. 2355, Lecture Notes in Computer Science, Springer-Verlag.

[11] I. Mantin. A Practical Attack on the Fixed RC4 in the WEP Mode. ASIACRYPT 2005,
pages 395-411, volume 3788, Lecture Notes in Computer Science, Springer-Verlag.

[12] I. Mantin. Predicting and Distinguishing Attacks on RC4 Keystream Generator. EU-
ROCRYPT 2005, pages 491-506, vol. 3494, Lecture Notes in Computer Science,
Springer-Verlag.

[13] I. Mantin. Analysis of the stream cipher RC4. Master’s Thesis, The Weizmann Insti-
tute of Science, Israel, 2001.

[14] A. Maximov and D. Khovratovich. New State Recovering Attack on RC4 (Full Ver-
sion). IACR Eprint Server, eprint.iacr.org, number 2008/017, Jan 10, 2008.

[15] I. Mironov. (Not So) Random Shuffles of RC4. 1;5A CRYPTO 2002, pages 304-319,
vol. 2442, Lecture Notes in Computer Science, Springer-Verlag.

[16] G. Paul, S. Rathi and S. Maitra. On Non-negligible Bias of the First Output Byte of
RC4 towards the First Three Bytes of the Secret Key. Proceedings of the International
Workshop on Coding and Cryptography 2007, pages 285-294.

[17] G. Paul and S. Maitra. Permutation after RC4 Key Scheduling Reveals the Secret Key.
In Selected Areas in Cryptography, 14th International Workshop, SAC 2007, August
16-17, Ottawa, Canada, pages 360–377, volume 4876, Lecture Notes in Computer
Science, Springer Verlag, 2007.

[18] S. Paul and B. Preneel. Analysis of Non-fortuitous Predictive States of the RC4
Keystream Generator. INDOCRYPT 2003, pages 52-67, vol. 2904, Lecture Notes in
Computer Science, Springer-Verlag.

36

[19] S. Paul and B. Preneel. A New Weakness in the RC4 Keystream Generator and an
Approach to Improve the Security of the Cipher. FSE 2004, pages 245-259, vol. 3017,
Lecture Notes in Computer Science, Springer-Verlag.

[20] A. Roos. A class of weak keys in the RC4 stream cipher. Two posts in sci.crypt,
message-id 43u1eh$1j3@hermes.is.co.za and 44ebge$llf@hermes.is.co.za, 1995.
Available at http://marcel.wanda.ch/Archive/WeakKeys.

[21] J. Silverman. A Friendly Introduction to Number Theory. Prentice Hall, NJ. Page 56,
Second Edition, 2001.

[22] V. Tomasevic, S. Bojanic and O. Nieto-Taladriz. Finding an internal state of RC4
stream cipher. Information Sciences, pages 1715-1727, vol. 177, 2007.

[23] D. Wagner. My RC4 weak keys.
Post in sci.crypt, message-id 447o1l$cbj@cnn.Princeton.EDU, 26 September, 1995.
Available at http://www.cs.berkeley.edu/∼daw/my-posts/my-rc4-weak-keys.

37

