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Abstract

We describe a practical public key encryption scheme that is secure in the standard model
against adaptive chosen ciphertext attacks with short ciphertext. Security is based on the
Decisional Diffie-Hellman(DDH) assumption. A comparison shows that our construction is
more efficient than Cramer and Shoup’s scheme(CS98) both in computation and bandwidth.
Using the KEM-DEM model we can get an efficient hybrid encryption scheme which is slightly
less efficient than the scheme proposed by K. Kurosawa and Y. Desmedt(KD04) in term of
encryption while with short ciphertext.
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1 Introduction

Security against adaptive chosen cipher-text attacks (CCA secure) [1, 2, 3] is a strong and very
useful notion of security for public-key encryption schemes. This notion is known to suffice for many
applications of encryption in the presence of active attackers, including secure communication,
auctions, voting schemes, and many others. CCA secure is commonly accepted as the security
notion of choice for encryption schemes that are to be plugged in to a protocol running in an
arbitrary setting [4, 5]. The random oracle model is a useful tool in constructing CCA secure
public-key encryption schemes, but it does not rule out all possible attacks [6]. Schemes that
can be proven to be CCA-secure in the standard model (without the use of heuristics such as
random oracles) is more practical. Cramer and Shoup showed the first provably secure practical
public-key encryption scheme in the standard model [7]. It is CCA secure under the Decisional
Diffie-Hellman(DDH) assumption. They further generalized their scheme to projective hash families
[8].

Public key encryption schemes often limit the message space to a particular group, which can
be restrictive when one wants to encrypt arbitrary messages. For this purpose hybrid schemes are
devised. In these cryptosystems a symmetric encryption scheme is used to overcome the prob-
lems typically associated with encrypting long messages using ”pure” asymmetric techniques. This



is typically achieved by encrypting the message with a symmetric encryption scheme and a ran-
domly generated symmetric key. This random symmetric key is then somehow encrypted using an
asymmetric encryption scheme. This approach has been successfully used for many years.

One important advance in hybrid cryptography is the development of the KEM/DEM model for
hybrid encryption algorithms [12]. This model splits a hybrid encryption scheme into two distinct
components: an asymmetric key encapsulation mechanism (KEM) and a symmetric data encap-
sulation mechanisms (DEM). In order to obtain a CCA-secure hybrid encryption, it is sufficient
that both KEM and DEM are CCA-secure. (Accordingly, we refer the framework of [12, 14] as
CCA KEM/DEM framework in this paper). Recently in [15], Kurosawa and Desmedt introduced
a hybrid encryption scheme which is a modification of the hybrid scheme presented in [10]. Their
scheme is interesting from both a theoretical and a practical point of view. When one looks at it
as a KEM/DEM scheme, we do not know if their KEM is CCA-secure, yet the resulting scheme
is CCA-secure and more efficient than the one in [10] both in computation and bandwidth. Thus
the Kurosawa-Desmedt scheme points out that to obtain CCA-secure hybrid encryption, requiring
both KEM/DEM to be CCA-secure, while being a sufficient condition, may not be a necessary one,
and might indeed be an overkill. Later, the hybrid encryption paradigm for asymmetric encryption
has been generalized. This new framework, presented by Abe et al. [16], makes use of a new
object called a "tag-KEM”.Abe et al. define an independent security criteria for the tag-KEM.
The security criteria that they propose for the tag-KEM is stricter than for a KEM (a secure KEM
will not be a secure tag-KEM) but allows for the use of a DEM that is only secure against passive
attacks.

Recently, Kiltz proposed a practical KEM with simple and intuitive design concept [18]. Security
against chosen-ciphertext attacks can be proved in the standard model under a new assumption,
the Gap Hashed Diffie-Hellman(GHDH) assumption. Compared to the previously most efficient
scheme by Kurosawa and Desmedt [15] it has 128 bits shorter ciphertexts, between 25-50% shorter
public/secret keys, and it is slightly more efficient in terms of encryption/decryption speed.

1.1 Owur Contributions

We construct a variant formulation of the DDH problem in order to obtain a public key encryption
which is provably secure against chosen-ciphertext attacks under the DDH assumption. Our main
idea is to construct a variant formulation of the DDH problem that different instances are linear
independent to each other. Thus one can not tell if an instances is a DDH instance or a random
instance from the situation of the other instance. According to this property we can make a DDH
query in the decryption simulation. Finally we can construct a practical public key encryption
scheme that is secure in the standard model against adaptive chosen ciphertext attacks with short
ciphertext.

2 Preliminaries

We review the standard definitions of public-key encryption schemes(PKE) and key encapsulation
mechanism(KEM). This is followed by the definition of DDH assumption.

In describing probabilistic processes, we write x £ X to denote the action of assigning to the
variable x a value sampled according to the distribution X. If S is a finite set, we simply write

s &S to denote assignment to s of an element sampled from uniform distribution on S. If A is a



probabilistic algorithm and = an input, then A(z) denotes the output distribution of A on in put

x. Thus, we write y & A(z) to denote of running algorithm A on input z and assigning the output
to the variable y.
We write

Pr{z; £X1,x2 £X2,...,xn ﬁXn s o(x1, ., )]

to denote the probability that when x1 is drawn from a certain distribution X7, and x5 is drawn
from a certain distribution Xs(z1), possibly depending on the particular choice of 1, and so on, all
the way to x,, the predicate ¢(x1, ..., x,) is true. We allow the predicate ¢ to involve the execution
of probabilistic algorithms.

2.1 Public-Key Encryption

Definition 1 A public key encryption scheme PKE is a triple of PPT (probabilistic polyno-
mial time) algorithms :

o PKE.KeyGen(1¥): The randomized key generation algorithm takes as input a security pa-
rameter (1¥) and outputs a public key PK and secret key SK. We write (PK,SK) «
PKE.KeyGen(1¥)

e PKE.Encrypt(PK,m): The randomized encryption algorithm takes as input a public key
PK and a message m, and outputs a ciphertext C. We write C <+ PKE.Encrypt(PK,m)

e PKE.Decrypt(SK,C): The decryption algorithm takes as input a ciphertext C' and secret key
SK. Tt returns a message or the distinguished symbol L. We write m <« PKFE.Decrypt(SK, C).

We require that for all PK,SK output by PKE.KeyGen, all m € {0,1}*, and all C' output by
PKE.Encrypt(PK,m) we have PKE.Decrypt(SK,C) =m .

We recall the standard definition of security for public key encryption schemes against adaptive
chosen ciphertext attacks.

Definition 2 A PKE scheme is secure against adaptive chosen ciphertext attacks if the ad-
vantage of any PPT adversary A in the following game is negligible in the security parameter k:

1. PKE.KeyGen(1¥) outputs PK,SK. Adversary A is given 1*¥ and PK.
2. The adversary may make a sequence of queries to a decryption oracle PK E.Decrypt(SK,-).

3. At some point, A outputs two messages mg, mi with |mg| = |m1|. A bit b is randomly chosen
and the adversary is given a ”challenge ciphertext” C* «— PKFE.Encrypt(PK,my).

4. A may continue to query its decryption oracle PKE.Decrypt(SK,-) except that it may not
request the decryption of C*.

5. Finally, A outputs a guess b’ .

We call the game above IND-CCA2 game of PKE. We say A succeeds if & = b , and de-
note the probability of this event by Pra px[Succ]. The adversary’s advantage is defined as
AdvCCAy = |Pry pr[Suce] —1/2].



2.2 Key Encapsulation Mechanism

Definition 3 A key encapsulation mechanism KEM is a triple of PPT (probabilistic polyno-
mial time) algorithms:

e KEM.KeyGen(1¥): The key generation algorithm takes as input a security parameter (1¥)
and outputs a public key PK and secret key SK. We write (PK, SK) «— KEM.KeyGen(1¥)

e KEM.Encrypt(PK): The encryption algorithm takes as input the public key PK , and
outputs a pair (K, 1), where K € Kp(Kp is the key space) is a key and 1)is a ciphertext. We
write (K,v) «— KEM.Encrypt(PK)

e KEM.Decrypt(SK,1): The decryption algorithm takes as input a ciphertext ¥ and the secret
key SK. It returns a key K or the distinguished symbol L. We write K « K EM.Decrypt(SK, ).

We require that for all PK, SK output by KEM.KeyGen(1¥), all (K, ) € [K EM.Encrypt(PK)],
we have KEM.Decrypt(SK,y)=K.

We recall the standard definition of security for public-key encryption schemes against adaptive
chosen ciphertext attacks and chosen plaintext attacks.

Definition 4 A KEM scheme is secure against adaptive chosen ciphertext attacks if the ad-
vantage of any PPT adversary A in the following game is negligible in the security parameter k:

1. KEM.KeyGen(1%) outputs PK, SK. Adversary A is given 1* and PK.

2. The adversary may make a sequence of queries to a decryption oracle. For each decryption
oracle query, the adversary submits a ciphertext 1, and the decryption oracle responds with
KEM.Decrypt(SK, ).

3. At some point, A queries an encryption oracle. The encryption oracle computes:
(Ko, v*)—KEM.Encrypt(PK)
K & Kpiv & {0,1}
Finally the encryption oracle responds with the pair (K3, ")

4. A may continue to query its decryption oracle except that it may not request the decryption

of ¥*.
5. Finally, A outputs a guess b’ € {0,1} .

We call the game above IND-CCA2 game of KEM. Define AdvCC Ak g, a(k) to be |Prib=V]—
1/2] in the IND-CCA2 game. We say that KEM is secure against adaptive chosen ciphertext attack
if for all probabilistic, polynomial-time oracle query machines A, the function AdvCCAk g (k)
grows negligibly in k.



2.3 The Decision Diffie-Hellman Problem

There are several equivalent formulations of the decision Diffie-Hellman problem. The one that we
shall use is the following.

Let G be a group of large prime order ¢, and consider the following two distributions:

The distribution R of random quintuples (g, ¢, d, u,v) € G°

The distribution D of quintuples (g, ¢, d, u,v) € G°, where g, ¢, d are random, and t = H (u),u =
g",v=c"d" for random r € Z,,H is a target collision resistant hash function.

An algorithm that solves the decision Diffie-Hellman problem is a statistical test that can
effectively distinguish these two distributions. That is, given a quintuple coming from one of the
two distributions, it should output 0 or 1, and there should be a non-negligible difference between
(a) the probability that it output a 1 given an input from R, and (b) the probability that it
output a 1 given an input from D. The decision Diffie-Hellman problem is hard if there is no such
polynomial-time statistical test.

This formation of the DDH problem is equivalent to several others. First, making the substitu-
tion

ga - Cdt,gb - u’gab - Crdrt

one sees that this is equivalent to distinguishing DDH triples (g%, ¢°, g%°) from non DDH triples
(9% 9" 9°).

Note that the basic DDH triples are linear dependent to each other. Giving the situation of
(g%*, ", g°®) ,we can distinguishing (g%, g%, ¢¢) from D to R. While in our definition the DDH
quintuples are linear independent to each other. Having the situation of (g, ¢, d, "%, ¢"*d"*t), t, =

H(g™) ,we can not distinguishing (g,¢,d,g",c"d"™),a = H(g") from D to R since t # t,. That’s
very important to the security of the scheme.

3 Public key encryption scheme with short ciphertext

(CS98 is the first practical public key encryption scheme that provably secure against chosen cipher-
text attack in standard model. We propose a practical public key encryption scheme that is secure
in the standard model against adaptive chosen ciphertext attacks with short ciphertext.

3.1 Public key encryption scheme
e PKE.KeyGen(1¥): Assume that G is group of order q where ¢ is large.

g & Gy 2wl ZyHE TCR
ce—ghde—glih—ghe—c" f—d”
PK: (g?h7c7d7e7f7H);SK: (x7y7z7w)

Where TCR is target collision resistant hash function [12].



e PKE.Encrypt(PK,m): Given a message m € G, the encryption algorithm runs as follows.
r &z,
c1— g"it — H(cy);eo — "d'mya — H(cy, co);c3 «— h™%" f

C — (cla C2, 63)

e PKE.Decrypt(SK,C): Given a cipher-text C = (¢, ¢2, ¢3), the decryption algorithm runs as
follows.
m «— 02/011+ty;t — H(c1),a «— H(cy,c2);

. t
if c3= c§x+ yywtza return m else return L

3.2 Security

Now we prove that the new scheme is secure against chosen cipher-text attack in standard model.
The proof if similar to that of CS98 [7] but more simple.

Theorem 1 The new scheme is secure against adaptive chosen cipher-text attack assuming
that (1) the decision Diffie-Hellman problem is hard in group G, (2) H is a target collision resistant
hash function[12].

To prove the theorem, we will assume that there is an adversary that can break the cryptosystem,
and H is a target collision resistant hash function and show how to use this adversary to construct
a statistical test for the DDH problem.

For the statistical test, we are given (g, ¢, d,u,T) coming from either the distribution R or D.
At a high level, our construction works as follows. We build a simulator that simulates the joint
distribution consisting of adversary’s view in its attack on the cryptosystem, and the hidden bit b
generated by the generated oracle (which is not a part of the adversary’s view). Since different DDH
quintuples (g, ¢, d, u;,T;) are linear independent to each other. The simulator can query a DDH
query with (g, c,d,u;, T;). When u; # u the challenger will tell the simulator (g, ¢, d, u;, T;) € D or
(g9,¢,d,u;, T;) € R. The answer will not give the simulator any help in distinguishing (g, ¢, d, u,T)
from D to R. We will show that if the input comes from D, the simulation will be nearly perfect,
and so the adversary will have a non-negligible advantage in guessing the hidden bit b. We will
also show that if the input comes from R, then the adversary’s view is essentially independent of
b, and therefore the adversary’s advantage is negligible. This immediately implies a statistical test
distinguishing R from D: run the simulator and adversary together, and if the simulator outputs
b and the adversary outputs b, the distinguisher outputs 1 if b = ¥, and 0 otherwise.

We now give the details of the simulator. The input to the simulator is (g,c¢,d,u,T). The
simulator runs the following key generation algorithm, using the given (g,c¢,d). The simulator
chooses

and computes



The simulator also choose a target collision resistant hash function H at random. The public
key that the adversary sees is (g, ¢, d, e, f, h, H). The simulator knows (z,w).

First we describe the simulation of the encryption oracle. Given mg, m1, the simulator chooses
b € {0,1} at random, and computes

c1 «— u,c < T'my,a «— H(cy,c2),c3 — u**TY

and outputs

(c1,c2,c3)

We now describe the simulation of the decryption oracle. Given (ci4,c2;,¢3i), in step2 of the
IND-CCA2 game the simulator calculate:

a; — H(cig, ci), m; — C2i(Cf?i/03z‘)1/w

It then query the challenger with (g, ¢, d, c14, c2;/m;). If (g,¢,d, c1i,c2i/m;) € D the simulator
return m; otherwise L. In step4 of the IND-CCA2 game the simulator first check the ciphertext.
If ¢1; = w return L else act just as step2.

That completes the description of the simulator. As we will see, when the input to the simulator
comes from D, the output of the encryption oracle is a perfectly legitimate ciphertext; however,
when the input to the simulator comes from R, the output of the decryption oracle will not be
legitimate, in the sense that logge1 # log.qtca/my. This is not a problem, and indeed, it is crucial
to the proof of security.

The theorem now follows immediately from the following two lemmas.

Lemma 1 When the simulator’s input comes from D, the joint distribution of the adversary’s
view and the hidden bit b is is statistically indistinguishable from that in the actual attack.

Consider the joint distribution of the adversary’s view and the bit b when the input comes from
the distribution D. Say u = ¢" and T = ¢"d"',t = H(u).

It is clear in this case that the output of the encryption oracle has the right distribution, since
L= gr,c2 — Crdrtmb’ c3 = uFeTV — hraerfrt;

To complete the proof, we need to argue that the output of the decryption oracle has the right
distribution. Let us call (c14, ¢2;, ¢3;) a valid ciphertext if loggc1; = logeqt cai/mi, m; = (cficg;/c;gi)l/w.

Note that if a ciphertext is valid and ci; # c1, with ¢;; = ¢™ and ¢y = c"d"imy,t; =
H(c1i),a; = H(c1i, c2:), then e”i fri%ipli% = 7% (co;/m;)™ ; therefore, the decryption oracle outputs
m; = coi(ciy” Je3i)YW = coi/cidbT | just as it should. In stepd of the IND-CCA2 game when
c1; = c1 there are three cases we consider:

Casel: ¢1; = c1,c0; = co,c3; # c3. In this case the hash values are the same but cs3; # c3 implies
decryption oracle will certainly reject.

Case2: c¢y; = ¢1,¢9; # ¢2,a = a;. Since H is target collision resistant secure, the property of this case
if negligible.

Case3: c¢y; = ¢1,09; # c2,a # a;. There are two subcases we consider :



Casel: c3i/(c13)*" = c3/(c1)**. Let r = loggu,r’ = log.qT we have:

loggcsi = rza; + r'w(x + yt)

logges = rza + r'w(z + yt)

The two equations above are linear independent. So the property of this case happens
is negligible.

Case2: c3i/(c1:)%% # c3/(c1)**. Let r = loggu, ™" = logeqtT, i = logeqecsi/ci;’ we have:

loggcsi = rza; + riw(z + yt)

logges = rza + r'w(z + yt)

The two equations above are linear independent. So the property of this case happens
is also negligible.

So the case of the simulator reject a valid ciphertext is negligible. Consequently, the lemma
follows immediately from the following:

Claim 1 The decryption oracle in both an actual attack against the cryptosystem and in an
attack against the simulator rejects all tnvalid ciphertexts.

It is clear that the decryption oracle in an actual attack rejects all invalid ciphertexts. Since the
simulator can query the challenger with DDH quintuple it will rejects all invalid ciphertexts too.

Lemma 2 When the simulator’s input comes from R, the distribution of the hidden bit b is
(essentially) independent from the adversary’s view.

Since the simulator can query the challenger with DDH quintuple it will rejects all invalid
ciphertexts. When (g,¢,d,u,T) € R, the conditional distribution of T' conditioning on b and
everything in the adversary’s view other than ¢y is uniform. It follows that b is independent of the
adversary’s view.

4 Key encapsulation mechanism
From the basic public key encryption scheme, we can get a Key encapsulation mechanism:
o KEM.KeyGen(1¥): Assume that G is group of order ¢ where ¢ is large.
g il G;x,y,w kil ZyH & ToR
ce—g"de—g¥ie—c" f—d¥
PK = (g,c,d,e, f,H); SK = (z,y,w)

Where TCR is target collision resistant hash function [12].



o KEM.Encrypt(PK): Given a public key PK , the encryption algorithm runs as follows.
r &z,
c1 gt H(cy);co «— cd"™
C « (c1,c2), K « " f™

o KEM . Decrypt(SK,C): Given a cipher-text C = (¢1,c2), the decryption algorithm runs as
follows.

. T+t
if co = cg ) return cy else return L

It is clear that the KEM above can be proved to be IND-CCA2 secure similarly as the new
PKE scheme.

5 Efficiency Analysis

The efficiency of our new PKE scheme and KEM is listed in table 1.

Table 1: Efficiency comparison
Encryption(exp) | Decryption(exp) | Cipher-text overhead(bit) | Assumption
CS98 4.5(3exp+1mexp) | 2.5(1lexp+1mexp) 3|q| DDH
KD04 3.5(2exp+1mexp) | 1.5(0exp+1mexp) 2|q| + |t DDH
Kiltz07 3.5(2exp+1mexp) | 1.5(0exp+1mexp) 2|q| GHDH
)
)

NEW-PKE | 4 (lexp+2mexp) | 1.5(0exp+1lmexp 2|q| DDH
NEW-Hyb | 4 (2exp+1mexp) | 1.5(0exp+1lmexp 2|q| DDH

Where NEW-PKE is our new PKE scheme, NEW-Hyb is the full encryption scheme using
our new KEM, CS98 is the scheme in [7], KD04 is the scheme in [15], Kiltz07 is the first scheme
in [18]. When tabulating computational efficiency hash function and block cipher evaluations
are ignored, multi-exponentiation (mezp) is counted as 1.5 exponentiations (exp). Cipher-text
overhead represents the difference between the cipher-text length and the message length, and |q|
is the length of a group element,|t| is the length of the tag in KDO04.

Compared with Kiltz’s scheme, our scheme is slightly less efficient in encryption while our scheme
are based on the DDH assumption which is more flexible than GHDH(Gap Hashed Diffie-Hellman).

6 Conclusion

We construct a variant formulation of the DDH problem that different instances are linear indepen-
dent to each other. Thus the simulator can make a DDH query which will not help the simulator
in disinguishing the challenge DDH quintuple. According to this property we can complete the
decryption simulation with the help of the DDH query. Finally we can construct a practical public
key encryption scheme that is secure in the standard model against adaptive chosen ciphertext
attacks with short ciphertext. We can get a KEM from our PKE scheme which is very efficient
both in computation and bandwidth.
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