
Efficient chosen ciphertext secure PKE scheme with short
ciphertext

Xianhui Lu1, Xuejia Lai2, Dake He1, Guomin Li1

Email:lu xianhui@gmail.com

1:School of Information Science & Technology, SWJTU, Chengdu, China
2:Dept. of Computer Science and Engineering, SJTU, Shanghai, China

Abstract. Kurosawa and Matsuo[1] showed that MAC can be removed from DHIES while the underly-
ing symmetric-key encryption(SKE) scheme is secure against adaptive chosen ciphertext attacks(IND-
CCA). We construct a variant of DHIES which eliminate the MAC while the SKE scheme is secure
against passive attacks(IND-PA). Since IND-PA is the basic requirement of SKE schemes, the new
scheme is more flexible than [1]. Our new scheme can be seen as a combination of a tag-KEM [12] and
a DEM. Our construction offers the first tag-KEM with single element. When the hash function H in
the ODH assumption is a non-malleable hash function we can prove that the new scheme is IND-CCA
secure under the ODH assumption.
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1 Introduction

M. Abdalla, M. Bellare and P. Rogaway proposed an efficient Diffie-Hellman Integrated Encryption
Scheme(DHIES)[8]. DHIES is now embodied in three(draft) standards [3–5]. It is a natural extension
of the ElGamal scheme[2], and enhanced ElGamal in a couple of ways important to cryptographic
practice. First, it provides the capability of encrypting arbitrary bit strings while ElGamal requires
that message be a group element. Second, it is secure against chosen ciphertext attack , while
ElGamal is secure against chosen plaintext attack. Most importantly DHIES realized the above
two goals without increasing the number of group operations for encryption and decryption, and
without increasing key sizes relative to ElGamal. The CCA security of DHIES relies on the Oracle
Diffie-Hellman assumption(ODH).

Kurosawa and Matsuo showed that MAC can be eliminated from DHIES if the underlying
symmetric-key encryption(SKE) scheme is secure in the sense of IND-CCA(secure against adaptive
chosen ciphertext attacks). Their scheme offers the first secure public-key encryption scheme with
no redundancy in the standard model.

1.1 Our Contributions

We construct a variant of DHIES which eliminate the MAC while the SKE scheme is secure against
passive attacks(IND-PA). Since IND-PA is the basic requirement of SKE schemes, the new scheme
is more flexible than [1]. The benefit is that we can use most stream ciphers and block ciphers as
the SKE part of the scheme. On the contrary [1] choose block cipher works in CMC mode or EME
mode as the SKE part.

Our new scheme can be seen as a combination of a tag-KEM [12] and a DEM. It is interesting
that our construction offers the first tag-KEM with single element.



We remarked that in DHIES the authors recommended to use a one-way hash function, however
we need a non-malleable hash function.

1.2 Related work

Tight security without redundancy:Boyen[16] presents a minimalist public key encryption
scheme, as compact as ElGamal, but with adaptive chosen-ciphertext security under the gap Diffie-
Hellman assumption in the random oracle model. Boyen uses a dual-hash device that provides tight
redundancy-free implicit validation. The system is very simple and compact: on elliptic curves with
80-bit security, a 160-bit plaintext becomes a 320-bit ciphertext.

2 Preliminaries

We will review the standard definitions of public key encryption scheme(PKE) and symmetric key
encryption scheme(SKE)[10]. This is followed by the definition of ODH assumption[8], collision
resistant hash function(CR)[6] and non-malleable hash functions.

In describing probabilistic processes, we write x
R← X to denote the action of assigning to the

variable x a value sampled according to the distribution X. If S is a finite set, we simply write
s

R← S to denote assignment to s of an element sampled from uniform distribution on S. If A is a
probabilistic algorithm and x an input, then A(x) denotes the output distribution of A on in put
x. Thus, we write y

R← A(x) to denote of running algorithm A on input x and assigning the output
to the variable y.

2.1 Public Key Encryption

A public key encryption scheme consists the following algorithms:

– PKE.KeyGen(1k): A probabilistic polynomial-time key generation algorithm takes as input a
security parameter (1k) and outputs a public key/secret key pair (PK,SK). We write (PK,SK)←
PKE.KeyGen(1k)

– PKE.Encrypt(PK,m): A probabilistic polynomial-time encryption algorithm takes as input a
public key PK and a message m, and outputs a ciphertext C. We write C ← PKE.Encrypt(PK,m)

– PKE.Decrypt(SK,C): A decryption algorithm takes as input a ciphertext C and secret key SK,
and outputs a plaintext m. We write m← PKE.Decrypt(SK, C).

We require that for all PK,SK output by PKE.KeyGen(1k), all m ∈ {0, 1}∗, and all C output by
PKE.Encrypt(PK,m) we have PKE.Decrypt(SK, C) = m .

A public key encryption scheme is secure against adaptive chosen ciphertext attacks if the
advantage of any adversary in the following game is negligible in the security parameter k:

1. The adversary queries a key generation oracle. The key generation oracle computes (PK,SK)←
PKE.KeyGen(1k) and responds with PK.

2. The adversary makes a sequence of calls to the decryption oracle. For each decryption or-
acle query the adversary submits a ciphertext C, and the decryption oracle responds with
PKE.Decrypt(SK, C).



3. The adversary submits two messages m0,m1 with |m0| = |m1|. On input m0,m1 the encryption
oracle computes:

b
R← {0, 1};C∗ ← PKE.Encrypt(PK,mb)

and responds with C∗.
4. The adversary continues to make calls to the decryption oracle except that it may not request

the decryption of C∗.
5. Finally, the adversary outputs a guess b′.

We say the adversary succeeds if b′ = b, and denote the probability of this event by PrA[Succ].
The adversary’s advantage is defined as AdvCCAPKE,A = |PrA[Succ]− 1/2|.

2.2 Symmetric key encryption scheme

A symmetric key encryption scheme SKE consists of two algorithms:

– SKE.Encrypt(k, m): The deterministic, polynomial-time encryption algorithm takes as input a
key k, and a message m, and outputs a ciphertext χ. We write χ← SKE.Encrypt(k, m)

– SKE.Decrypt(k, χ): The deterministic, polynomial-time decryption algorithm takes as input a
key k, and a ciphertext χ, and outputs a message m or the special symbol reject. We write
m← SKE.Decrypt(k, χ)

We require that for all kLen ∈ N , for all k ∈ {0, 1}kLen,kLen denotes the length of the key of
SKE, and for all m ∈ {0, 1}∗ ,we have:

SKE.Decrypt(k, SKE.Encrypt(k, m)) = m.

A SKE scheme is secure against passive attacks if the advantage of any probabilistic, polynomial-
time adversary A in the following game is negligible in the security parameter kLen:

1. The challenger randomly generates an appropriately sized key k ∈ {0, 1}kLen.
2. A queries an encryption oracle with two messages m0,m1 , |m0| = |m1|. A bit b is randomly

chosen and the adversary is given a ”challenge ciphertext” χ∗ ← SKE.Encrypt(k, mb).
3. Finally, A outputs a guess b′ .

The adversary’s advantage in the above game is defined as AdvPASKE,A(kLen) = |Pr[b =
b′]− 1/2|. If a SKE is secure against passive attack we say it is IND-PA secure.

2.3 The Oracle Diffie-Hellman Problem

Now we review the definition of oracle Diffie-Hellman assumption[8]. Let G be a group of large prime
order q, H : {0, 1}∗ → {0, 1}hLen be a cryptographic hash function and consider the following two
experiments:

experiments Expodh−real
H,A :

u
R← Z∗

q ;U ← gu; v R← Z∗
q ;V ← gv;W ← H(guv)



Hv(X)
def
= H(Xv); b← AHv(·)(U, V, W ); return b

experiments Expodh−rand
H,A :

u
R← Z∗

q ;U ← gu; v R← Z∗
q ;V ← gv;W ← {0, 1}hLen

Hv(X)
def
= H(Xv); b← AHv(·)(U, V, W ); return b

Now define the advantage of the A in violating the oracle Diffie-Hellman assumption as

Advodh
H,A = Pr[Expodh−real

H,A = 1]− Pr[Expodh−rand
H,A = 1]

Here A is allowed to make oracle queries that depend on the gu with the sole restriction of not
being allowed to query gu itself. When it is the Expodh−rand

H,A experiment we say (g, U, V, W ) ∈ R,
otherwise (g, U, V, W ) ∈ D.

2.4 Collision resistant hash functions

A family of hash functions is said to be collision resistant if upon drawing a function H at random
from the family, it is infeasible for an adversary to find two different inputs x and y such that
H(x) = H(y).

2.5 Non-malleable hash function

A hash function H is said to be non-malleable if it is infeasible for an adversary to find two
functions f and g that H(x) = y, H(f(x)) = g(y). Non-malleable hash function is a stronger notion
than one-way hash function. It is clear that if we can reverse a hash function then we can get
g(y) = H(f(H−1(y))) for any function f .

3 New scheme

Now we describe our new scheme.

– PKE.KeyGen(1k): Assume that G is group of order q where q is a large prime.

g
R← G;x, y

R← Z∗
q ; c← gx; d← gy

PK = (g, c, d, CR,H, SKE);SK = (x, y)

Here CR is collision resistant hash function , H : {0, 1}∗ → {0, 1}kLen is a non-malleable hash
function, SKE is a symmetric key encryption scheme secure against passive attack.

– PKE.Encrypt(PK, m): Given a message m, the encryption algorithm runs as follows.

r
R← Z∗

q ; k ← H(gr); c1 ← SKE.Encrypt(k, m); a← CR(c1); c2 ← crdra

C ← (c1, c2)



– PKE.Decrypt(SK, C): Given a ciphertext C = (c1, c2), the decryption algorithm runs as fol-
lows.

a← CR(c1); k ← H(c1/(x+ya)
2 );m← SKE.Decrypt(k, c1);

Before the formal security proof we give some intuition to show that the new scheme is secure
against active attacks. The ODH assumption guarantees that different ciphertexts will yield dif-
ferent keys independent to each other. So the adversary can not get the information of b from the
decryption oracle. The ODH assumption also assures that the adversary can not get the information
of b from the challenge ciphertext(the output of the encryption oracle). Finally we have that the
new scheme is CCA secure based on the ODH assumption.

4 Security

Now we give the formal proof of the new scheme.

Theorem 1. The new scheme is secure against adaptive chosen ciphertext attack assuming that (1)
the oracle Diffie-Hellman problem is hard in group G, (2) CR is a collision resistant hash function,
(3) H is a non-malleable hash function (4)SKE is a IND-PA secure symmetric key encryption
scheme.

To prove the theorem, we will assume that there is an adversary that can break the cryptosystem,
and CR is a collision resistant hash function, H is a non-malleable hash function, SKE is a IND-
PA secure symmetric key encryption scheme and show how to use this adversary to construct a
statistical test for the ODH problem.

For the statistical test, we are given (ĝ, U, V, W ) coming from either the distribution R or D.
At a high level, our construction works as follows. We build a simulator that simulates the joint
distribution consisting of adversary’s view in its attack on the cryptosystem, and the hidden bit b
generated by the generated oracle (which is not a part of the adversary’s view). We will show that
if the input comes from D, the simulation will be nearly perfect, and so the adversary will have a
non-negligible advantage in guessing the hidden bit b. We will also show that if the input comes
from R, then the adversary’s view is essentially independent of b, and therefore the adversary’s
advantage is negligible. This immediately implies a statistical test distinguishing R from D: run
the simulator and adversary together, and if the simulator outputs b and the adversary outputs b′,
the distinguisher outputs 1 if b = b′, and 0 otherwise.

We now give the details of the simulator. The input to the simulator is (ĝ, U, V, W ). The simu-
lator runs the following key generation algorithm, using the given (ĝ, V ). The simulator chooses

x, y
R← Z∗

q

and set

g ← V ; c← ĝx; d← ĝy;

The public key that the adversary sees is (g, c, d,H, CR, SKE), where CR is collision resistant
hash function, H : {0, 1}∗ → {0, 1}kLen is a non-malleable hash function, SKE is a symmetric key
encryption scheme secure against passive attack. The simulator knows (x, y).



First we describe the simulation of the encryption oracle. Given m0,m1, the simulator chooses
b ∈ {0, 1} at random, and computes

k ←W ; c1 ← SKE.Encrypt(k, mb); a← CR(c1); c2 ← Ux+ya

and outputs (c1, c2)
We now describe the simulation of the decryption oracle. Given (c1i, c2i), the simulator runs as

follow:

ai ← CR(c1i)

if (c1/(x+yai)
2i = U) ki ←W

else ki ← Hv(c
1/(x+yai)
2i )

mi ← SKE.Decrypt(ki, c1i)

here Hv(X) = H(Xv) is the ODH oracle. Finally the simulator outputs mi.
The theorem now follows immediately from the following two lemmas.

Lemma 1. If the simulator’s input comes from D, the joint distribution of the adversary’s view
and the hidden bit b is statistically indistinguishable from that in the actual attack.

Consider the joint distribution of the adversary’s view and the bit b when the input comes from
the distribution D. Say U = ĝu, V = ĝv,W = H(ĝuv).

It is clear in this case that the output of the encryption oracle has the right distribution, since:

k = W = H(ĝuv) = H(gu)

c2 = Ux+ya = ĝu(x+ya) = ĝuxĝuya = cudua

To complete the proof, we need to argue that the output of the decryption oracle has the right
distribution. Given (c1i, c2i), when (c1/(x+yai)

2i 6= U)we have:

Hv(c
1/(x+yai)
2i ) = Hv((cridriai)1/(x+yai)) = Hv(ĝri) = H(ĝvri) = H(gri) = ki

SKE.Decrypt(ki, c1i) = mi

When (c1/(x+yai)
2i = U), we have W = H(ĝuv) = H(Uv) = ki therefore, the decryption oracle

outputs mi just as it should. So the joint distribution of the adversary’s view and the hidden bit b
is just the same as that in the actual attack.

Lemma 2. If the simulator’s input comes from R, the distribution of the hidden bit b is (essentially)
independent from the adversary’s view.

Let U = ĝu, V = ĝv,W = H(ĝw), w 6= uv. The lemma follows immediately from the following
two propositions.

Proposition 1. If the adversary do not query the decryption oracle with c
1/(x+yai)
2i = U , then the

distribution of the hidden bit b is independent of the adversary’s view.



It is clear that if the adversary do not query the decryption oracle with c
1/(x+yai)
2i = U the

distribution of k = W will be independent from the adversary’s view. Since the symmetric key
encryption scheme SKE is IND-PA secure, it yield that the distribution of the hidden bit b is
independent from the adversary’s view.

Proposition 2. The probability that the adversary query the decryption oracle with c
1/(x+yai)
2i = U

is negligible .

Now we show that the probability that the adversary query the decryption oracle with c
1/(x+yai)
2i =

U is negligible. There are three cases we need to consider:

Case 1: c1 = c1i, c2 6= c2i. In this case we have a = ai, c
1/(x+yai)
2i = c

1/(x+ya)
2i 6= c

1/(x+ya)
2 = U .

Case 2: c1 6= c1i, c2 = c2i Since CR is a collision resistant hash function, we have a 6= ai , c
1/(x+yai)
2i =

c
1/(x+yai)
2 6= c

1/(x+ya)
2 = U except negligible probability .

Case 3: c1 6= c1i, c2 6= c2i Since CR is a collision resistant hash function, we have a 6= ai. If c
1/(x+ya)
2 =

c
1/(x+yai)
2i , it will means that the adversary can get:(

c2

c2i

)1/(a−ai)

=
(

cudua

cudaiu

)1/(a−ai)

=
(
d(a−ai)u

)1/(a−ai)
= du

Since H is a non-malleable hash function, the decryption oracle will not help the adversary to
calculate du. It turns out that the adversary can work out du from (d, cda, (cda)u). According to
the computation Diffie-Hellman problem the probability that the adversary calculate du from
(d, cda, (cda)u) is negligible. So the probability that U = c

1/(x+ya)
2 = c

1/(x+yai)
2i is negligible.

This complete the proof of theorem 1.

5 Efficiency Analysis

The efficiency of our scheme, DHIES, KM04 and Boyen07 is listed in table 1.

Table 1. Efficiency comparison

Encryption(exp) Decryption(exp) Cipher-text overhead(bit) Assumption SKE

DHIES 2(2exp+0mexp) 1(1exp+0mexp) |q| + |t| ODH IND-CPA

KM04 2(2exp+0mexp) 1(1exp+0mexp) |q| ODH IND-CCA

Boyen07 2(2exp+0mexp) 1(1exp+0mexp) |q| GDH,ROM not hybrid

NEW 2.5 (1exp+1mexp) 1(1exp+0mexp) |q| ODH IND-PA

In table1 NEW is our new scheme, KM04 is the scheme in [1], Boyen07 is the scheme in [16],
DHIES is the scheme in [8]. When tabulating computational efficiency hash function and block
cipher evaluations are ignored, multi-exponentiation (mexp) is counted as 1.5 exponentiations (exp).
Ciphertext overhead represents the difference between the ciphertext length and the message length,
and |q| is the length of a group element,|t| is the length of the tag in DHIES.

It is clear that the new scheme is more flexible than other schemes on the security requirement
of SKE. The new scheme just need a IND-PA secure SKE. Compared to Boyen07 the new scheme
can be seen as a combination of a single-element tag-KEM and a DEM, it is more simple and secure
in standard model.



6 Conclusion

We construct a variant of DHIES which eliminate the MAC while the SKE scheme is secure against
passive attacks(IND-PA). Since IND-PA is the basic requirement of SKE schemes, the new scheme
is more flexible than [1]. Our new scheme is very simple and can be seen as a combination of a
tag-KEM [12] and a DEM. Our construction offers the first tag-KEM with single element. To prove
the new scheme under the ODH assumption we need that H is a non-malleable hash function.
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