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Abstract

Recently, a kind of randomizable signatures have been adopted to construct group signatures, which
might result in more efficient group signatures because only part of the randomized member certificate has
to be concealed.

In this paper, we formalize the characteristics of randomizable signatures that are required to build secure
efficient group signatures. Specifically, we define unlinkable randomizable signature, indirectly signable
signature, Σ-protocol friendly signature. Designing efficient secure group signatures can be boiled down to
designing Σ-protocol friendly unlinkable randomizable signature with indirect signability.

We found that almost all secure efficient group signatures known so far are actually in this line of
utilizing unlinkable randomizable signatures. We proposed the unlinkable randomizable version of a group
signature based on q-SDH assumption for the first time.

We proposed two new unlinkable randomizable signatures called Wat05+, CL04* which will result in
new efficient group signatures.

We also improved a group signature by replacing the member certificate generation signature with an
unlinkable randomizable signature.

Keywords: Digital Signature, Group Signature, Unlinkable Randomizable Signature, Sigma-protocol.

1 Introduction

The proposal of group signatures [CvH91] are motivated by enabling members of a group to sign on behalf of
the group without leaking their true individual identities; but the signer’s identity is able to be traced, i.e.,
discovered by the group manager (GM) on disputes. The counterpart of a group signature in the real world
is official seal, at the sight of which anyone is assured of its origin from the claimed authority, but has no idea
of who that particular person is behind the seal.

In brief, a group signature scheme is composed of the following steps: (1) GM, the group manager, along
with some third trusted party, chooses the security parameters as well as a group secret key and a group public
key. (2) Any group member candidate is required to choose his member secret key, and run an interactive
protocol with GM to join in the group, during which GM generates a signature on the member secret key
blindly, i.e., without knowing the secret key value, the signature is also called member certificate. (3) Any
group member can generate group signatures using his member secret key and member certificate, called group
signing key all together.

A common paradigm of constructing group signatures is widely used so far [CS97, CM98b, CM98a,
ACJT00]: GM uses an ordinary signature to generate membership certificate for group members, i.e. sign on
some secret key known only to members. The group signature is in fact a non-interactive zero-knowledge proof
of knowledge of member certificate and member secret key, transformed in Fiat-Shamir’s heuristic method
[FS87] from interactive proofs.

Recently, a kind of randomizable signatures have been adopted in some schemes [CL04, CL02, BBS04,
ACdMH06] to generate membership certificates. The following construction of group signature has been
widely recognized: to sign on a message, a member firstly randomizes its member certificate, then generates
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a proof of knowledge of member secret key with respect to part of the randomized member certificate. This
method might result in more efficient group signature because part of the randomized member certificate is
revealed instead of having to be concealed totally in previous constructions.

In this paper, we formalize the characteristics of randomizable signatures that are required to build se-
cure efficient group signatures. Specifically, we define unlinkable randomizable signature, indirectly signable
signature, Σ-protocol friendly signature. Designing efficient secure group signatures can be boiled down to
designing Σ-protocol friendly unlinkable randomizable signature with indirect signability.

We found that almost all secure efficient group signatures known so far (except [BW07]) are actually in
this line of utilizing unlinkable randomizable signatures. The scheme in [CL02] can be seen as the unlinkable
randomizable signature version of the well known ACJT scheme [ACJT00]. The counterpart of the scheme
[NSN04] in this line is also proposed for the first time.

We proposed two new unlinkable randomizable signatures called Wat05+, CL04* which will result in new
efficient group signatures.

We also improved the scheme in [KY05] by replacing the member certificate generation signature with an
unlinkable randomizable signature.

2 Preliminary

Notations. x
$←− X denotes x is chosen uniformly at random from the set X. x

$←− A(., ., .) denotes x is
generated from executing algorithm A where random variables are chosen uniformly at random.

Gk, (Z∗p)k denote a k tuple from G and Z∗p respectively. 0k (1k) denotes the string of k zeros (ones). |M |
denotes the binary length of M .

If (P, V ) is a non-interactive proof for relation ρ, P (x,w, R) denotes the operation of generating a proof
for (x,w) ∈ ρ under the common reference string R, V (x, π, R) denotes the operation of verifying a proof π.

ε(k) is a negligible function if ε(k) ≤ 1/P (k) for any polynomial P (k) and all sufficiently large k.

Definition 1 (wUF-ATK[DK01]). A signature scheme DS=(Gen, Sig, Ver) is wUF-ATK secure (ATK ∈
{CMA, ACMA}), i.e., weakly unforgeable against ATK attack, if for every probabilistic polynomial-time al-
gorithm A, it holds that

AdvwUF−ATK
DS,A = Pr{V er(pk, m, σ) = 1,m 6= mi, (m,σ)←A(mi, σi, pk),

(pk, sk)←Gen(1k), (mi, σi)←Q
Sig(sk,.)
A , i = 1, ..., qsig} < ε(k)

where ε(k) is a negligible function, the probability is taken over the coin tosses of algorithms Gen, Sig and A.
Q

Sig(sk,.)
A denotes the finite set of queries to oracle Sig(sk, .) made by A.

3 Unlinkable Randomizable (UR) Signature

Definition 2 (Randomizable Signature). A randomizable signature scheme is a digital signature scheme that
has an efficient signature randomization algorithm Rnd besides algorithms (Gen,Sig,Ver):

• Gen: N→K: a probabilistic polynomial-time algorithm with input k (called security parameter), output
(pk, sk) ∈ K, where K is a finite set of possible keys; pk is called public key, sk is secret key kept to the
signer, i.e., the owner of the instance of the signature scheme.

• Sig: K×M→S: a probabilistic polynomial-time algorithm with input (sk, m), where sk is the same
output from K above, m ∈ M , M is a finite set of possible messages. Output is σ = (Υ,Ξ) ∈ S, where
Υ is randomly chosen and independent from m, Ξ is calculated from Υ, m and sk.

• Ver: K×M×S→{0, 1}: a deterministic polynomial-time algorithm with input (pk, m, σ), output 1 if σ
is valid, i.e., σ is really computed by the owner of the signature instance, output 0 otherwise.
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• Rnd: M × S → S: a probabilistic polynomial-time algorithm with a message m and a signature (Υ,Ξ)
on it, output a (Υ′,Ξ′) 6= (Υ,Ξ) that is also a signature on m.

The following concept of indirectly signable is actually a restatement of signatures on committed message
[CL04].

Definition 3 (Indirectly Signable). A signature is indirectly signable if there exists a one way function f (as
defined in Chapter 9.2.4, [MvOV96] or more technically as in Chapter 2.2, [Gol01]) and an efficient algorithm
Sigf that Sig(sk, m) = Sigf (sk, f(m)). That is

Pr{(pk, sk, f) $←− Gen(1k),m $←− M, v ← f(m), σ ← Sigf (sk, v) : V er(pk, m, σ) = 1} = 1,

and for any probabilistic polynomial time algorithm A,

Pr{(pk, sk, f) $←− Gen(1k),m $←− M, v ← f(m),m′ ← A(sk, v) : m′ = m} < ε(k).

Define experiment Expunlink−b
A (k), b ∈ {0, 1} as follows:

Expunlink−b
A (k):

(pk, sk) $←− Gen (1k),

(〈m0,Υ0,Ξ0〉, 〈m1,Υ1,Ξ1〉) $←− A(sk),
If Ver(pk, m0, 〈Υ0,Ξ0〉) = 0 or Ver(pk, m1, 〈Υ1,Ξ1〉) = 0, return 0.

(Υ′,Ξ′) $←−Rnd(mb,Υb,Ξb),
b′ ← A(sk,Ξ′).
return b′.

Definition 4 (Perfectly Unlinkable). A randomizable signature rDS=(Gen,Sig,Ver,Rnd) is perfectly unlink-
able if for any algorithm A, the distribution of output of Expunlink−b

A (k) are the same for b ∈ {0, 1}, that
is

Pr{Expunlink−1
A (k) = 1} = Pr{Expunlink−0

A (k) = 1},
which is identical to

Pr{Ξ′ $←− Rnd(m1,Υ1,Ξ1)|(pk, sk) $←− Gen(1k), (〈m0,Υ0,Ξ0〉, 〈m1,Υ1,Ξ1〉) $←− A(sk)}
= Pr{Ξ′ $←− Rnd(m0,Υ0,Ξ0)|(pk, sk) $←− Gen(1k), (〈m0,Υ0,Ξ0〉, 〈m1,Υ1,Ξ1〉) $←− A(sk)}.

Definition 5 (Statistically Unlinkable). A randomizable signature rDS=(Gen,Sig,Ver,Rnd) is statistically
unlinkable if for any algorithm A, the statistical distance between output of Expunlink−b

A (k) for b ∈ {0, 1} is
negligible, that is ∑

|Pr{Expunlink−1
A (k) = 1} − Pr{Expunlink−0

A (k) = 1}| < ε(k),

where the sum is over all random choices of Gen, A and Rnd.

Definition 6 (Computationally Unlinkable). A randomizable signature rDS=(Gen,Sig,Ver,Rnd) is compu-
tationally unlinkable if for any probabilistic polynomial time algorithm A, the probability between output of
Expunlink−b

A (k) for b ∈ {0, 1} is negligible, that is

Pr{Expunlink−1
A (k) = 1} − Pr{Expunlink−0

A (k) = 1} < ε(k)

The above definitions of unlinkability can be further weakened by not allowing the adversary obtain
the secret key, but granting access to signing oracle Osig(sk, ·). That is, the corresponding experiment
Expw−unlink−b

A (k), b ∈ {0, 1} is defined as follows:
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Expw−unlink−b
A (k):

(pk, sk) $←− Gen (1k),

(〈m0,Υ0,Ξ0〉, 〈m1,Υ1,Ξ1〉) $←− AOsig(sk,·)(pk),
If Ver(pk, m0, 〈Υ0,Ξ0〉) = 0 or Ver(pk, m1, 〈Υ1,Ξ1〉) = 0, return 0.

(Υ′,Ξ′) $←−Rnd(mb,Υb,Ξb),
b′ ← A(pk, Ξ′).
return b′.

Then we get weak perfectly unlinkability, weak statistically unlinkability, weak computationally unlinkability
respectively.

Definition 7 (Unlinkable Randomizable Signature). A (perfectly, statistically, computationally) UR signature
urDS=(Gen,Sig,Ver,Rnd) is a randomizable signature that is also (perfectly, statistically, computationally)
unlinkable respectively.

Notice that the unlinkability defined as above does not mean that the whole randomized signature is
unlinkable with the whole signature before randomization. An adversary of unlinkability of a signature is only
given part of the randomized signature Ξ.

Take Scheme A in [CL04] as an example. Let G1 = 〈g〉, G2 = 〈g̃〉, G3 be p order cyclic groups, and there
exists a bilinear map e : G1 ×G2 → G3.

• Gen. Choose x
$←− Z∗p and y

$←− Z∗p , and sets sk = (x, y), pk = (p, g, g̃,G1,G2, e, X, Y ), where X = g̃x

and Y = g̃y.

• Sig. On input message m, secret key sk = (x, y), and public key pk, choose a random a ∈ G1, output
the signature σ = (a, ay, ax+mxy).

• Ver. On input pk, message m, and purported signature (a, b, c), check that the following verification
equations hold: e(a, Y ) = e(b, g̃) and e(a,X)e(b,X)m = e(c, g̃).

• Rnd. On input pk, message m, and a signature (a, b, c), choose random r ∈ Z∗p , output σ′ = (a′, b′, c′) =
(ar, br, cr).

If we set Υ = (), Ξ = (a, b, c), it is not even computationally unlinkable, because any one can check if
(m1, a

′, b′, c′) or (m0, a
′, b′, c′) is a valid signature. That is why group signatures adopting the above signature

only result in selfless anonymity (a weaker anonymity where the adversary should not know the message
m)[ACdMH06].

If we set Υ = (a), Ξ = (b, c), then it is still not even computationally unlinkable, but is weak computa-
tionally unlinkable assuming DDH is hard over group G1.

If we further set Υ = (a, b), Ξ = (c), then it is perfectly unlinkable. So it is rather easy to come up with an
unlinkable randomizable signature, just reveal the randomized signature as less as possible. But revealing too
little of the randomized signature may cause to loose another important characteristic: Σ-protocol friendly.

Definition 8 (Σ -protocol Friendly Randomizable Signature). A randomizable signature rDS=(Gen,Sig,Ver,Rnd)
is Σ -protocol friendly if there exits a Σ -protocol P for relation R = {(Ξ, 〈Υ, m〉)|V er(pk, m, 〈Υ, Ξ〉) = 1},
that is [Dam05]

• P is of 3-move form, and if Prover and Verifier follow the protocol, Verifier always accepts.

• From any Ξ and any pair of accepting conversations with different initial message from Prover on input
the same Ξ, one can efficiently compute (Υ,m) such that (Ξ, 〈Υ,m〉) ∈ R.

• There exists a polynomial time simulator M, which on input Ξ, and a random second message sent from
Verifier, outputs an accepting conversation with the same probability distribution as between the honest
Prover, Verifier on input Ξ.
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Actually signatures with above characteristics have been proposed and adopted explicitly or implicitly
[CL02, CL04, BBS04, ACdMH06], see the following table.

[ACJT00] [CL02]
Let n = pq be a RSA modulus. Se = [2le − 2µe , 2le + 2µe ], Sm = [2lm − 2µm , 2lm + 2µm ], Ss =
[2ls − 2µs , 2ls + 2µs ], µe > lm.

Gen. a, c
$←− QR∗n, sk = (p, q), pk =

(n, a, c, Se, Sm).

Sig. If |m| = lm, e
$←− Se ∩ Prime, A ←

(amc)
1
e mod n.

Ver. Given m, (e,A), check if |m| = lm,
Ae = amc mod n.

Rnd. -

Gen. a, b, c
$←− QR∗n, sk = (p, q), pk =

(n, a, b, c, Se, Sm, Ss).

Sig. If |m| = lm, e
$←− Se ∩ Prime, s

$←− Ss,
A ← (ambsc)

1
e mod n. Υ = (e, s), Ξ =

(A)
Ver. Given m, (Υ,Ξ) = (e, s, A), check if

|m| = lm, |s| = ls, Ae = ambsc mod n.
Rnd. Given m, (Υ,Ξ) = (e, s, A), choose ran-

dom r with length lr = ls − le − 1,
Υ′ = (e, s + re), Ξ′ = (Abr).

CL04 CL04+.
Let G1 = 〈g〉, G2 = 〈g̃〉 be p order cyclic groups that there exists a bilinear map e : G1×G2 → G3.

Gen. x, y
$←− Z∗p , sk = (x, y), X = g̃x, Y = g̃y,pk = (p, g, g̃,G1,G2, e, X, Y ).

Sig. d
$←− G1, s

$←− Z∗p , Υ = (), Ξ =
(d, dy, dx+mxy).

Ver. Given m, (Υ,Ξ) = (a, b, c), check if
e(a, Y ) = e(b, g̃), e(a,X)e(b,X)m =
e(c, g̃).

Rnd. Given m, (Υ,Ξ) = (a, b, c). r
$←− Z∗p ,

Υ′ = (), Ξ′ = (a′, b′, c′) = (ar, br, cr).

Sig. d
$←− G1, s

$←− Z∗p , Υ = (s), Ξ =
(ds, dsy, dx+mxy).

Ver. Given m, (Υ,Ξ) = (s, a, b, c), check if
e(a, Y ) = e(b, g̃), e(a,X)e(b,X)m =
e(c, g̃)s.

Rnd. Given m, (Υ,Ξ) = (s, a, b, c), r1, r2
$←−

Z∗p , Υ′ = (s′) = (r2s), Ξ′ = (a′, b′, c′) =
(ar1r2 , br1r2 , cr1).

BBS04 BBS04+a

Gen. x
$←− Z∗p , w = g̃x, h1

$←− G1. sk = (x), pk = (p,G1,G2, g, g̃, h1, e, w).

Sig. s
$←− Z∗p , A ← (hm

1 g)
1

x+s .
Ver. Given m, (s,A), check if e(A,wg̃s) =

e(hm
1 g, g̃).

Rnd. -

Sig. s, t
$←− Z∗p , A ← (hm

1 g)
t

x+s , Υ = (s, t),
Ξ = (A).

Ver. Given m, (Υ,Ξ) = (s, t, A), check if
e(A,wg̃s) = e(hm

1 g, g̃t).

Rnd. Given m, (Υ,Ξ) = (s, t, A), r
$←− Z∗p ,

Υ′ = (s, rt), Ξ′ = (Ar).

aIn the end of introduction part of [BBS04], a new group signature using this underlying signature following
the method of [CL04] was implicitly and briefly mentioned (“Their methodology can also be applied to the SDH
assumption, yielding a different SDH-based group signature.”).

The scheme in [CL02] (noted CL02) can be viewed as the unlinkable randomizable signature version of
the signature underlying the well known ACJT scheme [ACJT00], or the signature in [Fis03].

CL02 has been proved ACMA secure (in standard model [CL02]). Obviously it is indirectly signable if we
define f(m) = am assuming Computational Diffie-Hellman problem on QR∗

n is hard.
CL02 is Σ-protocol friendly, because there exists an efficient Σ-protocol for the relation {(m, e, s)| Ae =

ambsc mod n,m ∈ Sm, s ∈ Ss} using the standard of proof of knowledge of discrete representations [Gir91,
CP93, FO97, CM99, Bou00, KTY04].

Intuitively it is also perfectly unlinkable because each randomized Ξ′ only consists of one element that is
generated independently and randomly each time.

Lemma 3.1. CL02 signature is perfectly unlinkable.

5



Proof.

Pr{Ξ′ $←− Rnd(m1,Υ1,Ξ1)|(pk, sk) $←− Gen(1k), (〈m0,Υ0,Ξ0〉, 〈m1,Υ1,Ξ1〉) $←− A(sk)}
= Pr{vr

1|r $←− {0, 1}lr}
= Pr{vr

1|r ← r̃ + logb (v0v
−1
1 ), r̃ $←− {0, 1}lr}

= Pr{vr̃
0|r̃ $←− {0, 1}lr}

= Pr{Ξ′ $←− Rnd(m0,Υ0,Ξ0)|(pk, sk) $←− Gen(1k), (〈m0,Υ0,Ξ0〉, 〈m1,Υ1,Ξ1〉) $←− A(sk)}

The scheme CL04+ (implied in [CL04]) is wUF-ACMA which can be proved similarly as Scheme A in
[CL04]. Briefly, suppose A is an adversary of CL04+, then an adversary B of LRSW assumption (defined in
[CL04]) is available: when A queries signature on m, B transfers the query to LRSW oracle Ox,y (defined in
[CL04]); B will get a response from LRSW oracle Ox,y, i.e., (a, b, c)=(a, ay, ax+mxy), then B sends (s, as, bs, c)

(s $←− Z∗p) to A. If A outputs a signature (s∗, a∗, b∗, c∗) on a message m∗ that it has never queried, then

(m∗, a∗
1

s∗ , b∗
1

s∗ , c∗) is a resolution to LRSW assumption, B wins.
CL04+ is Σ-protocol friendly, because there exists an efficient Σ-protocol for the relation {(m, s)|e(a,X)

e(b,X)m = e(c, g̃)s}.
CL04+ is indirectly signable if define f(m) = gm assuming Computational Diffie-Hellman problem on G1

is hard.

Lemma 3.2. CL04+ signature is perfectly unlinkable.

Proof.

Pr{Ξ′ $←− Rnd(m1,Υ1,Ξ1)|(pk, sk) $←− Gen(1k), (〈m0,Υ0,Ξ0〉, 〈m1,Υ1,Ξ1〉) $←− A(sk)}
= Pr{(ar1r2

1 , br1r2
1 , cr1

1 )|r1
$←− Z∗p , r2

$←− Z∗p}
= Pr{(ar1r2

1 , br1r2
1 , cr1

1 )|r1 ← r̃1α, r2 ← r̃2β, r̃1
$←− Z∗p , r̃2

$←− Z∗p}

( Note α = (loga1
a0)

s1(x + m0xy)
s0(x + m1xy)

, β =
s0(x + m1xy)
s1(x + m0xy)

)

= Pr{(ar̃1r̃2
0 , br̃1r̃2

0 , cr̃1
0 )|r̃1

$←− Z∗p , r̃2
$←− Z∗p}

= Pr{Ξ′ $←− Rnd(m0,Υ0,Ξ0)|(pk, sk) $←− Gen(1k), (〈m0,Υ0,Ξ0〉, 〈m1,Υ1,Ξ1〉) $←− A(sk)}

BBS04+, implicitly mentioned in [BBS04], can be proved wUF-CMA similarly to the scheme [BBS04].
Briefly, suppose A is an adversary of BBS04+, then an adversary B of [BBS04] is available: when A queries
signature on m, B transfers the query to signature oracle of [BBS04]; B will get a response from the signature

oracle, i.e., (s,A), where e(A,wg̃s) = e(hm
1 g, g̃), then B chooses t

$←− Z∗p , sends (s, t, At) to A. If A outputs a

signature (s∗, t∗, A∗) on a message m∗ that it has never queried, then (s∗, A∗
1
t∗ ) is a valid BBS04+ signature

on m∗, which B has never queried.
BBS04+ is indirectly signable if we define f(m) = hm

1 assuming Computational Diffie-Hellman problem
on G1 is hard. Obviously, BBS04+ is perfectly unlinkable because each randomized Ξ′ only consists of one
element that is generated independently and randomly each time.

BBS04+ is Σ-protocol friendly, because there exists an efficient Σ-protocol for the relation {(m, s, t)|
e(A,w) e(A, g̃)s = e(g, g̃)t} e(h1, g̃)mt.
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3.1 NSN04*

The two most efficient group signatures are based on strong RSA assumption and q-SDH assumption respec-
tively [ACJT00, NSN04]. As we have mentioned, the scheme of [ACJT00] has a counterpart scheme utilizing
unlinkable randomizable signature CL02. As for the scheme in [NSN04], no similar counterpart has been pro-
posed. In this section, we propose a new unlinkable randomizable signature NSN04*, which can be adopted
to build a new efficient group signature.

[NSN04] NSN04*.
Let G be a p order additive cyclic group, and there exists a bilinear map e : G×G→ G′. G = 〈P 〉.
Gen. γ

$←− Z∗p , Ppub = γP , P0
$←− G, sk = (γ), pk = (p,G,G′, P, P0, Ppub, e).

Sig. a
$←− Z∗p , A = 1

γ+a [mP + P0].
Ver. Given m, (a,A), check if e(A,Ppub +

aP ) = e(mP + P0, P ).
Rnd. -

Sig. (a, b, c) $←− Z∗p
3, A = 1

γ+a [mP + (b +
γc)Ppub + P0], Υ = (a, b, c), Ξ = (A).

Ver. Given m, (Υ,Ξ) = (a, b, c, A), check
if e(A,Ppub + aP ) = e(mP + bPpub +
P0, P )e(cPpub, Ppub).

Rnd. Given m, (Υ,Ξ) = (a, b, c, A), r
$←− Z∗p ,

Υ′ = (a′, b′, c′) = (a, b + ra, c + r), Ξ′ =
(A′) = (A + rPpub).

The security if NSN04* is guaranteed by the following Lemma.

Lemma 3.3. NSN04* is wUF-ACMA if q-SDH problem in G is hard, where q is polynomial in |p|. See
Appendix A for the proof.

NSN04* is indirectly signable if we define f(m) = mP assuming Computational Diffie-Hellman problem
on G is hard. Obviously, NSN04* is perfectly unlinkable because each randomized Ξ′ only consists of one
element that is generated independently and randomly each time.

NSN04* is Σ-protocol friendly, because there exists an efficient Σ-protocol for the relation {(m,a, b, c)|
e(A,Ppub) e(A,P )a = e(P, P )m e(Ppub, P )b e(P0, P ) e(Ppub, Ppub)c}.

3.2 Wat05+

The recently proposed signature in [Wat05], which is provable secure under CBDH assumption (Computational
Bilinear Diffie-Hellman assumption) without random oracle, is also an UR signature if only we change a bit
on it, see the following restatement with an extra algorithm Rnd.

Wat05+. Let G, G′ be two p order cyclic groups, and there exists a bilinear map e : G×G→ G′. G = 〈g〉.
Gen. Set secret key sk = (x), pk = (e, g1, g2, u

′, ui, i = 0, .., l), where g1, g2, u
′, ui are all elements from

G, g1 = gx, l is the maximum binary length of a message to be signed.
Sig. Given a message m with length at most l, the signature (Υ,Ξ) is Υ = (s), Ξ = (a, b) =

(gr, gsx
2 (u′

∏l
i=1 umi

i )r), where s
$←− Z∗p . Note that (a1/s, b1/s) is a signature of m according to

Scheme [Wat05].
Ver. Given a message m and its signature (Υ,Ξ) = (s, a, b), it is a valid signature on m if e(b, g) =

e(u′, a)e(g2, g1)s
∏l

i=1 e(ui, a)mi .
Rnd. On input pk, message m, and a signature (Υ,Ξ), where Υ = (s), Ξ = (a, b), choose (r1, r2)

$←−
Z∗p × Z∗p , set Υ′ = (s′) = (sr1), Ξ′ = (a′, b′) = (ar1gr2 , br1(u′

∏l
i=1 umi

i )r2). The new randomized
signature on m is (Υ′,Ξ′).

Wat05+ is wUF-ACMA. Briefly, Suppose A is an adversary of Wat05+, then an adversary B of Wat05
is available: when A queries signature on m, B transfers the query to signature oracle of Wat05 obtaining
(a, b) = (gr, gx

2 (u′
∏l

mi=1 ui)r), which is then modified by B into (s, as, bs) where s
$←− Z∗p ; the modification,
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now a valid Wat05+ signature on m, is sent to A. If A outputs a signature (s∗, a∗, b∗) on a message m∗ that
it has never queried, then (a∗

1
s∗ , b∗

1
s∗ ) is a valid Wat05 signature on m∗ that B has not queried.

Wat05+ is Σ-protocol friendly, because there exits efficient Σ-protocol for the relation {(m1, ..., ml, s)|
e(b, g)= e(u′, a) e(g2, g1)s

∏l
i=1 e(ui, a)mi}.

Wat05+ is indirectly signable if we define f(m) =
∏l

i=1 umi
i , it is one way if l = O(k), where k is the

security parameter. That is because the probability of f(m) = f(m′) for m 6= m′ is about 1/p, i.e., the
solution to f(m) = c for a random c ∈ G is unique non-negligibly. To obtain the unique solution, 2l tests
must be carried out.

Lemma 3.4. Wat05+ signature is perfectly unlinkable.

Proof.

Pr{Ξ′ $←− Rnd(m1,Υ1,Ξ1)|(pk, sk) $←− Gen(1k), (〈m0,Υ0,Ξ0〉, 〈m1,Υ1,Ξ1〉) $←− A(sk)}

= Pr{(ar1
1 gr2 , br1

1 (u′
l∏

j=1

u
m1j

j )r2)|r1
$←− Z∗p , r2

$←− Z∗p}

= Pr{(ar1
1 gr2 , br1

1 (u′
l∏

j=1

u
m1j

j )r2)|r1 ← Ar̃1 + Br̃2, r2 ← Cr̃1 + Dr̃2, r̃1
$←− Z∗p , r̃2

$←− Z∗p}

( Note A =
logg a0 logb1 U1 − logb1 b0

F
,B =

logb1 U1U
−1
0

F
,

C =
logb1 b0 logg a1 − logg a0

F
,D =

logg a1 logb1 U0 − 1
F

,

F = logg a1 logb1 U1 − 1, U1 = u′
l∏

j=1

u
m1j

j , U0 = u′
l∏

j=0

u
m0j

j )

= Pr{(ar̃1
0 gr̃2 , br̃1

0 (u′
l∏

j=1

u
m0j

j )r̃2)|r̃1
$←− Z∗p , r̃2

$←− Z∗p}

= Pr{Ξ′ $←− Rnd(m0,Υ0,Ξ0)|(pk, sk) $←− Gen(1k), (〈m0,Υ0,Ξ0〉, 〈m1,Υ1,Ξ1〉) $←− A(sk)}

Note that the original scheme Wat05 [Wat05] is utilized in the compact group signature [BW06]. But
Wat05+ has not been adopted anywhere.

3.3 CL04*

CL04* is a new UR signature similar to the standard signature proposed in [ZL06], both of them are wUF-
ACMA under the following assumption.

Assumption 1 ([ZL06]). Suppose G1, G2 be two p ordered cyclic group that exists a bilinear map e : G1×G2 →
G3, G1 = 〈g〉, G2 = 〈g̃〉. Let X = gx, Y = gy, X̃ = g̃x, Ỹ = g̃y, Ox,y(.) be an oracle that, on input a value
m ∈ Z∗p , outputs a pair (gr, gr(x+my)+xy) for a randomly chosen r ∈ Z∗p \ {1}. Then for any probabilistic
polynomial time bounded adversary A, the following probability is negligible:

Pr{(p,G1,G2,G3, e, g, g̃) ← Setup(1k);x R←− Z∗p ; y R←− Z∗p ;X = gx;Y = gy; X̃ = g̃x; Ỹ = g̃y;

(m,a, b) ← AOx,y(p, g, g̃, e, X, Y, X̃, Ỹ ) : m ∈ Z∗p\Q ∧
a = gr ∧ a /∈ {1G1 , g} ∧ b = gr(x+my)+xy} < ε,

where Q is the set of queries that A has made to Ox,y(.), 1G1 is the unit element of G1.
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The difference between CL04* and the standard signature in [ZL06] mainly lies in the algorithm Rnd.

CL04*. Let G1 be a p order cyclic group that exists a bilinear map e : G1 × G2 → G3. G1 = 〈g〉,
G2 = 〈g̃〉.

Gen. Select (x, y) R←− Z∗p × Z∗p , set X = gx, Y = gy, X̃ = g̃x, Ỹ = g̃y. The secret key is sk = (x, y),
public key is pk = (X, Y, X̃, Ỹ , g, g̃, e, p).

Sig. Given a message m ∈ Z∗p , its signature is (Υ,Ξ), where Υ = (s), Ξ = (a, b) = (gr, gr(x+my)+sxy),

(r, s) $←− Z∗p × Z∗p .
Ver. Given a signature (Υ,Ξ)=(s, a, b) of m, check if e(b, g̃) = e(a, X̃Ỹ m)e(X, Ỹ )s. If the equation

holds, then accept (Υ,Ξ) as a valid signature of m, otherwise reject it as invalid.
Rnd. On input pk, message m, and a signature (Υ,Ξ) = (s, a, b), choose random r1, r2 ∈ Z∗p × Z∗p ,

output (Υ′,Ξ′) where Υ′ = (s′) = (r1s), Ξ′ = (a′, b′) = (ar1gr2 , br1(XY m)r2).

Lemma 3.5. CL04* is wUF-ACMA secure under Assumption 1.

Proof. Briefly, Suppose A is an adversary of CL04*, then an adversary B of Assumption 1 is available: when
A queries signature on m, B transfers the query to oracle Ox,y obtaining (a, b) = (gr, gr(x+my)+xy), which is

then modified by B into (s, as, bs) where s
$←− Z∗p ; the modification, now a valid CL04* signature on m, is sent

to A. If A outputs a signature (s∗, a∗, b∗) on a message m∗ that it has never queried, then (a∗
1

s∗ , b∗
1

s∗ ) is a
resolution to Assumption 1.

CL04* is Σ-protocol friendly, because there exits efficient Σ-protocol for the relation {(m, s)| e(b, g̃) =
e(a, X̃) e(a, Ỹ )m e(X, Ỹ )s}.

CL04* is indirectly signable if define f(m) = gm assuming Computational Diffie-Hellman problem on G1

is hard.

Lemma 3.6. CL04* signature is perfectly unlinkable.

Proof.

Pr{Ξ′ $←− Rnd(m1,Υ1,Ξ1)|(pk, sk) $←− Gen(1k), (〈m0,Υ0,Ξ0〉, 〈m1,Υ1,Ξ1〉) $←− A(sk)}
= Pr{(ar1

1 gr2 , br1
1 (XY m1)r2)|r1 ← Ar̃1 + Br̃2, r2 ← Cr̃1 + Dr̃2, r̃1

$←− Z∗p , r̃2
$←− Z∗p}

( Note A =
(x + m1y) logg a0 − logg a0 logg b1

F
,B =

(m1 −m0)y
F

,

C =
logg b0 logg a1 − logg b0 logg a0

F
,D =

(x + m0y) logg a1 − logg b1

F
,

F = (x + m1y) logg a1 − logg b1)

= Pr{(ar̃1
0 gr̃2 , br̃1

0 (XY m0)r̃2)|r̃1
$←− Z∗p , r̃2

$←− Z∗p}
= Pr{Ξ′ $←− Rnd(m0,Υ0,Ξ0)|(pk, sk) $←− Gen(1k), (〈m0,Υ0,Ξ0〉, 〈m1,Υ1,Ξ1〉) $←− A(sk)}

Note that CL04* has been implicitly adopted to build group signatures with verifier-local revocation and
backward unlinkability in the full version of [ZL06], but it has not been identified as a stand-alone signature.

The following is a summary table of all old and new UR signatures known so far. PU denotes perfectly
unlinkability; F denotes Σ-protocol friendly.
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Scheme Signature Randomization OWF Security Σ
CL02 Υ = (e, s), Ξ = (A) Υ′=(e, s + re), Ξ′=(Abr) f(m) = am ACMA, PU F
CL04+ Υ = (s), Ξ = (a, b, c) Υ′=(sr2),

Ξ′=(ar1r2 , br1r2 , cr1)
f(m) = gm

1 ACMA, PU F

Wat05+ Υ = (s), Ξ = (a, b) Υ′=(sr1),
Ξ′=(ar1gr2 , br1(u′

∏l
i=1 umi

i )r2)
f(m) =

∏l
i=1 umi

i ACMA, PU F

BB04+a Υ = (s, t), Ξ = (A) Υ′=(s, rt), Ξ′=(Ar) — ACMA, PU F
BBS04+ Υ = (s, t), Ξ = (A) Υ′=(s, rt), Ξ′=(Ar) f(m) = hm

1 CMA, PU F
NSN04* Υ = (a, b, c), Ξ = (A) Υ′= (a,b+ra,c+r),

Ξ′=(A + rPpub)
f(m) = mP ACMA, PU F

CL04* Υ = (s), Ξ = (a, b) Υ′=(sr1),
Ξ′=(ar1gr2 , br1(XY m)r2)

f(m) = gm ACMA, PU F

aSee Section 4.3.2.

4 Group Signature from UR Signature

Definition 9 ([BSZ05]). A group signature is a signature scheme composed of the following algorithms between
GM (including IA, issuing authority, and OA, opening authority), group members and verifiers.

• Setup: an algorithm run by GM (IA and OA) to generate group public key gpk and group secret key
gsk;

• Join: a probabilistic interactive protocol between GM (IA) and a group member candidate. If the protocol
finishes successfully, the candidate becomes a new group member with a group signing key gski including
member secret key mski and member certificate certi; and GM (IA) adds an entry for i (denoted as
regi) in its registration table reg storing the protocol transcript, e.g. certi. Sometimes the procedure is
also separated into Join and Iss, where Join emphasize the part run by group members as well as Iss
denotes the part run by IA.

• GSig: a probabilistic algorithm run by a group member, on input a message m and a group signing key
gski = (mski, certi), returns a group signature σ;

• GVer: a deterministic algorithm which, on input a message-signature pair (m,σ) and GM’s public key
gpk, returns 1 or 0 indicating the group signature is valid or invalid respectively;

• Open: a deterministic algorithm which, on input a message-signature pair (m,σ), secret key gsk of GM
(OA), returns identity of the group member who signed the signature, and a proof π.

• Judge: a deterministic algorithm with output of Open as input, returns 1 or 0, i.e., the output of OPEN
is valid or invalid.

4.1 Generic Construction of GS

Select an Σ-protocol friendly UR signature DS= (Ks,Sig,Ver,Rnd) which is indirectly signable with a one
way function f , a probabilistic public encryption PE= (Ke, Enc,Dec).

Define the following relations:

ρ: (x,w) ∈ ρ iff x = f(w).
ρ1: ( (pke, pks, m, C, Ξ), (w, Υ, r)) ∈ ρ1 iff Ver (pks, w, (Υ, Ξ))=1

and C=Enc (pke, f(w), r) and (pks, ·) ← Ks, (pke, ·) ← Ke.
ρ2: ((pke, C, m), (w)) ∈ ρ2 iff Dec(pke, w, C) = m and (pke, ·) ← Ke.
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Assume (P, V ), (P1, V1) and (P2, V2) are non-interactive proofs for relation ρ, ρ1 and ρ2, which have access
to common reference string R, R1 and R2 respectively. Let SIM , SIM1, SIM2 be their corresponding
simulation algorithm. The detailed definition of non-interactive proof is referred to [BSZ05].

(P, V ) is also defined to be with an online extractor (in the random oracle model), i.e., it has the following
features (let k be the security parameter) [Fis05]:

Completeness: For any random oracle H, any (x,w) ∈ ρ, and any π ← PH(x,w, R), it satisfies Pr {V H(x,
π ,R) = 1} ≥ 1− ε1(k), where ε1(k) is a negligible function.

Online Extractor: There exists a probabilistic polynomial time algorithm K, the online extractor, such
that the following holds for any algorithm A. Let H be a random oracle, QH(A) be the answer sequence H to
queries from A. Let w ← K(x, π, QH(A)), then as a function of k, Pr{(x,w) /∈ ρ, V H(x, π, R) = 1} < ε2(k),
where ε2(k) is a negligible function.

GS is constructed as follows, and the details are described in Table 1 and Table 2.
Setup. Select an instance of DS and PE, let secret key of DS be the secret key of IA, secret key of PE

be the secret key of OA.
Join. User i selects its member secret key ski in message space of DS, computes pki ← f(ski), generates

π, a non-interactive zero-knowledge proof of knowledge of ski for relation ρ. IA checks the correctness of
π and generates a DS signature on ski: certi = Sigf (sks, pki) = Sig(sks, ski), sets regi = pki. The group
signing key of i is gski = (certi, ski).

GSig. On input (gpk, gski,m), parse certi into (Υ,Ξ), firstly derive a new certification (Υ′,Ξ′) =
Rnd(gpk, ski,Υ,Ξ); encrypt pki with PE: C ← Enc(pke, pki, ri), where ri is random; then generate π1,
a non-interactive zero-knowledge of proof of knowledge of (ski,Υ′, ri) for relation ρ1; in the end, transfer π1

into a signature on m using any method of transferring a non-interactive zero-knowledge proof into a signa-
ture [FS87, BG90, CD95, CL06], we also use π1 to note the transferred signature for simplicity. The group
signature on m is σ = (C, Ξ′, π1).

GVer. On input (gpk, m, σ), parse σ as (C, Ξ′, π1), check the correctness of π1, return 1 if it is correct,
return 0 otherwise.

Open. On input (gpk, ok, reg, m, σ), parse σ as (C, Ξ′, π1). OA firstly checks the validity of the group
signature σ on m, if it is not valid, stops; otherwise decrypts C to get M , and generates π2, a proof of
knowledge of decryption key ok for relation ρ2. If M = pki for some pki in reg, return the corresponding
index or identity and π2, else returns zero and π2.

Judge. Check the validity of the group signature and the output of Open.

User i Issue Authority
Select ski, pki ← f(ski),

π ← P (pki, ski, R) pki,π−−−→ If V (pki, π, R) = 1,
certi ← Sigf (sks, pki),

gski ← (pki, ski, certi)
certi←−−− regi = pki.

Table 1: Algorithm Join of GS.

Comparison. The above generic construction is a particular case of the construction in [BSZ05]:
In [BSZ05], the group signature is σ = (C, π1) = (Enc(pke, < i, pki,Υ,Ξ, s >, ri), π1), where s = S(ski,m)

and π1 is a proof of knowledge of (pki,Υ,Γ, s, ri) satisfying V er(pks, < i, pki >, (Υ,Ξ)) = 1, C = Enc(pke, <
i, pki,Υ,Ξ, s >, ri), and V (pki,m, s) = 1. (S, V ) is the signature generation and verification algorithms of an
independent signature scheme.

However in this construction, the group signature is σ = (C,Ξ′, π1) = (Enc(pke, pki, ri), Ξ′, π1), where π1

is a transformed signature of the proof of knowledge of (ski,Υ′, ri) satisfying Ver(pks, ski, (Υ′,Ξ′)) = 1 and
C = Enc(pke, f(ski), ri).

The construction is more efficient in that less items are encrypted in C enabling efficient proof of knowledge
of encrypted context.
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Algorithm Setup(1k):

R
$←− {0, 1}P (k), R1

$←− {0, 1}P1(k),

R2
$←− {0, 1}P2(k), (pks, sks) ← Ks(1k),

(pke, ske) ← Ke(1k),
gpk = (R, R1, R2, pke, pks),
ok = (ske), ik = (sks).
return (gpk, ok, ik).
Algorithm GVer(gpk,m, σ):
Parse σ as (C, Ξ′, π1),
Parse gpk as gpk = (R, R1, R2, pke, pks),
Return V1((pke, pks,m, C,Ξ′), π1, R1).
Algorithm Judge(gpk, reg, m, σ, i, M, π2):
Parse gpk as gpk = (R, R1, R2, pke, pks),
Parse σ as (C, Ξ′, π1),
If GV er(gpk, m, σ) = 0, return ⊥.
If i = 0, and M 6= Regj for all j,
return V2((pke, C, M), π2, R2),
else if M = regi,
return V2((pke, C, M), π2, R2).

Algorithm GSig(gpk, gski,m):
Parse certi as (Υ,Ξ),
Parse gpk as (R, R1, R2, pke, pks),
(Υ′,Ξ′) = Rnd(gpk, ski,Υ,Ξ);
C ← Enc(pke, pki, ri), ri random;
π1 = P1((pke, pks,m, C,Ξ′), (ski,Υ′, ri), R1).
σ = (C,Ξ′, π1).
return σ.
Algorithm Open(gpk, ok, reg, m, σ):
Parse gpk as gpk = (R, R1, R2, pke, pks),
Parse σ as (C, Ξ′, π1),
If GV er(gpk,m, σ) = 0, return ⊥.
M ← Dec(ske, C),
If M = regi, ∃i,
π2 = P2((pke, C, M), (ske), R2),
return (i, τ), where τ = (M, π2);
else return (0, τ), where τ = (M, π2).

Table 2: Algorithms Setup, GSig, GVer, Open, Judge of GS.

4.2 Security Proofs

The security of the generic group signature utilizing unlinkable randomizable signature follows the generic
construction in [BSZ05] since the former is a particular case of the latter.

To be complete, we provide the following lemmas with proofs (see Appendix C.1, C.2, C.3 respectively)
under a variant model (see Appendix B).

Lemma 4.1. GS is anonymous if PE is IND-CCA2, (P1, V1) is a simulation sound, computational zero-
knowledge proof, (P2, V2) is a computational zero-knowledge proof.

Lemma 4.2. GS is traceable if DS is wUF-ACMA, (P1, V1), (P2, V2) are sound proofs of knowledge and
(P, V ) is a proof of knowledge with online extractor (in random oracle model).

Lemma 4.3. GS is non-frameable if f is one way function, (P, V ) is a computational zero-knowledge proof,
(P1, V1) and (P2, V2) are sound proofs of knowledge.

4.3 Improvement to a Group Signature

4.3.1 Review of KY05’s Group Signature

Setup. At first, select the following public parameters:

1. two groups G1 = 〈g1〉, G2 = 〈g2〉 of order p(length is lp bits), and there exists a bilinear map e :
G1 ×G2 → GT .

2. an RSA modulus n of ln bits.

3. three integer ranges S = {2l−1 − 2lp−2 + 1, ..., 2l−1 + 2lp−2 − 1}, S′ = {2l′ − 2µ′ + 1, ..., 2l′ + 2µ′ − 1},
S = {2l′′ − 2µ′′ + 1, ..., 2l′′ + 2µ′′ − 1}, where l′ = l− 1, µ′ = b(lp − 4)/εc − k, l′′ = l′/2, µ′′ = µ′/2, ε > 1.
S′ ⊂ S ⊂ Zφ(n), the upper bound of S′′ is smaller than the lower bound of S.

4. an RSA modulus N of lN bits, choose G ∈ QRN2 so that 〈G〉 is also N -th residues, ]〈G〉 = φ(N)/4.

12



Then IA selects

• γ, δ
$←− Zp, set w = gγ

2 , v = gδ
2.

• α, β
$←− Zp, u

$←− G1, set u′ = uα/β , h = uα(u′)β = u2α.

• g, f1, f2, f3
$←− QRn.

• a collision resistant hash function HASH.

OA selects

• a1, a2, a3
$←− ZbN/4c, set H1 = Ga1 , H2 = Ga2 , H3 = Ga3 .

• a universal one-way hash function family UOHF, and a hash key hk.

Group public key gpk = {g1, g2, u, u′, h, w, v, g, f1, f2, f3, n, N, G, H1,H2,H3, hk,G1,G2,GT , e,UOHF}. Group
secret key gsk = {γ, δ, a1, a2, a3}.

Join. The protocol is diagrammed in the following table.

User Issue Authority

x = x1x2, where x ∈ $←− S′ and x1 ∈ $←− S′′, x−→ If x ∈ S′, r
$←− Z∗p , s

$←− Z∗p
e(σ,wgx

2vr)? = e(g1, g2)s (r,s,σ)←−−−− σ ← g
s

γ+x+δr

1

cert = (x, r, s, σ), msk = (x1, x2)

Table 3: Algorithm Join of [KY05].

GSig. If a user with member certificate (x, σ, r) and member secret key (x1, x2) wants to generate a group
signature on m, he firstly computes T1, T2, T3, T4, T5, C0, C1, C3 as described in the following table.

T1 = uz z
$←− Zp in G1

T2 = (u′)z′ z′ $←− Zp in G1

T3 = hz+z′σ in G1

T4 = gyfx1
1 y

$←− S(1, 2ln−2) in QRn

T5 = gy′fx2
2 f t

3 y′ $←− S(1, 2ln−2) in QRn

C0 = Gt t
$←− S(1, 2lN−2) in Z∗N2

C1 = Ht
1(1 + N)x in Z∗N2

C2 =‖ (H2H
H(hk,C0,C1)
3 )t ‖ in Z∗N2

Then he generates a signature of knowledge by applying the Fiat-Shamir heuristic [FS87] on a proof of
knowledge of the fourteen witnesses θz, θz′ , θx, θxz, θxz′ , θr, θrz′ , θx1 , θx2 , θy, θy′ , θyx2 , θt that satisfy the
following relations:

T1 = uθz , T2 = (u′)θz′ , 1 = T−θx
1 uθxz , 1 = T−θx

2 (u′)θxz′ ,
1 = T−θr

1 uθrz , 1 = T−θr
2 (u′)θrz′ , T4 = gθyf

θx1
1 , 1 = T

−θx2
4 gθyx2fθx

1 ,
T5 = gθy′f

θx2
2 fθt

3 , θx ∈ S′, θx′ ∈ S′′, C0 = Gθt ,
C1 = Hθt

1 (1 + N)θx , C2
2 = (H2H

H(hk,C0,C1)
3 )2θt ,

e(g1, g2)/e(T3, w) = e(T3, v)θre(T3, g2)θxe(h, g2)−θxz−θxz′e(h, v)−θrz−θrz′e(h,w)−θz−θz′
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The realization of the above signature of knowledge is quite standard, so we omit it here. The output is (T1,
T2, T3, T4, T5, C0, C1, C2, c, sz, sz′ , sxz, sxz′ , sr, srz, srz′ , sx, sx1 , sx2 , sy, sy′ , syx2 , st).

GVer. The verification is achieved by checking if all the following conditions hold:

sx ∈ ±{0, 1}εµ′+k+1 ∧ sx1 ∈ ±{0, 1}εµ′′+k+1 ∧ C0, C1, c2 ∈ Z∗N2 ∧ C2 ≤ N2/2

c = HASH(m‖T1‖T2‖T3‖T4‖T5‖uszT c
1‖(u′)sz′T c

2‖T sx+c2l′

1 usxz

‖T sx+c2l′

2 (u′)sxz‖T sr
1 u−srz‖T sr

2 (u′)−srz

‖e(T3, v)sre(T3, g2)sx−c2l′
e(h, g2)−sxz−sxz′

e(h, v)−srz−srz′e(h,w)sz+sz′e(g1, g2)ce(T3, w)−c

‖T c
4gsy−cf

sx1−c2l′′

1 ‖T sx2−c
4 g−syx2+2cf−sx+c2l′

1

‖T c
5gsy′−cf

sx2−c
2 fst−c

3 ‖Cc
0G

st−c

‖Cc
1H

st−c
1 (1 + N)sx−c2l′‖Cc

2(H
2
2H

2H(hk,C0,C1)
3 )st−c)

Open. Firstly the group signature is verified as well as the relation C2
2 = C

2(a2+a3H(hk,C0,C−1))
0 is checked.

If all the tests pass, OA computes x = (C1C
−a1
0 − 1)/N , then checks if there exists a matching member

certificate in the database maintained by IA.

4.3.2 Group Signature KY05+

Replacing the member certificate signature with the following BB04+ signature, the scheme in [KY05] can be
improved.

BB04+. Let G1, G2 be two p order cyclic groups, and there exists a bilinear map e : G1 × G2 → G3.
G1 = 〈g〉, G2 = 〈g̃〉.

Gen. It chooses x
$←− Z∗p , y

$←− Z∗p , and sets sk = (x, y), pk = (p,G1,G2, g, g̃, X, Y, e), where X = g̃x,
Y = g̃y.

Sig. On input message m, secret key sk, and public key pk, choose (s, t) $←− Z∗p
2, compute A =

g
t

x+m+ys , output the signature (Υ,Ξ) where Υ = (s, t), Ξ = (A). Note that (s,A
1
t ) is a valid

[BB04] signature on m.
Ver. On input pk, message m, and purported signature (Υ,Ξ) = (s, t, A), check that e(A,XY sg̃m) =

e(gt, g̃).
Rnd. On input pk, message m, and a signature (Υ,Ξ) = (s, t, A), choose r

$←− Z∗p , output (Υ′,Ξ′)
where Υ′ = (s′, t′) = (s, rt), Ξ′ = (A′) = (Ar).

BB04+ can be proved wUF-ACMA similarly to the scheme [BB04]. Briefly, suppose A is an adversary
of BB04+, then an adversary B of [BB04] is available: when A queries signature on m, B transfers the
query to signature oracle of [BB04]; B will get a response from the signature oracle, i.e., (s,A), where

e(A,XY sg̃m) = e(g, g̃), then B chooses t
$←− Z∗p , sends (s, t, At) to A. If A outputs a signature (s∗, t∗, A∗) on

a message m∗ that it has never queried, then (s∗, A∗
1
t∗ ) is a valid BB04+ signature on m∗, which B has never

queried.
Obviously, BB04+ is perfectly unlinkable because each randomized Ξ′ only consists of one element that is

generated independently and randomly each time, but it is not indirectly signable because m must be known
to calculate a signature on it.

BB04+ is Σ-protocol friendly, because there exists an efficient Σ-protocol for the relation {(m, s, t)| e(A,X)
e(A, Y )s e(A, g̃)m = e(g, g̃)t}.
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Now we turn back to the group signature of KY05+. Public parameters and algorithms Setup, Join (Table
3), Open are exactly as [KY05], except that key-setup for linear ElGamal encryption is eliminated.

GSig. If a user with member certificate (x, σ, r) and member secret key (x1, x2) wants to generate a group
signature on m, he firstly computes (σ′, s′, T4, T5, C0, C1, C2) as described in the following table.

σ′ = σr′ , s′ = r′s r′ $←− Z∗p in G1

T4 = gyfx1
1 y

$←− S(1, 2ln−2) in QRn

T5 = gy′fx2
2 f t

3 y′ $←− S(1, 2ln−2) in QRn

C0 = Gt t
$←− S(1, 2lN−2) in Z∗N2

C1 = Ht
1(1 + N)x in Z∗N2

C2 =‖ (H2H
H(hk,C0,C1)
3 )t ‖ in Z∗N2

Then he generates a signature of knowledge by applying the Fiat-Shamir heuristic [FS87] on a proof of
knowledge of the nine witnesses (θx, θx1 , θx2 , θy, θy′ , θyx2 , θt, θr, θs′) that satisfy the specified relations in the
following table.

gθyf
θx1
1 = T4, gθy′f

θx2
2 fθt

3 = T5,
T
−θx2
4 gθyx2fθx

1 = 1, e(σ′, wgθx
2 vθr) = e(g1, g2)θs′ ,

Gθt = C0, Hθt
1 (1 + N)θx = C1,

(H2H
H(hk,C0,C1)
3 )2θt = C2

2 , θx ∈ S′, θx′ ∈ S′′.

Note that the number of witnesses that need proving is fewer than that of [KY05]. Thus a group signature
of KY05+ is (σ′, T4, T5, C0, C1, C2, c, sr, sx, sx1 , sx2 , sy, sy′ , syx2 , st, ss′), about 7|p| = 1190 bits shorter
than [KY05].

If we view x = x1x2 as a one way function since factoring of x is hard, KY05+ is an application of the
proposed generic construction on BB04+ except that a non-interactive zero-knowledge proof of knowledge with
online extractor is not adopted in Join. The security of it follows from that of proposed generic construction
and [KY05].

5 Conclusion

We have formalized the characteristics of randomizable signatures that are required to build secure group
signatures. Design of efficient secure group signature can be boiled down to designing Σ-protocol friendly
unlinkable randomizable signature with indirect signability.

We also found almost all efficient group signatures known so far are actually in this line of unlinkable
randomizable signatures. For the first time, we proposed the unlinkable randomizable signature version of the
scheme [NSN04]. We proposed two new unlinkable randomizable signatures called Wat05+, CL04* which will
result in new group signatures. We also improved the scheme in [KY05] by replacing the member certificate
generation signature with an unlinkable randomizable signature.
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A Proof of Lemma 3.3

Proof. Suppose there exists an adversary B to the signature, we now construct an adversary A to resolve
q-SDH problem ([BB04]) in G: to calculate (c, 1

z+cQ), c ∈ Z∗p given a random tuple (Q, zQ, ..., zqQ).
B should be given public key of the signature and access to oracle Sig answered byA, obtaining qsig(≤ q−1)

message-signature pairs (mi, ai, bi, ci, Ai), i = 1, ..., qsig, B wins by outputting a forgery, i.e., a new message-
signature (m∗, a∗, b∗, c∗, A∗) that m∗ /∈ {m1, ..., mqsig}. There may be two different types of forgeries. The first
type, a∗ 6= ai,∀i; the second type, a∗ = al,∃l ∈ [1, qsig]. A will choose a random bit from {1, 2} to indicate
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its guess for the forgery type, and simulate accordingly. (Note that A = 1
γ+a [mP + (b + γc)Ppub + P0] =

1
γ+a [mP + (b− ac)Ppub + P0] + cPpub).

Type 1. a∗ 6= ai,∀i.
A selects ai

$←− Z∗p , i ∈ [1, qsig] that are not equal to each other, and s
$←− Z∗p , let f(y) =

∏qsig

i=1(y+ai), γ = z,
sets public key as P = f(z)Q, Ppub = zf(z)Q, P0 = sf(z)Q, which are computable from (Q, zQ, ..., zqQ).

When B queries about a signature on mi, A firstly selects bi, ci
$←− Z∗p , calculates Ai = 1

z+ai
[miP + (bi −

aici)Ppub + P0] + ciPpub, which is computable from (Q, zQ, ..., zqQ) since (z + ai)|f(z).
The forgery (m∗, a∗, b∗, c∗, A∗) satisfies A∗ = 1

z+a∗ [m
∗P +(b∗−a∗c∗)Ppub +P0]+ c∗Ppub, i.e., A∗− c∗Ppub =

1
z+a∗ [(m

∗+s+(b∗−a∗c∗)z)
∏qsig

i=1(z+ai)Q], the probability of m∗+s = (b∗−a∗c∗)a∗ is negligible otherwise B can
be invoked to solve discrete logarithm problem in G if z is chosen by A and sQ is given as a discrete logarithm
challenge. Then there exist g(z), r 6= 0 mod p that (m∗ + s + (b∗ − a∗c∗)z)

∏qsig

i=1(z + ai) = g(z)(z + a∗) + r,
so (a∗, 1

z+a∗Q), computable from A∗ and (Q, zQ, ..., zqQ), is a resolution to the q-SDH challenge.
Type 2. a∗ = al,∃l ∈ [1, qsig].

A selects ai
$←− Z∗p , i ∈ [1, qsig] that are not equal to each other, t

$←− Z∗p , and d
$←− Z∗p , let f(y) =∏qsig

i=1(y + ai), γ = z − al, sets public key as P = f(z−al)
z Q =

∏qsig

i=1,i6=l(z − al + ai)Q, Ppub = (z − al)P ,
P0 = tzP + dP = t

∏qsig

i=1(z − al + ai)Q + dP , which are computable from (Q, zQ, ..., zqQ).

When B queries about a signature on mi, i 6= l, A firstly selects bi, ci
$←− Z∗p , calculates Ai = 1

z−al+ai
[miP +

(bi − aici)Ppub + P0] + ciPpub, which is computable from (Q, zQ, ..., zqQ) since (z − al + ai)|f(z − al).
When B queries about a signature on ml, A firstly selects bl, cl, s ∈ Z∗p so that bl − alcl = (d + ml)a−1

l ,
and s = t + (d + ml)a−1

l , then it can be verified that mlP + (bl − alcl)Ppub + P0 = szP , so Al = 1
γ+al

[mlP +
(bl − alcl)Ppub + P0] + clPpub = sP + clPpub is computable.

The forgery (m∗, a∗, b∗, c∗, A∗) satisfies A∗ = 1
γ+a∗ [m

∗P +(b∗−a∗c∗)Ppub +P0]+c∗Ppub, i.e., A∗−c∗Ppub =
1
z [m∗−al(b∗−a∗c∗)+d+(b∗−a∗c∗+t)z]

∏qsig

i=1,i6=l(z−al+ai)Q, the probability of m∗−al(b∗−a∗c∗)+d = 0 mod p
is negligible otherwise B can be invoked to solve discrete logarithm problem in G if z is chosen by A and dQ is
given as a discrete logarithm challenge. Then there exist g(z), r 6= 0 mod p that [m∗−al(b∗−a∗c∗)+d+(b∗−
a∗c∗+t)z]

∏qsig

i=1,i6=l(z−al+ai) = g(z)z+r, so (0, 1
zQ), computable from A∗ and (Q, zQ, ..., zqQ), is a resolution

to the q-SDH challenge. Note that any algorithm for 1
zQ can be used to calculate a (c 6= 0, 1

z+cQ).

B A Formal Model of Group Signature - A Variant of [BSZ05]

[BSZ05]’s model assumes that IA can not delete contents of the registration table Reg; OA is assumed only
partially corrupted in considering traceability, i.e., OA will abide by specified algorithm Open. The existence
of a secure (private and authentic) channel between any prospective group member and IA is also assumed.

For simplicity, we additionally assume that IA will not generate a new group signing key for an existing
member, nor will IA modify existing records in Reg; OA will not report an existing member to be non-existent
or another existing member after it has opened a group signature according to specified algorithms.

The additional assumption about IA can be guaranteed by introducing an additional trusted third author-
ity CA independent from IA as explicitly defined in the model of [BSZ05]: every member is given a user public
key from CA and a user secret key kept to himself; in Join, a member signed on whatever he has generated
and sent to IA; IA stores the signed transcript in registration table; execution of Open should reveal the signer
identity and stored transcript carrying a signature by the signer.

The additional assumption about OA can be guaranteed by granting accesses of reading/seaching Reg to
judgers (the executors of algorithm Judge).

We define the oracles similar to [BSZ05]. It is assumed that several global variables are maintained by
the oracles: HU , a set of honest users; CU , a set of corrupted users; GSet, a set of message signature pairs;
and Chlist, a set of challenged message signature pairs. Note that not all the oracles will be available to
adversaries in defining a certain security feature.

AddU (i): If i ∈ HU ∪ CU , the oracle returns ⊥, else adds i to HU , executes algorithm Join.
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CrptU (i): If i ∈ HU ∪ CU , the oracle returns ⊥, else CU ← CU ∪ {i}, and awaits an oracle query to
SndToI.

SndToI (i,Min): If i /∈ CU , the oracle returns ⊥; else it plays the role of IA in algorithm Join replying to
Min.

SndToU (i,Min): If i ∈ HU ∪ CU , the oracle returns ⊥, else it plays the role of user i in algorithm Join,
HU ← HU ∪ {i}.

USK (i): If i ∈ HU , the oracle returns ski and gski, CU ← CU ∪ {i}, HU ← HU \ {i}; else returns ⊥.
RReg (i): The oracle returns regi.
WReg (i, s): The oracle sets regi = s if i has not been added in reg.
GSig (i, m): If i /∈ HU , the oracle returns ⊥, else returns a group signature σ on m by user i. GSet ←

GSet ∪ {(i,m, σ)}.
Ch (b, i0, i1, m): If i0 /∈ HU ∪ CU or i1 /∈ HU ∪ CU , the oracle returns ⊥, else generates a valid group

signature σ with ib being the signer. Chlist ← Chlist ∪ {(m,σ)}.
Open (m, σ): If (m,σ) ∈ Chlist, the oracle returns ⊥, else if (m,σ) is valid, the oracle returns Open(m,σ).
CrptIA: The oracle returns the secret key ik of IA.
CrptOA: The oracle returns the secret key ok of OA.
We say an oracle is over another oracle if availability of the oracle implies functions of another oracle. For

example, WReg is over RReg since the adversary can try to remember everything it has written to Reg; CrptIA
is over CrptU, SndToI since knowledge of ik enables the adversary answer the two oracles itself; CrptOA is
over Open. Note that we do not let CrptIA (CrptOA) over WReg (RReg) to provide flexibility when accesses
to the database Reg are granted by an independent DBA (database administrator).

Correctness. For any adversary that is not computationally restricted, a group signature generated by
an honest group member is always valid; algorithm Open will always correctly identify the signer given the
above group signature; the output of Open will always be accepted by algorithm Judge.

Experiment Expcorr
GS,A(k)

(gpk, ik, ok) $←− Setup(1k); HU ← ∅;

(i,m) $←− A(gpk : AddU,RReg),
If i /∈ HU , return 0;
σ ← GSig(gpk, gski,m); (j, τ) ← Open(gpk, ok, reg, m, σ),
If GVer(gpk, m, σ) = 0, or j 6= i, or Judge(gpk, i, reg,m, σ, τ) = 0,
then return 1 else return 0.

Table 4: Correctness.

Anonymity. Imagine a polynomial time adversary A, whose goal is to distinguish the signer of a group
signature σ ← Ch(b, i0, i1,m) between i0, i1, where i0, i1,m are chosen by A itself.

Naturally the adversary A might want to get the group signing keys of i0, i1 or some other honest group
members (through oracle USK ); it might want to obtain some group signatures signed by i0, i1 (through oracle
GSig); it might want to see some outputs of OA (through oracle Open except (m,σ)); it might also try to
corrupt some group members by running Join with IA (through oracles CrptU and SndToI ); it might observe
the communication of some honest members joining in (through SndToU if IA is corrupted, not available
otherwise); it might want to write to, read from Reg (through oracles WReg, RReg); or A might corrupt IA
(through oracle CrptIA). Obviously A should not be allowed to corrupt OA.

A group signature GS=(Setup, Join, GSig, GVer, Open, Judge) is anonymous if the probability for any
polynomial time adversary to win is negligible, i.e., the value of Advanon

GS,A defined below is negligible.

Advanon
GS,A(k) = Pr{Expanon−1

GS,A (k) = 1} − Pr{Expanon−0
GS,A (k) = 1},

where experiments Expanon−b
GS,A (k) are defined as in the above description.

If {i0, i1} ⊆ HU , and CrptIA is not queried, the group signature is selfless anonymous [BS04].
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If {i0, i1} ⊆ CU , and CrptIA is not queried, the group signature is anonymous in the sense of [KY04].
If {i0, i1} ⊆ HU , and CrptIA is queried, the group signature is anonymous in the sense of [BSZ05].
We define a group signature GS is anonymous if {i0, i1} ⊆ CU and CrptIA is queried in the above game,

(in this case GSig is implied if CrptIA is queried), i.e., the corresponding experiments are defined as in Table
5.

Experiment Expanon−b
GS,A (k), b ∈ {0, 1}

(gpk, ik, ok) $←− Setup(1k); CU ← ∅, HU ← ∅, Chlist ← ∅;

d
$←− A(gpk: CrptIA, Open, SndToU, USK, Ch(b, ., ., .), WReg),

Return d.

Table 5: Anonymity.

Traceability. Imagine a polynomial time adversary A, whose goal is to produce a valid group signature
(m,σ), the output of Open on which points to a non-existent member or an existing corrupted member but
can not pass Judge.

Naturally the adversary A might corrupt some group members by running Join with IA (through oracles
CrptU and SndToI ); it might want to see some outputs of OA (through oracle Open); it might want to read
from (through oracles RReg); or A might corrupt OA directly (through oracle CrptOA). Obviously A should
not be allowed to corrupt IA and query WReg. Note that A might not bother to query about honest group
members for they are of little help for it.

A group signature GS is traceable if the probability for any polynomial time adversary to win is negligible,
i.e., the value of Advtrace

GS,A defined below is negligible.

Advtrace
GS,A(k) = Pr{Exptrace

GS,A(k) = 1},

where experiment Exptrace
GS,A(k) is defined as in the above description.

If CrptOA is not queried, the group signature is secure against misidentification attack [KY04].
If CrptOA is queried, the group signature is traceable in the sense of [BSZ05].
We define a group signature GS is traceable if CrptOA is queried in the above game, i.e., the corresponding

experiment is defined as in Table 6.

Experiment Exptrace
GS,A(k)

(gpk, ik, ok) $←− Setup(1k); CU ← ∅, HU ← ∅;

(m,σ) $←− A(gpk : CrptOA, CrptU, SndToI, RReg).
If GVer(gpk, m, σ) = 0, return 0,else (i, τ) ← Open(gpk, ok, Reg, m, σ).
If i = 0 or (Judge(gpk, reg, m, σ, τ) = 0 and i ∈ CU) then return 1, else return 0.

Table 6: Traceability.

Non-frameability. Imagine a polynomial time adversary A, whose goal is to produce a valid group
signature (m,σ), the output of Open on which points to an existing honest member ih and the result passes
Judge.

Naturally the adversary A might want to get the group signing keys of some group members (through
oracle USK); it might want to obtain some group signatures signed by some honest group members (through
oracle GSig); it might want to see some outputs of OA (through oracle Open); it might also try to corrupt
some group members by running Join with IA (through oracles CrptU and SndToI ); it might observe the
communication of some honest members joining in (through SndToU if CrptIA is queried, not available
otherwise); it might wait until more group members has joined in (through AddU ); it might want to write to,
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read from, Reg (through oracles WReg, RReg); or A might corrupt OA or IA directly (through oracle CrptOA
and CrptIA). Obviously A should not be allowed to query CrptU (ih), SndToI (ih,.), USK (ih).

A group signature GS is non-frameable if the probability for any polynomial time adversary to win is
negligible, i.e., the value of Advnf

GS,A defined below is negligible.

Advnf
GS,A(k) = Pr{Expnf

GS,A(k) = 1},

where experiment Expnf
GS,A(k) is defined as in the above description.

If CrptIA and CrptOA are queried, the group signature is secure against framing attack [KY04] or non-
frameable [BSZ05].

We define a group signature GS is non-frameable if CrptIA, CrptOA are queried in the above game, and
the corresponding experiment is defined as in Table 7.

Experiment Expnf
GS,A(k)

(gpk, ik, ok) $←− Setup(1k); CU ← ∅, HU ← ∅, GSet ← ∅;

(m,σ, i, τ) $←− A(gpk : CrptIA, CrptOA, SndToU, GSig, USK, WReg).
If GVer(gpk,m, σ) = 0, return 0.
Else if i ∈ HU and Judge(gpk, reg, m, σ, τ) = 1
and (i,m, .) /∈ GSet, return 1, else return 0.

Table 7: Non-frameability.

Definition 10. A group signature scheme is secure if it is anonymous, traceable and non-frameable.

C Security Proofs of the Generic Construction

C.1 Proof of Lemma 4.1

Note that the difference between our construction 4 and the generic construction in [BSZ05] is that, our
ultimate group signature is σ = (C, Ξ′, π1) = (Enc(pke, pki, ri), Ξ′, π1), where π1 is a proof of knowledge of
(ski,Υ′, ri) satisfying V er(pks, ski, (Υ′,Ξ′)) = 1 and C = Enc(pke, f(ski), ri); while the ultimate group signa-
ture of [BSZ05] is σ = (C, π1) = (Enc(pke, < i, pki,Υ,Ξ, s >, ri), π1), where s = S(ski,m) and π1 is a proof of
knowledge of (pki,Υ,Γ, s, ri) satisfying V er(pks, < i, pki >, (Υ,Ξ)) = 1, C = Enc(pke, < i, pki,Υ,Ξ, s >, ri),
and V (pki,m, s) = 1. (S, V ) is the signature generation and verification algorithms of an independent signa-
ture scheme.

So we have more information to expose than [BSZ05], i.e., Ξ′, because the signature we adopted is perfectly
unlinkable, it does not affect the anonymity of the generated group signature at all. Then we can follow the
proof of [BSZ05].

The proof follows [BSZ05]. Suppose B is an adversary to anonymity of GS, it can be invoked to construct
an adversary Ac, c ∈ {0, 1} to the public encryption scheme PE, an adversary As to simulation soundness of
(P1, V1), adversaries D1 and D2 to zero-knowledge of P1 and P2 respectively, these adversaries will answer the
oracle queries from B.

Description of Ac. Ac is given the public key pke and accesses to oracles ChPE(b, ., .) and Dec(ske, .).
Ac selects keys (pks, sks) for DS, chooses common reference strings (R, R1, R2) for proofs P, SIM1, SIM2.

Ac gives gpk = (pke, pks, R, R1, R2) to B. Ac answers oracle queries from B as follows:
CrptIA: returns sks.
Open (m, σ): If (m,σ) = (m,C, Ξ′, π1) is valid and C is not returned by Ch(c, ., .), queries oracle

Dec(ske, .), and generates a simulation proof for ρ2.
SndToU (i,.): Runs algorithm Join, adds i to the honest member set HU .
USK (i): Returns (pki, ski,Υ,Ξ), deletes i from HU and adds i to the corrupted member set CU .
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Ch(c, i0, i1): If i0, i1 are existing members, runs algorithm GSig on input (gpk, gskic ,m) except that the
encryption is replaced by the response from a query to ChPE(b,M0,M1) (Mc = (pkic), Mc = (0|Mc|)), and
the proof for ρ1 is replaced by SIM1.

WReg (i, s): If i is a new member, sets regi = s.
Ac outputs what B outputs unless B has generated a new group signature (m, σ̂)=(m,C, Ξ̂, π̂) from the

challenge (m,σ)=(m,C, Ξ′, π1), in which case Ac outputs c.
Description of As. As is given the common reference string R1 of SIM1 and access to oracle SIM1.
As setups GS as in algorithm Setup except that P2 is replaced by its simulation SIM2.
As gives gpk = (pke, pks, R, R1, R2) to B. As answers oracle queries from B as follows:
CrptIA: returns sks.
Open (m, σ): If (m,σ) = (m,C, Ξ′, π1), is valid and C is not returned by Ch(b, ., .), runs algorithm Open

since As knows ok(= ske), and generates a simulation proof for ρ2.
SndToU (i,.): Runs as algorithm Join, adds i to the honest member set HU .
USK (i): Returns (pki, ski,Υ,Ξ), deletes i from HU and adds i to the corrupted member set CU .
Ch(b, i0, i1): If i0, i1 are existing members, runs algorithm GSig on input (gpk, gski1 ,m) except that always

encrypts M0 = (0|pk1|) no matter the value of b, and the proof for ρ1 is replaced by the response from a query
to SIM1, returns (C,Ξ′, π1).

WReg (i, s): If i is a new member, sets regi = s.
As fails unless B has generated a new group signature (m, σ̂) = (m,C, Ξ̂, π̂) from the challenge (m,σ) =

(m,C, Ξ′, π1), in which case As outputs (pke, pks,m, C, Ξ̂) and π̂.
Description of D1. D1 is given the common reference string R1, and access to oracle Prove1(.) which

may be P1 or SIM1.
D1 setups GS as in algorithm Setup except that P2 is replaced by a simulation SIM2.
D1 gives gpk = (pke, pks, R, R1, R2) to B and answers oracle queries from B as follows:
CrptIA: returns sks.
Open (m, σ): If (m,σ) is valid, runs algorithm Open since D1 knows ok(= ske), and generates a simulation

proof for ρ2.
SndToU (i,.): Runs as algorithm Join, adds i to the honest member set HU .
USK (i): Returns (pki, ski,Υ,Ξ), deletes i from HU and adds i to the corrupted member set CU .
Ch(b, i0, i1): If i0, i1 are existing members, runs algorithm GSig on input (gpk, gskib ,m) except that

generates π1 by querying oracle Prove1.
WReg (i, s): If i is a new member, sets regi = s.
D1 returns 1 if output of B equals b, returns 0 otherwise.
Description of D2. D2 is given the common reference string R2, and access to oracle Prove2(.) which

may be P2 or SIM2.
D2 setups GS as in algorithm Setup.
D2 gives gpk = (pke, pks, R, R1, R2) to B and answers oracle queries from B as follows:
CrptIA: returns sks.
Open (m, σ): If (m,σ) is valid, runs algorithm Open since D2 knows ok(= ske), and generates the proof

for ρ2 by querying oracle Prove2.
SndToU (i,.): Runs as algorithm Join, adds i to the honest member set HU .
USK (i): Returns (pki, ski,Υ,Ξ), deletes i from HU and adds i to the corrupted member set CU .
Ch(b, i0, i1): If i0, i1 are existing members, runs algorithm GSig on input (gpk, gskib ,m).
WReg (i, s): If i is a new member, sets regi = s.
D2 returns 1 if output of B equals b, returns 0 otherwise.
It follows from the same analysis in [BSZ05] that

Advanon
GS,B(k) ≤Advind−cca

PE,A0
(k) + Advind−cca

PE,A1
(k) + Advss

SIM1,As
(k)

+ 2(Advzk
P1,SIM1,D1

(k) + Advzk
P2,SIM2,D2

(k)).
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C.2 Proof of Lemma 4.2

The proof follows [BSZ05]. Suppose B is an adversary to traceability of GS, it can be invoked to construct
an adversary Ads to the digital signature scheme DS, the adversary will answer the oracle queries from B.

Description of Ads. Ads is given the public key pks and access to oracle Sig(sks, .).
Ads selects keys (pke, ske) for PE, chooses common reference strings R, R1, R2 for relation ρ, ρ1 and ρ2

respectively. Ads gives gpk = (pke, pks, R, R1, R2) to B. Ads answers oracle queries from B as follows:
CrptOA: returns ske.
CrptU (i): If i is not a group member yet, adds i to the corrupted members set CU .
SndToI (i,.): Parses the input into (pki, π) from which extracts ski using the online extractor algorithm

K of (P, V ) by manipulating the random oracle, queries oracle Sig(sks, ski).
RReg (i): If i exists in Reg, returns regi.
If B wins with non-negligible probability, i.e., outputs a valid group signature (m,σ) = (m,C, Ξ′, π1) and

i = 0, where (i, τ) ← Open(ske,m, σ). Another case that i > 0 will not occur because of the correctness
of GS and the assumptions for GS in our model (Appendix B).

From generalized forking lemma [KY04], (GVer be the predicate), in random oracle model, there exist
(m,C, Ξ′, c, s), (m,C, Ξ′, c′, s′) from which (w, Υ′, r) can be extracted, (Υ′,Ξ′) is a valid DS signature on w,
and w is not queried to Sig(sks, .).

It follows from the same analysis in [BSZ05] that

Advtrace
GS,B(k) ≤ 2−k + AdvwUF−acma

DS,Ads
(k).

C.3 Proof of Lemma 4.3

The proof follows [BSZ05]. Suppose B is an adversary to non-frameability of GS, it can be invoked to construct
an adversary Af to the one way function f , the adversary will answer the oracle queries from B.

Description of Af . Af is given y in the range of the one way function f .
Af sets up GS as in algorithm Setup, selects a random variable ι ∈ [1, n(k)], n(k) is the maximum number

of queries from B.
Af gives gpk = (pke, pks, R, R1, R2) to B and answers oracle queries from B as follows:
CrptIA: returns sks.
CrptOA: returns ske.
SndToU (i,.): If i = ι, sets pki = y, and runs Join by simulating a proof for relation ρ; otherwise runs

exactly as algorithm Join. Then adds i to the honest member set HU .
USK (i): If i = ι, Af stops and restarts again; otherwise if i ∈ HU , returns (pki, ski,Υ,Ξ), deletes i from

HU and adds i to the corrupted member set CU .
GSig (i, m): If i ∈ HU and i = ι, runs algorithm GSig except that replacing proof P1 by the simulation

SIM1; otherwise if i ∈ HU , runs GSig exactly. GSet ← GSet ∪ {(i,m, σ)}.
WReg (i, s): If i is a new member, sets regi = s.
Af returns 1 if B outputs a valid group signature that (ι,m, σ) /∈ GSet and Judge(gpk, reg, m,σ, τ) = 1

where (ι, τ) = Open(m,σ).
Parse (ι,m, σ) into (ι,m, C,Ξ′, c, s), then there exist (ι,m, C,Ξ′, c, s), (m,C, Ξ′, c′, s′) in random oracle

model according to generalized forking lemma [KY04], (GVer be the predicate), so (w, Υ′, r) can be extracted,
where (Υ′,Ξ′) is a valid DS signature on w, and f(w) = y.

It follows from a similar analysis in [BSZ05] that Advnf
GS,B(k) ≤ ε(k) + n(k)Advow

f,Af
(k), where ε(k) is

negligible.
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