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Abstract

At Crypto 2003 Ishai et al. gave a protocol which given a small number of (possibly
extremely inefficient) oblivious transfers implements an essentially unbounded number of
oblivious transfers for an additional overhead, per oblivious transfer, of computing and send-
ing only two hash values. This highly efficient protocol is however only passive secure. To
get active security, except with probability 2−m, the protocol had to suffer an additional
overhead of a factor 1 + m. We introduce a new approach to adding robustness. For practi-
cal security parameters this approach allows to add robustness while suffering only a small
constant overhead over the passive secure protocol. As an example we can generate one
million oblivious transfers with security 2−42 with an amortized cost of just 9 hash values
per oblivious transfer.

1 Introduction

The notion of oblivious transfer (OT) was found by Rabin[Rab81], and independently by Weisner
[Wei83] under the name of multiplexing. In a (1-out-of-2 string) OT a sender, Alice, holds two
k-bit strings x0, x1 ∈ {0, 1}

k and a receiver, Bob, holds a selection bit c ∈ {0, 1}. The protocol
lets Bob learn xc and guarantees that Alice gets no information on c and that Bob gets no
information on x1−c.

Since its introduction OT has found a vast number of applications, including electronic con-
tract signing[EGL85], mental poker[Cré86], electronic voting[NSS91], zero-knowledge proofs[BM89,
KMO89, SCP95], gradual release of secrets and exchange of secrets[Cle89], fair computation [GL90]
and identification[CS95, FNW96]. Oblivious transfer has in fact been proven to be complete for
secure two-party and multiparty computation[GMW87, GV87, Kil88, Cré89, GL90, CGT95].

However, especially the compilation results showing that OT is complete for secure two-party
and multiparty computation use a vast number of applications of the underlying OT primitive
when solving real-life problems. It has therefore been a major research topic to realize OT
efficiently, where [CK88, FMR96, NP05, NP00, GM00, TT01, NP01, MZV02, IKNP03, Lip03,
Gar04, CT05, Lip04, CS06, Lip07] is an incomplete list of notable contributions.

One important issue which has been explored is whether OT can be based on symmetric
cryptography, like one-way permutations. The motivation has been that implementations based
on asymmetric cryptography tends to be expensive in terms of computation and communication.
Impagliazzo and Rudich[IR89] have proven that any black-box construction of OT from one-
way permutations would imply a proof for P 6= NP, making it unlike that we find such a
construction in the near future, and so far no non-black-box construction of OT from one-way
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permutations has been found. So, with our current knowledge of complexity theory it seems
that OT requires expensive asymmetric cryptographic techniques. In the breakthrough paper
[Bea96] Beaver however showed that a few OTs can be extended to a larger number of OTs
using one-way functions. Beaver’s protocol is non-black-box and is unfortunately too inefficient
to have practical applications. Later Ishai et al. however gave an efficient construction which
extends a few OTs to an essentially unbounded number of OTs using a hash function. Their
construction is highly efficient in that each produced OT only has Alice and Bob compute and
send two hash values – below we say that the amortized price per OT in such a scheme is 2.
This approach to efficiently constructing a vast number of OTs parallels the hybrid schemes for
public-key encryption, where an expensive asymmetric cryptosystem is used to encrypt a short
secret key, allowing the encryption of the bulk data to be encrypted efficiently using a symmetric
encryption scheme. Unfortunately, the efficient scheme in [IKNP03] is only passive secure. To
achieve active security a cut-and-choose technique is proposed. With this technique the protocol
can be made secure against an active adversary except with probability 2−m. The cut-and-choose
technique however raises the amortized price per OT to approximately 2(1 + m).

In the rest of the paper we describe and analyze a new and more efficient approach to adding
robustness to the protocol from [IKNP03]. This new approach is not based on cut-and-choose.

In Section 2 we show how to implement a tool, which we call the ABM box, given a few OTs.
In Section 3 we then phrase the passive secure protocol from [IKNP03] in terms of an ABM box,
and describe why it is secure against an actively cheating Alice and a passively cheating Bob.
In Section 4 we describe why this protocol is not active secure against an actively cheating Bob
and make some important observations about the strategies Bob has for cheating. In Section 5
we then show how a simple test can be used to protect Alice against all cheating strategies of
Bob. This test increases the amortized cost per OT from 2 to 3. As a result of protecting Alice
we will however created a situation where an actively cheating Alice can learn (very) few of the
selection bits of Bob. In Section 6 we show how to fix this efficiently and analyze the efficiency of
the resulting scheme. As an example we can generate one million OTs with security 2−42 with an
amortized cost per OT of just 9. And, with an amortized cost per OT of just 12 we can generate
a million OTs with security 2−63.

2 The ABM Box

The basis of our protocol will be a tool, which we call the ABM box. This is just an ideal
functionality between Alice and Bob. Alice has as input a κ-bit vector

a = (a1, . . . , aκ) ∈ {0, 1}κ .

For j = 1, . . . , ℓ, Bob has as input

bj = (b1
j , . . . , b

κ
j ) ∈ {0, 1}κ , mj = (m1

j , . . . ,m
κ
j ) ∈ {0, 1}κ .

For j = 1, . . . , ℓ, the output of Alice is

dj = a ∗ bj ⊕mj ,

where (a1, . . . , aκ) ∗ (b1, . . . , bκ) = (a1b1, . . . , aκbκ).

2.1 Implementing the ABM Box

We let κ denote the security parameter and assume that we have κ OTs of κ-bit strings at
our disposal. Using a pseudo-random generator this can easily be used to implement κ OTs
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of ℓ-bit strings for ℓ = poly(κ). The first crucial observation is then that the ABM box can
be implemented robustly using κ OTs of ℓ-bit strings. This observation was implicitly made
in [IKNP03], though the construction in [IKNP03] was not phrased in terms of an underlying
ABM box. Instead the below implementation of the ABM box occurs as part of the overall
construction. We find it convenient to factor out the ABM box, as this part of the protocol
from [IKNP03] is already robust.

Towards implementing the ABM box, note that dj = (a1b1
j ⊕m1

j , . . . , a
κbκ

j ⊕mκ
j ). So, if we

let

D =











a1b1
1 ⊕m1

1 · · · aκbκ
1 ⊕mκ

1

a1b1
2 ⊕m1

2 · · · aκbκ
2 ⊕mκ

2
...

. . .
...

a1b1
ℓ ⊕m1

ℓ · · · aκbκ
ℓ ⊕mκ

ℓ











.

be the matrix with dj as the j’th row and let di be the i’th columns in D, then we have that

di = (aibi
1 ⊕mi

1, . . . , a
ibi

ℓ ⊕mi
ℓ) = ai(bi

1, . . . , b
i
ℓ)⊕ (mi

1, . . . ,m
i
ℓ) .

So, if ai = 0, then
di = mi ,

and if ai = 1, then
di = bi ⊕mi ,

where bi = (bi
1, . . . , b

i
ℓ) and mi = (mi

1, . . . ,m
i
ℓ).

So, to implement the ABM box Alice and Bob run κ OTs, from Bob to Alice. In the i’th
OT Alice has selection bit ai and Bob offers messages (Xi

0,X
i
1) = (mi,bi ⊕mi). Alice takes the

outputs Y i = Xi
ai , forms a matrix D with i’th column equal to Y i and lets dj be the j’th row of

this matrix.
It is straight-forward to verify that this implementation is robust. In particular, if the under-

lying OTs are simulatable, then also the ABM box will be simulatable. The main idea behind
the proof is that there is in fact no room to cheat: For any messages (X1

0 ,X1
1 ), . . . , (Xκ

0 ,Xκ
1 )

offered by Bob, define mi = Xi
0 and bi = Xi

0 ⊕Xi
1. Then the columns defined by Alice will be

exactly di = aibi ⊕mi, and thus the outputs will be dj = a ∗ bj ⊕mj , as required.

3 From ABM to Many Private OTs

In [IKNP03] it is noted that the ABM box can be used to privately implement ℓ OTs. For this
purpose Alice picks a uniformly at random and Bob picks each mj uniformly at random. Each
bj is picked uniformly at random between the two monochrome values. I.e., first bj ∈R {0, 1} is
picked uniformly at random, and then bj = (bj , . . . , bj). Now the ABM box is called and Alice
learns

dj ← a ∗ bj ⊕mj = bja⊕mj .

Then Alice computes

d
(0)
j ← dj , d

(1)
j ← dj ⊕ a . (1)

It is then easy to see that

d
(bj)
j = mj , d

(1−bj)
j = mj ⊕ a .

This means that d
(bj)
j is known by Bob and d

(1−bj )
j is completely unknown by Bob, as a is

uniformly random and unknown to Bob. Looking at a single index, this means that we could
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implement an OT of (x0
j , x

1
j ) from Alice to Bob by having Alice send (c

(0)
j , c

(1)
j ) = (d

(0)
j ⊕

x
(0)
j ,d

(1)
j ⊕ x

(1)
j ) to Bob. Then

c
(bj)
j = mj ⊕ x

(bj)
j , c

(1−bj)
j = mj ⊕ a⊕ x

(1−bj)
j ,

which allows Bob to compute x
(bj)
j and hides x

(1−bj)
j perfectly because of the one-time pad

encryption with a. This argument, of course, does not work for more than one index, as a is
common for all ℓ rows. Since

d
(b1)
1 = m1 , d

(1−b1)
1 = m1 ⊕ a

d
(b2)
2 = m2 , d

(1−b2)
2 = m2 ⊕ a

...

d
(bℓ)
ℓ = mℓ , d

(1−bℓ)
ℓ = mℓ ⊕ a ,

it is, however, clear that even though Bob has a lot of information on the values d
(1−bj )
j

(e.g. d
(1−bj )
j ⊕ d

(1−bj′ )

j′ = mj ⊕mj′) Bob does not fully know any d
(1−bj)
j -value. To move from

this situation of having unknown but related values d
1−bj

j to having unknown and unrelated

values a hash function is applied. For j = 1, . . . , ℓ and c = 0, 1, let H
(c)
j : {0, 1}κ → {0, 1}κ be

an independent hash function and let

e
(0)
j = H

(0)
j (d

(0)
j ) , e

(1)
j = H

(1)
j (d

(1)
j ) .

Then

e
(b1)
1 = H

(b1)
1 (m1) , e

(1−b1)
1 = H

(1−b1)
1 (m1 ⊕ a)

e
(b2)
2 = H

(b2)
2 (m2) , e

(1−b2)
2 = H

(1−b2)
2 (m2 ⊕ a)

...

e
(bℓ)
ℓ = H

(bℓ)
ℓ (mℓ) , e

(1−bℓ)
ℓ = H

(1−bℓ)
ℓ (mℓ ⊕ a) .

Clearly e
(bj)
j = H

(bj )
j (mj) can be computed by Bob, and if the H

(c)
j are modeled as uniformly

random oracles, then since Bob does not know any mj ⊕ a and thus cannot query any H
(1−bj)
j

on any mj ⊕ a, it follows that the values e
(1−bj)
j are uniformly random and independent in the

view of Bob. Alice can therefore use the values e
(0)
j and e

(1)
j to mask the messages in the j’th

OT.

4 The Lack of Robustness

It is clear that the protocol described above is secure for Bob against a cheating Alice. In the
output dj = a∗bj⊕mj of Alice only a∗bj depends on the selection bit of Bob. This information
is however perfectly masked using the one-time pad encryption with mj .

The protocol is however not secure against a cheating Bob. The analysis above namely
depended on Bob choosing each bj monochrome. A cheating Bob can choose bj as he wants. To
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1. The starting configuration is that for j = 1, . . . , ℓ Alice knows

d
(0)
j = a ∗ bj ⊕mj , d

(1)
j = a ∗ bj ⊕mj

for a uniformly random a, and Bob knows bj = (bj , . . . , bj) and mj and nothing else.

2. When Alice learns the inputs (x
(0)
1 ,x

(1)
1 , . . . ,x

(0)
ℓ ,x

(1)
ℓ ), then for j = 1, . . . , ℓ Alice computes

e
(0)
j = H

(0)
j (d

(0)
j ) , e

(1)
j = H

(1)
j (d

(1)
j )

and sends
(g

(0)
j ,g

(1)
j ) = (e

(0)
j ⊕ x

(0)
j , e

(1)
j ⊕ x

(1)
j )

to Bob.

3. For j = 1, . . . , ℓ, Bob computes x
(bj)
j = g

(bj)
j ⊕H

(bj)
j (mj).

Figure 1: Protocol I

analyze the effect of this, it is convenient to use the notation v = v ⊕ (1, . . . , 1). I.e., v is the
bit-vector v with all bits flipped. Since x ∗ (y ⊕ z) = x ∗ y ⊕ x ∗ z, it follows that

a ∗ bj ⊕ a = a ∗ bj ⊕ a ∗ (1, . . . , 1) = a ∗ (bj ⊕ (1, . . . , 1)) = a ∗ bj .

By (1) it thus follows that

d
(0)
j = a ∗ bj ⊕mj , d

(1)
j = a ∗ bj ⊕mj .

With this notation, Alice and Bob are running the protocol in Fig. 1, where we only list
the steps after the call to the ABM box. If Bob knows the messages to be sent in some OT he

will learn e
(0)
j = H

(0)
j (a ∗ bj ⊕mj) and e

(1)
j = H

(1)
j (a ∗ bj ⊕mj). This is no problem when

bj is monochrome, as those values are then H
(bj)
j (mj) and H

(1−bj)
j (a ⊕mj). If, however, Bob

e.g. picks bj = (1, 0, 0, . . . , 0), then

e
(0)
j = H

(0)
j (a ∗ bj ⊕mj) = H

(0)
j ((a1, 0, 0, . . . , 0) ⊕mj) .

By checking whether e
(0)
j = H

(0)
j ((0, 0, 0, . . . , 0) ⊕mj) or e

(0)
j = H

(0)
j ((1, 0, 0, . . . , 0) ⊕mj), Bob

can thus compute a1. By using bj = (0, 1, 0, . . . , 0), Bob can learn a2 and so forth. Thus, by pick
κ of the values bj polychrome, Bob can learn a. It is clear that once Bob knows a, Bob can learn

e
(0)
j and e

(1)
j for all j, allowing Bob to cheat maximally. The protocol is therefore completely

insecure against a cheating Bob.

5 Protecting Alice against a Cheating Bob

In this section we describe our main contribution, which is a simple and efficient procedure for
protecting Alice against a cheating Bob with very high probability.

In [IKNP03] a cut-and-choose techniques is proposed for protecting against the above cheating
Bob. Many instances, 2m, of the protocol are run in parallel and then for half of the runs, picked
at random by Alice, Bob has to show that his bj all are monochrome, by showing what was
his inputs to the OTs. This then shows that among the remaining m executions of the OT,

5



at least one was run with monochrome bj-values, except with probability 2−Θ(m). This good
execution gives rise to ℓ good OTs. Since it is not known which execution is good, the final OTs
are combined out of several of the produced OTs: The j’th combined OT consists of one OT
from each of the m parallel executions which were not opened, and these OTs are combined using
the S-combiner from [CK88].

The main problem with the above approach is that to force the error probability far down (to
e.g. 2−50) the value of m has to be set so large that most efficiency gains are lost in practice. And,
indeed [IKNP03] only suggest their techniques for settings were a relatively high error probability
can be tolerated, e.g., 1

2 . This might for instance be a setting where a significant loss (of money
or some other utility) is associated with being detected as a cheater.

We propose a new procedure for catching a cheating Bob. The test is not cut-and-choose
based and reduces the error probability to exponentially low using one simple test. Indeed, the
test involves sending only ℓ hash values from Alice to Bob plus a small number of bits independent
of ℓ.

5.1 Advantage equals Uncertainty

The main observation is that Bob’s advantage in using polychrome bj-vectors equals his uncer-
tainty about the value he should have received from the j’th OT if it had been run.

Consider an index j where Bob uses a polychrome bj-vector, and consider the values

e
(0)
j = H

(0)
j (a ∗ bj ⊕mj) , e

(1)
j = H

(1)
j (a ∗ bj ⊕mj) .

Bob’s being able to cheat is based on the fact that he does not know any of the values e
(0)
j or

e
(1)
j with certainty.

As an example, by picking bj = (1, 0, 0, . . . , 0) he certainly does not know

e
(1)
j = H

(1)
j (a ∗ bj ⊕mj) = H

(1)
j ((0, a2, a3, . . . , aκ)⊕mj) ,

as it depends on κ− 1 bits of the uniformly random a. And, he does not know

e
(0)
j = H

(0)
j (a ∗ bj ⊕mj) = H

(0)
j ((a1, 0, 0, . . . , 0)⊕mj)

either as it depends on a1. A priori, his uncertainty about e
(0)
j is close to 1 bit in the sense that

if we asked Bob to guess e
(0)
j his best strategy would be to try to guess a′1 = a1 and then submit

the guess H
(0)
j ((a′1, 0, 0, . . . , 0) ⊕mj). He would be correct with probability 2−1. On the other

hand, given the value e
(0)
j , Bob would be able to compute a1 efficiently, and would of course have

no information on other bits of a. Had Bob used bj = (1, 1, 1, 0, 0, . . . , 0) he would a priori be

able to guess e
(0)
j with probability 2−3 (he would have to guess a1, a2, a3), and given e

(0)
j he could

use it to compute a1, a2, a3 efficiently. In both cases e
(1)
j does not help Bob to compute bits of

a as the uncertainty about the input a ∗ bj ⊕mj is too large that Bob will ever query H
(1)
j on

this input. So, if we equate Bob’s advantage in using polychrome bj-vectors with the number of

bits about a he can compute efficiently given e
(0)
j and e

(1)
j , we see that his advantage equals his

uncertainty about the value among e
(0)
j and e

(1)
j that he can guess with highest probability. We

base out test on this observation.
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5.2 The Test

Concretely, we will devise an efficient test where before the OTs are run Bob must show that for

each j = 1, . . . , ℓ he knows either e
(0)
j or e

(1)
j . We do this by having Alice send fj = e

(0)
j ⊕ e

(1)
j to

Bob and then letting Bob show that he can compute e
(0)
j . An honest Bob can always compute

e
(0)
j from e

(bj)
j and fj . Since a cheating Bob trying to create a situation where m bits can be

learned efficiently has m bits of uncertainty about the value out of e
(0)
j and e

(1)
j that is easiest

to guess, he will pass the test with probability about 2−m.

1. The starting configuration is that for j = 1, . . . , ℓ Alice knows d
(0)
j = a ∗ bj ⊕ mj, d

(1)
j =

a ∗ bj ⊕mj for a uniformly random a, and Bob knows bj = (bj , . . . , bj) and mj and nothing
else.

2. For j = 1, . . . , ℓ Alice computes e
(0)
j = H

(0)
j (d

(0)
j ), e

(1)
j = H

(1)
j (d

(1)
j ), fj = e

(0)
j ⊕ e

(1)
j computes

EA = (e
(0)
1 , . . . , e

(0)
ℓ ) and sends F = (f1, . . . , fℓ) to Bob.

3. For j = 1, . . . , ℓ Bob computes e
(bj)
j = H

(bj)
j (mj), e

(1−bj)
j = fj ⊕ e

(bj)
j , computes EB =

(e
(0)
1 , . . . , e

(0)
ℓ ) and sends hB = H(EB) to Alice.

4. If hB 6= H(EA), then Alice terminates. Otherwise, when Alice learns the inputs

(x
(0)
1 ,x

(1)
1 , . . . ,x

(0)
ℓ ,x

(1)
ℓ ), then for j = 1, . . . , ℓ Alice computes ẽ

(0)
j = H̃

(0)
j (d

(0)
j ), ẽ

(1)
j =

H̃
(1)
j (d

(1)
j ) and sends (g

(0)
j ,g

(1)
j ) = (ẽ

(0)
j ⊕ x

(0)
j , ẽ

(1)
j ⊕ x

(1)
j ) to Bob.

5. For j = 1, . . . , ℓ, Bob computes x
(bj)
j = g

(bj)
j ⊕ H̃

(bj)
j (mj).

Figure 2: Protocol II

It is clear that having sent fj = e
(0)
j ⊕ e

(1)
j to Bob, Alice cannot later use (g

(0)
j ,g

(1)
j ) =

(e
(0)
j ⊕x

(0)
j , e

(1)
j ⊕x

(1)
j ) to do an OT of (x

(0)
j ,x

(1)
j ) to Bob. To fix this, new values ẽ

(c)
j = H̃

(c)
j (d

(b)
j )

are used, where H̃
(c)
j is a fresh, independent uniformly random oracle. For efficiency, the test

that Bob knows each e
(0)
j is performed by sending the hash of these values to Alice, using yet

another independent hash function H. The details are given in Fig. 2.

5.3 Concrete Security Analysis

In this section we analysis the concrete security of the proposed scheme against a cheating Bob
in the random oracle model. In doing this we measure the running time of Bob in how many
times he queries a random oracle. By breaking the scheme we mean that Bob should create a

view of the protocol such that for some j neither ẽ
(0)
j nor ẽ

(1)
j is uniformly random in the view

of Bob. We use SuccessB(q′, q) to denote the probability that the Bob B creates such a view
while using at most q′ queries before hB is sent and using at most q queries in total. We let
Success(q′, q) = maxB SuccessB(q′, q), and we are going to prove that

Success(q′, q) ≤ ((q′/2)2 + 2(q′ + 1) + q)2−κ .

If we let q′ = 2t′ and q = 2t, this means that Success(q′, q) < 2max(22t′−1, 2t)2−κ = max(22t′−κ, 2t+1−κ).
As an example, if we assume that Bob can make at most 250 queries to the hash function during
the execution of the protocol and that Bob is able to make at most 299 queries in the time span
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in which we want the security to hold, then using κ = 160 OTs as seed and using a hash function
with output length 160 we get that the scheme is secure, except with probability 2−60.

1. The starting configuration is that for j = 1, . . . , ℓ Alice knows d
(0)
j = a ∗ bj and d

(1)
j = a ∗ bj

for a uniformly random a. The values bj are chosen by Bob.

2. For j = 1, . . . , ℓ Alice computes e
(0)
j = H

(0)
j (d

(0)
j ), e

(1)
j = H

(1)
j (d

(1)
j ), and fj = e

(0)
j ⊕ e

(1)
j and

EA = (e
(0)
1 , . . . , e

(0)
ℓ ) and sends F = (f1, . . . , fℓ) to Bob.

3. Bob sends a value hB to Alice.

4. If hB 6= H(EA), then Bob loses the game. Otherwise, for j = 1, . . . , ℓ, Alice sends ẽ
(0)
j =

H̃
(0)
j (d

(0)
j ) and ẽ

(1)
j = H̃

(1)
j (d

(1)
j ) to Bob.

5. When Bob terminates, if for some j Bob queried H̃
(0)
j on d

(0)
j and Bob queried H̃

(1)
j on d

(1)
j ,

then Bob wins the game. Otherwise, Bob loses the game.

Figure 3: Game I

3. Bob specifies a value EB.

4. If EB 6= EA, then Bob loses the game. Otherwise, for j = 1, . . . , ℓ Bob is given the oracles

J
(0)
j (Q) and J

(1)
j (Q).

5. When Bob terminates, if for some j Bob queried J
(0)
j on d

(0)
j and Bob queried J

(1)
j on d

(1)
j ,

then Bob wins the game. Otherwise, Bob loses the game.

Figure 4: Game II

3. For j = 1, . . . , ℓ, Bob specifies (cj ,dj).

4. If for some j it does not hold that dj = d
(cj)
j , then Bob loses the game. Otherwise, for

j = 1, . . . , ℓ Bob is given the oracles J
(0)
j (Q) and J

(1)
j (Q).

Figure 5: Game III

2. For j = 1, . . . , ℓ Bob is given two oracles I
(0)
j (Q) and I

(1)
j (Q). As long as either I

(0)
j (Q) never

was queried on d
(0)
j or I

(1)
j (Q) never was queried on d

(1)
j each oracle returns 0 to all queries.

Otherwise, the oracle return a.

Figure 6: Game IV

To help analyze Success(q′, q) we create a simple game with at least the same success probabil-
ity for Bob. In this game, we think of Bob as running in Fig. 2 and to help Bob maximally we give
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1. The starting configuration is that for j = 1, . . . , ℓ Alice knows d
(0)
j = a ∗ bj and d

(1)
j = a ∗ bj

for a uniformly random a. The values bj are chosen by Bob.

2. For j = 1, . . . , ℓ, Bob specifies (cj ,dj).

3. If for some j it does not hold that dj = d
(cj)
j , then the game terminates with outcome 0.

Otherwise, for j = 1, . . . , ℓ Bob is given the oracle J
(1−cj)
j (Q).

4. When Bob terminates, if for some j Bob queried J
(1−cj)
j on d

(1−cj)
j , then the outcome of the

game is 1. Otherwise, the outcome of the game is 1.

Figure 7: Game IV

him all the message (x
(0)
j ,x

(1)
j ), which is equivalent to using x

(c)
j = 0κ for j = 1, . . . , ℓ; c = 0, 1.

It can be seen that the choice of the values mj do not matter for the optimal strategy of Bob,
essentially because Q 7→ H(Q) being a random oracle implies that Q 7→ H(Q⊕m) is a random
oracle, and given m Bob can simulate one oracle given the other using the same number q of
queries. To make the game simpler we therefore assume that mj = 0κ for j = 1, . . . , ℓ. To

make one last simplification, we note that because ẽ
(c)
j = H̃

(c)
j (d

(c)
j ) is uniformly random in the

view of Bob until H̃
(c)
j is queried on d

(c)
j , we can make the winning condition be that for some

j Bob queried H̃
(0)
j on d

(0)
j and queried H̃

(1)
j on d

(1)
j . The details are given in Fig. 3, and by

construction we have that
Success(q′, q) ≤ SuccessI(q

′, q) ,

where SuccessI(q
′, q) is the maximal probability that some Bob wins Game I using q′ queries

before sending hB and q queries in total.

To Game II To aid the analysis we further change the game. First, we implement the equality
test between EA and EB ideally, by requiring Bob to specify EB . He then looses the game if

EB 6= EA. Second, we replace H̃
(c)
j by an oracle J

(c)
j (Q) which returns 1 on Q = d

(c)
j and returns

0 otherwise. The changes from Game I are given in Fig. 4. We have that

SuccessI(q
′, q) ≤ SuccessII(q

′, q) + (q′ + 1)2−κ , (2)

where q′ in Game II is an upper bound on the number of queries that Bob makes before the test
EA = EB .

We show this bound by simulating any Bob B for Game I using a Bob B′ for Game II. The

Bob B′ simply runs B as if it was in Game I, but letting it use the oracles H
(c)
j from Game

II until the test. At the test, when B sends hB , then B′ specifies EB as follows: If hB is not
the result of querying H on some Q, then use EB = 0. Otherwise, pick the first input Q to H
resulting in output H(Q) = hB and let EB = Q. After the test, B′ simulates to B the oracles

H̃
(c)
j and the values ẽ

(c)
j = H̃

(c)
j (d

(c)
j ) using the oracles J

(c)
j , as follows: Simply let each ẽ

(c)
j be

uniformly random. Then on each query Q from B to H̃
(c)
j , let H̃

(c)
j (Q) be uniformly random if

J
(c)
j (Q) = 0 and let H̃

(c)
j (Q) = ẽ

(c)
j if J

(c)
j (Q) = 1. This gives a perfect simulation, using the

same number of queries. And, if H̃
(0)
j (Q) is queried on d

(0)
j and H̃

(1)
j (Q) is queried on d

(1)
j , then

the simulation ensures that J
(0)
j (Q) is queried on d

(0)
j and J

(1)
j (Q) is queried on d

(1)
j . So, if B

would have won Game I in Step 5, then B′ wins Game II in Step 5.

9



To analyze the simulation, we look at three disjoint events. Event 1 is that hA 6= hB . Event
2 is that hA = hB and that B never queried H on EA. Event 3 is that hA = hB and that B
queried H on EA. These events are well-defined in both games and have the same probability
in both games. We let pc be the probability that event c occurs, we let sc be the probability
that B wins in Game I given that event c occurs, and we let s′c be the probability that B′

wins in Game II given that event c occurs. Clearly s1 = 0 as hA 6= hB makes B loose. So,
SuccessI(q

′, q) = p2s2 + p3s3 ≤ p2 + p3s3. Clearly SuccessII(q
′, q) ≥ p3s

′

3.
We first look at p2. In event 2 we have that hA = hB and that B never queried H on EA.

Since H is a uniformly random oracle, hA = H(EA) is uniformly random in the view of B when
it did not query H on EA. Therefore p2 ≤ 2−κ.

We then look at p3s
′

3. In event 3 we have that hA = hB and that B queried H on EA, which
then must have given the output H(EA) = hA = hB . So, in this case B′ uses EB = Q = EA

unless it happened that before B queried H on EA, it queried H on some Q 6= EA for which
it also holds that H(Q) = H(EA). Since H is a uniformly random oracle it, however, holds for
each Q 6= EA that H(Q) = H(EA) with an independent probability of 2−κ. Since B made at
most q′ queries to H before making the query on EA it therefore follows that the probability
that EB 6= EA in this case is at most q′2−κ. And, since B′ wins the game iff B wins the game
when EB = EA, it follows that s′3 ≥ s3 − q′2−κ. Combining these observations, (2) follows.

To Game III We then further change the game by requiring that Bob guesses some d
(cj)
j in

the test, as opposed to guessing e
(0)
j . The changes from Game II are given in Fig. 5. We have

that
SuccessII(q

′, q) ≤ SuccessIII(q
′, q) + (q′ + 1)2−κ .

To see this, consider some Bob B for game II. We simulate it in Game III by running some Bob
B′. Bob B′ runs B using the oracles and inputs of Game III, except that when B specifies the

ej values, the value (cj ,dj) is specified as follows: If ej was ever output by H
(0)
j , then pick the

first query Q for which H
(0)
j (Q) = ej, and use (0, Q). Otherwise, if ej ⊕ f was ever output by

H
(1)
j , then pick the first query Q for which H

(1)
j (Q) = ej ⊕ fj, and use (1, Q). Otherwise, use

(cj ,dj) = (0, 0).

To analyze the simulation, let E be the event that for some j, B neither queried H
(0)
j on

d
(0)
j nor queried H

(1)
j on d

(1)
j , and yet ej = e

(0)
j . It is easily seen that e

(0)
j is uniformly random

in the view of a B which neither queried H
(0)
j on d

(0)
j nor queried H

(1)
j on d

(1)
j . From this it

follows that the probability of E is no more than 2−κ. It is therefore sufficient to show that
SuccessII(q

′, q) ≤ SuccessIII(q
′, q)+ q′2−κ when E does not occur. That E does not occur means

that for each j it holds that either ej 6= e
(0)
j or H

(0)
j was queried on d

(0)
j or H

(1)
j was queried

on d
(1)
j . If ej 6= e

(0)
j for some j, then SuccessII(q) = 0 and the bound is trivial, so assume that

ej = e
(0)
j for each j and that for each j either H

(0)
j was queried on d

(0)
j or H

(1)
j was queried on d

(1)
j .

If H
(0)
j was queried on d

(0)
j , then because H

(0)
j (d

(0)
j ) = e

(0)
j = ej, it follows that B′ uses a correct

(0, Q) = (0,d
(0)
j ), unless some previous query Q′ 6= d

(0)
j resulted in output H

(0)
j (Q′) = H

(0)
j (d

(0)
j ).

Otherwise, if H
(1)
j was queried on d

(1)
j , then because H

(1)
j (d

(1)
j ) = e

(1)
j = e

(0)
j ⊕ fj = ej ⊕ fj, it

follows that B′ uses the correct (1, Q) = (1,d
(1)
j ), unless some previous query Q′ 6= d

(1)
j resulted

in output H
(1)
j (Q′) = H

(1)
j (d

(1)
j ). Since all oracles are uniformly random it again follows that the

guess of B′ is incorrect due to a previous “collision” can be bounded by q′2−κ, which proves the
bound.
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To Game IV We then replace the oracles H
(0)
j and H

(1)
j by oracles I

(0)
j and I

(1)
j , as detailed

in Fig. 6. It is easy to see that

SuccessIII(q
′, q) ≤ SuccessIV (q′, q) ,

as a Bob for Game III can use the oracles to simulate the hash functions: In the initial phase it

simply lets each fj be a uniformly random value. On a query Q to H
(c)
j it inputs Q to I

(c)
j . If

the output is 0 it lets H
(c)
j (Q) be a uniformly random input. If the output is a it uses a to find

the input d
(0)
j = a ∗bj to H

(0)
j and the input d

(1)
j = a ∗bj to H

(1)
j and then defines the one that

was just queried to be consistent with fj. I.e., if e.g. H
(0)
j was just queried on Q = d

(0)
j , it sets

H
(0)
j (Q) to be H

(1)
j (d

(1)
j )⊕ fj.

To Game V Finally, we take away the oracles I
(c)
j and the oracles J

(cj)
j . The details are in

Fig. 7. We have that

SuccessIV (q′, q) ≤ SuccessV (q) + (q′/2)22−κ .

It is clear that Bob can simulate J
(cj)
j himself: If the test fails, Bob never has access to J

(cj)
j

and will therefore not miss it. If the test succeeds, then dj = d
(cj)
j and Bob can easily simulate

J
(cj)
j by letting J

(cj)
j (Q) = 1 iff Q = dj . After the test, Bob can simulate the oracles I

(c)
j (Q)

by using queries to J
(c)
j (Q) instead. This will not increase the total number of queries made by

Bob. Before the test, Bob can simulate the oracles I
(c)
j (Q) simply by returning 0 on all queries.

This simulation only fails if at some point some I
(0)
j (Q) was queried on d

(0)
j and some I

(1)
j (Q)

was queried on d
(1)
j . To estimate the probability of this, consider some j and let q

(c)
j be the

number of queries made to I
(c)
j . The simulation fails if I

(0)
j (Q) was queried on Q = d

(0)
j = a ∗bj

and I
(1)
j (Q) was queried on Q = d

(1)
j = a ∗ bj. Let oj be the number of 1s in bj. The value

a ∗ bj is uniformly random among 2oj values. So, the probability that I
(0)
j (Q) was queried on

Q = a∗bj is at most q
(0)
j 2−oj . The value a∗bj is uniformly random among 2κ−oj values. So, the

probability that I
(1)
j (Q) was queried on Q = a ∗ bj is at most q

(1)
j 2oj−κ. Since a ∗ bj and a ∗ bj

are independent, the probability that both oracles were queried on their special input is less than

q
(0)
j 2−ojq

(1)
j 2oj−κ = q

(0)
j q

(1)
j 2−κ. So, the total failure probability is no more than 2−κ

∑

j q
(0)
j q

(1)
j .

Since
∑

j(q
(0)
j + q

(1)
j ) = q for a fixed q, this expressing is seen to be maximal when q

(0)
j + q

(1)
j = q

for some j. I.e., all queries are made to just two oracles I
(0)
j and I

(1)
j . So, the error probability

is bounded by (q′/2)22−κ.

Analyzing Game V In Game V it is now clear that the price for a good oracle J
(1−cj)
j (Q)

is a low probability of getting it. Formally, let p′ be the number of bits of a which Bob tries to
guess using the values bj , cj and dj . The probability that Bob passes the test is at most 2−p′ .

Now, after the test, since the values d
(cj)
j depend only on p′ bits of a, each of the values d

(1−cj)
j

depends on at least κ − p′ bits of a, which are still uniformly random in the view of Bob even
when the test succeeds. Therefore, since Bob makes at most q queries, the probability that Bob

ever queries some J
(1−cj)
j on any d

(1−cj)
j is seen to be at most q2p′−κ. So, the probability that
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Bob passes the test and then queries some J
(1−cj)
j on d

(1−cj)
j is at most 2−p′q2p′−κ = q2−κ. This

shows that
SuccessV (q) ≤ q2−κ .

Combining the above bounds, we get the claimed result.

6 Protecting Bob against a Cheating Alice

It turns out that making the scheme secure against a cheating Bob, we have made the scheme
insecure against a cheating Alice. The reason is that now a new piece of information flows from
Bob to Alice, namely hB = H(EB). When EB = EA, this clearly does not give Alice new
information, but unfortunately Alice can force EA 6= EB and use this to get information on the
selection bits of Bob.

To see this, assume that instead of sending a correct fj = e
(0)
j ⊕ e

(1)
j Alice sends f ′

j =

e
(0)
j ⊕ e

(1)
j ⊕ ∆j for some non-zero vector ∆j. If Bob has selection bit bj = 0, he will use

ej = e
(0)
j . If Bob has selection bit bj = 1, then he will use ej = fj ⊕ e

(1)
j = e

(0)
j ⊕∆j. In other

symbols, he will use ej = e
(0)
j ⊕ bj∆j . This allows Alice to learn m of Bob’s selection bits using

2m queries. Illustrated for one bit, Alice would pick ∆1 to be non-zero and then test whether

hB = H(e
(0)
1 e

(0)
2 · · · e

(0)
ℓ ) or hB = H((e

(0)
1 ⊕∆1)e

(0)
2 · · · e

(0)
ℓ ). We are going to combat this using

again the principle that high advantage equals high uncertainty: If Alice uses m non-zero ∆j,
then she will have m bits of uncertainty about EB .

We use this as follows: Instead of just having Bob send hB , we first let Bob send a commitment
to hB to Alice. Then Alice sends hA to Bob, and only if hA = hB will Bob open the commitment
to hB . If hA 6= hB , then the protocol is terminated.

It can then be seen that Alice will be caught with probability close to 1−2−m when trying to
learn m selection bits. We can therefore expect a successful Alice to know very few selection bits
of Bob. To get rid of these few remaining corrupted OTs we let Bob, uniformly at random, group
the ℓ OTs into B = ℓ/S groups, each containing S OTs. Each group of S OTs is then combined
into one OT using the S combiner from [CK88]. This combiner has the property that if just one
of the underlying S OTs is not corrupted, then the combined OT will be secure against Alice.
The combined OT is always secure against Bob.

An important property of the S combiner is that running the combined OT only involves
running each underlying OT once, plus 4S exclusive ors of κ-bit strings. The complexity of the
combined OT is therefore essentially 3S, when measure in the number of queries a party has
to make to the hash function. Also, 3S hash values are communicated. Since very few of the
underlying OTs are corrupted, we can use a fairly small S in most practical settings, giving a
highly efficient scheme.

6.1 Concrete Security Analysis

In this section we analysis the concrete security of the proposed scheme against a cheating Alice.
We measure the insecurity by the probability that the protocol succeeds with at least one OT

being corrupted when Alice uses q queries. Since Alice knows the correct value of fj, any strategy
of Alice can be expressed by Alice picking error vectors ∆1, . . . ,∆ℓ, sending f ′

j = fj ⊕∆j to Bob
and then sending some hA. We let P be the number of positions j for which ∆j is non-zero.

Again we model the hash functions as random oracles, and we assume that the security pa-
rameter of the commitment scheme is set large enough that we can model it as being implemented
by an ideal functionality. As we did previously, we can start the analysis by also assuming that
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Alice sends a value EA and that the protocol stops if EA 6= EB . This again adds a term (q+1)2−κ

to the final bound.
We then look at a game where Alice loses if she specifies EA 6= EB . Since f ′

j = fj ⊕ bj∆j,
this means that Alice has to guess the selection bit bj for all non-zero ∆j not to lose. We want to
compute the probability p that Alice does not lose and that in addition at least one combined OT
ends up being insecure. We can write p =

∑ℓ
P=0 pP p(P ), where pP is the probability that Alice

uses P values ∆j which are non-zero and p(P ) is the probability that the protocol terminates
without Alice being caught and with at least one OT being corrupted given that Alice uses P
non-zero values. It follows that an optimal strategy for Alice is obtained by letting pP = 1 for the
P where p(P ) is maximal, in which case p = p(P ). Below, we therefore focus on upper bounding
p(P ).

For a given value of P , Alice has to guess P uniformly random and independent bits not to
be caught in the test, meaning that she will be caught with probability 2−P . This means that
we can write

p(P ) = 2−P q(P ) , (3)

where q(P ) is the probability that one of the combined OTs are corrupted given that Alice knows
P selection bits.

Recall that Bob chooses, uniformly at random, which OTs are combined. To analyze this,
consider then the following game. We throw, uniformly at random, ℓ = BS balls into B buckets
each of size S, with the only restriction that exactly S balls end up in each bucket. One way to
sample the distribution of balls is to iteratively pick a ball not yet put in a bucket and then put
it in the lowest indexed bucket not yet holding S balls. Before we place the balls in the bucket,
we color most balls green, except for P of them, which we color red. We call a bucket containing
only red balls a red bucket. Clearly q(P ) is the probability that there is a red bucket in this
game. Since the probability that a given bucket is red is the same for all buckets we can use the
union bound to get that

q(P ) ≤ Br(P ) , (4)

where r(P ) is the probability that the first bucket is red. The probability that the first bucket
is red is exactly the probability that the first S balls picked are red. I.e.,

r(P ) =
S−1
∏

s=0

P − s

ℓ− s
≤

(

P

ℓ

)S

, (5)

as (P − s)/(ℓ− s) is the probability that the next ball is red, given that the previous s balls were
red, and (P − s)/(ℓ− s) ≤ P/ℓ when P ≤ ℓ.

Combining (3), (4) and (5) yields

p(P ) ≤ 2−P B(P/ℓ)S = 2−P PSBℓ−S = 2−P PSB(SB)−S = 2−P PSS−SB1−S . (6)

To maximize (6) in P we only have to maximize 2−P PS , which is maximal when P = S/ log(2).
Plugging this into (6), we get

p(P ) ≤ (e−1/ log(2))SSSS−SB1−S < 0.54SB1−S .

If S = 3, the bound tells us that no strategy of Alice can have probability better than
0.157464B−2, which means that the security grows quadratic in B. As a concrete example, if the
protocol is run to produce B = 1, 000, 000 OTs, then the probability that one of the combined
OTs is corrupted is less than 2−42, which should be negligible in most practical applications.
With S = 3, the amortized prize per OT is 3 · 3 = 9 queries per party, plus the transmission of
9 hash values. Below follows a tabulation of some other security levels.
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S Price Security B = 10, 000 B = 100, 000 B = 1, 000, 000 B = 10, 000, 000

2 6 0.292B−1 2−15 2−18 2−21 2−25

3 9 0.158B−2 2−29 2−35 2−42 2−49

4 12 0.086B−3 2−43 2−53 2−63 2−73

This table shows that for applications of OT requiring a large number of OTs, the amortized
price per OT can be made reasonably small even with a high level of security.
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