
A preliminary version of this paper appears in the proceedings of ESORICS 2007, Lecture Notes
in Computer Science Vol. ????, Springer-Verlag, 2007. This is the full version.

Generalized Key Delegation for

Hierarchical Identity-Based Encryption

Michel Abdalla1 Eike Kiltz2 Gregory Neven3

June 2007

Abstract

In this paper, we introduce a new primitive called identity-based encryption with wild-
card key derivation (WKD-IBE, or “wicked IBE”) that enhances the concept of hierarchical
identity-based encryption (HIBE) by allowing more general key delegation patterns. A secret
key is derived for a vector of identity strings, where entries can be left blank using a wild-
card. This key can then be used to derive keys for any pattern that replaces wildcards with
concrete identity strings. For example, one may want to allow the university’s head system
administrator to derive secret keys (and hence the ability to decrypt) for all departmental
sysadmin email addresses sysadmin@*.univ.edu, where * is a wildcard that can be replaced
with any string. We provide appropriate security notions and provably secure instantiations
with different tradeoffs in terms of ciphertext size and efficiency. We also present a generic
construction of identity-based broadcast encryption (IBBE) from any WKD-IBE scheme.
One of our instantiation yields an IBBE scheme with constant ciphertext size.

Keywords: Cryptographic protocols, Hierarchical identity-based encryption, key delega-
tion, broadcast encryption.

1 Introduction

Identity-based encryption. Securely linking users to their public keys is a notorious obstacle
in the adoption of public-key encryption schemes in practice. Most commonly, it is overcome
by means of a public key infrastructure (PKI) where a trusted authority certifies, by means of
a digital signature, the relation between users and their public keys. The high cost of setting
up and maintaining such a PKI can be prohibitive for many organizations however. In 1984,
Shamir [19] proposed identity-based encryption (IBE) as a cheaper alternative to traditional
PKIs. Here, the public key of a user is his identity (e.g. his name or email address), while
the corresponding private key is handed to him by a trusted key distribution center. It lasted
until 2000 however for the first practical IBE schemes [17, 6] to be proposed based on bilinear
maps.
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Hierarchical identity-based encryption (HIBE) schemes [13, 11] are the hierarchical extension
of IBEs where user identities are vectors of bit strings. The root entity generates private keys
for users at the first level; users at level ℓ can derive keys for their children at level ℓ + 1. This
prevents the distribution center from becoming a bottleneck in the system, and at the same
time reflects the hierarchical structure of many organizations and user identities, in particular
email addresses. For example, the head of the computer science department of a university
could be given the key for identity (edu,univ,cs) allowing him to derive keys for identities
(edu,univ,cs,username) corresponding to email addresses username@cs.univ.edu.

Wildcard key derivation. Hierarchical key derivation is a useful feature, but has its lim-
itations. For example, it would be reasonable to prevent end-users from further deriving keys
for identities below them. This feature was referred to before as limited delegation by Boneh-
Boyen-Goh [5], who show a tweak to their HIBE scheme offering exactly this functionality—albeit
without a formal security notion or proof for their approach. In some circumstances, it could
also be useful to be able to deviate from the hierarchical structure. For example, one may want
to allow the university’s head system administrator to derive keys for all departmental sysadmin
email addresses sysadmin@*.univ.edu, where * is a wildcard that can be replaced with any
string. As another example, it could be practical to provide a company like Google Inc. that
registers its name at all top-level domains with a key for *@google.*.

These applications lead us to generalize the concept of HIBE schemes to identity-based en-

cryption with wildcard key derivation (WKD-IBE), or more succinctly wicked IBE. After defin-
ing adequate security notions, we start looking for constructions. First observe that if a HIBE
scheme allows a maximal hierarchy depth L to be fixed, then the limited-delegation property
of [5] can be achieved generically by padding the identity vector with “dummy” strings at the
unused lower levels. (But this may come at the cost of efficiency.) The more general function-
ality of wildcard key delegation cannot be achieved generically though. Nevertheless, we show
that many of the existing HIBE schemes are amenable to a modification that enables wildcard
key derivation, including the Gentry-Silverberg [11], Boneh-Boyen [4], Waters [20], and Boneh-
Boyen-Goh [5] HIBE schemes. For the former three this may come as a bit of a surprise, because
no limited-delegation tweaks were previously proposed for these schemes. We prove the secu-
rity of the modified schemes under our new notions, thereby providing as a special case formal
ground for the intuition of [5] regarding their limited-delegation tweak.

Application to identity-based broadcast encryption. Broadcast encryption [10] allows
to encrypt a message to any subset S ⊆ {1, . . . , N} of N users so that only users in S can decrypt
the message. A trivial solution consists of concatenating encryptions of the message under the
public key of each user in S separately, but this yields ciphertexts of size linear in |S|. The most
efficient fully collusion-resistant (meaning where the adversary can corrupt all users outside of
S) public-key broadcast encryption schemes are due to Boneh et al. [7], who present a first
construction with constant-size ciphertexts and private keys but with O(N)-size public keys,
and a second construction with O(

√
N)-size ciphertexts and public keys.

Identity-based broadcast encryption (IBBE) is the natural extension of broadcast encryption
to the identity-based setting. It is particularly appealing as a primitive because the total number
of users in the system N is limited only by the size of the identity space. We propose a generic
construction of an IBBE schemes from any WKD-IBE scheme. The construction inflates the
private key size by a factor L being the maximal number of identities in a recipient set, but
otherwise shares the same cost as the underlying wicked IBE.

Of all the instantiations of wicked IBE that we propose, the most attractive resulting IBBE
scheme is that obtained from the scheme based on [5], because it achieves constant-size ci-
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phertexts. However, it has the disadvantage of having private keys of size O(L2), where L is
the maximum number of recipients in a ciphertext. The other concrete instantiations are less
attractive because they have ciphertext size O(L), just like the trivial scheme that concate-
nates individual ciphertexts. Unlike most other broadcast schemes however, they do have the
remarkable feature that knowledge of the recipient set is not required in order to decrypt the
message.

Wildcard signatures. Just like the key derivation of an IBE scheme automatically gives
rise to a signature scheme [6], a WKD-IBE scheme gives rise to a new primitive that we call
a wildcard signature scheme. It allows a signer to issue a signature on a message containing
wildcards, which anyone can replace with concrete values at a later point without invalidating
the signature. Our constructions of wicked identity-based encryption yield a number of wildcard
signature schemes with different tradeoffs.

Related work. Wicked identity-based encryption can be seen as the dual notion of identity-
based encryption with wildcards [1] (WIBE). There, one can use wildcards in the recipient
identity to which a ciphertext is encrypted, so that all users whose identity matches the recipi-
ent pattern can decrypt it. In fact, the notions of WKD-IBE and WIBE could be combined into
a universal primitive that allows wildcards to be used in both the encryption and key deriva-
tion algorithms. Instantiations of this primitive can be obtained from all WKD-IBE schemes
presented in this work, except for the one based on Gentry-Silverberg’s HIBE [11].

Key-policy attribute-based encryption (KP-ABE) [12] associates to each decryption key an
access structure consisting of a logical combination of attribute values using AND and OR gates.
A ciphertext is encrypted under a set of descriptive attributes and can only be decrypted with a
key whose access structure is satisfied by the set of attributes. As discussed in [12], HIBE schemes
are a special case of KP-ABE schemes by mapping the identity vector (edu, univ, cs, sysadmin)
to the access structure (1‖edu ∧ 2‖univ ∧ 3‖cs ∧ 4‖sysadmin). Likewise, wicked IBE can
be seen as a special case of KP-ABE by letting the key for identity (edu, *, *, sysadmin) be
given by the key for (1‖edu ∧ 4‖sysadmin). The wicked IBE scheme obtained through the
first construction of [12] has the disadvantage of having public keys linear in the size of the
attribute universe. The instantiation obtained from their second, large-universe construction
is quite similar to the scheme that we derive from the Boneh-Boyen HIBE scheme [4]. None
of the schemes derived from [12] achieve constant ciphertext size though, like our wicked IBE
construction based on [5].

The use of HIBE schemes in the design of broadcast encryption schemes was first considered
by Dodis and Fazio [9]. Chatterjee and Sarkar [8] gave a direct construction of an IBBE scheme
that is closely related to the instantiation of our generic construction with the WKD-IBE scheme
based on [5]. Our generic construction provides insight into the design of their scheme, but their
construction contains some interesting efficiency-improving tweaks. The schemes are compared
in more detail in Section 5.3.

In independent work, Shacham [18] formalizes the concept of limited delegation for HIBE
schemes and proves this feature for the HIBE scheme of [5]. As we pointed out above, limited
delegation for HIBEs can be seen as a special case of WKD-IBE where wildcards can only appear
at the end of the identity vector. Our WKD-IBE scheme based on [5] can therefore be seen as
a generalization of the result of [18].
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2 Basic Definitions

In this section, we introduce some notation and computational problems that we will use
throughout the rest of the paper. In doing so, we adopt the same notation and definition
style used in [1].

Notation. Let N = {0, 1, . . .} be the set of natural numbers. Let ε be the empty string. If
n ∈ N, then {0, 1}n denotes the set of n-bit strings, and {0, 1}∗ is the set of all bit strings. More
generally, if S is a set, then Sn is the set of n-tuples of elements of S, S≤n is the set of tuples of

length at most n. If S is finite, then x
$← S denotes the assignment to x of an element chosen

uniformly at random from S. If A is an algorithm, then y ← A(x) denotes the assignment to y

of the output of A on input x, and if A is randomized, then y
$← A(x) denotes that the output

of an execution of A(x) with fresh coins is assigned to y.

The Decisional Bilinear Diffie-Hellman Assumption [6]. Let G, GT be multiplicative
groups of prime order p with an admissible map ê : G × G → GT. By admissible we mean
that the map is bilinear, non-degenerate and efficiently computable. Bilinearity means that for
all a, b ∈ Zp and all g ∈ G we have ê(ga, gb) = ê(g, g)ab. By non-degenerate we mean that
ê(g, g) = 1 if and only if g = 1. Let g ∈ G be a generator. In such a setting, the bilinear
decisional Diffie-Hellman (BDDH) problem is to determine, given g, A = ga, B = gb, C = gc,
and Z = ê(g, g)z, whether Z = ê(g, g)abc for hidden values of a, b, c and z. More formally, let
A be an adversary for the BDDH problem. Such an adversary has advantage ǫ in solving the
BDDH problem if

∣
∣Pr[A(g, A, B, C, ê(g, g)abc) = 1] − Pr[A(g, A, B, C, ê(g, g)z) = 1]

∣
∣ ≥ ǫ, where

the probabilities are over the choice of a, b, c, z and over the random coins consumed by A.

Definition 2.1 The (t, ǫ)-BDDH assumption holds if no t-time adversary has at least ǫ advan-
tage in the above game.

We note that throughout this paper we will assume that the time t of an adversary includes its
code size, in order to exclude trivial “lookup” adversaries.

The Decisional Bilinear Diffie-Hellman Exponent Assumption (BDHE) [5]. The
ℓ-BDHE problem in G is: given g, h and g(αi) ∈ G, for i = 1, . . . , ℓ − 1, ℓ + 1, . . . , 2ℓ as input,
output ê(g, h)(α

ℓ) ∈ GT . Boneh, Boyen and Goh, conjectured that the ℓ-BDHE is a hard
problem, meaning with this that no polynomially bounded adversary A can solve it with more
than negligible probability, over the random choices of g, h ∈ G, the choice of α ∈ Zp, and the
random coin tosses of A.

The decisional version of the problem can be defined in the usual manner. Let ~y = (gα, g(α2),

. . . , g(αℓ−1), g(αℓ+1), . . . , g(α2ℓ)). An algorithm B that outputs a bit b, has advantage ǫ in solving

the decisional ℓ-BDHE problem in G if
∣
∣
∣Pr

[
B(g, h, ~y, ê(g, h)(α

ℓ)) = 1
]
− Pr

[
B(g, h, ~y, T ) = 1

]
∣
∣
∣ ≥

ǫ, where the probabilities are taken over the random choices of g, h ∈ G, the random choice of
α ∈ Zp, the random choice of T ∈ GT , and the internal coin tosses of B.

Definition 2.2 The decisional (t, ǫ, ℓ)-BDHE assumption holds in G if no t-time (probabilistic)
algorithm has advantage at least ǫ in solving the decisional ℓ-BDHE problem in G.

3 Wicked Identity-Based Encryption

Syntax. A wicked identity-based encryption scheme (WKD-IBE) is a generalization of a HIBE
scheme which allows for more general key delegation patterns. In a WKD-IBE scheme, secret
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keys are associated with patterns rather than identity vectors. A pattern P is a vector (P1, . . . ,
Pℓ) ∈ ({0, 1}∗∪{*})ℓ of length ℓ ≤ L, where * is a special wildcard symbol and L is the maximal
depth of the WKD-IBE scheme. That is, each component of a pattern P is either a specific
identity string or a wildcard. The main idea behind the WKD-IBE notion is that a user in
possession of the secret key for a given pattern P can generate secret keys for any pattern P ′

that matches P . We say that a pattern P ′ = (P ′
1, . . . , P

′
ℓ′) matches P , denoted P ′ ∈* P , if and

only if ℓ′ ≤ ℓ; ∀ i = 1 . . . ℓ′, P ′
i = Pi or Pi = *; and ∀ i = ℓ′ + 1 . . . ℓ, Pi = *.

More formally, a WKD-IBE scheme is a tuple of algorithms WKD-IBE = (Setup, KeyDer,
Enc, Dec) providing the following functionality. The root authority first generates a master key

pair (mpk ,msk)
$← Setup. Via skP ′

$← KeyDer(skP , P ′), a user possessing the secret key skP for
a pattern P = (P1, . . . , Pℓ) can derive a secret key for any pattern P ′ ∈* P . The secret key of
the root identity is msk = sk (*,...,*).

To create a ciphertext of message m ∈ {0, 1}∗ intended for an identity ID = (ID1, . . . , IDℓ),

the sender computes C
$← Enc(mpk , ID ,m). Any user in possession of the secret key for a

pattern P such that ID ∈* P can decrypt the ciphertext using skP as m ← Dec(skP ,C , ID).
Correctness requires that for all key pairs (mpk ,msk) output by Setup, all messages m ∈ {0, 1}∗,
all 0 ≤ ℓ ≤ L, all patterns P ∈ ({0, 1}∗ ∪ {*})ℓ, and all identities ID ∈ ({0, 1}∗)ℓ′ such that
ID ∈* P , Dec( KeyDer(msk , P ) , Enc(mpk , ID ,m), ID ) = m with probability one.

Security. We define the security of WKD-IBE schemes in a way that is very similar to the
case of HIBE schemes, but where the adversary can query for the secret keys corresponding to
arbitrary patterns, rather than specific identity vectors. Of course, the adversary is not allowed
to query the key derivation oracle for any pattern matched by the challenge identity.

More specifically, security is defined through the following game with an adversary. In the
first phase, the adversary is run on input of the master public key of a freshly generated key

pair (mpk ,msk)
$← Setup. In a chosen-plaintext attack (IND-WKID-CPA), the adversary is

given access to a key derivation oracle that on input a pattern P ∈
(
{0, 1}∗ ∪ {*}

)≤L
returns

skP
$← KeyDer(msk , P ).

At the end of the first phase, the adversary outputs two equal-length challenge messages
m∗

0 ,m∗
1 ∈ {0, 1}∗ and a challenge identity ID∗ = (ID∗

1, . . . , ID
∗
ℓ∗) where 0 ≤ ℓ∗ ≤ L. The

adversary is given a challenge ciphertext C ∗ $← Enc(mpk , ID∗,m∗
b ) for a randomly chosen bit b,

and is given access to the same oracles as during the first phase of the attack. The second phase
ends when the adversary outputs a bit b′. The adversary is said to win the IND-WKID-CPA
game if b′ = b and if it never queried the key derivation oracle for the key of any pattern P such
that ID∗ ∈* P . If Succ is the event that the adversary wins the above game, then its advantage
is defined as ǫ = 2 · Pr [Succ ] − 1.

Definition 3.1 A WKD-IBE scheme is (t, qK, ǫ) IND-WKID-CPA-secure if all t-time adver-
saries making at most qK queries to the key derivation oracle have at most advantage ǫ in the
IND-WKID-CPA game described above.

Selective-identity Security. As for the case of HIBEs, we also define the weaker selective-
identity (sWKID) security notion IND-sWKID-CPA. The IND-sWKID-CPA definition is anal-
ogous to the IND-WKID-CPA one given above except that the adversary has to commit to the
challenge identity at the beginning of the game, before the master public key is made available.
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4 Constructions of Wicked Identity-Based Encryption

4.1 Constructions with Linear-Size Ciphertexts

A construction from Gentry-Silverberg’s HIBE scheme. In the following, we present
a wicked IBE scheme based on the Gentry-Silverberg HIBE scheme [11]. The scheme uses L
independent random oracles Hi : {0, 1}∗ → G for 1 ≤ i ≤ L. These can be derived from a single
random oracle via standard techniques [3].

We provide some intuition into our construction by taking a closer look at the key derivation
of (a slight variant of) the original Gentry-Silverberg HIBE scheme. For master secret key

α
$← Zp and master public key g1 ← gα, the decryption key of an identity (ID0) at the top level

is given by sk (ID0) ← H0(ID0)
α. The key for a lower-level identity (ID0, . . . , IDℓ) is given by

sk (ID0,...,IDℓ) ←
(

H0(ID0)
α · ∏ℓ

i=1Hi(ID i)
ri , gr1 , . . . , grℓ

)

for random r1, . . . , rℓ
$← Zp. One could “insert a wildcard” at level 1 ≤ j ≤ ℓ by omitting

the factor Hj(ID j)
rj from the product in the first component and omitting the entry grj in

the vector; any value for IDj can then be filled in later by choosing rj , multiplying Hj(ID j)
rj

into the first component and inserting a new component grj . Inserting a wildcard at the top
level is not so easy though, as knowledge of the master key α is required to compute the factor
H0(ID0)

α. We therefore “disable” the top level by fixing it to identity ⊥, or equivalently, by
including h0 = H0(⊥) in the public key. A similar fix can be used to prevent a user at level ℓ < L

to further derive keys for users at levels ℓ + 1, . . . ,L. Namely, the key is computed as if it were
for the identity at level L with the components at levels ℓ + 1, . . . ,L fixed to ⊥. Equivalently,
one can include the elements hi = Hi(⊥) for 1 ≤ i ≤ L in the public key.

Before presenting the scheme, we first need to introduce some additional notation. If P =
(P1, . . . , Pℓ) is a pattern, then let |P | = ℓ be the length of P , let W(P ) be the set containing
all wildcard indices in P , i.e. the indices 1 ≤ i ≤ ℓ such that Pi = *, and let W(P ) be the
complementary set containing all non-wildcard indices. Clearly, W(P )∩W(P ) = ∅ and W(P )∪
W(P ) = {1, . . . , ℓ}. We also extend the notations P |≤ i, P |> i and P |I that we introduced for
identity vectors to patterns in the natural way. We are now ready to present the GS -WKD-IBE
scheme in full details:

Setup. The root identity chooses random generators g, h0, . . . , hL
$← G

∗. It chooses α
$← Zp

and computes g1 ← gα. It publishes mpk ← (g, g1, h0, . . . , hL) as the master public key
and keeps msk ← hα

0 secret.

Key Derivation. To compute a secret key for a pattern P = (P1, . . . , Pℓ) directly from the
master secret key, the root proceeds as follows. Let I = W(P ) ∪ {ℓ + 1, . . . , L}. For

all i ∈ I the root chooses ri
$← Zp and lets bi ← gri . It then computes a ← msk ·

∏

i∈W(P ) Hi(Pi)
ri · ∏i=ℓ+1,...,L hri

i . The secret key for pattern P is skP ← (a, (bi)i∈I).

Anyone knowing this secret key can generate a key for a pattern P ′ = (P ′
1, . . . , P

′
ℓ′) ∈* P

as follows. Let I ′ = W(P ′) ∪ {ℓ′ + 1, . . . , L}. Note that P ′ ∈* P implies that I ⊆ I ′. For

all i ∈ I, choose ri
$← Zp and compute b′i ← bi · gri ; for all i ∈ I ′ \ I, choose ri

$← Zp and

compute b′i ← gri . Finally, compute a′ ← a ·∏i∈W(P ′) Hi(P
′
i )

ri ·∏L
i=ℓ′+1 hri

i and return the

secret key skP ′ ← (a′, (b′i)i∈I′).

Encryption. To encrypt a message m ∈ GT to identity ID = (ID1, . . . , IDℓ) under mpk =
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(g, g1, h0, . . . , hL), the sender chooses t
$← Zp, computes

C0 ← gt

Ci ← Hi(ID i)
t for i = 1, . . . , ℓ

Ci ← ht
i for i = ℓ + 1, . . . , L

CL+1 ← ê(g1, h0)
t · m

and outputs the ciphertext C = (C0, . . . ,CL+1).

Decryption. A recipient knowing the secret key skP for a pattern P = (P1, . . . , Pℓ) can decrypt
a ciphertext (C0, . . . ,CL+1) intended to any identity ID ∈* P as follows. Let I = W(P )∪
{ℓ + 1, . . . , L} and let aP = (a, (bi)i∈I). The recipient recovers the plaintext as

m ← CL+1 ·
∏

i∈I ê(bi,Ci)

ê(C0, a)
.

Note that the recipient need not even know the exact identity under which the message
was encrypted.

The fact that decryption works can be seen as follows. Let P = (P1, . . . , Pℓ) be a pattern, let
I = W(P )∪{ℓ+1, . . . , L} and let skP = (a, (bi)i∈I) be a secret key for P . For all i ∈ I, let ri be
the discrete logarithm of bi with respect to g, i.e. bi = gri . From the key derivation algorithm
one can see that a = hα

0 · ∏i∈W(P ) Hi(ID i)
ri · ∏L

i=ℓ+1 hri

i . When (C0, . . . ,CL+1) is a ciphertext

intended for ID = (ID1, . . . , IDℓ′) ∈* P , we have that

ê(C0, a) = ê
(

gt , hα
0 · ∏i∈W(P )Hi(Pi)

ri · ∏L
i=ℓ+1h

ri

i

)

= ê(gt, hα
0 ) ·

∏

i∈W(P )

ê
(
gri , Hi(Pi)

t
)
·

L∏

i=ℓ+1

ê
(
gri , ht

i

)

= ê(g1, h0)
t ·

∏

i∈I

ê(bi,Ci) ,

where the last equality holds because Pi = ID i for all i ∈ W(P ) if ID ∈* P . Hence, the value
of K at decryption is exactly the argument of H2 at encryption, and the correct message is
recovered.

The following theorem states the security of the above scheme in the selective-identity notion
under the BDDH assumption in the random oracle model. Security in the full-identity notion
can be obtained at the cost of losing a factor O(qL

H) in the reduction.

Theorem 4.1 Under the (t′, ǫ′) BDDH assumption, the GS -WKD-IBE scheme described above
is (t, qK, qH, ǫ) IND-sWKID-CPA-secure in the random oracle model for ǫ ≥ 2ǫ′ and t ≤ t′ −
(qH + (qK + 3)L)texp, where texp is the time required to perform an exponentiation in G.

Proof of Theorem 4.1: Given an adversary A against the IND-sWKID-CPAsecurity of
GS -WKD-IBE , consider the following BDH algorithm B. On input (g, A = ga, B = gb, C =
gc, Z), B first runs A to obtain the target identity ID∗ = (ID∗

1, . . . , ID
∗
ℓ∗). It then chooses random

integers α1, . . . , αL
$← Zp, sets g1 ← A, h0 ← B, hi ← gαiB−1 for 1 ≤ i ≤ ℓ∗ and hi ← gαi for

ℓ∗ + 1 ≤ i ≤ L, and runs A again on input mpk = (g, g1, h0, . . . , hL). Note that from A’s point
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of view, the public key consists entirely of random elements of G, as required. To answer A’s
oracle queries, B keeps a set Q and associative arrays L1,i[·], si[·] and L2[·] for i = 1, . . . , L. It

initializes these by choosing si[ID
∗
i ]

$← Zp and L1,i[ID
∗
i ] ← gsi[ID

∗
i ] for all i = 1, . . . , L; all other

entries are left undefined. Algorithm B responds to A’s oracle queries as follows:

Random oracle queries Hi(ID i): If L1,i[ID i] is defined, then B returns this value.

Otherwise, it chooses si[ID i]
$← Zp, sets L1,i[ID i] ← gsi[IDi]B−1 and returns L1,i[ID i].

Note that the response is uniformly distributed over G, as required, due to the random
choice of si[ID i].

Key derivation queries for P = (P1, . . . , Pℓ): Before going into the details of how keys
are simulated, let’s have a closer look at the way they are supposed to be distributed. If
I = W(P ) ∪ {ℓ + 1, . . . , L}, then the secret key for pattern P is a tuple skP = (a, (bi)i∈I)
where the bi are uniformly distributed over G and a is the unique element such that

ê(a, g) = ê(g1, h0) ·
∏

i∈W(P )ê(bi, Hi(Pi)) ·
∏L

i=ℓ+1ê(bi, hi) . (1)

Given a key (a, (bi)i∈I) for which the above relation for a holds but the bi are not uniformly
distributed, it is easy to see that one can “re-randomize” the key into a correctly distributed

one sk ′
P = (a′, (b′i)i∈I) by choosing ri

$← Zp for all i ∈ I, setting b′i ← bi ·gri and computing

a′ ← a · ∏i∈W(P ) Hi(Pi)
ri · ∏L

i=ℓ+1 hri

i .

Since ID∗ 6∈* P , at least one of the following three conditions must be satisfied:

1. ℓ < ℓ∗. In this case, B lets bℓ∗ ← gx, bi ← 1 for i ∈ I \ {ℓ∗} and a ← (gx)αℓ∗ . Since
ê(1, ·) = ê(·, 1) = 1, filling these values into the right-hand side of Equation (1) gives

ê(g1, h0) · ê(bℓ∗ , hℓ∗) = ê(gx, gy) · ê(gx, gαℓ∗g−y) = ê(gx, gαℓ∗ ) = ê(a, g) .

Re-randomizing this key as explained above gives a correctly distributed key for P .

2. There exists 1 ≤ j ≤ ℓ∗ such that Pj 6= * and Pj 6= ID∗
j . In this case, B sets bj ← gx,

bi ← 1 for i ∈ I \{j}, a ← (gx)sj [Pj ] and re-randomizes (a, (bi)i∈I) as explained above.
This key satisfies Equation (1) because

ê(g1, h0) · ê(bj , H1,j(Pj)) = ê(gx, gy) · ê(gx, gsj [Pj ]g−y) = ê(gx, gsj [Pj ]) = ê(a, g) .

3. There exists ℓ∗ + 1 ≤ j ≤ L such that Pi 6= *. In this case, B proceeds exactly as in
the previous case. The correctness of the key holds by the same arguments.

At some point, A outputs challenge messages m0,m1. Algorithm B chooses a random bit b
$←

{0, 1} and generates the challenge ciphertext (C0, . . . ,CL+1) that it feeds to A as

C0 ← C

Ci ← Csi[ID
∗
i ] for 1 ≤ i ≤ ℓ∗

Ci ← Cαi for ℓ∗ + 1 ≤ i ≤ L

CL+1 ← mb · Z .

If A outputs b′ = b, then B outputs 1; else, it outputs 0.
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One can see from the way that Hi(ID
∗
i ) and hi were simulated for 1 ≤ i ≤ ℓ∗ and for ℓ∗ + 1 ≤

i ≤ L, respectively, that the challenge ciphertext is correctly distributed if Z = ê(g, g)abc, so in
this case A outputs b′ = b with probability 1/2 ± ǫ/2. However, if Z is a random element from
GT, then A’s view is independent of B’s choice of b, so its probability of outputting b′ = b is 1/2.
Therefore, we have that the BDDH advantage of B is ǫ′ = |1/2 ± ǫ/2 − 1/2| = ǫ/2.

The running time of B is roughly that of A plus 2L exponentiations at the initialization phase,
qH+qKL exponentiations during the simulation, and L exponentiations to generate the challenge
ciphertext.

Constructions from Boneh-Boyen’s and Waters’ HIBE schemes. The attentive reader
will have noticed the resemblance of the above scheme with the HIBE schemes of Boneh-Boyen [4]
and Waters [20]. Indeed, if identity strings are elements of Z

∗
p, then one can obtain a wicked

IBE variant of [4] by setting Hi(ID i) = hi,0h
IDi

i,1 , where hi,0, hi,1 are random elements of G

that are fixed in the master public key. This scheme can be proved IND-sWKID-CPA secure
under the BDDH assumption in the standard (i.e., non-random oracle) model using a proof
quite similar to the above analysis. Likewise, one can obtain a variant based on Waters’ HIBE
scheme when identities are n-bit strings by setting Hi(ID i = ID i,1 . . . ID i,n) = hi,0

∏

IDi,j=1 hi,j .

An analysis similar to the one in [20] can be used to prove this scheme IND-WKID-CPA secure
under the BDDH assumption in the standard model at the cost of losing a factor O((nqK)L) in
the reduction.

4.2 Constructions with Constant-Size Ciphertexts

In this section, we describe efficient wicked IBE schemes with constant-size ciphertexts based
on the Boneh-Boyen-Goh [5] and Waters [20] HIBE schemes. We build the wicked IBE scheme
BBG -WKD-IBE = (Setup, KeyDer, Enc, Dec) described as follows:

Setup. The trusted authority chooses random generators g from G, a random α ∈ Zp and sets
g1 ← gα. Next, it picks random elements g2, g3, h1, . . . , hL from G and sets g4 ← gα

2 . The
master public key is mpk = (g, g1, g2, g3, h1, . . . , hL). The corresponding master secret key
is msk = g4.

Key Derivation. Let P ′ = (P ′
1, . . . , P

′
ℓ) ∈

(
Z
∗
p ∪ {*}

)≤L
be the pattern for which a secret key

needs to be generated. To compute the secret key for P ′ from the master secret key, first

a random r
$← Zp is chosen, then the secret key skP ′ = (a ′

1, a
′
2, b

′) for P ′ is constructed
as

a ′
1 = g4 ·

(

g3

∏

i∈W(P ′)

h
P ′

i

i

)r

; a ′
2 = gr ; b ′ = (bi = hr

i )i∈W(P ′) .

In order to generate the secret key skP ′ for pattern P ′ from the secret key skP = (a1, a2, b)

for pattern P such that P ′ ∈* P , ones simply chooses a random r′
$← Zp and outputs

skP ′ = (a ′
1, a

′
2, b

′), where

a ′
1 = a1 ·

(

g3

∏

i∈W(P ′)

h
P ′

i

i

)r′

·
(

∏

i∈W(P ′)
T

W(P )

b
P ′

i

i

)

a ′
2 = a2 · gr′

b ′ =
(

b ′i = bi · hr′

i

)

i∈W(P ′)
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Encryption. To encrypt a message m ∈ GT for an identity ID = (ID1, . . . , IDℓ), the sender

first chooses t
$← Zp and outputs the ciphertext C = (C1,C2,C3) ∈ G × G × GT, where

C1 = gt ; C2 =

(

g3

ℓ∏

i=1

hIDi

i

)t

; C3 = m · ê(g1, g2)
t .

Decryption. Let be the C = (C1,C2,C3) and ID = (ID1, . . . , IDℓ) be the identity to which the
ciphertext was created. If the receiver is the root authority holding the master key msk ,
then he can recover the message by computing C3/ê(C1,msk). Any other receiver holding
a secret key for pattern P such that ID ∈* P can decrypt the ciphertext as follows. Let
skP = (a1, a2, b) be the decryption key for the receiver. He can recover the message by
computing

a ′
1 ← a1 ·

(
∏

i∈W(P )|≤ ℓ
bIDi

i

)

and m ← C3 · ê(a2, C2)
ê(C1, a′

1)
.

The fact that decryption works can be seen as follows. Since ID ∈* P , we have that Pi = ID i

for all i ∈ W(P )|≤ ℓ. Thus the quantity ê(a2,C2)
ê(C1,a′

1)
becomes:

ê(a2,C2)

ê(C1, a1
∏

i∈W(P )|≤ ℓ
bIDi

i )
=

ê(gr, (g3
∏ℓ

i=1 hIDi

i )r)

ê(gt, g4 · (g3
∏

i∈W(P ) hPi

i )r · ∏i∈W(P )|≤ ℓ
bIDi

i )

=
ê(gr, (g3

∏ℓ
i=1 hIDi

i )t)

ê(gt, g4) ê(gt, (g3
∏ℓ

i=1 hIDi

i )r)
=

1

ê(gt, g4)
=

1

ê(g1, g2)t

The following theorem states the security of the above scheme in the selective-identity notion
under the ℓ-BDHE assumption in the standard model. We remark that, interestingly, we can
only prove security of the scheme based on the ℓ-BDHE assumption, whereas the weaker ℓ-BDHI
assumption was sufficient for the security proof of the HIBE scheme [5].

Theorem 4.2 Let BBG -WKD-IBE be the WKD-IBE scheme as described above. Under
the decisional (t, ǫ, ℓ)-BDHE assumption, the BBG -WKD-IBE scheme of depth L = ℓ − 1
is (t′, qK, 2ǫ) IND-sWKID-CPA-secure where t′ = t − O(Lq′K) · texp and texp is the time it takes
to perform an exponentiation in G.

Proof: We assume that there exist an adversary A that breaks the IND-WKID-CPA-security of
WKD-IBE scheme BBG -WKD-IBE and then we show how to efficiently build another adversary
B that, using A as a black box, manages to break the ℓ-BDHE problem in G.

Let g, h, ~y = (y1, . . . , yℓ−1, yℓ+1, . . . , y2ℓ) with yi = gαi ∈ G, and T ∈ GT be given to B as input.

Adversary B′s task is to decide if T = ê(g, h)αℓ
or if T is uniform in G.

Initialization. Adversary A first outputs an identity vector ID∗ = (ID∗
1, . . . , ID

∗
m) ∈ (Z∗

p)
m

for m ≤ L she intends to attack. By padding ID∗ with zero identities we can assume that
ID∗ is a vector of size L = ℓ − 1.

Setup. Adversary A prepares a correctly distributed master public key mpk = (g, g1, g2, g3,
h1, . . . , hL) as follows. Initially it picks random values γ, γ1, . . . , γL, δ from Z

∗
p and defines

g1 ← y1 = gα ; g2
$← yℓ−1 · gγ = gαℓ−1+γ ; g3

$← gδ
L∏

i=1

y
ID

∗
i

ℓ−i
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and
hi ← gγi/yℓ−i, 1 ≤ i ≤ L = ℓ − 1.

Note that the master secret key is implicitly defined as g4 = gα
2 = gαℓ+γα = yℓ yγ

1 which is

unknown to A since yℓ = gαℓ
is unknown.

Key Derivation queries. Suppose adversary B makes a key derivation query for pattern P =
(P1, . . . , Pu) ∈ (Z∗

p ∪ {*})u of length u ≤ L. By padding P with zero identities we can
assume that P is a vector of size L = ℓ − 1. By the definition of the security experiment,
we know that ID∗ 6∈* P . That means that there exists an index k ∈ W(P ) such that
Pk 6= ID∗

k. We define k to be the smallest of all possible indices. B picks a random r̃ ∈ Z
∗
p

and (implicitly) sets r ← − αk

ID
∗
k−Pk

+ r̃ ∈ Zp. The secret key skP = (a1, a2, b) for P is

constructed as

a1 = g4 ·
(

g3

∏

i∈W(P )

hPi

i

)r

; a2 = gr ; (bi = hr
i )i∈W(P )

We have

(

g3

∏

i∈W(P )

hPi

i

)r

=

(

gδ
L∏

i=1

y
ID

∗
i

ℓ−i

∏

i∈W(P )

gγiPiy−Pi

ℓ−i

)r

=

(

g
δ+

P

∈W(P ) Piγi ·
∏

i∈W(P )\{k}

y
ID

∗
i −Pi

ℓ−i · yID
∗
k−Pk

ℓ−k ·
∏

i∈W(P )

y
ID

∗
i

ℓ−i

)r

We split this term up into the two factors A ·Z, where A = (y
ID

∗
k−Pk

ℓ−k )r is the third product
only. It can be checked that Z can be computed by A, i.e. the terms yi only appear with
indices i ∈ {1, . . . , ℓ − 1, ℓ + 1, . . . , 2ℓ}. The term A can be expressed as

A = g
αℓ−k(ID∗

k−Pk)(− αk

ID
∗
k
−Pk

+r̃)
= y−1

ℓ · y(ID∗
k−Pk)r̃

ℓ−k

Hence,

a1 = g4 · A · Z = yℓy
γ
1 · y−1

ℓ y
(ID∗

k−Pk)r̃
ℓ−k · Z = yγ

1 · y(ID∗
k−Pk)r̃

ℓ−k · Z
can be computed by A. Furthermore,

gr = g
− αk

ID
∗
k
−Pk

+r̃
= y

− 1
ID

∗
k
−Pk

k · gr̃

and for each i ∈ W(P ),

hr
i = (gγi/yℓ−i)

− αk

ID
∗
k
−Pk

+r̃
= y

−
γi

ID∗−Pk

k · y
1

ID
∗
k
−Pk

k+ℓ−i · gγir̃ · y−r̃
ℓ−i

can be computed since k 6∈ W(P ).

Challenge. Eventually A returns two messages m0 and m1 on which she wants to be challenged
on. Adversary B flips a coin b and creates a challenge ciphertext C ∗ = (C ∗

1 ,C ∗
2 ,C ∗

3 ) for
target identity ID∗ as follows

C ∗
1 = h ; C ∗

2 = hδ+
PL

i=1 ID
∗
i γi ; C ∗

3 = mb · T · ê(y1, h)γ

11



Define t ∈ Zp such that h = gt. We show that in case T = ê(g, h)αℓ
, C ∗ is a correctly

distributed ciphertext with (unknown) randomness t. For C ∗
2 we have

(

g3

L∏

i=1

hIDi

i

)t

=

(

gδ
L∏

i=1

y
ID

∗
i

ℓ−i

L∏

i=1

gγiID
∗
i y

−ID
∗
i

ℓ−i

)t

=

(

gδ
L∏

i=1

gγiID
∗
i

)t

= hδ+
PL

i=1 γiID
∗
i

= C ∗
2

For C ∗
3 we use ê(yi, yj) = ê(g, yi+j) to show

mb · ê(g1, g2)
t = mb · ê(y1, yℓ−1 · gγ)t

= mb · ê(h, yℓ) · ê(y1, h)γ

= C ∗
3

Guess. Eventually, adversary A outputs a bit b′. Finally, adversary B terminates her game and
returns 1 (meaning T = ê(g, h)αℓ

) if b = b′, and returns 0 (meaning T ∈ G is random)
otherwise.

When T = ê(g, h)αℓ
from adversary B’s input then A’s view is identical to its view in a real

attack game and therefore A satisfies |Pr [ b = b′ ] − 1/2| ≥ ε/2. When the T is uniform in G

then A’s view is independent of the bit b and therefore Pr [ b = b′ ] = 1/2. Therefore,
∣
∣
∣Pr

[
B(g, h, ~y, ê(g, h)(α

ℓ)) = 1
]
− Pr

[
B(g, h, ~y, T ) = 1

]
∣
∣
∣ ≥ |(1/2 ± ε/2) − 1/2| = ε/2 ,

from which the theorem follows.

Full security in the standard model. It is mentioned in [5] that using techniques from
Waters [20] one can construct a variant of their HIBE scheme that achieves full security in the
standard model. The same techniques can be also used to achieve full IND-WKID-CPA security
in the standard model for the BBG -WKD-IBE scheme, at the cost of increasing the master
public key size to (n + 1)L + 3 group elements, where n is the length of an identity string.

4.3 Full Security in the Random Oracle Model

As in the case of IBE and HIBE schemes [4, 5], any WKD-IBE scheme WKD-IBE that is
IND-sWKID-CPA-secure can be transformed into a WKD-IBE schemeWKD-IBE

′
that is IND-

WKID-CPA-secure in the random oracle model, by replacing every pattern (or identity) at key
derivation or encryption with the hash of that pattern, if that pattern is not a wildcard. That is,
any given pattern P = (P1, . . . , Pℓ) inWKD-IBE is mapped onto a pattern P ′ = (P ′

1, . . . , P
′
ℓ) in

WKD-IBE
′
, where P ′

i = Hi(Pi) if Pi 6= * or P ′
i = * otherwise, and Hi, 1 ≤ i ≤ L are independent

random oracles mapping arbitrary bit strings into an appropriate range ID corresponding to the
identity space of WKD-IBE . As in the cases of HIBE schemes, this transformation only works
if the depth L is logarithmic in the security parameter due to the loss of a factor O(qL

H) in the
reduction. Moreover, ID needs to be sufficiently large to make the probability of collisions in
the output of the hash function negligible.
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5 Application to Identity-Based Broadcast Encryption

5.1 Definitions

An identity-based broadcast encryption (IBBE) scheme is a tuple of algorithms IBBE = (Setup,
KeyDer, Enc, Dec) providing the following functionality. The trusted authority runs Setup to
generate a master key pair (mpk ,msk). It publishes the master public key mpk and keeps the
master secret key msk private. When a user with identity ID wishes to become part of the

system, the trusted authority generates a user decryption key sk ID

$← KeyDer(msk , ID), and
sends this key over a secure and authenticated channel to the user. To broadcast an encrypted
message m to a set of users with identities S = {ID1, . . . , IDk} of cardinality k ≤ L, the sender

computes the ciphertext C
$← Enc(mpk , S,m), which can be decrypted by a user holding sk ID

for any ID ∈ S as m ← Dec(sk ID ,C , S). Here the value L is an upper bound on the maximal
number of distinct receivers for a broadcast encryption.

The security of an IBBE scheme is defined through the following game. In a first phase,
the adversary is given as input the master public key mpk of a freshly generated key pair

(mpk ,msk)
$← Setup. In a chosen-plaintext attack (IND-ID-CPA), the adversary is given access

to a key derivation oracle that on input of an identity ID , returns the secret key sk ID

$←
KeyDer(msk , ID) corresponding to identity ID . At the end of the first phase, the adversary
outputs two equal-length challenge messages m∗

0 ,m∗
1 ∈ {0, 1}∗ and a challenge set of identities

S∗ = (ID∗
1, . . . , ID

∗
k∗), where 0 ≤ k∗ ≤ L. The game chooses a random bit b

$← {0, 1}∗, generates

a challenge ciphertext C ∗ $← Enc(mpk , S∗,m∗
b ) and gives C ∗ as input to the adversary for the

second phase, during which it gets access to the same oracles as during the first phase. Assume
that during the attack the adversary made key derivation queries for identities ID1, . . . , IDqK .
The adversary wins the game if it outputs a bit b′ = b and S∗ ∩ {ID1, . . . , IDqK} = ∅.

Definition 5.1 An IBBE scheme is (t, qK, ǫ)-IND-ID-CPA-secure if all t-time adversaries mak-
ing at most qK queries to the key derivation oracle have at most advantage ǫ in winning the
IND-ID-CPA game described above.

Selective-identity Security. As for the previous primitives, we further define the weaker
(sID) security notion IND-sID-CPA. The IND-sID-CPA definition is analogous to the IND-
ID-CPA one except that the adversary has to commit to the challenge set of identities S∗ =
(ID∗

1, . . . , ID
∗
k∗) at the beginning of the game, before even seeing the public-key.

5.2 A Construction from any Wicked Identity-Based Encryption Scheme

First, observe that an IBBE scheme can be trivially constructed from any IBE scheme by con-
catenating ciphertext. Meaning, the IBBE encryption for the identity set ID = {ID1, . . . , IDk} is
simply the concatenation of k separate ciphertexts, one for each identity ID i in the set ID . This
leads to IBBE ciphertext sizes that are a factor of k longer than the original IBE ciphertexts.

We now present a generic construction from any WKD-IBE scheme that, depending on the
instantiation, can offer advantages over the trivial one. To any WKD-IBE schemeWKD-IBE =
(Setup, KeyDer, Enc, Dec), we associate an IBBE scheme IBBE = (Setup, KeyDer′, Enc′, Dec′).
For an identity ID ∈ {0, 1}∗, define

Pi(ID) = (*, . . . , *, ID
︸︷︷︸

ith position

, *, . . . , *)

as a pattern of length L that has ID at its ith position and the rest consists of wildcards.
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Setup. Setup outputs whatever the WKD-IBE setup outputs.

Key Derivation. Let ID be the identity for which the user secret key sk ID needs to be gener-
ated. The user secret key is defined as the set of L distinct WKD-IBE user secret keys

sk ID = {skP1(ID), . . . , skPL(ID)},

where skPi(ID) can be computed by calling KeyDer(msk , Pi(ID)).

Encryption. Let m be the message and let S = {ID1, . . . , IDk} be the set of broadcast re-
cipients of cardinality k ≤ L that we assume to be ordered with respect to some unique
standard ordering. The IBBE ciphertext is defined as the WKD-IBE encryption of message
m and identity vector ID = (ID1, . . . , IDk).

Decryption. Let sk ID = {skP1(ID), . . . , skPL(ID)} be the user secret key of identity ID . Let S =
{ID1, . . . , IDk} be the set of k ≤ L recipients to whom the ciphertext C was encrypted, and
let index 1 ≤ j ≤ k be such that ID = ID j ∈ S. It is clear that (ID1, . . . , ID , . . . , IDk) ∈*

Pj(ID), and therefore that the ciphertext can be decrypted as m ← Dec(skPj(ID),C , ID).

Theorem 5.2 Assume an WKD-IBE scheme WKD-IBE is (t, qK, ǫ) IND-sWKID-CPA-secure
(resp. IND-WKID-CPA-secure). Then the IBBE scheme IBBE described above is (t, qK, ǫ)-
IND-sID-CPA-secure (resp. IND-ID-CPA-secure).

The crucial observation is the following. Let S∗ = {ID∗
1, . . . , ID

∗
k∗} be the set of challenge

broadcast receivers and let ID1, . . . , IDqK be the identities an adversary attacking the IBBE
scheme queries the user secret key for. The imposed requirement is that S∗∩{ID1, . . . , IDqK} =
∅. For 1 ≤ i ≤ qK and 1 ≤ j ≤ L consider the user secret keys for the patterns Pj(ID i) =
(*, . . . , *, ID i, *, . . . , *) (i.e., ID i is at the jth position) that are established by the transformation
when simulating the IBBE key derivation oracle. For a successful simulation we have to show
that ID∗ = (ID∗

1, . . . , ID
∗
k∗) 6∈* Pj(ID i). But this is the case since by S∗ ∩ {ID1, . . . , IDqK} = ∅

and we can guarantee that ID i 6= ID∗
l for all 1 ≤ i ≤ qK and 1 ≤ l ≤ k.

The above construction allows for the following trade off between ciphertext size and key
size. If L = L′A, then one can obtain an IBBE scheme with ciphertext size of A times that of the
WKD-IBE scheme, while having a key length that is only L′ times that of the WKD-IBE scheme.
The new scheme creates master public keys to allow for broadcast encryption to sets of maximal
cardinality L′. To encrypt a message to a set of broadcast identities S = {ID1, . . . , IDk} of
cardinality k ≤ L split the set S into A smaller sets S1, . . . , SA, each of cardinality L/A ≤ L′

and define the new broadcast ciphertext to be (C1, . . . ,CA), where Ci is the encryption of the
message m to the set Si.

5.3 Instantiations

Among all the instantiations of IBBE schemes based on WKD-IBE schemes, the most attractive
one is that obtained from the WKD-IBE scheme based on [5] because it achieves constant-size
ciphertexts. However, it has the disadvantage of having private keys of size O(L2). Instantiations
with any of the other WKD-IBE schemes that we proposed are less attractive because they have
ciphertext size O(L), just like the trivial ciphertext-concatenation scheme. Unlike most other
(public-key) broadcast schemes however, these instantiations do have the remarkable advantage
that knowledge of the set of recipients is not required in order to decrypt the message.

Chatterjee and Sarkar [8] recently proposed a direct IBBE scheme that is closely related
to our generic construction when instantiated with the WKD-IBE scheme based on [5]. Their
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scheme does not impose an a priori maximum on the number of recipients ℓ, but makes clever use
of a non-cryptographic hash function to achieve an average ciphertext size O(ℓ/L) and private
key size O(L), where the “average” is taken over the recipients’ identities. This means that
when ℓ ≤ L, their scheme has constant ciphertext size on average. Worst-case however, their
scheme has ciphertext size O(ℓ), which is worse than our construction.

6 Wicked and Wildcard Signatures

As observed by Naor [6], any IBE scheme automatically gives rise to a signature scheme by using
as a signature on message m the decryption key for identity ID = m. Verification can be done
by encrypting a random message to identity ID = m and testing whether it decrypts correctly,
but most concrete schemes have a more natural and efficient verification test. Likewise, one
can construct an L-level hierarchical identity-based signature (HIBS) scheme from an (L + 1)-
level HIBE [11] by letting the signature on message m by identity (ID1, . . . , IDℓ) be given by
the decryption key for identity (0‖ID1, . . . , 0‖IDℓ, 1‖m). The same technique can be used to
construct wicked identity-based signatures (WKD-IBS), the signing analogue to wicked IBE.
Here, a root authority derives secret signing keys for identity patterns with wildcards, from
which anyone can further derive signing keys for matching patterns. An L-level WKD-IBS is
constructed from an (L + 1)-level WKD-IBE by letting the signature on message m by identity
(ID1, . . . , IDℓ) be given by the decryption key for identity (0‖ID1, . . . , 0‖IDℓ, 1‖m).

Alternatively, and perhaps more interestingly, one could also use the wildcard functionality
as a homomorphism on the message being signed, rather than for the signers’ identities. This
yields a new primitive that we call wildcard signatures, that allow to sign message patterns
instead of simple messages, possibly containing wildcards at certain positions. Given such a
signature, anyone can compute a valid signature for any message created by replacing wildcards
with concrete values. This could be used for example to implement signed fill-out forms, where
each input field is represented by a wildcard in the message.

The construction from a WKD-IBE scheme is straightforward: the key pair is given by the
master key pair of the WKD-IBE scheme. The signature on a message pattern P is given
by the decryption key for P . Deriving a valid signature for a message pattern P ′ ∈* P can
be done by deriving a decryption key for P ′. Verification is done by filling up the remaining
wildcards with random messages to create a vector of messages M , encrypting a random message
under identity M , and checking whether decryption using the signature as secret key returns
the correct message. In fact, one can easily see that the schemes discussed here allow for more
efficient deterministic verification algorithms.

Wildcard signatures can be seen as a special instance of homomorphic signatures [16, 14,
2, 15]. Their relation to wicked IBE is particularly reminiscent of the relation between HIBS
schemes and append-only signatures [15]. They can also be seen as the dual of redactable
signatures [14] that allow anyone to erase parts of a signed message without invalidating the
signature.

A fairly simple, generic construction from standard signatures also exists. Namely, for each
wildcard in the message the signer generates a fresh key pair, and then signs the message together
with all generated public keys. The overall signature also contains the public and secret keys
corresponding to all wildcards. To replace a wildcard at position i with a concrete value, the
i-th secret key is replaced with a signature on the new value under the i-th public key. The
disadvantage of this generic construction is that signature length and verification time are both
linear in the number of original wildcards in the message, even after these wildcards have been
replaced with original values. The signature length and verification time of the scheme derived
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from the BBG -WKD-IBE scheme on the other hand is only linear in the number of wildcards
that are still present in the message. Also, signatures generated by the generic construction are
linkable in the sense that one can check whether a given signature was derived from a second
one by filling in wildcards. The decryption keys of the BBG -WKD-IBE scheme, and therefore
the signatures of the associated wildcard signature scheme, can be re-randomized to prevent this
type of linkability.

Finally, one could even imagine wicked wildcard signatures that allow for wildcards in both

the signers’ identities and the messages being signed. Such schemes are easily constructed from
a WKD-IBE scheme by using a different encoding for identity strings and messages, as was done
in the construction of WKD-IBS schemes above.
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