
Related-Key Statistical Cryptanalysis

Darakhshan J. Mir
Department of Computer Science,

Rutgers, The State University of New Jersey

Poorvi L. Vora
Department of Computer Science,

George Washington University

June 11, 2007

Abstract

This paper presents the Cryptanalytic Channel Model (CCM). The model treats statistical
key recovery as communication over a low capacity channel, where the channel and the encoding
are determined by the cipher and the specific attack. A new attack, related-key recovery – the
use of n related keys generated from k independent ones – is defined for all ciphers vulnerable
to single-key recovery. It is shown to correspond to the use of a concatenated code over the
channel, where the relationship among the keys determines the outer code, and the cipher and
the attack the inner code. It is shown that there exists a relationship among keys for which
the communication complexity per bit of independent key is finite, for any probability of key
recovery error. This may be compared to the unbounded communication complexity per bit
of the single-key-recovery attack. The practical implications of this result are demonstrated
through experiments on reduced-round DES.
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1 Introduction

Statistical key-recovery attacks (such as linear [16] or differential [3] cryptanalysis) typically require
a large number of ciphertexts to successfully estimate the key. Because of this, it is generally
assumed that changing the key often offers good protection against such attacks. This is clearly
true if the different keys are independent; however, relationships among keys can arise in a number
of situations: when the random number generators used in key generation are weak, or when the
adversary is powerful enough to control the relationship. While formal models of block cipher
cryptanalysis [11, 21, 25] and of related-key attacks [1] exist, there is no model of the combination.
In particular, it is not known to what degree the relationship among keys affects the success
probability of a statistical attack.

The problem may be described more formally as follows. Consider a known-plaintext statistical
key-recovery attack on a block cipher. The attack is defined formally in section 3.1, and is referred to
as single key recovery; examples include linear [16], differential [3], integral [14] or noisy polynomial
[10] cryptanalysis. Suppose the attack uses N plaintext-ciphertext (P/C) pairs to determine d
bits of a single key. As with other theoretical analyses of statistical cryptanalysis [16, 18], it is
assumed that the attacker obtains a unique estimate of the d bits. (Section 4.4 describes how the
ideas contained in this paper may be applied to the case where the attacker obtains a small list of
estimates of the key, instead of a unique estimate). Denote by ε the corresponding probability of
error in key recovery. It is well-known that as ε approaches zero, N increases without bound – see,
for example, [16, Lemmas 2 and 5]. Because d is fixed, the communication complexity per bit, N

d ,
also increases indefinitely. That is, if ν is the communication complexity per bit of key determined,

ε→ 0 ⇒ N →∞⇒ ν =
N

d
→∞ (1)

Now consider the case when multiple keys are used, and the adversary is able to obtain N P/C
pairs for each of k independent keys. This attack is defined formally in section 4, and is referred
to as independent-key recovery. If ε (defined more precisely in section 4) represents the probability
that any of the k estimated keys is in error, a relationship such as that of (1) still holds (also see
Lemma 10):

ε = 1− (1− ε)k → 0 ⇒ ε→ 0 ⇒ N →∞⇒ ν =
kN

kd
→∞ (2)

Finally, consider the related-key attack, also defined in section 4, and referred to as related-key
recovery. Suppose n (n > k) related keys are constructed from k independent ones. Suppose
the adversary obtains M P/C pairs for each related key, M < N (that is, the related keys are
changed “more frequently” than the independent ones). The d bits of each of the n related keys
are determined in independent single-key-recovery attacks, after which the relationship among the
keys is used to determine the corresponding bits of the k independent keys. How does the value
of ν for related-key recovery, nM

kd , compare with that of independent-key recovery, N
d , for the same

value of ε?

1.1 Contributions

The contributions of this paper are threefold:

• It defines the general known-plaintext statistical single-key recovery attack, and presents a
cryptanalytic channel model (CCM) for it. The model treats single-key-recovery attacks as
communication over a low capacity channel, using an encoding determined by the cipher and
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the attack. Linear, differential, integral and noisy polynomial cryptanalysis are shown to be
examples of the attack and of channel communication.

• It defines a new attack – the related-key-recovery attack – for all ciphers already vulnerable
to single-key recovery. This attack corresponds to a concatenated code in the CCM.

– It shows that there exists a relationship among the keys such that:

ε→ 0 and ν ' Λ (3)

for some constant finite Λ. (Compare (3) to (2)). Further, Λ is also shown to be
asymptotically bounded below.

– As a corollary, of (2) and (3), it shows that, if n and k are large enough and ε is
small enough, the value of ν can be made as small a fraction of that of independent-key
recovery as desired.

• It provides experimental results for related-key linear cryptanalysis on reduced-round DES.
For example, the use of a (15, 11) Reed-Solomon code for the key relationship, and ε = 0.04,
has a value of ν that is about 11% smaller than that for the corresponding independent-key
attack. As another example, for a (127, 87) Reed-Solomon code, the same value of ν provides
ε = 0.17 for the related-key attack, and ε = 0.81 for the independent-key attack.

Thus this paper demonstrates that the adversary can be at an advantage when the keys are changed
more frequently (n times) but are related, than if they are changed less frequently (k times) but
are independent. This is similar to the advantage of using channel codes over repetition codes for
channel communication. It also demonstrates a limit on the adversary: if ε → 0, ν is asymptot-
ically bounded below. This is similar to the upper bound of channel capacity on the rate of a
channel code. While this paper examines the case of the keys being related deterministically, the
techniques described here should be useful in various other settings where weaker key relationships
are examined, including in the design of key schedules.

The framework of this paper is one of unique key estimates; however, it is fairly common in
cryptanalysis to obtain a small list of key estimates, ranked by the value of the likelihood function.
In section 4.4 the paper also describes how the related-key recovery attack, based on unique single-
key estimates, can provide an improvement over independent-key attacks that are based on lists of
single-key estimates, as long as N → ∞ as ε → 0. A fairer comparison would be one where both
independent-key attacks and related-key attacks use lists of key estimates instead of unique key
estimates; however this is outside the scope of this paper.

An early version of this work was presented as an extended abstract in [24], which addressed
only the theoretical results, (providing only proof sketches) and only for linear cryptanalysis. This
paper generalizes the results to statistical cryptanalysis, provides complete proofs, and provides the
results of experimental verification. All the experimental verification is described in detail in [17].

1.2 Organization

This paper is organized as follows. Section 2 presents related work. Section 3 defines the general
statistical single-key-recovery attack and the cryptanalytic channel model (CCM). It also shows how
the model applies to several examples of common single-key-recovery attacks. Section 4 describes
and defines the related-key-recovery attack, and proves the main theoretical result of the paper –
that the related-key-recovery attack can provide a constant value of ν for any value of ε. Section 5
presents experimental results on reduced-round DES. Section 6 presents conclusions and directions
for future research.
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2 Related Work

Filiol [5] first suggested that a known probabilistic relationship – between ciphertext and a single
binary property of the key – be modeled as a communication channel. In his model, for ciphertext-
only attacks, the input to the channel is a single binary property of the key. Its output is the parity
of a few bits of the ciphertext. The channel output is equal to the channel input with a probability
slightly greater than half. Each use of the cipher transmits the same property over the channel, and
corresponds to a repetition code on the property. [5] also describes how the same set of N received
bits may be decoded as a single repetition code of length N , or as n codes of length N

n . This is the
decoding technique for a concatenated code, with an inner repetition code of length N

n (over the
property of the key), and an outer repetition code of length n (over the key). [5] correctly indicates
that, in this case, concatenation provides no advantage, and that the most efficient decoding is one
where the received bits are treated as consisting of a single codeword.

In other related work, Jakobsen [11] treats attacks on ciphers whose properties can be modeled
as polynomials of small degree, and uses recent work in computational coding theory to efficiently
decode attacks. In particular, he proposes the list decoding model, where the key estimate consists
of a small set of possibilities, as opposed to a unique estimate.

The framework of Wagner [25] describes the techniques for obtaining the probabilistic relation-
ships among the plaintext, ciphertext and key. It models the relationships as Markov chains, in the
manner of [21, 22].

Biham examines related-key attacks on block ciphers, tracing the relationships among the keys
to the key scheduling algorithm [2]. Kelsey, Schneier and Wagner [12, 13] present related-key
attacks on various block ciphers, and demonstrate how real protocols can be exploited to mount
such attacks.

No single framework prior to the CCM addresses both related-key recovery and statistical
cryptanalysis. The CCM extends the model of [5] to include known-plaintext attacks and related-
key attacks. While [5] uses concatenation only for decoding, this paper uses it for the purpose of
increasing the efficiency of transmission across the cipher channel. In contrast to [21, 25], the CCM
models the relationship among plaintext and ciphertext as a communication channel, and not as
a Markov chain. This allows the CCM to address related-key attacks, and also allows access to a
rich literature in coding theory. At the same time, the CCM allows, in a very natural way, the use
of [21, 25] to determine the communication channel, and the properties transmitted across it.

3 The Known-Plaintext Statistical Single-Key-Recovery Attack

In this section we present our framework. We define the general statistical attack on a block cipher,
and present the cryptanalytic channel model. We also show how several common attacks satisfy
the definition of the statistical attack, and describe the cryptanalytic channel for these attacks.

Our notation is defined as needed. In general, upper-case letters denote random variables (r.v.s),
and lower-case letters specific values taken by the r.v.s. Boldface letters denote sets of r.v.s.

3.1 Definition

We consider known-plaintext statistical key-recovery attacks (such as linear, differential, noisy-
polynomial and integral cryptanalysis) on block ciphers. The plaintext and ciphertext are denoted
X and Y respectively, and are drawn from the set of q-bit strings, Σq. The key is denoted K̈,
and is drawn from keyspace K, the set of b-bit strings. The adversary is able to obtain N sets of
observations of X and Y , denoted {(xj , yj)}N

j=1, for a fixed key K̈ = k̈. These are generated by
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picking xj uniformly at random and encrypting it using the block cipher and key k̈ to obtain yj .
In the case of attacks such as differential and integral cryptanalysis, a single observation consists of
more than one P/C pair, and the plaintexts in a single observation are related in a specific manner.
In such cases, a single observation consists of a set of plaintext values, X, and an associated set of
ciphertext values, Y.

A key-recovery attack requires a random variable S – a function of observable random variables
X and Y – whose distribution leaks information about the key. In general, the most probable value
of S is random variable T , a function of one or more bits of k̈. The adversary uses {(xj , yj)}N

j=1 to
obtain the value of S, and, through this, a maximum likelihood estimate of the bits, assuming, as
is typical in estimation theory (see, for example, [20]), a uniform a priori distribution on K̈. Before
formally defining the attack, we present an example.

Example 1: Linear Cryptanalysis using an r-round Approximation
Consider r-round linear cryptanalysis on an r-round iterated cipher [16, 8]. The cipher is

approximated using a linear (or affine) expression:

Pr[fr(X)⊕ gr(Y ) = hr(k̈)] =
1
2

+ γ (4)

where fr, gr and hr denote linear or affine functions, and γ the bias; all are independent of fixed
key k̈. The probability is taken over all possible plaintexts. In this case, S = fr(X) ⊕ gr(Y ), and
T = hr(k̈). The adversary uses N P/C pairs: {(xj , yj)}N

j=1 to determine the maximum-likelihood

estimate of hr(k̈), denoted ĥr(k̈). It is the one that satisfies (4) most often. That is,

ĥr(k̈) =
argmax
z |{(xj , yj)|fr(xj)⊕ gr(yj) = z}|

The general known-plaintext statistical single-key-recovery attack on block ciphers may be de-
fined as follows:

Definition 1 A known-plaintext statistical single-key-recovery attack on a block cipher with plain-
text X and ciphertext Y encrypted with fixed key k̈ ∈ K consists of:

• Function κ, κ : K → κ(K) ⊆ K

• A function Many mapping a single plaintext X to a set of plaintexts X, Many(X) = X. The
corresponding set of ciphertexts is denoted Y

• Random variables S(X,Y) ∈ Z and T (X,Y, κ(k̈)) ∈ Z, where Z denotes some domain, its
size is denoted m

• N instances of (X,Y): {(xj ,yj)}N
j=1

• Algorithm KeyRecovery

such that:

• |κ(K)| = 2d, where |.| denotes size

• S(X,Y) takes on the value T (X,Y, κ(k̈)) (slightly) more often than it takes on any other
value in Z when X is uniformly distributed. Further, it takes on all other values with equal
probability. Hence, for Z ∈ Z:

Pr[S(X,Y) = Z] =
{

1
m + γ Z = T (X,Y, κ(k̈))
1
m − γ

m−1 else

for small positive γ.
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• Algorithm KeyRecovery provides estimate(s) κ̂(k̈) of κ(k̈):

κ̂(k̈) =
max

z ∈ κ(K) | {(xj ,yj) : S(xj ,yj) = T (xj ,yj , z)} |

and is considerably more efficient than an exhaustive search over all possible values of k̈.

The attack is denoted Γ = (κ, d, Many, S, T , N , γ, KeyRecovery).

Note that, while S may play the part of a statistical distinguisher1 – for example when T is
independent of X and Y – it is not sufficient for S to be a statistical distinguisher. For the purpose
of key-recovery, the distribution of S should reveal information on k̈.

Note also that we do not specify what is meant by algorithm KeyRecovery being “considerably
more efficient than an exhaustive search”. Our condition on the algorithm is required to eliminate
trivial and exorbitantly expensive attacks – an example is when S = Y , T = Ek̈(X), γ = n−1

n , and
k̈ is determined by an exhaustive search over K. The efficiency requirement for KeyRecovery may
be met by the use of a compression κ – as in example 1 – such that an exhaustive search over all
possible values of κ(k̈) is not prohibitive. It may also be met by the use of r.v.s T and S such that a
maximum-likelihood estimate of κ(k̈) may be obtained more efficiently than through an exhaustive
search of K.

The attack of example 1 satisfies Definition 1, with

Z = Z2

X = X

κ = hr

d = 1
S(X,Y ) = fr(X)⊕ gr(Y )

T (X,Y, κ(k̈)) = κ(k̈)

We now define the key-recovery error.

Definition 2 The probability of key-recovery error of the known-plaintext statistical single-key-
recovery attack Γ is:

ε(N) = Pr[κ(k̈) 6= κ̂(k̈)]

For the attack of example 1, it is known that [16, Lemmas 2 and 5]:

ε→ 0 ⇒ N →∞ (5)

3.2 The Cryptanalytic Channel Model

The key-recovery attack of Definition 1 may be described as channel communication using the
cryptanalytic channel model (CCM). Before we describe the CCM, we briefly review the notion of
channel communication, and observe how the attack of example 1 corresponds to channel commu-
nication.

1For our purposes, a statistical distinguisher is a random variable that is uniformly distributed when X and Y
are independent of each other and uniformly distributed, but is non-uniformly distributed when Y is obtained by
encrypting uniformly distributed X using the block cipher.
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A communication channel is a triplet, consisting of an input alphabet, an output alphabet, and
the conditional probability distribution of the output given the input [4]. For the typical channel,
the input and output alphabets are identical, and the probability of error is the probability that
the output is not equal to the input. For a simplex channel, each incorrect output is equally likely.
The capacity of the channel, C, is the maximum value, over all input probability distributions, of
the mutual information between channel output and input.

A message transmitted across a channel typically includes redundancy, which enables error cor-
rection. Thus, before transmission, a message is encoded using a channel code. An (n, k) channel
code is an injective function that maps a message of length k to a codeword of length n, such that
n ≥ k. (A simple example of the channel code is the (n, 1) repetition code, where a codeword
consists of the message symbol repeated n times.) The codeword is transmitted, and, after the
probabilistic perturbation of the channel, received at the output. The received codeword is de-
coded to obtain either a single estimate of the message (known as unique decoding) or a small list
of estimates (known as list decoding). The communication efficiency of the codeword is measured
by its rate R = k

n . For example, the rate of the repetition code is 1
n . In general, a lower decoding

error is possible with a lower rate. In the case of the repetition code, the error decreases exponen-
tially with n, and a decrease in error may only be brought about with a corresponding decrease in
rate.

Example 2: Linear Cryptanalysis using an r-round Approximation as Channel Com-
munication

The attack of example 1 may be modeled as channel communication as follows (see Figure 1).
The input to the channel is the value of hr(k̈), which is not directly accessible to the adversary. The
adversary can, however, compute fr(X)⊕ gr(Y ) from plaintext and ciphertext, which provides the
value of hr(k̈) slightly more often than not – see (4). Hence fr(X)⊕ gr(Y ) is the channel output.
The input and output alphabets are identical, Z2. The randomness of the channel is provided by
the different values of plaintext encrypted, and the probability of channel error is pe = 1

2 − γ; this
is assumed to be independent of the value of the key and hence of hr(k̈) (that is, the channel is a
simplex channel). C ' 2γ2

ln2 .

fr (X)⊕ gr (Y)

cipher

Repetition code 
encoding

noisy channel 
pe = ½ - γ

Repetition 
code decoding 

hr(k)¨ hr(k)¨ˆ

Figure 1: CCM: Linear Cryptanalysis – r Round Approximations

For N P/C pairs, the cipher transmits the value of hr(k̈) over the channel N times – that
is, it transmits a length-N repetition code over hr(k̈). The procedure of estimating hr(k̈) from
{fr(xj) ⊕ gr(yj)}N

j=1 is the (maximum-likelihood) decoding procedure for a length-N repetition
code. The rate of transmission is 1

N , or the inverse of the communication complexity per bit of key
determined. (5) is the equivalent of the fact that a decrease in repetition code decoding error may
only be obtained through a decrease in rate.

We now turn to the problem of representing the statistical attack as channel communication.
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First, we define the cryptanalytic channel over which the communication occurs.

Definition 3 The cryptanalytic channel of the single-key-recovery attack Γ is the simplex commu-
nication channel with probability of error pe = n−1

n − γ, and input and output alphabets Z.

κ(k̈) forms the message (see Figure 2). The adversary can observe S(X,Y), which forms the
channel output and is a noisy value of a P/C-dependent key property,
T (X,Y, κ(k̈)). The randomness is provided by the value of P , chosen uniformly at random. Thus
[T (X1,Y1, κ(k̈)), T (X2,Y2, κ(k̈)), ...T (XN ,YN , κ(k̈))] forms the transmitted codeword, of length
N . [S(X1,Y1), S(X2,Y2), ... S(XN ,YN )] forms the received codeword. The decoding algorithm
is Algorithm KeyRecovery, and corresponds to maximum-likelihood decoding. R is the inverse of
the communication complexity per key bit, which is N

d . The capacity of the channel, for small γ,
is approximately C = m2γ2

2(m−1)ln2 .

S(X, Y)κ(k) T(X , Y, κ(k))

cipher

noisy 
channelencoding

(X , Y )

decoding
κ(k)¨¨ ¨ˆ

Figure 2: The Cryptanalytic Channel Model

Definition 1 does not assume an iterated cipher. In the following we focus on a specific common
type of key recovery attack in an r-round iterated block cipher: the determination of the rth round
key, k̈(r), using a statistical distinguisher for r− 1 rounds. In section 3.4, we show that differential
and integral key recovery attacks are typically of this kind, and the more efficient polynomial and
linear cryptanalytic attacks are also of this kind.

3.3 k̈(r)-recovery

An attack that determines k̈(r) is a special kind of statistical key recovery attack. It is based on the
existence of a random variable A that is a statistical distinguisher for the (r − 1)-round cipher [9].
That is, A is a function of X and Y (r−1), uniformly distributed when X and Y (r−1) are independent
of each other and uniformly distributed, but non-uniformly distributed when Y (r−1) is obtained by
encrypting uniformly distributed X using a fixed key. The most likely value of A, denoted B, may
be a function of X, Y and/or the key for the first r − 1 rounds, denoted k̈−r. Hence:

Pr[A(X,Y(r−1)) = Z] =
{

1
m + γ Z = B(X,Y(r−1), κ−r(k̈−r))
1
m − γ

m−1 else

for γ > 0, and some function κ−r. Observing that Y (r−1) = F−1

k̈(r)
(Y ), where Fk̈(i) is the round

function with round key k̈(i), and rearranging to obtain an observable random variable (a function
of only X and Y) on the left and a function of X, Y, k̈−r and k̈(r) on the right, we get:

Pr[S′(X) = Z] =

{
1
m + γ Z = T ′(X,F−1

k̈(r)
(Y), κ−r(k̈−r))

1
m − γ

m−1 else
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ˆ̈
k(r) and ̂κ−r(k̈−r) are the maximum-likelihood estimates:

̂κ−r(k̈−r),
ˆ̈
k(r) =

argmax
w, z = |{(xi,yi) : S′(X) = T ′(X,F−1

z (Y), w)]}|

One has the following definition.

Definition 4 A known-plaintext statistical single-key recovery attack Γ on an iterated block cipher
is a k(r)-recovery attack if ∃

• κ−r : K−r → κ−r(K−r) ⊆ K−r, where K−r is the space of all keys for the (r−1)-round cipher.

• r.v. S′(X) ∈ Z

• r.v. T ′(X,F−1

k̈(r)
(Y), κ−r(k̈−r)) ∈ Z

such that:

• S(X,Y) = S′(X)

• T (X,Y, κ(k̈)) = T ′(X,F−1

k̈(r)
(Y), κ−r(k̈−r))

Note that, if T ′ is constant as a function of k̈−r (such as in integral and differential cryptanalysis,
see examples 3.4 and 3.4), κ−r is a trivial function. Note also that S′ may be constant as a function
of X.

Viewing k̈(r)-recovery in the CCM, we observe the following. The message is {κ−r(k̈−r), k̈(r)}
or simply k̈(r) (if T ′ is independent of k̈−r), and the jth code symbol is denoted Ij :

Ij(κ−r(k̈−r), k̈(r)) = T ′(xj ,F−1

k̈(r)
(yj), κ−r(k̈−r))

The codeword, α, is:

α = [I1(κ−r(k̈−r), k̈(r)), I2(κ−r(k̈−r), k̈(r)), ...IN (κ−r(k̈−r), k̈(r))]

The received codeword is
[S′(x1), S′(x2), ...S′(xN )]

3.4 Some Examples

In this section, we provide a few examples of k̈(r) recovery.

Example 3: Linear Cryptanalysis: (r − 1)-round approximation
In practice, the attack of example 1 is not very efficient, and several P/C pairs provide only one

bit of the key. An improvement on the attack [15] is a k(r)-recovery attack that uses the following
statistical distinguisher, A:

A(X,Y (r−1)) = fr−1(X)⊕ gr−1(Y (r−1))

and B(X,Y(r−1), κ−r(k̈−r)) = hr−1(k̈−r) for linear/affine functions fr−1, gr−1, hr−1. The following
probabilistic relationship is hence known:

Pr[fr−1(X) = gr−1(F−1

k̈(r)
(Y ))⊕ hr−1(k̈−r)] =

1
2

+ γ (6)
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for some γ > 0.̂̈
k(r) is the value z that satisfies fr−1(xj) = gr−1(F−1

z (yj)) most or least often. That is, if
φ(z) = |{(xj , yj) : fr−1(xj) = gr−1(F−1

z (yj))}|,

̂̈
k(r) =

argmax
z || φ(z) − N

2
||

where ||.|| denotes the absolute value. If φ(̂̈k(r)) > N
2 , ̂hr−1(k̈−r) = 0, else ̂hr−1(k̈−r) = 1. This

simple algorithm is equivalent to maximum likelihood estimation [7]. A list of estimates of k̈(r) and
hr−1(k̈−r) may also be obtained, ranked in order of the corresponding values of || φ(z)− N

2 ||.
Hence (r − 1)-round linear cryptanalysis satisfies Definitions 1 and 4, with

Z = Z2

X = X

κ−r = hr−1

d =
b

r
+ 1

A(X,Y (r−1)) = fr−1(X)⊕ gr−1(Y (r−1))
B(X,Y(r−1), κ−r(k̈−r)) = hr−1(k̈−r)

S′(X) = fr−1(X)
T ′(X,F−1

k̈(r)
(Y ), κ−r(k̈−r)) = gr−1(F−1

k̈(r)
(Y ))⊕ hr−1(k̈−r)

Example 4: Linear Cryptanalysis: (r− 1)-round approximation as Channel Communi-
cation

The attack of example 3 is different from that of examples 1 and 2 in two ways: the bias
is strictly greater than the bias of the previous attack, and the codeword transmitted is not the
repetition code on a single bit of the key, but a ciphertext-dependent code on b

r +1 key bits. The rth

round key, k̈(r), and one bit of the rest of the key, hr−1(k̈−r), form the message. The transmitted
codeword is of size N , where the jth bit, denoted Ij(k̈(r), hr−1(k̈−r)) is:

Ij(k̈(r), hr−1(k̈−r)) = gr−1(F−1

k̈(r)
(yj))⊕ hr−1(k̈−r)

(see (6)). Notice that the codeword is ciphertext dependent. Notice also that it is non-linear in the
bits of k̈(r), though linear/affine in the bits of k̈−r.

As in example 2, the codeword itself is not accessible to the adversary. However,
[(fr−1(x1), fr−1(x2), ...fr−1(xN ))] is a very noisy value of the codeword, providing the output of
the cryptanalytic channel (see Figure 3 and (6)). The channel error probability is pe = 1

2 − γ, the
channel is symmetric, and the corresponding capacity is C ' 2γ2

ln2 .
k̈(r) and hr−1(k̈−r) are determined from the values of fr−1(xj) using maximum-likelihood de-

coding [18]. While the computational complexity of this attack is greater than that of the one of
example 1, as it performs an exhaustive search for k̈(r), experiments typically indicate that the
communication complexity per bit of key determined, N

b
r
+1

, is considerably smaller [16] – this is

because the channel has larger capacity, and the encoding is a better code.

Example 5: Noisy Polynomial Interpolation Attacks
Interpolation attacks [10] approximate Y (r−1), the output of r − 1 rounds of the cipher, as a

low-degree polynomial in X, treating both X and Y (r−1) as belonging to a finite field (such as,
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f(X)
g(F -1

k(r) (Y ) ) 
⊕ hr-1 (kr-1)

cipher

noisy channel 
pe = ½ -γencoding

Y

decoding
k(r), hr-1(kr-1 )¨¨ k(r), hr-1(kr-1 )¨¨¨

¨
ˆ ˆ

Figure 3: CCM: Linear Cryptanalysis – r − 1 Round Approximations

for example, GF (2q)). If the polynomial is p(x) =
∑m

i=1 aix
i, the coefficients ar = (a1, a2, ...am)

depend on k̈−r, and

Pr[0 = F−1

k̈(r)
(Y )−

m∑
i=1

aiX
i] =

1
2n

+ γ (7)

for some bias γ. Noisy polynomial interpolation cryptanalysis satisfies Definitions 1 and 4, with

Z = GF (2q)
X = X

κ−r(k̈−r) = ar−1

A(X,Y (r−1)) = Y (r−1)

B(X,Y (r−1), κ−r(k̈−r)) =
m∑

i=1

aiX
i

S′(X) = 0

T ′(X,F−1

k̈(r)
(Y ), κ−r(k̈−r)) =

∑
aiX

i −F−1

k̈(r)
(Y )

Example 6: Noisy Polynomial Cryptanalysis as Channel Communication
In the CCM for noisy polynomial interpolation, the message consists of k̈(r) and a. The code-

word consists of symbols in GF (2q), the jth code symbol is Ij(k̈(r),a) =
∑
ar,ix

i
j − F

−1

k̈(r)
(yj), see

(7). Notice that the codeword is plaintext and ciphertext dependent. The received symbol is always
the zero symbol, and this is a noisy version of the transmitted codeword.

Example 7: Differential cryptanalysis
In the differential cryptanalytic attack, there exist values ∆X and ∆Y such that, after r − 1

rounds of the cipher, a difference of ∆X in plaintext results in a difference ∆Y in Y (r−1), more
often than in the ideal random cipher. If two plaintext values X1 and X2 are encrypted with key
k̈ to give ciphertext Y1 and Y2, and X1 ⊕X2 = ∆X,

Pr[∆Y = F−1

k̈(r)
(Y1)⊕F−1

k̈(r)
(Y2)] =

1
2q

+ γ (8)

for some γ > 0, as Y (r−1)
i = F−1

k̈(r)
(Yi), i = 1, 2. Differential cryptanalysis satisfies Definitions 1 and

11



4, with

Z = Σq

X = {X,X ⊕∆P}
κ(k̈) = k̈(r)

d =
b

r
A(X) = ∆Y (a constant)

B(X,Y(r−1), κ−r(k̈−r)) = Y
(r−1)
1 ⊕ Y

(r−1)
2

S′(X) = ∆Y
T ′(X,F−1

k̈(r)
(Y ), κ(k̈)) = F−1

k̈(r)
(Y1)⊕F−1

k̈(r)
(Y2)

Example 8: Integral cryptanalysis
The integral cryptanalytic attack approximates r − 1 rounds of the cipher so that a particular

sum of plaintext values c results in a particular sum c′ of corresponding ciphertext output with
probability greater than 1

2q . If D ⊂ Σq is a set of plaintext such that
∑

v∈D v = c for some constant
c and Ek̈(D) the ciphertexts corresponding to plaintexts in D:

Pr[c′ =
∑

w∈Ek̈(D)

F−1

k̈(r)
(w)] =

1
2q

+ γ (9)

Integral cryptanalysis satisfies Definitions 1 and 4, with

Z = Σq

X = D ⊂ Σq

κ(k̈) = k̈(r)

d =
b

r
A(X) = c′

B(X,Y(r−1), κ−r(k̈−r)) =
∑

y(r−1)∈Y(r−1)

y(r−1)

S′(X) = c′

T ′(X,F−1

k̈(r)
(Y), κ(k̈)) =

∑
y∈Y

F−1

k̈(r)
(y)

Example 9: Differential and Integral Cryptanalysis as Channel Communication
In the CCM for differential and integral attacks, the message is k̈(r). The jth symbol of the

codeword is
∑

y∈yj
F−1

k̈(r)
(y). The received symbol is always ∆Y for differential cryptanalysis, and c′

for integral cryptanalysis, see (8) and (9). The decoding algorithm is maximum-likelihood decoding
implemented through exhaustive search.

4 Related-Key Recovery

The repetition code, which consists of the transmission of a single symbol over the channel n times,
requires a decrease in rate for a decrease in error. The transmission of related symbols, however,
can provide a very different relationship between rate and error. Shannon’s channel coding theorem

12



[19, 4] proves that there exists a channel code, using which the probability of decoding error can
be made as small as desired, for constant R, as long as n and k can be increased indefinitely, and
R ≤ C. Further, it says that this is not possible for R > C.

Applied to the cryptanalytic channel, the channel coding theorem says that ν can be maintained
at a constant value, while ε is made as small as desired, as long as N and d can be increased
indefinitely, and ν – which is the inverse of R – is at least as great as the inverse of C. As d is constant
and determined by the single-key recovery attack, it is not possible to increase d indefinitely, and
the channel coding theorem cannot directly be applied to the problem of communicating across
the cryptanalytic channel. It is however, possible to apply the channel coding theorem to the
superchannel – one may consider κ(k̈) of single-key recovery as being transmitted to the adversary
through the cryptanalytic attack, which may be thought of as a superchannel, with probability of

error ε. The adversary receives κ̂(k̈), transmitted once for one single-key recovery attack.

Definition 5 The superchannel of known-plaintext statistical single-key-recovery attack Γ is a sim-
plex channel with input and output alphabet κ(K) and probability of error ε(N).

To communicate efficiently across the superchannel, the adversary would encode the values of
κ(K); that is, the adversary would encode independent keys, which form the message, to obtain
channel-coded keys (while the channel-coding needs to be performed on the values of κ(k̈i), the
same code may be used for the entire key, with the only caveat being that the bits representing
κ(k̈i) must be encoded separately from the other bits). The channel-coded keys would then be
transmitted across the superchannel – that is, each of the channel-coded keys would be used in a
single-key recovery attack. This intentionally assumes a very powerful adversary. The results of the
channel coding theorem provide upper bounds on the efficiency of even this very powerful adversary,
and the channel coding model is a useful one for examining the effect of key relationships on the
value of ν. It is well-known in coding theory that efficient communication over a noisy channel is
not obtained by the communication of independent message symbols. Thus, it is natural that a
relationship among keys will provide a decrease in ν.

In this section we describe a general related-key attack. We prove that the use of related keys
can reduce considerably the amortized cost of the attack.

4.1 The General Statistical Related-Key Recovery Attack

Definition 6 A known-plaintext statistical related-key-recovery attack on a block cipher with
plaintext X, ciphertext Y , keyspace K and key k̈ ∈ K consists of:

• A statistical single-key-recovery attack Γ

• k independent keys, l̈ = (l̈1, l̈2, ...l̈k), such that l̈i ∈ K ∀ i

• n related keys, k̈ = (k̈1, k̈2, ...k̈n), such that k̈i ∈ K ∀ i and n ≥ k

• An injective function ψ (the encoding of κ(k̈)), such that:

ψ : (κ(K))k → (κ(K))n

ψ(κ(̈l)) = κ(k̈)

where κ(̈l) and κ(k̈) denote (κ(l̈1), κ(l̈2), ...κ(l̈k)) and (κ(k̈1), κ(k̈2), ...κ(k̈n)) respectively

13



• Algorithm RelatedKeyRecovery that obtains estimates κ̂(k̈i) independently ∀ i, using the single

key recovery attack, and uses κ̂(k̈) = (κ̂(k̈1), κ̂(k̈2), ...κ̂(k̈n)) to obtain maximum likelihood

estimate κ̂(̈l) = (κ̂(l̈1), κ̂(l̈2), ...κ̂(l̈k)).

A statistical related-key recovery attack is denoted Ψ = (Γ, k, n, ψ, RelatedKeyRecovery). As
we will be comparing the use of related keys to the use of independent keys, we now define the
independent-key attack.

Definition 7 A known-plaintext independent-key-recovery attack is a known-plaintext related-key
recovery attack with k = n and ψ = I, the identity.

Finally, we define the amortized communication cost of the related-key attack, and its error.

Definition 8 The amortized communication cost, ν, of a statistical related-key recovery attack Ψ
in P/C pairs used per bit is:

ν(N, d, k, n) =
nN

kd

Definition 9 The related-key-recovery error, ε, of a statistical related-key recovery attack Ψ, is

the probability that κ(̈l) 6= κ̂(̈l).

ε(N, k, n, ψ) = Pr[κ(̈l) 6= κ̂(̈l)]

A simple lemma describes the relationship between the value of ε(N, k, k, I) and ε(N).

Lemma 10 For a given single-key-recovery attack Γ with key-recovery error ε(N) and the cor-
responding independent-key-recovery attack, (Γ, k, k, I, RelatedKeyRecovery), with related-key-
recovery error ε(N, k, k, I)

1− ε(N, k, k, I) = (1− ε(N))k

Proof. The left hand side is the probability that all the bits of all k independent keys are correctly
estimated, so is the right hand side.

4.2 Related-Key Recovery Attacks as Concatenated Codes

In communication theory, the combination of an inner code, whose encoding and decoding form
part of the superchannel, and an outer code, used to transmit over the superchannel, form a
concatenated code. Consider a code taking k1 message symbols from alphabet X to a codeword of
length n1 over X . This is the inner code, used to transmit over the channel. One may view the
entire coding/transmitting/decoding process as a superchannel, over which a single message symbol
from X k1 is transmitted with error equal to the decoding error of the code. One may further encode
for efficient transmission over the superchannel, and a message of k2 symbols, each from X k1 , may
be encoded to a codeword of size n2 symbols, each also from X k1 .

Definition 11 A concatenated code is a code h, h : X kconc → X nconc such that ∃

• f , the inner code, f : X k1,conc → X n1,conc

• g, the outer code, g : (X k1,conc)k2,conc → (X k1,conc)n2,conc
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such that h = f ◦ g, kconc = k1,conck2,conc, and nconc = n1,concn2,conc.

The decoding algorithm of the concatenated code is the composition of the decoding algorithms of
g and f . That is, a received string m1m2m3...mnconc ∈ X nconc is divided into n2,conc substrings of
size n1,conc. Each substring is decoded using the decoding algorithm of f to obtain a string of size
k1,conc. n2,conc strings, each of size k1,conc, provide n2,conc symbols from X k1,conc , and are decoded
to obtain k2,conc symbols from X k1,conc .

We now have the following simple result (see also Figure 4).

Lemma 12 The related-key recovery attack of Definition 6, Ψ, is a concatenated code over the
superchannel of attack Γ.

Proof. ψ is the outer code; n2,conc = n and k2,conc = k. A message encoded by the outer code is of
the form κ(̈l) and a single codeword from the outer code is of the form κ(k̈), which forms the input
to the superchannel. T with maximum-likelihood decoding forms the inner code, and n1,conc = N
and k1,conc = d. The output of the superchannel consists of the estimates of the single key-recovery,

κ̂(k̈). The procedure of finding κ̂(̈l) from κ̂(k̈) is the maximum likelihood decoding of ψ.

Super-channel

Outer Code

B(xij , yij)κ(ki ) A(κ(ki ), xij , yij)

cipher

noisy 
channelencoding

(xij , yij)

decoding

Outer Decoding

ˆ(κ(k1), ˆκ(k2 ), …, ˆκ(kn ))

ˆ(κ(l1), ˆκ(l2 ), …, ˆκ(lk ))

(κ(l1), κ(l2 ), …, κ(lk ))

(κ(k1),κ(k2 ), …, κ(kn ))

¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ˆκ(ki )¨

Figure 4: Related-key Attacks as Concatenated Codes

4.3 The Existence of an Efficient Related-Key Recovery Attack

In this section, we prove our main result: that ε can be made as small as desired, while maintaining ν
at a constant value. In coding theory terms, this is equivalent to the result that communication error
can be made as small as desired, while maintaining the rate of the code at a constant value2. We

2Note that the setting is different from that of the classical result on concatenated codes by [6], which shows
that communication error can be made as small as desired, while maintaining the rate of the code at any constant
value smaller than inner channel capacity, if the inner code is a good one. In related-key-recovery, the number of
message bits for the inner code, d, is small and fixed, and hence the inner code may not be considered a good one.
Hence, the results of [6] may not be directly applied. Additionally, [6] shows that a concatenated code can be used
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approach the problem as follows. In a related-key-recovery attack, we may treat the superchannel
with a fixed value of N as a channel over which the outer code is used for communication. While
the number of message symbols of the inner code is fixed at d, the outer code is not limited in
number of message/code symbols. Hence, by the channel coding theorem [19] the superchannel can
be used to communicate with any error, at any rate smaller than its capacity (which depends on
N and d), as long as n and k can be large enough. Note, however, that we do not show that the
rate can be as large as the inner channel capacity.

More formally: consider any error, ε(N), reasonably small, in a single-key-recovery attack using
N P/C pairs. Assuming that the superchannel is symmetric, let its capacity be CS(N). (For small
values of ε, CS(N) is close to unity). The superchannel may be used to communicate at any fixed
rate smaller than CS(N) with error as low as desired. This gives us:

Theorem 13 Consider related-key-recovery attack Ψ with fixed d and N such that N
d ≥ 1

C , where C
is the capacity of the cryptanalytic channel of the single-key recovery attack Γ. Denote the capacity
of the superchannel by CS(N). ∃ψ such that

lim
n,k→∞

ε(N, k, n, ψ) = 0 and ν(d,N, k, n) = Λ, ∀ Λ ≥ N

dCS(N)

Proof. The result follows from the application of the channel coding theorem to the outer code, ψ,
with error ε(N, k, n, ψ), and the superchannel with capacity CS(N). The channel coding theorem
[19, 4] says that ∃ an outer code ψ such that,

lim
n→∞

ε(N, k, n, ψ) = 0

for all constant R ≤ CS(N). As

ν(d,N, k, n) =
nN

kd

this implies that

ν(d,N, k, n) =
N

dR
= Λ, ∀ Λ ≥ N

dCS(ε)

Theorem 13 says that, while ε is brought indefinitely close to zero, ν can be maintained at a
constant value for related-key recovery. On the other hand, ν is unbounded for independent-key
recovery (see 1). Thus, related-key recovery can reduce the value of ν to as small a fraction of the
original value as desired, if error is brought indefinitely close to zero, and n and k made as large as
desired. We state this more formally in the following corollaries.

Corollary 14 Given any α ∈ (0, 1), and a single-key recovery attack Γ, ∃ Nα, a corresponding
related-key recovery attack Ψ, and Mα, such that

ε(Mα, k, n, ψ) = ε(Nα)

and
ν(d,Mα, k, n)
ν(d,Nα, k, k)

< α

to attain the limits of the channel coding theorem if the inner code can be used to do so, and if the message length
of the inner code can be increased indefinitely. This is not true for the cryptanalytic channel because d cannot be
increased indefinitely. In fact our experimental results indicate that the maximum rate of transmission is almost half
the capacity of the inner channel for (r − 1)-round linear cryptanalysis on 8-round DES.
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Proof. Choose any Mα ≥ d
C and the corresponding ψ of Theorem 13. Mα will be used for the

number of P/C pairs in each single-key recovery for the related-key recovery. ψ will define the
relationship among the keys. Let CS(Mα) be the capacity of the cryptanalytic channel. Choose
some Λ ≥ N

dCS(Mα) . This will define the rate of the outer code, or the value of k
n for the related

keys. Given α, choose Nα >
Λd
α . These will be the number of P/C pairs used in single-key recovery

for the independent-key recovery. Then, by Theorem 13, ∃ n, k such that

ε(Mα, k, n, ψ) = ε(Nα)

and
ν(d,Mα, k, n) = Λ

Further,
ν(d,Mα, k, n)
ν(d,Nα, k, k)

=
Λ
Nα
d

=
Λd
Nα

< α

Corollary 15 Given any α ∈ (0, 1), and a single-key recovery attack Γ, ∃ Nα, a related-key recov-
ery attack Ψ, and Mα, such that

ε(Mα, k, n, ψ) < ε(Nα, k, k, I)

and
ν(d,Mα, k, n)
ν(d,Nα, k, k)

< α

Proof. This follows from Corollary 14 and Lemma 10,

ε(Mα, k, n, ψ) = ε(Nα) = 1− (1− ε(Nα, k, k, I))
1
k < ε(Nα, k, k, I)

In Theorem 13 and Corollaries 14 and 15 we have illustrated the increase in capability of the
adversary provided by related-key recovery. We now turn to the limits on this capability when the
key estimates are unique. The channel coding theorem applied to the superchannel (Corollary 16)
and to the cryptanalytic channel (Corollary 17) provides lower bounds on the value of ν if it is
held constant and error required to be arbitrarily close to zero; the bound of Corollary 16 is tight,
but depends on the specific attack and the cipher. More specifically, it depends on the function
ε(N). For linear cryptanalysis on 8-round DES, our experimental results (Section 5) indicate this
tight bound is almost twice the bound implied by the cryptanalytic channel capacity (the bound
of Corollary 17).

Corollary 16 For related-key-recovery attack Ψ such that limn→∞ ε(N, k, n, ψ) = 0, and ν is con-

stant, the minimum value of ν is
min
N N

dCS(N)

Proof. Suppose there is a value of ν that is smaller, and that it corresponds to the use of N0

P/C pairs in each of the single-key-recovery attacks. Then, in particular, ν = nN0
kd < N0

dCS(N0) and
n
k <

1
CS(N0) , or the rate of the outer code, k

n , is larger than the capacity of the superchannel, CS(N0),
contradicting the channel coding theorem.
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Corollary 17 For related-key-recovery attack Ψ with ν(d,N, k, n) = constant, and

lim
n→∞

ε(N, k, n, ψ) = 0

min
N

N

dCS(N)
≥ 1
C

where C is the capacity of the cryptanalytic channel corresponding to single-key attack Γ.

Proof. If not, Ψ would be an example of constant-rate communication with zero asymptotic error
over the cryptanalytic channel at a rate greater than its capacity, C. This would contradict the
channel coding theorem.

Finally, the adversary need not maintain a constant value of ν, independent of n and k, for the
attack. Using a result from [23], it can be shown that the tight bound of Corollary 16 is a tight
asymptotic bound for attacks where ε is arbitrarily small, but ν is not required to be independent
of k and n.

Corollary 18 For related-key-recovery attack Ψ such that limn,k→∞ ε(N, k, n, ψ) = 0,
limn,k→∞ ν(N, d, k, n) ≥ N

dCS(N)

Proof. Follows from the fact that [23] limn,k→∞ error = 0 ⇒ limn,k→∞R ≤ C.

4.4 Non-unique Key Estimates

The framework of this paper focuses on unique key estimates. Most of the ideas may, however,
be applied to the situation common to cryptanalysis: instead of a unique estimate, the adversary
obtains a (small) list of estimates of the key, ranked by the value of the likelihood function. In this
situation, the adversary performs list decoding, instead of unique decoding, at the output of the
channel. ε, the probability of error of the single-key attack, is the probability that the correct key
does not belong to the list of estimates. If the list is small enough, (1) still holds. The independent-
key attack also results in a list for each of the k independent keys. ε(N, k, k, I), the probability of
error of the independent-key estimate, is the probability that any of the independent keys does not
belong to the corresponding list of estimates, and Lemma 10 also holds.

The related-key attack uses the lists of estimates of each of the l̈i, along with the value of
the likelihood function, to rank combinations of estimates from the lists. This provides a list of
estimates of l̈, and Lemma 12 also holds. However, the number of combinations of the estimates
grows prohibitively with the value of k. The problem of comparing the performance of related-
key and independent-key attacks, where both use list decoding, is outside the scope of this paper.
On the other hand, it is possible to compare independent-key attacks that use list decoding with
related-key attacks that are based on uniquely decoded single-key attacks. As the value of ν of the
former grows without bound if the list is small enough, and the value of ν of the latter can be kept
constant (Theorem 13), Corollaries 14 and 15 also hold if the independent-key attack uses lists of
estimates and the related-key attack is based on unique estimates; however improvements in the
value of ν will be smaller for the same values of k, n and ε.

5 Experimental Verification

Corollary 15 says that any required fractional improvement over the cost of a single-key attack is
possible if ψ is chosen well, if ε is small enough, and if n and k are large enough. In this section we
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examine how much improvement is possible with small values of k and n for linear cryptanalysis
on reduced-round DES.

Motivated by Forney’s classical constructions of concatenated codes, we use Reed-Solomon
(RS) codes as the relationship among the keys. We use Matsui’s linear cryptanalytic attack [16] as
the statistical single-key recovery attack; the results of [16] have not been substantially improved
upon, and the description of the attack is complete enough to allow for a correct reproduction.
Our experimental results demonstrate that, using related-key recovery, we can obtain a reasonable
improvement in ν over that of independent-key recovery, for linear cryptanalysis on reduced-round
DES and small values of n and k. This paper does not provide any experimental verification of the
improvement in ν when the independent-key estimates are not unique.

5.1 Experimental Procedure

We first carry out linear cryptanalysis on 8-round DES, as described in [16], and verify that we are
able to produce very similar results. We then calibrate the error of the single-key attack, ε, as a
function of the number of P/C pairs, N . This provides the error of the super-channel. We then
carry out a number of related-key recovery attacks using the Reed-Solomon code for ψ, and various
values of k and n. We compare the values of ν for the related and independent-key attacks.

5.2 Reproduction of Matsui’s original experiments on 8-round DES

Matsui uses (r − 1)-round linear cryptanalysis to determine twelve key bits, using a single linear
approximation of r − 1 rounds, with a bias of 1.95 × 2−9. We perform the complete experiment
for 8-round DES described in [15], with three minor differences. First, we use the key schedule
of DES (where some key bits are related), whereas [15] uses a schedule where key bits are not
related. We do not use the relationship among the key bits to improve our estimate, hence we do
not expect the relationship to affect our results – this is corroborated by the fact that our results
are very similar to those of [15]. Second, the results in [15] were performed for 8-round DES, and
presented as predictions for full DES. Thus, for example, the well-known prediction of an attack
requiring 243 P/C pairs for 16-round DES corresponds to an experimental result that uses 1.49×217

(approximately, 200,000) P/C pairs for 8-round DES. We too perform the results for 8-round DES,
and present them as such. Finally, [15] used 100,000 instances of the attack to characterize the
accuracy as a function of N , we use 10,000. Note that [15] describes an attack on full DES, as well
as the possibility of determining a total of twenty-six bits of the key through linear cryptanalysis,
and all other bits through exhaustive search. However, the detailed experimental results described
are for the determination of twelve key bits for 8-round DES.

Figure 5 presents our results. The figure shows various graphs of the accuracy of the attack as
a function of the number of solutions. That is, point (x, y) on a graph indicates that the correct
key belongs to a list of the x best estimates with probability y. A specific graph corresponds to a
specific value of N , the number of P/C pairs used. If N8 denotes the number of P/C pairs required
for a probability of error ε on 8-round DES (the graphs in Figure 5), and N16 that for the same
error on full DES (the graphs in [15]), then:

N8 = 1.49× 2−26 ×N16 (10)

Thus the curve for 243 P/C pairs in [15] corresponds to the one for 1.49 × 217 (approximately,
200,000) P/C pairs in Figure 5.

As is clear from Figure 5, we have been able to reproduce Matsui’s original attack with minor
variations attributable to the minor differences in our experimental procedures. In the next section,
we describe the calibration of the superchannel corresponding to the single-key recovery attack.
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Figure 5: Accuracy of Key Recovery as a Function of List Size

5.3 Calibration of the Single-Key Recovery Attack of [16]

In Figure 6 we plot the probability of error, ε, for unique key-recovery, as a function of the number
of P/C pairs, N . That is, the point (1, y) on the graph corresponding to N P/C pairs in Figure
5 is the point (N, 1 − y) in Figure 6. In the CCM, Figure 6 provides the probability of error of
the super-channel for a given codeword length. If the adversary were able to transmit at channel
capacity, N would be 12

C , (where C is the capacity of the cryptanalytic channel, which may be

approximated as 2(1.95×2−9)2

ln2 ), about 287, 000 P/C pairs, for any probability of error. In Matsui’s
original experiments, about 200, 000 P/C pairs resulted in a 40% error in unique-key recovery [15].

5.4 Limits on Related-Key Recovery

Recall from Theorem 13 that n related keys constructed from k independent keys can be used to
obtain a related-key attack with amortized cost as low as N

dCS(N) . Figure 7 provides a plot of N
dCS(ε)

in P/C pairs per key as a function of N . We observe that its minimum value (the tight bound of
Corollary 16) is 535,000 P/C pairs per key, which is about 1.86 times the cost corresponding to
the capacity of the basic cryptanalytic channel (about 287,000 P/C pairs per key, the bound of
Corollary 17).

In the next section we describe the related-key recovery attacks we carried out.
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5.5 Related-Key Recovery on Reduced-Round DES

The experiment performed is as follows. k independent keys, (l̈1, l̈2, ..., l̈k), are chosen. These are
encoded using an (n, k) Reed Solomon code to obtain n related keys, (k̈1, k̈2, ..., k̈n). The bits to
be estimated by the attack are encoded independently of the other bits. That is, κ(l̈1), κ(l̈2), ...,
κ(l̈k), are encoded to obtain κ(k̈1), κ(k̈2), ..., κ(k̈n), and the values of the other forty-four bits of
each key are encoded separately. n single-key-recovery attacks are carried out using k̈1, k̈2, ..., k̈n.

The estimates obtained, κ̂(k̈1), κ̂(k̈2), ..., κ̂(k̈n) are RS-decoded to obtain κ̂(l̈1), κ̂(l̈2), ..., κ̂(l̈k).
1000 instances of the experiment are carried out for each value of (n, k). That is, for a given value
of (n, k), the experiment is carried out for 1000 sets of keys (l̈1, l̈2, ..., l̈k), each set chosen uniformly
at random. The rate of the outer code was maintained at approximately 2

3 , and the values of (n, k)
used were: (7, 5), (15, 11), (31, 21), (63, 43), and (127, 87). The experimental key recovery errors
were compared to the errors predicted by the Reed-Solomon decoding error formulae for given
channel error probability [6], and found to be very close.

5.6 Experimental Results

In this section, we present the experimental results on 8-round DES, performed using 1000 instances
of each related-key recovery attack. In Figure 8 we provide several plots. The solid-line plot
corresponds to the single key recovery attack. Each of the other plots corresponds to a particular
value of (n, k). The x-axis provides the value of ν in P/C pairs per independent key. The y-axis
provides the value of ε for an independent-key attack using k independent keys that would result
in the same value of ε as the (n, k) related-key attack. That is, the y-axis provides the value of
1 − (1 − ε)

1
k . Thus, the solid line curve represents the independent-key attack for any value of k.

If the y-axis value for an (n, k) attack is lower than that of the solid line, the related-key attack
is more efficient than the independent-key attack. For example, the value of ε required to obtain
the performance of the related-key attack with (n, k) = (127, 87) is about 0.02, while that of the
single-key attack is 0.04, for ν = 5.5× 105 P/C pairs per independent key. Thus the (127, 87) RS
code provides a better attack at this error probability. We observe that the (7, 5) RS code offers
improvements at very low error levels, while the (127, 87) code offers improvements at higher error
levels, as expected.

The same results may be also be viewed as in Figure 9, which provides the values of ε beyond
which it is more efficient to use the corresponding RS-encoded related-key attack, as a function of
n. Notice that the plot is monotonic decreasing.

Finally, we observed that the related-key attack has an 11% lower value of ν than the independent-
key attack, if ε = 0.04 and k = 11, a 22% lower value if ε = 0.03 and k = 21, and a 27% lower
value if ε = 0.17 and k = 87. The difference between the independent and related-key attacks is
further illustrated by the fact that the values of ε with the same smaller value of ν when k = 87
are 0.17 for the related-key attack, and 0.81 for the independent-key attack.
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6 Conclusions and Future Directions

We have presented a definition of the known-plaintext statistical key-recovery attack on a block
cipher and demonstrated that it is a generalization of several common attacks. We have also
presented a Cryptanalytic Channel Model (CCM) that treats the cipher as a channel, and statistical
key recovery as communication of an encoded value of the key over the channel. We have examined
how a relationship among keys affects the error of key recovery, and have found that related-key
recovery attacks can asymptotically achieve lower amortized cost than an equivalent set of many
single-key attacks. This result does not depend on specific properties of the cipher, but simply on
the fact that it is vulnerable to statistical cryptanalysis. Finally, we have presented experimental
results to support the model and to demonstrate the extent to which our asymptotic results are
applicable for a small number of independent and related keys.

A number of future directions present themselves. First an examination of related-key recovery
within the list decoding framework [11] might result in more efficient attacks, and could also provide
insights into what types of round functions are resilient to such attacks. Second, the ideas of this
paper can also be applied to keys that are not related in a deterministic fashion, but when there
is a weaker (probabilistic) relationship among the keys. Third, an examination of key scheduling
algorithms in this framework could be very interesting. Finally, other attacks, such as ciphertext-
only attacks, are also expected to lend themselves well to study in this framework.
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